IERG 6300 Theory of Probability Prof. Chandra Nair Homework 5 Due Date: 31 March, 2022

Student's Id: _____

The notation P-a.e. stands for almost everywhere with respect to the probability distribution P.

Question 1 [5 points]: Equal on a field

Let X, Y be two integrable random variables measurable with respect to \mathcal{F} and let \mathcal{A} be an algebra such that $\mathcal{F} = \sigma(\mathcal{A})$. Suppose we are given that

$$\int_{A} X dP = \int_{A} Y dP$$

for all $A \in \mathcal{A}$, the show that X = Y, P-a.e.

Question 2 [10 points]: Lipschitz continuity

Let F(x) be a distribution function such that F(0) = 0 and F(1) = 1, let α be the probability measure corresponding to the distribution function. If F(x) satisfies the Lipschitz condition

$$|F(x) - F(y)| \le A|x - y|,$$

then show that $\alpha \ll m$ where m is the Lebesgue measure on [0, 1]. Show also that the Radon-Nikodym derivative $\frac{d\alpha}{dm}$ satisfies

$$0 \le \frac{d\alpha}{dm} \le A$$
, *m*-a.e.

Question 3 [10 points]: Chain Rule

Let ν, λ, μ be three non-negative finite measures on the same measurable space (Ω, \mathcal{F}) such that $\nu \ll \lambda$ and $\lambda \ll \mu$, then show that $\nu \ll \mu$ and

$$\frac{d\nu}{d\mu} = \frac{d\nu}{d\lambda}\frac{d\lambda}{d\mu}, \ \mu\text{-a.e}$$

Question 4 [13 points]: Uniform absolute continuity

Let \mathcal{A} be a collection of subsets of Ω . Given two non-negative finite measures λ and μ , we say that λ is uniformly absolutely continuous with respect to a non-negative finite measure μ on \mathcal{A} if for any $\epsilon > 0$, there exists a $\delta > 0$ such that for any $A \in \mathcal{A}$ with $\mu(A) < \delta$, we have $\lambda(A) < \epsilon$. On the other hand, given two non-negative finite measures λ and μ , we say that λ is absolutely continuous with respect to a non-negative finite measure μ on \mathcal{A} if for any $A \in \mathcal{A}$ such that $\mu(A) = 0$, we also have $\lambda(A) = 0$.

- (a) [5 points] Show that absolute continuity on σ -algebra \mathcal{F} , implies uniform absolute continuity on the σ -algebra \mathcal{F} .
- (b) [3 points] Show by example that absolute continuity on an algebra \mathcal{A} does not imply absolute continuity on $\sigma(\mathcal{A})$.
- (c) [5 points] Show that uniform absolute continuity on an algebra \mathcal{A} implies absolute continuity on $\sigma(\mathcal{A})$.

Question 5 [10 points]: Absolute continuity revisited

Let F_X be a distribution function on the line. Show that its induced measure is absolutely continuous with respect to the Lebesgue measure on the line if and only if for any $\epsilon > 0$ there exists an $\delta > 0$ such that for an arbitrary finite collection of disjoint intervals $I_j = [a_j, b_j]$ with $\sum_j |b_j - a_j| < \delta$, it follows that $\sum_j [F(b_j) - F(a_j)] \le \epsilon$.

Question 6 [10 points]: Conditional expectation as a projection

Let $\mathbb{H} = L_2[\Omega, \mathcal{F}, P]$ be the Hilbert space of all \mathcal{F} -measurable square integrable functions. Equip \mathbb{H} with an inner product defined according to

$$\langle f,g\rangle_P = \int_\Omega fgdP.$$

Given another σ -algebra $\Sigma \subseteq \mathcal{F}$, let $\mathbb{H}_1 = L_2[\Omega, \Sigma, P]$. Show that $f \mapsto \mathcal{E}(f|\Sigma)$ is an orthogonal projection from \mathbb{H} to \mathbb{H}_1 , i.e. show that if $g = \mathcal{E}(f|\Sigma)$, then for any other $h \in L_2[\Omega, \Sigma, P]$, we have $||f - h|| \ge ||f - g||$, where $||g|| = \langle g, g \rangle^{\frac{1}{2}}$. Additionally, show that equality holds only if h = g P-a.e..