1. Inequalities: Show that
 (a) \(H(X|Z) \leq H(X|Y) + H(Y|Z) \)
 (b) \(I(X_1, X_2; Y_1, Y_2) \leq I(X_1; Y_1) + I(X_2; Y_2) \) if \(p(x_1, x_2, y_1, y_2) = p(x_1, x_2)p(y_1|x_1)p(y_2|x_2) \)
 (c) \(I(X_1, X_2; Y_1, Y_2) \geq I(X_1; Y_1) + I(X_2; Y_2) \) if \(p(x_1, x_2, y_1, y_2) = p(x_1)p(x_2)p(y_1, y_2|x_1, x_2) \)
 (d) \(h(X+aY) \geq h(X+Y) \) when \(Y \sim N(0, 1) \), \(a \geq 1 \). Assume that \(X \) and \(Y \) are independent.

2. Prove or give a counterexample to the following inequalities:
 (a) \(H(X_1, X_2, X_3) + H(X_1, X_2, X_4) + H(X_2, X_3, X_4) + H(X_1, X_3, X_4) \leq \frac{3}{2} [H(X_1, X_2) + H(X_1, X_4) + H(X_2, X_3) + H(X_3, X_4)] \).
 (b) \(H(X_1, X_2, X_3) + H(X_1, X_2, X_4) + H(X_2, X_3, X_4) + H(X_1, X_3, X_4) \leq 3[H(X_1, X_2) + H(X_3, X_4)] \).

3. (Korner-Marton Identity) Show the following equality for any pair of sequences \(Y^n, Z^n \)
 \[
 \sum_{i=1}^{n} I(Y^{i-1}; Z_i|Z_{i+1}^n) = \sum_{i=1}^{n} I(Z_i^n; Y_{i+1}^{n+1} | Y^{i-1})
 \]
 Note: \(Y^m \) and \(Y_m^n \) denote \(Y_1, Y_2, ..., Y_m \) and \(Y_n, Y_{n+1}, ..., Y_m \) respectively. There is an abuse of notation at the edges. This was conveyed to me by Janos Korner. Unfortunately, it has been mistakenly called Csiszar-sum Lemma by the community after attributing the result to a later paper by Csiszar and Korner.

4. Prove that when \(f : \mathbb{R} \to [0, 1] \) such that \(H(f(u)) \) is convex and \(f \) is twice differentiable, then \(H(f(u) * p) \) is convex in \(u \) for \(p \in [0, 1] \). (Fan Cheng’s extension of Mrs. Gerber’s lemma). In the above, for \(0 \leq x, y \leq 1 \) define \(x * y = x(1-y) + y(1-x) \). As a corollary note that \(H(H^{-1}(u) * p) \) is convex in \(u \) for \(p \in [0, 1] \) where \(H^{-1}(u) \) as a mapping from \([0, 1] \) to \([0, \frac{1}{2}] \).
5. (Pinsker’s Inequality)

- Let \(x, y \in (-1, 1) \). Show that (assume natural logarithms)
 \[
 \frac{1 + x}{2} \log \left(\frac{1 + x}{1 + y} \right) + \frac{1 - x}{2} \log \left(\frac{1 - x}{1 - y} \right) = \sum_{k=1}^{\infty} \left(\frac{x^{2k} + (2k - 1)y^{2k} - 2kxy^{2k-1}}{2k(2k - 1)} \right),
 \]
 and in particular that all the terms on the right-hand-side are non-negative for each \(k \geq 1 \). Hence conclude that
 \[
 \frac{1 + x}{2} \log \left(\frac{1 + x}{1 + y} \right) + \frac{1 - x}{2} \log \left(\frac{1 - x}{1 - y} \right) \geq \frac{1}{2}(x - y)^2.
 \]

- Given two distributions \(p \) and \(q \), the total variation distance between them is defined as
 \[
 d_{TV}(p, q) = \frac{1}{2} \sum_{x} |p(x) - q(x)|.
 \]
 Show that
 \[
 D(p||q) \geq 2d_{TV}^2(p, q).
 \]
 (Hint: use data-processing inequality of \(D(p||q) \).)

6. (Han’s inequality or Shearer’s lemma)

- Show that
 \[
 H(X^n) \leq \frac{1}{n-1} \sum_{i=1}^{n} H(X^n \setminus i)
 \]

- More generally, show that given any collection \(A_i \subseteq [1 : n] \), then
 \[
 a_*H(X^n) \leq \sum_{i} H(X_{A_i}),
 \]
 where \(a_* = \min_k (\sum_i 1_{k \in A_i}) \).

Remark: The second generalization appears in a paper by Madiman and Tetali.

7. (Strong data processing inequalities for relative entropy) Given a channel \(W(y|x) \), define
 \[
 \eta_W = \sup_{p,q,q \ll p} \frac{D(Wq||Wp)}{D(q||p)}.
 \]
 Show the following:

- When \(W \) is \(BEC(\epsilon) \) then \(\eta_W = 1 - \epsilon \)
- When \(W \) is \(BSC (\frac{1+p}{2}) \) then \(\eta_W = p^2 \)
- When \(W \) is a Z-channel with \(W(Y = 0|X = 0) = 1 \) and \(W(y = 0|x = 1) = z \), then \(\eta_W = 1 - z \).