\qquad
Due Date: 14 April, 2022
The notation P-a.e. stands for almost everywhere with respect to the probability distribution P.

Question 1 [10 points]: Martingale as a difference of two non-negative martingales

Let X_{n} be a martingale such that $\sup _{n} \mathrm{E}\left(\left|X_{n}\right|\right)<\infty$. Define, for $n \geq j$,

$$
Y_{j, n}=\mathrm{E}\left(\left|X_{n}\right| \mid \mathcal{F}_{j}\right) .
$$

Show the following:
(a) [3 points] $Y_{j, n}$ is non-decreasing almost surely, i.e. $Y_{j, n+1} \geq Y_{j, n}$ almost surely.
(b) [5 points] Show that there exists a Y_{j} such that $Y_{j, n} \rightarrow Y_{j}$ almost surely and $\mathrm{E}\left(\mid Y_{j, n}-\right.$ $\left.Y_{j} \mid\right) \rightarrow 0$. Further, show that Y_{j} is a martingale.
(c) [2 points] Show that $Y_{j}+X_{j} \geq 0$, and hence $X_{j}=\left(X_{j}+Y_{j}\right)-Y_{j}$ is a decomposition of a martingale as a difference of two non-negative martingales.

Question 2 [11 points]: Stopped σ-algebra

Let $\mathcal{F}_{n} \subset \mathcal{F}$ and $\left\{\mathcal{F}_{n}\right\}$ be a filtration. Let τ be a stopping time adapted to the filtration. Define

$$
\mathcal{F}_{\tau}:=\left\{A: A \in \mathcal{F}, \text { and } A \cap\{\omega: \tau(\omega) \leq n\} \in \mathcal{F}_{n}, \forall n\right\} .
$$

(a) [3 points] Show that \mathcal{F}_{τ} is a σ-algebra.
(b) [2 points] Show that τ is \mathcal{F}_{τ} measurable.
(c) [3 points] If $\tau_{1} \leq \tau_{2}$ then $\mathcal{F}_{\tau_{1}} \subseteq \mathcal{F}_{\tau_{2}}$.
(d) [3 points] If stopping times $\tau_{n} \uparrow \tau$ then

$$
\sigma\left(\cup_{n} \mathcal{F}_{\tau_{n}}\right)=\mathcal{F}_{\tau} .
$$

Question 3 [13 points]: Asymmetric random walk

Let $X_{1}, X_{2}, .$. , be i.i.d., with $\mathrm{P}\left(X_{i}=1\right)=p$ and $\mathrm{P}\left(X_{i}=-1\right)=1-p$, and $p>\frac{1}{2}$. Define $S_{n}=X_{1}+\cdots X_{n}$, and $\mathcal{F}_{n}=\sigma\left(X_{1}, . ., X_{n}\right)$.
(a) [2 points] Let $\phi\left(S_{n}\right):=\left(\frac{1-p}{p}\right)^{S_{n}}$. Show that $\phi\left(S_{n}\right)$ is a Martingale.
(b) [2 points] Let $T_{k}=\inf \left\{n: S_{n}=k\right\}$. Then for $l<0<k$, show that

$$
\mathrm{P}\left(T_{k}<T_{l}\right)=\frac{\phi(0)-\phi(l)}{\phi(k)-\phi(l)} .
$$

(c) [3 points] If $l<0$ then show that $P\left(T_{l}<\infty\right)=\left(\frac{1-p}{p}\right)^{-l}$. If $k>0$, then show that $P\left(T_{k}<\infty\right)=1$.
(d) [3 points] If $k>0$ then $E\left(T_{k}\right)=\frac{k}{2 p-1}$. (Hint: Consider $\left.Z_{n}=S_{n}-(2 p-1) n\right)$
(e) $[3$ points $]$ Show that $\operatorname{var}\left(T_{1}\right)=\frac{1-(2 p-1)^{2}}{(2 p-1)^{3}}$. (Hint: Consider $Z_{n}=\left(S_{n}-(2 p-1) n\right)^{2}-(1-$ $\left.(2 p-1)^{2}\right) n$.)

Question 4 [5 points]: Doob's inequality revisited

Let X_{n} be a martingale with $X_{0}=0$ and $\mathrm{E}\left(X_{n}^{2}\right)<\infty$. Show that, for any $\lambda \geq 0$,

$$
\mathrm{P}\left(\max _{1 \leq m \leq n} X_{m} \geq \lambda\right) \leq \frac{\mathrm{E}\left(X_{n}^{2}\right)}{\mathrm{E}\left(X_{n}^{2}\right)+\lambda^{2}} .
$$

