IERG 6300 Theory of Probability Prof. Chandra Nair Homework 6 Due Date: 14 April, 2022

Student's Id: _____

The notation P-a.e. stands for almost everywhere with respect to the probability distribution P.

Question 1 [10 points]: Martingale as a difference of two non-negative martingales

Let X_n be a martingale such that $\sup_n E(|X_n|) < \infty$. Define, for $n \ge j$,

$$Y_{j,n} = \mathcal{E}(|X_n||\mathcal{F}_j).$$

Show the following:

- (a) [3 points] $Y_{j,n}$ is non-decreasing almost surely, i.e. $Y_{j,n+1} \ge Y_{j,n}$ almost surely.
- (b) [5 points] Show that there exists a Y_j such that $Y_{j,n} \to Y_j$ almost surely and $E(|Y_{j,n} Y_j|) \to 0$. Further, show that Y_j is a martingale.
- (c) [2 points] Show that $Y_j + X_j \ge 0$, and hence $X_j = (X_j + Y_j) Y_j$ is a decomposition of a martingale as a difference of two non-negative martingales.

Question 2 [11 points]: Stopped σ -algebra

Let $\mathcal{F}_n \subset \mathcal{F}$ and $\{\mathcal{F}_n\}$ be a filtration. Let τ be a stopping time adapted to the filtration. Define

$$\mathcal{F}_{\tau} := \{A : A \in \mathcal{F}, \text{ and } A \cap \{\omega : \tau(\omega) \le n\} \in \mathcal{F}_n, \forall n\}.$$

- (a) [3 points] Show that \mathcal{F}_{τ} is a σ -algebra.
- (b) [2 points] Show that τ is \mathcal{F}_{τ} measurable.
- (c) [3 points] If $\tau_1 \leq \tau_2$ then $\mathcal{F}_{\tau_1} \subseteq \mathcal{F}_{\tau_2}$.
- (d) [3 points] If stopping times $\tau_n \uparrow \tau$ then

$$\sigma\left(\cup_n \mathcal{F}_{\tau_n}\right) = \mathcal{F}_{\tau}.$$

Question 3 [13 points]: Asymmetric random walk

Let $X_1, X_2, ..., be i.i.d.$, with $P(X_i = 1) = p$ and $P(X_i = -1) = 1 - p$, and $p > \frac{1}{2}$. Define $S_n = X_1 + \cdots + X_n$, and $\mathcal{F}_n = \sigma(X_1, ..., X_n)$.

- (a) [2 points] Let $\phi(S_n) := \left(\frac{1-p}{p}\right)^{S_n}$. Show that $\phi(S_n)$ is a Martingale.
- (b) [2 points] Let $T_k = \inf\{n : S_n = k\}$. Then for l < 0 < k, show that

$$\mathbf{P}(T_k < T_l) = \frac{\phi(0) - \phi(l)}{\phi(k) - \phi(l)}.$$

- (c) [3 points] If l < 0 then show that $P(T_l < \infty) = \left(\frac{1-p}{p}\right)^{-l}$. If k > 0, then show that $P(T_k < \infty) = 1$.
- (d) [3 points] If k > 0 then $E(T_k) = \frac{k}{2p-1}$. (Hint: Consider $Z_n = S_n (2p-1)n$)
- (e) [3 points] Show that $\operatorname{var}(T_1) = \frac{1-(2p-1)^2}{(2p-1)^3}$. (Hint: Consider $Z_n = (S_n (2p-1)n)^2 (1-(2p-1)^2)n$.)

Question 4 [5 points]: Doob's inequality revisited

Let X_n be a martingale with $X_0 = 0$ and $E(X_n^2) < \infty$. Show that, for any $\lambda \ge 0$,

$$P\left(\max_{1 \le m \le n} X_m \ge \lambda\right) \le \frac{E(X_n^2)}{E(X_n^2) + \lambda^2}$$