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Abstract. These are class notes in probability theory. Most of these sections
are taken from Varadhan’s lecture notes as well as Durrett’s book.
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CHAPTER 1

Basic Ideas of Probability Theory

1.1. Preliminaries

1.1.1. Motivation. Basic notion: One wants to assign chances to outcomes
or groups of outcomes of an experiment.

If the number of possible outcomes are finite, say ω1, ..., ωn, then a natural
way to assign chances or probabilities is to assign for each outcome a number
P(ωi) = pi, where 0 ≤ pi ≤ 1 and

∑n
i=1 pi = 1. One can extend this line of thought

to experiments with a countable number of outcomes.
However, things become complicated when the number of outcomes becomes

uncountable. No reasonable way exists to assign positive probabilities to an un-
countable number of outcomes and still make their sum 1. To see this, consider
the following collection of events Ek = {w : P(w) ≥ 1

k}. Clearly |Ek| ≤ k. Let
E = ∪kEk = {w : P(w) > 0}. However, the number of elements in E is countable.

A Remedy: Instead of defining probabilities for individual outcomes, one
defines probabilities for collections of outcomes (or events).

Let A denote the events for which probabilities are assigned. Then one would
like A to have the following properties:

• if A,B ∈ A, then A ∪B ∈ A (“or” event), and A ∩B ∈ A (“and” event)
• ∅,Ω ∈ A
• if A ∈ A then Ac ∈ A

Such a collection A is called an algebra or a field. We may also require the set of
events for which we wish to assign probabilities to have the following additional
property:

• If Ai ∈ F then ∪iAi ∈ F .

An algebra or a field with (closed under countable unions) is called a sigma-algebra
or a sigma-field.

Aside: Why can’t we then assign probabilities to all subsets of outcomes, i.e.,
to the power set 2Ω? Let us take Ω = R3. Assume that we want the measure to be
constructed to yield the "volume" of the set. There is a rather deep result that says
that we must make one of the following concessions:

(1) The volume of a set might change when it is rotated.
(2) The volume of the union of two disjoint sets might differ from the sum of

their volumes.
(3) Some sets might be tagged “non-measurable", and one would need to check

whether a set is "measurable" before talking about its volume.
(4) The axioms of ZFC (Zermelo-Fraenkel set theory with the axiom of Choice)

might have to be altered.
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2 1. BASIC IDEAS OF PROBABILITY THEORY

Most probabilists choose to accept (3), i.e., to tag certain sets as "unmeasurable."
See https://en.wikipedia.org/wiki/Non-measurable_set

In any case, in this class, we will talk about the standard axiomatic treatment
under the assumption (3).

1.1.2. Definitions.

Definition 1.1.1. A σ-algebra is a collection F of events A ⊂ Ω such that
• ∅,Ω ∈ F
• A ∈ F ⇒ Ac ∈ F
• Ai ∈ F ⇒ ∪∞i=1Ai ∈ F .

The pair (Ω,F) is defined to be a measurable space.

Definition 1.1.2. A measure µ on the measurable space (Ω,F) is a mapping
µ : F 7→ [0,∞] satisfying:

(1) µ(∅) = 0.
(2) if Ai ∈ F is a countable collection of pairwise disjoint sets, then µ(⊔iAi) =∑

i µ(Ai).

Definition 1.1.3. A probability measure is a measure that satisfies P(Ω) = 1.

Exercise 1.1.1. Show that the following holds for a probability measure:
(1) P(∪iAi) ≤

∑
i P(Ai) (sub-additivity)

(2) if Ai ↑ A, then P(Ai) ↑ P(A) (monotone up-limits)
(3) if Ai ↓ A, then P(Ai) ↓ P(A) (monotone down-limits)

Exercise 1.1.2. Show that (1), (2) holds for general measures, while (3) may
not.

(Hint: To see a counter example to (3), define Bi = piN (here pi is the ith
prime) and set Ai = N \ ∪ij=1Bi. Use counting measure as the measure and show
that µ(Ai) =∞,∀i, while A = {1}, and hence µ(A) = 1.)

Remark 1.1.1. If Ai is a collection such that P(Ai) = 0,∀i then P(∪iAi) = 0
(from subadditivity).

Exercise 1.1.3. Consider events {An} in a probability space (Ω,F ,P) that are
almost pairwise disjoint, i.e. P(An ∩Am) = 0 whenever n ̸= m. Show that

P(∪∞n=1An) =

∞∑
n=1

P(An).

The triple (Ω,F ,P) is called a probability space.

Definition 1.1.4. (Ω,F ,P) is said to be non-atomic if ∀A s.t. P(A) > 0,∃B ⊂
A,B ∈ F s.t. P(A) > P(B) > 0.

Exercise 1.1.4. If (Ω,F ,P) is non-atomic and P(A) > 0 then show that
(1) ∀ϵ > 0,∃B ⊂ A s.t. 0 < P(B) < ϵ.
(2) If 0 < a < P(A) then there exists B ⊂ A s.t. P(B) = a.

Consider a collection of events A. We wish to extend the collection to a sigma
field. Or, in other words, is there a smallest sigma field that contains A? The
answer is Yes. To see this, the following exercise is useful.

https://en.wikipedia.org/wiki/Non-measurable_set
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Exercise 1.1.5. Let Fα be an arbitrary collection of σ-fields. Then ∩αFα is
also a σ-field.

From the above exercise, the intersection of all σ-algebras that contain A is a
σ-algebra and is the smallest σ-algebra that contains A. This is denoted as σ(A),
and called the σ-algebra generated by A.

Supposed Ω is a topological space (i.e., equipped with open sets). Then the
σ-algebra generated by the open sets is called the Borel σ-algebra.

Exercise 1.1.6. Given a collection of sets A, let σ(A) denote the smallest
σ-field containing the elements of A. Verify the following alternate definitions for
Borel σ-field BR of reals (i.e. show that all the following σ-fields are identical):

• σ({(a, b) : a < b ∈ R})
• σ({[a, b] : a < b ∈ R})
• σ({(−∞, b) : b ∈ R}
• σ({(−∞, b) : b ∈ Q})
• σ({O ⊂ R is open}).

1.1.3. Other classes of sets. Besides σ-algebra’s and algebras, other col-
lections of sets with certain properties also turn out to be helpful in probability
theory.

Definition 1.1.5. A collection M, of subsets of Ω, is called a monotone class,
if M is non-empty, and satisfies the following two conditions:

• If a countable increasing collection of sets, M1 ⊆M2 ⊆ · · · , belong toM,
then ∪iMi ∈M. In other words, M is closed under monotone up limits.

• If a countable decreasing collection of sets, M1 ⊇ M2 ⊇ · · · , belong to
M, then ∩iMi ∈M. In other words,M is closed under monotone down
limits.

Remark 1.1.2. An example of a monotone class on the reals is the collection
{(0, 1], (2, 3]}. This is not closed under unions or intersections. Note that increasing
unions can only be formed by taking identical elements; hence, it is a monotone
class.

Remark 1.1.3. It is clear that arbitrary intersections of monotone classes in
a monotone class. Therefore, given a collection of sets S, we can talk about the
monotone class generated by S denoted by M(S), to be the smallest monotone
class that contains S.

Theorem 1.1.1 (Monotone Class Theorem). Let A be an algebra. Let M(A)
be the monotone class generated by A. Then M(A) = σ(A).

Proof. Since σ(A) is closed under monotone limits, it is clear that σ(A) ⊇
M(A). Therefore, it suffices to show that M(A) is a σ-algebra. Since ∅ ∈ A we
have ∅ ∈ M(A).

Let M0 = {B : B ∈ M(A) such that Bc ∈ M(A)}. Clearly A ⊆ M0. Since
M(A) is closed under monotone limits, it is clear thatM0 is also a monotone class,
hence M0 =M(A). Thus B ∈M(A) implies that Bc ∈M(A).

To complete the proof, it suffices to show thatM(A) is a field. Towards this,
fix A ∈ A, and define

MA = {B ∈M : A ∩B ∈M}.
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Clearly, A ⊆MA and MA is a monotone class. Hence MA =M(A).
Now fix C ∈M(A) and define

MC = {B ∈M : C ∩B ∈M}.

Clearly, A ⊆MC and MC is a monotone class. Hence MC =M(A).
ThereforeM(A) is closed under finite unions and intersections, hence an algebra.

Now closure under monotone limits follows from the definition implying that M(A)
is a σ-algebra. □

Definition 1.1.6. A collection H, of subsets of Ω, is called a π-system, if H is
non-empty, and H1, H2 ∈ H implies that H1 ∩H2 belongs to H.

Definition 1.1.7. A collection D, of subsets of Ω, is called a λ-system (or a
d-system), if:

• Ω ∈ D,
• D1, D2 ∈ D and D1 ⊆ D2 implies (D2 \D1) ∈ D,
• If a countable increasing collection of sets, D1 ⊆ D2 ⊆ · · · , belong to D,

then ∪iDi ∈ D. In other words, D is closed under monotone up limits.

Remark 1.1.4. Arbitrary intersections of λ-systems is a λ-system. Therefore,
given a collection of sets S, we can talk about the λ-system generated by S denoted
by D(S), to be the smallest λ-system that contains S.

Remark 1.1.5. Since Ω ∈ D, if D ∈ D we have (Ω \D) = Dc ∈ D. Therefore,
it is closed under taking complements, and consequently, D is also closed under
monotone down limits.

Theorem 1.1.2 (Dynkin’s π-λ Theorem). Let H be a π-system. Let D(H) be
the λ-system generated by H. Then D(H) = σ(H).

Proof. It is easy to see that any σ-algebra is also a λ-system. Hence, it suffices
to show the non-trivial direction, i.e., D(H) is a σ-algebra. If D(H) was additionally
a π-system, then for any {Di} ∈ D(H), we have ∪ki=1Di =

(
∩ki=1D

c
i

)c ∈ D(H).
Further as D(H) is closed under monotone up-limits, ∪iDi = ∪k

(
∪ki=1Di

)
∈ D(H).

Thus, it suffices to show that D(H) is also a π-system.
Fix H ∈ H. Define D1H = {D ∈ D(H) : D ∩ H ∈ D(H)}. Observe that

Ω ∈ D1H , and since H is a π-system, H ⊆ D1H . Further, if D2, D1 ∈ D1H and
D2 ⊇ D1, as (D2 \D1) ∩H = (D2 ∩H) \ (D1 ∩H), we have that (D2 \D1) ∈ D1H .
In the above we used that D(H) is a λ-system, and that (D2 \H) ⊇ (D1 \H), as
D2 ⊇ D1. Finally if a countable increasing collection of sets, D1 ⊆ D2 ⊆ · · · , belong
to D1H , then as (∪iDi) ∩H = ∪i(Di ∩H) ∈ D, we have that ∪iDi ∈ D1H . This
implies that D1H ⊆ D(H) is a λ-system containing H, implying D1H = D(H). This
implies that for any H ∈ H and D ∈ D(H), H ∩D ∈ D(H).

Fix D ∈ D(H). Define D2D = {D̂ ∈ D(H) : D̂ ∩ D ∈ D(H)}. Observe that
Ω ∈ D2D, andH ⊆ D2D from the previous part. Now, if D2, D1 ∈ D2D and D2 ⊇ D1,
as (D2 \D1) ∩D = (D2 ∩D) \ (D1 ∩D), we have that (D2 \D1) ∈ D2D. As in the
earlier part, we again used that D(H) is a λ-system, and that (D2 \D) ⊇ (D1 \D),
as D2 ⊇ D1. Finally if a countable increasing collection of sets, D1 ⊆ D2 ⊆ · · · ,
belong to D2D, then as (∪iDi) ∩D = ∪i(Di ∩D) ∈ D, we have that ∪iDi ∈ D2D.
This implies that D2D ⊆ D(H) is a λ-system containing H, implying D2D = D(H).

Therefore D(H) is a π-system, completing the proof. □
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1.1.4. Existence and construction of measures.

Theorem 1.1.3. (Caratheodory Extension Theorem)
Any countably additive probability measure P on a field A extends uniquely as a
countably additive probability measure on F = σ(A).

Proof. The proof consists of various steps. Here, we outline the main steps.
1. Define a quantity P∗(B), B ∈ F (which will turn out an outer measure) as

follows:
P∗(B) = inf

Ai∈A,∪iAi⊇B

∑
i

P(Ai).

(Show that without loss of generality, we can assume Ai to be pairwise disjoint.)
Remark : We could also have extended the definition of P∗(B) to all B ∈ 2Ω,

but it does not buy us anything in the context of this proof.
Show that
(1) Subadditivity: P∗(∪iBi) ≤

∑
i P

∗(Bi). (Hint: A collection of “good” covers
of Bi is only one possible cover for ∪iBi.)

(2) if A ∈ A then P∗(A) ≤ P(A) (trivial)
(3) if A ∈ A then P∗(A) ≥ P(A) (Hint: take a good cover of A and use

countable additivity of P on A.)
2. Define a set E ∈ F to be measurable if for all B ∈ F

P∗(B) ≥ P∗(B ∩ E) + P∗(B ∩ Ec)

(clearly, from subadditivity, this forces an equality.) Let E be the set of all measurable
sets. Show that E is a σ-field and that P∗ is a countably additive probability measure
on E . Finally show that E ⊇ A and hence E ⊇ σ(A).

Outline of proof: Clearly P∗(∅) = 0, hence ∅ ∈ E . It is also clear that if E ∈ E ,
then Ec ∈ E . Now suppose E1, E2 ∈ E . Then observe that

P∗(B) = P∗(B ∩ E1) + P∗(B ∩ Ec
1)

= P∗(B ∩ E1) + P∗(B ∩ Ec
1 ∩ E2) + P∗(B ∩ Ec

1 ∩ Ec
2)

≥ P∗(B ∩ (E1 ∪ E2)) + P∗(B ∩ Ec
1 ∩ Ec

2).

Here the equalities follow from the measurability of E1, E2, and the inequality
follows from sub-additivity of P∗(·). This implies finite unions are measurable. We
can conclude that E is an algebra.

Let Ei be a pairwise disjoint collection. Clearly Gn = ∪ni=1Ei is measurable.
Let G = ∪iEi. Therefore

P∗(B) = P∗(B ∩Gn) + P∗(B ∩Gc
n)

≥ P∗(B ∩Gn) + P∗(B ∩Gc)

= P∗(B ∩Gn ∩ En) + P∗(B ∩Gn ∩ Ec
n) + P∗(B ∩Gc)

= P∗(B ∩ En) + P∗(B ∩Gn−1) + P∗(B ∩Gc)

=

n∑
i=1

P∗(B ∩ Ei) + P∗(B ∩Gc).

Taking limits P∗(B) ≥
∑∞

i=1 P
∗(B ∩ Ei) + P∗(B ∩Gc) ≥ P∗(B ∩G) + P∗(B ∩Gc),

where the last inequality follows from sub-additvity. Hence G = ∪iEi is measurable
or E is an σ-algebra.
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Note the following to show that P∗(·) is a countably additive probability measure
on E . Let Ei be a pairwise disjoint collection and G = ∪iEi. Then

P∗(E1 ∪ E2) = P∗((E1 ∪ E2) ∩ E1) + P∗((E1 ∪ E2) ∩ Ec
1)

= P∗(E1) + P∗(E2).

Hence, P∗(·) is a finitely additive probability measure on E . Countable additivity is
a simple consequence of subadditivity and the following:

P∗(G) ≥ P∗(Gn) =

n∑
i=1

P∗(Ei).

Hence P∗(G) =
∑∞

i=1 P
∗(Ei).

To show that A ⊆ E , for any B, take a "good" cover of B and show that this
induces a cover on B ∩A and B ∩Ac. Hence show that

P∗(B) ≥ P∗(B ∩A) + P∗(B ∩Ac).

Thus A ⊆ E and since E is a sigma-algebra, we also have σ(A) ⊆ E .
3. To show uniqueness, show the following: LetM = {B : p1(B) = p2(B)} be

the collection of all sets in which the two countably additive probability extensions
agree. Then, it is clear thatM is a monotone class. The proof then follows Theorem
1.1.1. □

Thus, Caratheordory’s extension theorem reduces the burden of constructing
measures on σ-algebras to those on algebras.

1.1.4.1. Constructing countably additive probability measures on algebras. We
will now see that there is a canonical way of constructing a countably additive
probability measure on FB , the Borel σ-algebra on the real line.

Consider the following collection of intervals: I = {Ia,b : −∞ ≤ a < b ≤ ∞},
where Ia,b = (a, b] when b <∞ and Ia,∞ = (a,∞).

Exercise 1.1.7. Show that the class, AB , of finite disjoint union of members
of I is an algebra.

Assume we are given a function F (x) which is nondecreasing, right-continuous,
and satisfies

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

Then we can define a finitely additive P by first defining P (Ia,b) = F (b)− F (a) for
intervals, and then extending it to AB by defining it as the sum for disjoint unions
from I.

We will now prove Lebesgue’s theorem, which shows when one can extend the
finitely additive P to a countably additive P .

Theorem 1.1.4. (Lebesgue)
Let P be a finitely additive probability measure on AB. P is countably additive on
AB if and only if F (x) = P ((−∞, x]) is right continuous function of x.

Remark 1.1.6. Essentially, this means (using Caratheodory’s theorem) that
for every right continuous function non-decreasing F (x) that satisfies F (−∞) = 0
and F (∞) = 1, there is a unique countably additive probability measure on FB;
and conversely every countably additive probability measure on FB induces a right
continuous function.
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Proof. Suppose P is countably additive on A. Then for any x and {ϵn} ↓
0, the collection of intervals Jn = (x, x + ϵn] decreases to ∅. This means that
F (x+ ϵn)− F (x) ↓ 0 and this suffices (why? hint: F (x) is non-decreasing).

The tricky part is the reverse direction, i.e., getting countable additivity from
right continuous and non-decreasing F (x) with F (−∞) = 0 and F (∞) = 1. Suppose
Aj ∈ A, Aj ↓ ∅. Assume that P(Aj) ≥ δ > 0. (We wish to show a contradiction).
Now pick l large enough that 1− F (l) + F (−l) < δ

2 , and define Bj = Aj ∩ (−l, l].
Clearly P(Bj) ≥ δ

2 ,∀j.
Since Bj is a finite disjoint union of left open right closed intervals, create

Cj ⊂ Bj by moving the left (open) endpoint of the intervals to the right (i.e.,
shortening each interval). This can be done to guarantee that

P(Bj \ Cj) ≤
δ

3 · 2j
, ∀j.

Define Dj = closure(Cj). Clearly Dj ⊂ Bj ⊂ Aj .
We know that Bj ’s are decreasing, but Cj ’s may not be. Therefore define

Ej = ∩ji=1Ci, and Fj = ∩ji=1Di. Fj ⊃ Ej (by construction), and observe that

P(Ej) ≥ P(Bj)− P(Bj ∩ Ec
j ) ≥ P(Bj)−

j∑
i=1

P(Bj ∩ Cc
i )

≥ P(Bj)−
j∑

i=1

P(Bi ∩ Cc
i ) ≥

δ

2
− δ

3
> 0.

Therefore Fj is non-empty. Thus, Fj is non-empty, closed, bounded, and
decreasing. Thus, ∩jFj cannot be the ∅ (finite intersection property). However
Fj ⊂ Aj and Aj ↓ ∅, leading to a contradiction.(!) □

F (·) is the distribution function corresponding to the probability measure P.
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1.2. Random variables and integration

Definition 1.2.1. A random variable or a measurable function is a map f :
(Ω,Σ) 7→ (R,FB) (really a mapping Ω→ R but with the sigma-algebras specified)
such that ∀B ∈ FB , f−1(B) = {w : f(w) ∈ B} ∈ Σ.

In the above definition FB denotes the Borel σ-algebra generated by the open
intervals on the real line.

Exercise 1.2.1. For a class of sets A ⊂ FB, and a mapping f : (Ω,Σ) 7→
(R,FB), suppose it holds that f−1(A) ∈ Σ for all A ∈ A, then show that f−1(C) ∈ Σ
for all C ∈ σ(A), where σ(A) is the smallest σ-algebra containing A.

Remark 1.2.1. The above exercise show that to verify that a function is
measurable, it suffices to consider the inverse images of any collection of sets that
generate FB .

Some facts about random variables:
(1) If A ∈ Σ then

1A(ω) =

{
1 ω ∈ A

0 ω /∈ A

is bounded and measurable.
(2) Sums, products, limits, etc of measurable functions are measurable.

Exercise 1.2.2. Show that if f1, f2 are measurable, then f1f2 (their
pointwise product) is measurable.

(3) if {Aj : 1 ≤ j ≤ n} is a finite disjoint partition of Ω into measurable sets,
then the function (called a simple function)

f(w) =

n∑
j=1

cj1Aj
(ω)

is bounded and measurable.

Lemma 1.2.1. Any bounded measurable function is the uniform limit of simple
functions.

Proof. Suppose |f(ω)| < M , then divide the interval (−M,M ] into n disjoint,
{Ii}, intervals of length 2M

n . Let ci denote the midpoint of the intervals. Then
define Ai = {w : f(w) ∈ Ii}. Clearly {Ai}’s are measurable and disjoint. Consider
the simple function

fn(ω) =

n∑
i=1

ci1Ai
(ω).

Clearly |f(ω)− fn(ω)| ≤ M
n ,∀ω. Hence the convergence is uniform. □

1.2.1. Definition of integrals.
(1) For a simple function f defined on the probability space (Ω,Σ,P) we define

the integral with respect to the probability measure as∫
fdP =

∫ ( n∑
i=1

ci1Ai

)
dP =

n∑
i=1

ciP (Ai).
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(2) If f is a bounded, measurable function and fn be any sequence of simple
functions that converge to f uniformly, then we define∫

fdP = lim
n

∫
fndP.

(Why does this limit exist, and why is it independent of the particular sequence
fn?)

The limit exists because the sequence
∫
fndP is Cauchy. It is also independent

of the particular sequence fn because the difference of two such sequences fn − gn
is bounded and decreases to 0 pointwise (uniformly).

Exercise 1.2.3. Complete the details of the argument and show that
∫
fdP is

well defined, when f is bounded measurable function.

Definition 1.2.2. A sequence of functions fn is said to converge to f pointwise
(or everywhere) if

lim
n→∞

fn(ω) = f(ω), ∀ω ∈ Ω.

Definition 1.2.3. A sequence of measurable functions fn is said to converge to
a measurable function f almost everywhere (or almost surely) if ∃ N ⊂ Ω,P(N) = 1
such that

lim
n→∞

fn(ω) = f(ω), ∀ω ∈ N.

Definition 1.2.4. A sequence of measurable functions fn is said to converge
to a measurable function f in measure (or in probability) if ∀ϵ > 0,

lim
n→∞

P({w : |fn(ω)− f(ω)| > ϵ}) = 0.

Convergence in measure is a weaker notion than almost sure convergence.

Lemma 1.2.2. If a sequence of measurable functions fn converge to f almost
everywhere then the sequence of measurable functions also converge to f in measure.

Proof. For any ϵ > 0, define the sets

Aϵ
n = {ω : |fn(ω)− f(ω)| > ϵ}, Bϵ

n = ∪∞m=nA
ϵ
n.

Let Bϵ
n ↓ Bϵ. Since fn(ω)→ f(ω) for ω ∈ N , then Bϵ ⊆ N c, and hence P(Bϵ) = 0

implying that P(Bϵ
n) ↓ 0; and since P(Aϵ

n) ≤ P(Bϵ
n) we have P(Aϵ

n)→ 0 as desired,
establishing convergence in measure. □

Let Ω = [0, 1] and the probability measure induced by the Lebesgue measure on
this set. Consider the following sequence of real valued functions from R+ → [0, 1]
define by

rn(x) =

{
1 x ∈ (Hn, Hn+1]

0 otherwise
.

Here Hn =
∑n

i=1
1
i is the harmonic sum. Use the above sequence of functions to

define measurable functions fn(ω) according to

fn(ω) =

∞∑
i=1

rn(ω + i).

Exercise 1.2.4. Show that fn(ω)→ 0 in measure, while limn fn(ω) does not
exist almost surely, thus there is no convergence almost surely.
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On the other hand, convergence in measure does imply almost sure convergence
on a sub-sequence as demonstrated by the following lemma.

Lemma 1.2.3. If a sequence of measurable functions fn converge to f in measure,
then there is a subsequence, ni such that, the sequence of measurable functions fni

converge to f almost everywhere.

Proof. For any k ∈ N, define the set

Ak
n = {ω : |fn(ω)− f(ω)| > 1

k
}.

From convergence in measure, we know that P(Ak
n)→ 0 as n→∞. Let nk be such

that P(Ak
nk
) ≤ 1

2k
. Define

Bk = ∪∞m=kA
m
nm

.

Thus P(Bk) ≤ 1
2k−1 and Bk ↓ B with P(B) = 0. Note that

B = {ω : lim sup
k
|fnk

(ω)− f(ω)| > 0}

and this completes the argument. □

Remark 1.2.2. We will only be dealing with measurable functions; so unless
explicitly stated please assume that all functions are measurable.

Theorem 1.2.4. (Bounded Convergence Theorem) If a sequence {fn(ω)} of
uniformly bounded functions converge to a bounded function f(ω) in measure then∫

fndP →
∫

fdP.

Proof. First note that (argue why using definition)∫
fndP −

∫
fdP =

∫
(fn − f)dP.

Again argue that∣∣∣∣∫ fndP −
∫

fdP

∣∣∣∣ = ∣∣∣∣∫ (fn − f)dP

∣∣∣∣ ≤ ∫ |fn − f |dP.

As before, define
Aϵ

n = {ω : |fn(ω)− f(ω)| > ϵ}.
Using this we have∣∣∣∣∫ fndP −

∫
fdP

∣∣∣∣ ≤ ∫ |fn − f |dP ≤ ϵ(1− P(Aϵ
n)) + 2MP(Aϵ

n).

Since P(Aϵ
n)→ 0 as n→∞ we get

lim sup

∣∣∣∣∫ fndP −
∫

fdP

∣∣∣∣ ≤ ϵ.

Since ϵ > 0 is arbitrary, we are done. □

Definition 1.2.5. For a non-negative measurable function f(ω) we define∫
f(ω)dP = {sup

∫
gdP : g is bounded, 0 ≤ g ≤ f}.
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Lemma 1.2.5 (Fatou). Let fn ≥ 0 converge in measure to f (also assumed non-
negative) as n→∞ then ∫

fdP ≤ lim inf
n→∞

∫
fndP.

Proof. Consider any 0 ≤ g ≤ f such that g is bounded. Define hn =
min{fn, g}. The observe that {hn} is uniformly bounded and hn → g in measure.
Thus from bounded convergence theorem, we have∫

gdP = lim
n→∞

∫
hndP ≤ lim inf

n→∞

∫
fndP.

Since g is an arbitrary bounded function such that 0 ≤ g ≤ f , taking sup over the
class of such g yields the desired result. □

An alternate version of Fatou’s lemma that is often used is the following:

Lemma 1.2.6 (Fatou (alternate)). Let fn ≥ 0 then∫
lim inf
n→∞

fndP ≤ lim inf
n→∞

∫
fndP.

Proof. First assume that g = lim infn→∞ fn is finite almost everywhere. Define
gn = infm≥n fm and observe that gn ↑ g = lim infn→∞ fn pointwise (and in measure
(why?)). Thus from the former version we have that∫

lim inf
n→∞

fndP =

∫
gdP ≤ lim inf

n→∞

∫
gndP ≤ lim inf

n→∞

∫
fndP,

where the last inequality is a consequence of 0 ≤ gn ≤ fn.
If g = +∞ on A with P (A) > 0, then for any M > 0 observe that the earlier

part yields

MP (A) ≤
∫

lim inf
n→∞

{fn ∧M}dP ≤ lim inf
n→∞

∫
{fn ∧M}dP ≤ lim inf

n→∞

∫
fndP.

Taking M →∞ implies that both integrals of interest tend to infinity. □

Corollary 1.2.7 (Monotone Convergence Theorem). If a sequence of non-negative
functions fn ↑ f then

lim
n→∞

∫
fndP →

∫
fdP.

Proof. 0 ≤ fn ≤ f implies that (why?)∫
fndP ≤

∫
fdP

and taking lim sup yields

lim sup
n→∞

∫
fndP ≤

∫
fdP.

The other half follows from Fatou’s lemma. □

Definition 1.2.6. A non-negative measurable function f(ω) is said to be
integrable if ∫

fdP <∞.
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Definition 1.2.7. A measurable function f(ω) is said to be integrable if∫
|f |dP <∞.

For integrable functions f we define f+ = max{f, 0} and f− = max{−f, 0}.
Thus f = f+ − f−, where f+ and f− are non-negative measurable functions. We
now define ∫

fdP =

∫
f+dP −

∫
f−dP.

Exercise 1.2.5. Show that the integral satisfies the following properties.
a) If f, g are integrable, then for any a, b ∈ R the function af + bg is also integrable.
b) If f = 0 almost everywhere, then f is integrable and

∫
fdP = 0. As a consequence,

two integrable functions that agree almost everywhere has the same integral.

Theorem 1.2.8 (Dominated Convergence Theorem). If a sequence {fn} con-
verge to f in measure and |fn| ≤ g, where g is an integrable function, then

lim
n→∞

∫
fndP →

∫
fdP.

Proof. A simple application of Fatou’s lemma yields that f is integrable. The
proof follows using further applications of Fatou’s lemma. Observe that the two
non-negative sequence of functions g − fn and g + fn converge in measure to g − f
and g + f respectively (why?). Now argue that

lim inf
n→∞

∫
(g − fn)dP =

∫
gdP − lim sup

n→∞

∫
fndP,

lim inf
n→∞

∫
(g + fn)dP =

∫
gdP + lim inf

n→∞

∫
fndP.

Applying Fatou’s Lemma yields (justify the second relations)∫
(g − f)dP ≤ lim inf

n→∞

∫
(g − fn)dP =

∫
gdP − lim sup

n→∞

∫
fndP

=⇒ lim sup
n→∞

∫
fndP ≤

∫
fdP,

and ∫
(g + f)dP ≤ lim inf

n→∞

∫
(g + fn)dP =

∫
gdP + lim inf

n→∞

∫
fndP

=⇒ lim inf
n→∞

∫
fndP ≥

∫
fdP.

□

Exercise 1.2.6. Suppose an integrable f satisfies that∫
f(ω)1A(ω)dP = 0, ∀A ∈ F .

Show that f = 0 almost everywhere.
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1.2.2. Transformations.

Definition 1.2.8. A measurable transformation T : (Ω1,F1) 7→ (Ω2,F2) is a
mapping that satisfies

T−1(B) = {ω1 : T (ω1) ∈ B} ∈ F1

for all B ∈ F2.

If the space (Ω1,F1) was endowed with a probability measure P then a measur-
able mapping T induces a probability measure on (Ω2,F2) according to

Q(B) = P(T−1(B)),∀B ∈ F2.

Exercise 1.2.7. Verify that the measure Q defined above is indeed a countably
additive probability measure (assuming that P is a countable additive probability
measure).

Theorem 1.2.9. Let f(ω2) be a measurable mapping (random variable) on
(Ω2,F2) to (R,BR) and T be a measurable transformation from (Ω1,F1) 7→ (Ω2,F2),
then the mapping g(ω1) := f(T (ω1)) is measurable. Further g(ω1) is integrable with
respect to P if and only if f(ω2) is integrable with respect to Q = PT−1 and∫

Ω2

f(ω2)dQ =

∫
Ω1

g(ω1)dP.

Proof. For any B ∈ BR observe that

{ω1 : g(ω1) ∈ B} = T−1(f−1(B)).

Since f−1(B) ∈ F2 (measurability of f(ω2)); by measurability of T we have
T−1(f−1(B)) ∈ F1, establishing the measurability of g(ω1). The second part
follows by the standard-machine argument, i.e. verify it (using previous parts) when
1) f(ω2) is indicator function (use definition of P and Q).
2) f(ω2) is a simple function (use linearity)
3) f(ω2) is a bounded non-negative function (use bounded convergence theorem)
4) f(ω2) is a non-negative function (use monotone convergence theorem by consid-

ering fn = min{f, n})
5) Finally, f(ω2) is an integrable function (use positive and negative parts).

□

Remark 1.2.3. One of the simplest applications of this result is to take
(Ω2,F2) = (R,BR) and the identity mapping f(ω2) = ω2. Thus T is a random
variable (as Ω2 = R) and let us denote T (ω1) = X(ω1). Observe that

Q((−∞, x]) = P ({ω1 : X(ω1) ≤ x}) = FX(x),

the distribution function of X. Further, let us ω2 = x, where x ∈ R and dQ = dFX ,
(the last one being a notational convenience). Therefore, the statement of the
theorem yields under this situation∫

Ω2=R
f(x)dF =

∫
Ω1

g(ω1)dP.

Noting that f(x) = x and g(ω1) = f(X(ω1)) = X(ω1), we obtain∫
R
xdF =

∫
Ω1

XdP.
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1.2.3. Product spaces. Consider two probability spaces (Ω1,F1,P1) and
(Ω2,F2,P2). The goal of this section is to work with the product space Ω1 × Ω2. A
natural σ-field that one can define on the product space is the σ-field, F , generated
by the measurable rectangles, i.e. sets of the form A1 ×A2 with A1 ∈ F1, A2 ∈ F2.
Our next goal is to define a countably additive probability measure on (Ω1 ×Ω2,F)
that naturally extends P1 and P2.

For a measurable rectangle, a natural candidate is

P(A1 ×A2) = P1(A1)P2(A2).

For finite disjoint union of measurable rectangles one can define

P(⊔ni=1A1i ×A2i) =

n∑
i=1

P1(A1i)P2(A2i).

Exercise 1.2.8. Show that
i) Finite disjoint union of measurable rectangles is an algebra A.
ii) P is well defined, i.e. if ⊔ni=1A1i ×A2i = ⊔mj=1B1j ×B2j then

n∑
i=1

P1(A1i)P2(A2i) =

m∑
j=1

P1(B1j)P2(B2j).

Thus P is a finitely additive probability measure on A.

Lemma 1.2.10. P is a countably additive probability measure on A.

Proof. Let En ↓ ∅, En ∈ A. Define the set

En,ω2
= {ω1 : (ω1, ω2) ∈ En}.

Now define fn(ω2) = P1(En,ω2) (See (show) that fn(ω2) is a simple function, i.e. it
takes only finitely many distinct values.) Note that

P(En) =

∫
fn(ω2)dP2.

Now 0 ≤ fn(ω2) ≤ 1 and since En,ω2
↓ ∅ implies that P1(En,ω2

) ↓ 0 (by countable
additivity of P1). Hence fn(ω2) ↓ 0 and by using bounded convergence theorem we
get that ∫

fn(ω2)dP2 ↓ 0 =⇒ P(En) ↓ 0.

□

By Caratheodory’s extension theorem, we can extend P to a countably additive
probability measure on F = σ(A) on Ω1×Ω2 and this measure is called the product
measure.

1.2.3.1. Iterated integrals and Fubini’s theorem. In this section we establish an
oft-invoked theorem for justifying exchange of integrals. The proofs are basically a
consequence of the standard-machine argument. As in the earlier section we consider
two probability spaces (Ω1,F1,P1) and (Ω2,F2,P2) and its natural extension (as
defined in the previous section) of (Ω1 × Ω2,F ,P). We begin by establishing the
following lemma.

Lemma 1.2.11. For any A ∈ F denote by Aω1
and Aω2

the sets (sections)

Aω1 = {ω2 : (ω1, ω2) ∈ A}, and Aω2 = {ω1 : (ω1, ω2) ∈ A}.
Then
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a) For each ω1, Aω1
∈ F2 and for each ω2, Aω2

∈ F1.
b) the functions P2(Aω1) and P1(Aω2) are measurable and

P(A) =

∫
Ω1

P2(Aω1)dP1 =

∫
Ω2

P1(Aω2)dP2.

Outline of Proof. The first part claims that sections of sets in product
sigma-algebra belong to the individual sigma-algebras. Observe that this part is
immediate if the original set is a rectangle. Then observe that the collection of all
sets for which the part holds is a sigma-algebra, thus contains the sigma-algebra
generated by the rectangles.

The second assertion is again immediate if A = A1 × A2, A is a measurable
rectangle. From linearity, the assertion follows for finite disjoint union of rectangles
(why?). Now consider the class, C, of all sets for which the assertion is valid. Show
that C is a monotone class and hence contains F . □

Theorem 1.2.12 (Fubini). Let f(ω) = f(ω1, ω2) be a measurable function on
(Ω,B). For each fixed ω1 consider gω1(ω2) := f(ω1, ω2) as a mapping from Ω2 → R
and for each fixed ω2 consider hω2(ω1) := f(ω1, ω2) as a mapping from Ω1 → R.
Then
a) For each ω1 the function gω1

(ω2) is measurable (similarly for each fixed ω2, the
function hω2

(ω1) is measurable).
b) If f is integrable, then for almost all ω1, the function gω1

(ω2) is integrable.
(Similarly for almost all ω2, the function hω2

(ω1) is integrable) and further the
functions

G(ω1) :=

∫
Ω2

gω1(ω2)dP2, and H(ω2) :=

∫
Ω1

hω2(ω1)dP2

are integrable. Finally, we also have∫
Ω

f(ω1, ω2) =

∫
Ω1

G(ω1)dP1 =

∫
Ω2

H(ω1)dP2.

Proof. The first part is an immediate consequence of the first part in Lemma
1.2.11 that sections of sets in product sigma-algebra belong to the individual sigma-
algebras.

The proof of the second part uses the standard machine approach. For indicator
functions, the theorem reduces to second part of Lemma 1.2.11. Simple functions
follows by linearity and uniform limits imply the result for bounded measurable
functions. Now monotone convergence theorem implies the result for non-negative
functions and by taking f+ and f− the result follows for integrable functions. □

Exercise 1.2.9. Consider Ω = N× N and P(i, j) = 1
2i+j , i, j ≥ 1. For i, j ≥ 1

f(i, j) =


2i+j j = i+ 1

−2i+j j = i− 1, i ≥ 2

0 o.w.

Here P1(i) = P2(i) =
1
2i , i ≥ 1. Compute the functions

G(i) :=
∑
j

f(i, j)P2(j) and H(j) :=
∑
i

f(i, j)P1(i).
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What are the sums
∑

i≥1 G(i)P1(i) and
∑

j≥1 H(j)p2(j). (Note that f is not
integrable).

Lemma 1.2.13 (Jensen’s inequality). If Φ(x) is a convex function, and f(ω) and
Φ(f(ω)) are integrable, then∫

Φ(f(ω))dP ≥ Φ

(∫
f(ω)dP

)
.

Proof. The proof of Jensen’s inequality in this case, as well as in some other
cases, will use the fact that any convex function can be written as the pointwise
supremum of supporting hyperplanes, i.e.

Φ(x) = sup
(a,b)∈E

ax+ b.

Hence for any (a, b) ∈ E
Φ(f(ω)) ≥ af(ω) + b,

yielding ∫
Φ(f(ω))dP ≥ a

∫
f(ω)dP + b.

Taking supremum of (a, b) ∈ E yields the result. □

1.2.4. Borel-Cantelli Lemma 1.

Lemma 1.2.14. Let (Ω,F ,P) be a probability space. Consider a collection of sets
{An}, An ∈ F such that

∑∞
n=1 P(An) <∞. Define the set Ā := ∩n∪m≥nAm. Then

P(Ā) = 0.

Proof. Define Bn = ∪m≥nAm. Then P(Bn) ≤
∑

m≥n P(Am); hence P(Bn)→
0 as n→∞, since

∑∞
n=1 P(An) <∞. Now Bn ↓ Ā and the result is immediate. □

Remark 1.2.4. This is an often used lemma to deduce sub-sequential almost-
sure convergence. Let us use this to show that convergence in measure implies that
there is a sub-sequential almost-sure convergence.

Lemma 1.2.15 (subsequence convergence). Let fn be a sequence of measurable
functions that converge in measure to a measurable function f . Then, there is a
subsequence {nk} such that fnk

→ f almost surely.

Proof. Given k ∈ N, define

An := {w : |fn(ω)− f(ω)| > 1

k
}.

Since P (An)→ 0, define nk to be the smallest n such that P (Ank
) ≤ 1

2k
. Clearly∑∞

k=1 P (Ank
) ≤ 1 < ∞, hence (by the Borel-Cantelli lemma) P (Ā) = 0 where

Ā = ∩k∪m≥kAnm . Note that Ā coincides with the set {ω : lim supk |fnk
(ω)−f(ω)| >

0}. □



CHAPTER 2

Characteristic Functions

2.1. Preliminaries

Let f : Ω → C be a complex valued function. Let fr, fi denote its real and
imaginary components. We say that f is measurable if fr and fi are measurable.
Further if fr and fi are integrable, we define∫

fdP =

∫
frdP + i

∫
fidP.

Exercise 2.1.1. Let f : Ω→ C be a complex valued measurable function. Then
show that ∣∣∣∣∫ fdP

∣∣∣∣ ≤ ∫ |f |dP.
For any random variable X we define the characteristic function according (see

Remark 1.2.3) to

ϕ(t) = E(exp[itX]) =

∫
Ω

eitXdP =

∫
R
eitxdF.

Using above exercise, note that |ϕ(t)| ≤ 1.

Theorem 2.1.1. The characteristic function of any probability distribution is a
uniformly continuous function of t that is positive definite, i.e. for any real numbers
t1, .., tn the matrix M ≡ [ϕ(tk − tl)] is non-negative semidefinite.

Proof.

ξ⃗Mξ⃗∗ =
∑
k,l

ξkϕ(tk − tl)ξ
∗
l

=
∑
k,l

ξkE (exp[i(tk − tl)X]) ξ∗k

= E

∑
k,l

ξk exp[i(tk − tl)X]ξ∗k


= E

(∑
k

ξk exp[itkX]
∑
l

exp[−itlX]ξ∗l

)

= E

(
|
∑
k

ξk exp[itkX]|2
)
≥ 0.

The equality holds if and only if Y =
∑

i ξi exp[itiX] = 0 almost surely (i.e.
with probability 1).

17
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To show uniform continuity observe that

|ϕ(t)− ϕ(s)| = |E(eitX − eisX)|
≤ E(|eitX − eisX |)

= E(|ei(t−s)X − 1|).
Thus it suffices to show that for every ϵ > 0 we can pick a δ > 0 such that whenever
|t| < δ we have E(|eitX − 1|) < ϵ. Assume otherwise, i.e. for a sequence δn ↓ 0
there exists points tn, |tn| ≤ δn such that E(|eitnX − 1|) ≥ ϵ. Now tn → 0 and
hence Yn = |eitnX − 1| → 0 pointwise. Since Yn is bounded we have from bounded
convergence theorem that E(Yn)→ 0, and this yields a contradiction. □

Lemma 2.1.2. If
∫
|X|dP <∞ then ϕ(t) is continuously differentiable and ϕ′(0) =

i
∫
XdP.

Proof.
1

δ
E(eitX − ei(t−δ)X) = E(eitX

1− e−iδX

iδX
iX)

Set Yδ = eitX 1−e−iδX

iδX iX and Y = iXeitX . Clearly Yδ → Y pointwise.
Further |Yδ| ≤ c|X| when c = supx | 1−eix

x | <∞ (see lemma below). Thus from
dominated convergence theorem (since E(|X|) <∞) we have that E(Yδ)→ E(Y ).
Therefore ϕ′(t) = E(iXeitX) exists. The continuity of ϕ′(t) is left as an exercise. □

Lemma 2.1.3. | 1−eix

x | ≤ 1, ∀x ∈ R .

Proof. ∣∣∣∣1− eix

x

∣∣∣∣ =
∣∣∣∣∣2sin

(
x
2

)
x

∣∣∣∣∣ ≤ 1.

□

Exercise 2.1.2. Show that if E(|X|r) <∞ then ϕ(t) is r times continuously
differentiable.
Extra credit: If r is even, show that the converse holds.

How do we get back the distribution function from the characteristic function?

Theorem 2.1.4. When a, b are continuity points of F (x) := P(X ≤ x), then

F (b)− F (a) = lim
T→∞

1

2π

∫ T

−T

ϕ(t)
exp[−itb]− exp[−ita]

−it
dt.

Proof.

lim
T→∞

1

2π

∫ T

−T

ϕ(t)
exp[−itb]− exp[−ita]

−it
dt

= lim
T→∞

1

2π

∫ T

−T

exp[−itb]− exp[−ita]
−it

∫
eitXdPdt

Fub
= lim

T→∞

1

2π

∫ ∫ T

−T

exp[it(X − b)]− exp[it(X − a)]

−it
dtdP

= lim
T→∞

1

2π

∫ ∫ T

−T

sin t(X − a)− sin t(X − b)

t
dtdP
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= lim
T→∞

1

π

∫ ∫ T

0

sin t(X − a)− sin t(X − b)

t
dtdP

= lim
T→∞

∫
u(T,X − a)− u(T,X − b)dP

d.c
=

∫
lim

T→∞
(u(T,X − a)− u(T,X − b)) dP

=

∫
1

2
1X>a −

1

2
1X<a −

1

2
1X>b +

1

2
1X<bdP

=
1

2
(P (X < b)− P (X > b)− P (X < a) + P (X > a))

= F (b)− F (a)− 1

2
(P (X = b)− P (X = a))

Note that from (below) the definition of
Here

u(T, x) =

∫ T

0

sin tx

πt
dt =

∫ T
π

0

sinπsx

πsx
ds =

∫ T
π

0

sinπsx

πs
ds.

We know (see below) that supT,x |u(T, x)| ≤ C and

lim
T→∞

u(T, x) =


1
2 if x > 0

− 1
2 if x < 0

0 if x = 0

.

Hence one can find the distribution function from the characteristic function. □

Exercise 2.1.3. Prove that: If two distribution functions agree on their points
of continuity then they agree everywhere.
Hint: Show that the points of discontinuity are countable. Then use right continuity
of the distribution functions.

Lemma 2.1.5. Consider the Dirichlet integral defined according to

u(T, x) =

∫ T

0

sin tx

πt
dt.

Then the following holds:
(i) supT,x |u(T, x)| ≤ C, (C = 2 works).
(ii)

lim
T→∞

u(T, x) =


1
2 if x > 0

− 1
2 if x < 0

0 if x = 0

.

Proof. Proof of (i): Without loss of generality, let us assume x > 0. Further
let k be such that T ∈ (2k π

x , 2(k + 1)πx ]. If k = 0 then∣∣∣∣∣
∫ T

0

sin tx

πt
dt

∣∣∣∣∣ ≤
∫ T

0

x

π
dt =

Tx

π
≤ 2.

For k ≥ 1, we express

u(T, x) =

k−1∑
j=0

∫ (2j+1)π
x

2j π
x

(
sin tx

πt
+

sinx(t+ π
x )

π(t+ π
x )

)
dt+

∫ T

2k π
x

sin tx

πt
dt
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=

k−1∑
j=0

∫ (2j+1)π
x

2j π
x

sin tx

t(tx+ π)
dt+

∫ T

2k π
x

sin tx

πt
dt.

Thus we have (the second integral below only appears when k ≥ 2)

|u(T, x)| ≤
∫ π

x

0

sin tx

t(tx+ π)
dt+

∫ (2k−1)π
x

2π
x

1

t2x
dt+

∫ T

2k π
x

1

πt
dt

≤
∫ π

x

0

x

(tx+ π)
dt+

1

2π
− 1

(2k − 1)π
+

1

π
ln

(
Tx

2kπ

)
≤ ln 2 +

1

2π
+

1

π
ln

(
k + 1

k

)
≤
(
1 +

1

π

)
ln 2 +

1

2π
.

This establishes part (i). We used sin(tx) ≤ |tx| in the first inequality.
Proof of (ii): As before, w.l.o.g., let us assume x > 0. We first write the integral

of interest as a complex line integral

u(T, x) =
1

2

∫
L:(−T,0)→(T,0)

eizx

iπz
dz.

For every T > ϵ > 0, we consider almost semi-circular closed contour consisting of
the following parts: a line from (−T, 0) → (−ϵ, 0), a clockwise semicircle (center
at origin and above the real axis) from (−ϵ, 0)→ (ϵ, 0), a line from (ϵ, 0)→ (T, 0)
and finally a counter-clockwise semi-circle from (T, 0) to (−T, 0). Since the closed
contour does not have any poles in its interior, and the function eizx

iπz is analytic in
the interior of the contour, we have

u(T, x)− 1

2

∫
L:(−ϵ,0)→(ϵ,0)

eizx

iπz
dz +

∫ 0

π

1

2π
eiϵe

iθxdθ +

∫ π

0

1

2π
eiTeiθxdθ = 0.

We consider the three integrals separately. Note that∣∣∣∣∣12
∫
L:(−ϵ,0)→(ϵ,0)

eizx

iπz
dz

∣∣∣∣∣ =
∣∣∣∣∣12
∫
L:(−ϵ,0)→(ϵ,0)

sin(zx)

iπz
dz

∣∣∣∣∣
≤ 1

2

∫
L:(−ϵ,0)→(ϵ,0)

|x|
π
dz = 2ϵ

|x|
π
.

Observe that ∫ 0

π

1

2π
eiϵe

iθxdθ = −1

2
+

∫ 0

π

1

2π
(eiϵe

iθx − 1)dθ.

Now∣∣∣∣∫ 0

π

1

2π
(eiϵe

iθx − 1)dθ

∣∣∣∣ = ∣∣∣∣∫ 0

π

1

2π
(e−ϵ sin(θ)xeiϵ cos(θ)x − 1)dθ

∣∣∣∣
=

∣∣∣∣∫ 0

π

1

2π
(e−ϵ sin(θ)x(eiϵ cos(θ)x − 1) + e−ϵ sin(θ)x − 1)dθ

∣∣∣∣
≤
∫ π

0

1

2π
e−ϵ sin(θ)x |(2 sin(ϵ cos(θ)x/2)| dθ

+

∫ π

0

1

2π

∣∣∣1− e−ϵ sin(θ)x
∣∣∣ dθ

≤ ϵx

2π

∫ π

0

| cos θ|dθ + ϵx

2π

∫ π

0

sin θdθ =
2ϵx

π
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The last inequality uses | sin(a)| ≤ |a| and |1− e−a| ≤ a, a > 0.
From these two estimates, setting ϵ→ 0 we see that we have

u(T, x)− 1

2
+

∫ π

0

1

2π
eiTeiθxdθ = 0.

(Note: one can use this relation to get a better upper bound on part (i), if desired).
The remaining integral is dealt with as follows:∫ π

0

1

2π
eiTeiθxdθ =

1

2π

∫ π

0

e−T sin θeiT cos θdθ

=
1

2π

∫ sin−1 1√
T

0

e−T sin θeiT cos θdθ +
1

2π

∫ π

sin−1 1√
T

e−T sin θeiT cos θdθ.

Bounding each integral separately (the first integrand by 1 and the second integrand
by e−

√
T ) we obtain that∣∣∣∣∫ π

0

1

2π
eiTeiθxdθ

∣∣∣∣ ≤ 1

2π
sin−1

(
1√
T

)
+

1

2
e−

√
T .

Thus when x > 0 we have
lim

T→∞
u(T, x) =

1

2
.

□

2.2. Weak Convergence

Definition 2.2.1. A sequence Pn of probability distributions on (R,FR) is
said to converge weakly to a probability distribution P if

lim
n

Pn(I) = P (I),

where I = [a, b] is any interval such that P ({a}) = P ({b}) = 0.

Exercise 2.2.1. Show that the following is an alternate definition of weak
convergence: Let Fn(x) be the distribution functions associated with Pn and F (x)
be the distribution function associated with P . Then Pn ⇒ P if limn Fn(x) = F (x)
at every continuity point of F .

Theorem 2.2.1. (Levy-Cramer Continuity Theorem) The following are equiva-
lent.

(i) Pn ⇒ P or Fn ⇒ F .
(ii) For every bounded continuous function f(x) on R

lim
n

∫
f(x)dFn =

∫
f(x)dF.

(iii) Let ϕn(t) be the characteristic function of Fn and ϕ(t) the characteristic
function of F . ϕn(t)→ ϕ(t) pointwise.

Proof. We shall show the equivalence by showing that (i)⇒ (ii)⇒ (iii)⇒ (i).
• (i)⇒ (ii): Let a < b be continuity points of F and F (a) ≤ ϵ, F (b) ≥ 1− ϵ.

For large enough n, Fn(a) ≤ 2ϵ and Fn(b) ≥ 1− 2ϵ.
Pick a δ > 0. Divide the interval (a, b] to finite number Nδ of subin-

tervals Xj := (aj , aj+1] a = a1 < a2 < ... < aNδ+1 = b such that all end
points are continuity points of F and the fluctuation of f in each Xj is
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less than δ (We can do this since any continuous function f is uniformly
continuous in a compact interval).

Define f̂ =
∑Nδ

j=1 f(aj)1Xj
. Since lim

n
Fn(aj) = F (aj) for all 1 ≤ j ≤

N ∫
f̂dFn =

Nδ∑
j=1

f(ai)(Fn(aj+1)− Fn(aj))

and taking n→∞ we obtain that

lim
n→∞

∫
f̂dFn = lim

n→∞

Nδ∑
j=1

f(ai)(Fn(aj+1)− Fn(aj))

=

Nδ∑
j=1

f(ai)(F (aj+1)− F (aj)) =

∫
f̂dF.

Since f is bounded by M and f̂ = 0 on (−∞, a] ∪ (b,∞)∣∣∣∣∫ fdFn −
∫

f̂dFn

∣∣∣∣ ≤
∣∣∣∣∣
∫
[a,b]

fdFn −
∫
[a,b]

f̂dFn

∣∣∣∣∣+ 4Mϵ

≤
∫
[a,b]

∣∣∣f − f̂
∣∣∣ dFn + 4Mϵ ≤ δ + 4Mϵ.

Similarly ∣∣∣∣∫ fdF −
∫

f̂dF

∣∣∣∣ ≤ δ + 2Mϵ

and by triangle inequality we conclude

lim sup |
∫

fdFn −
∫

fdF | ≤ 2δ + 6Mϵ.

Since ϵ, δ > 0 are arbitrary, we are done.
• (ii)⇒ (iii): Consider the bounded continuous function, f = eitx.
• (iii)⇒ (i): This is the most interesting part of the Levy-Cramer Theorem.

First, we prove a stronger version with a lesser assumption on ϕ(t).
Let ϕn(t) be the characteristic function of Fn, for all n ≥ 1. Assume

ϕn(t)→ ϕ(t) for all real t and ϕ(t) is continuous at t = 0. Then ϕ(t) is
the characteristic function of some distribution F and Fn

W
==⇒ F .

Step 1: Let r1, r2, ... be some enumeration of rationals and Fn is
the distribution function corresponding to ϕn. Since Fn(r1) is a bounded
sequence hence there exists a convergent subsequence F

n
(1)
k

(r1). Again
since F

n
(1)
k

(r2) is a bounded sequence, there is a convergent subsequence (a
subsubsequence of Fn), F

n
(2)
k

(r) that converges at both r1 and r2. By in-
duction proceed to create subsequences of previously defined subsequences
that also converge at the next rational point. Hence F

n
(j)
k

(r) will converge
pointwise at all points r1, .., rj . Now define Gk(x) = F

n
(k)
k

(x). Observe
that this sequence converges at all rational points ri. (This is called the
diagonalization argument.) Call this limit function on rationals to be
G∞(r).
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Step 2: From G∞(r), which is defined on rationals, define the function
G(x) on the real line as G(x) = inf

r>x
r∈Q

G∞(r). From definition, G(x) is clearly

non-decreasing.
If xn ↓ x for any rational r > x, for large enough n, r > xn which allows
to conclude G∞(r) ≥ infn G(xn) ≥ G(x). Taking infimum over r > x we
get G(x) ≥ infn G(xn) ≥ G(x), establishing right continuity.

Step 3: Here we show that at every continuity point of G(x), limk Gk(x) =
G(x). For any rational r > x note that Gk(r) ≥ Gk(x); hence

G∞(r) = lim
k

Gk(r) ≥ lim sup
k

Gk(x).

Taking infimum over r > x, we obtain

G(x) ≥ lim sup
k

Gk(x).

On the other hand, for any y < x, take a rational r such that y < r < x.
Then

lim inf
k

Gk(x) ≥ lim
k

Gk(r) = G∞(r) ≥ G(y).

Since x is a point of continuity of G, letting y ↑ x yields that

G(x) ≥ lim sup
k

Gk(x) ≥ lim inf
k

Gk(x) ≥ lim
y↑x

G(y) = G(x).

Thus F
n
(k)
k

(x) converges pointwise to a right continuous, non-decreasing
function, G(x) at all continuity points of G(x). Note that 0 ≤ G(−∞) ≤
G(∞) ≤ 1.

Remark 2.2.1. It is useful to encapsulate what we have obtained
so far. Given any sequence of distributions Fn, we showed that there
is a sub-sequence Fnk

, that converge pointwise to a right continuous,
non-decreasing function, G(x) at all continuity points of G(x), and 0 ≤
G(−∞) ≤ G(∞) ≤ 1.

Step 4

1

2T

∫ T

−T

ϕn(t)dt =
1

2T

∫ T

−T

(∫
eitxdFn(x)

)
dt

=

∫ (
1

2T

∫ T

−T

eitxdt

)
dFn(x) (Fubini)

=

∫
sin(Tx)

Tx
dFn(x).

Observe that∫ ∣∣∣∣ sin(Tx)Tx
dFn(x)

∣∣∣∣ ≤ ∫
x∈(−l,l]

∣∣∣∣ sin(Tx)Tx
dFn(x)

∣∣∣∣+ ∫
x/∈(−l,l]

∣∣∣∣ sin(Tx)Tx
dFn(x)

∣∣∣∣
≤
∫
x∈(−l,l]

dFn(x) +
1

T l

∫
x/∈(−l,l]

dFn(x)

≤ Fn(l)− Fn(−l) +
1

T l
(1− Fn(l) + Fn(−l))
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= (Fn(l)− Fn(−l))
(
1− 1

T l

)
+

1

T l
.

Thus∣∣∣∣∣ 12T
∫ T

−T

ϕn(t)dt

∣∣∣∣∣ ≤ (Fn(l)− Fn(−l))
(
1− 1

T l

)
+

1

T l
.

In particular∣∣∣∣∣ 12T
∫ T

−T

ϕ
n
(k)
k

(t)dt

∣∣∣∣∣ ≤ (Fn
(k)
k

(l)− F
n
(k)
k

(−l)
)(

1− 1

T l

)
+

1

T l
.

Again, applying Bounded convergence theorem (to interchange limit and
integration) and taking k →∞ and observing that l ∈ N ⊆ Q, we get∣∣∣∣∣ 12T

∫ T

−T

ϕ(t)dt

∣∣∣∣∣ = (G∞(l)−G∞(−l))
(
1− 1

T l

)
+

1

T l
.

Let T = 1√
l

and letting l→∞ we obtain (from the continuity of ϕ(t) at
t = 0) and definition, non-decreasingness of G∞(r), G(x)

1 = G(∞)−G(−∞),

implying that G(x) is a distribution function.
Thus F

n
(k)
k

⇒ G; however ϕ
n
(k)
k

(t)→ ϕ(t). Thus (as (i) =⇒ (ii)) ϕ(t)
is the characteristic function of G(x); and further G is uniquely determined
by ϕ(t).

Step 5 To complete the argument, we need to show that Fk ⇒ G,
i.e. the entire sequence converges pointwise at all continuity points of
G. Assume not, then one can find a subsequence Fkn

and a continuity
point x0, of G(x), such that limn |Fkn(x0) − G(x0)| > ϵ, for some ϵ > 0.
Starting with this subsequence Fkn(x0) we further find a sub-subsequence
that converges to a distribution function; however since ϕkn(t) → ϕ(t),
that distribution function must be G(x), yielding a contradiction.

□

Definition 2.2.2. A sequence of distribution functions Fn is called uniformly-
tight (or tight) if for every ϵ > 0, there exists Mϵ such that Fn(Mϵ) ≥ 1− ϵ,∀n and
Fn(−Mϵ) ≤ ϵ,∀n.

Theorem 2.2.2 (Prokhorov). If Fn is a sequence of uniformly-tight probability
distributions then there is a subsequence, Fnk

, that converge weakly to a distribution
G.

Proof. The proof is rather immediate from Remark 2.2.1. We know, from
Remark 2.2.1, that there is a subsequence Fnk

that converges pointwise to a right
continuous, non-decreasing function, G(x) at all continuity points of G(x), and
0 ≤ G(−∞) ≤ G(∞) ≤ 1. Given ϵ > 0, let a > Mϵ and b < Mϵ be continuity points
of G. Then we know that G(a) = limk Fnk

(a) ≥ 1− ϵ, and G(b) = limk Fnk
(b) ≤ ϵ.

Since G is non-decreasing and ϵ is arbitrary, we obtain that limx→∞ G(x) = 1 and
limx→−∞ G(x) = 0, establishing that G is a probability distribution. □
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Theorem 2.2.3 (Portmanteau). Let (Ω, d) be a complete metric space and B be
the corresponding Borel σ-algebra. Let Pn be a sequence of probability distributions
on (Ω,B). If Pn ⇒ P , then

(1) for all closed C, lim supn Pn(C)→ P (C).
(2) for all open sets C, lim infn Pn(C) ≥ P (C).
(3) for all continuity sets of P , i.e. open sets C such that P (closure(C)\C) =

0, limn Pn(C) = P (C).

Proof. (1) Let C be closed. Define the non-negative random variable

X(ω,C) = inf
y∈C

d(y, ω).

When ω ∈ C, note that X(ω,C) = 0. Let fk(X) =
(

1
1+X(ω,C)

)k
. For

every k ≥ 1, note that

1C ≤ fk(X), =⇒ Pn(C) ≤
∫

fk(X)dPn =

∫
fk(x)dFn.

Since fk(x) =
1

(1+x)k
is bounded continuous function (on x ≥ 0),

lim sup
n

Pn(C) ≤ lim
n

∫
fkdFn =

∫
fkdF.

Since fk is bounded and decreases point wise to 1C which is bounded,
monotone convergence theorem (as k goes to infinity) yields

lim sup
n

Pn(C) ≤ lim
k

∫
fkdF

(MCT )
=

∫
fdF = P (C).

(2) Taking complements yields this part.
(3) Combining the two yields the third part.

□





CHAPTER 3

Independence, Law of Large Numbers, and Limit
Theorems

3.1. Independence

We assume an underlying probability space (Ω,F , P ) and that the random
variables being considered are defined on this space.

Definition 3.1.1. Events A and B are independent if P (A ∩B) = P (A)P (B).

Definition 3.1.2. Let A,B ⊆ F . We say that A and B are independent if
P (A ∩B) = P (A)P (B) ∀A ∈ A, A ∈ B.

Lemma 3.1.1. Let A,B ⊆ F . Let A and B be independent. Further assume that
B is a π-system. Then A and σ(B) are independent.

Proof. Define I(A) = {F ∈ F : P (F ∩ A) = P (F )P (A) ∀A ∈ A}. We will
show that I(A) is a λ-system, and further since we are given that it contains that
π-system H, it must contain D(H), the λ-system generated by H, and by the π − λ
theorem, Theorem 1.1.2, we see that I(A) ⊇ σ(H).

To see that I(A) is a λ-system, it is immediate that Ω ∈ I(A). If F2 ⊇ F1 ∈
I(A), then as

P ((F2 \ F1) ∩A) = P ((F2 ∩A) \ (F1 ∩A)) = P (F2 ∩A)− P (F1 ∩A)

= (P (F2)− P (F1))P (A) = P (F2 \ F1)P (A)

for any A ∈ A, we have F2 \ F1 ∈ I(A). Finally, if {Fn} ∈ I(A) is an increasing
sequence of sets, and F∞ := ∪nFn, then from the monotone limits property off
probability measures (Exercise 1.1.1), note that

P (F∞∩A) = lim
n

P (Fn∩A) = lim
n

P (Fn)P (A) = P (A)
(
lim
n

P (Fn)
)
= P (F∞)P (A).

This implies that F∞ ∈ I(A), completing the proof that I(A) is a λ-system. □

We can extend this definition of independence to more than two collections as
follows.

Definition 3.1.3. Let A1,A2, ... be subsets of F . We say that the collection
A1,A2, .. are independent (or mutually independent) of each other if P (Ai1∩Ai2 · · ·∩
Ail) =

∏l
j=1 P (Aij ) ∀Aij ∈ Aij , 1 ≤ j ≤ l, 1 ≤ l ≤ k.

We now turn to independence of random variables.

Definition 3.1.4. Random variables X and Y are independent if ∀A,B ∈ BR,

P{ω : X(ω) ∈ A, Y (ω) ∈ B} = P{ω : X(ω) ∈ A}P{ω : Y (ω) ∈ B}.

27
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Remark 3.1.1. Equivalently, random variables X and Y are independent if
σ(X) and σ(Y ) are independent.

The definition of independence extends to a finite number of random variables.
X1, ...Xn are independent if ∀Ai ∈ BR,

P (X1 ∈ A1, ..., Xn ∈ An) =

n∏
i=1

P (Xi ∈ Ai).

Remark 3.1.2. Let us take Ω = (0, 1],F = B(0,1], and the probability measure
to the Lebesgue measure. Suppose you want to generate two independent and
identically distributed Bernoulli random variables X and Y , such that P (X = 0) =
P (Y = 0) = 1

2 and P (X = 1) = P (Y = 1) = 1
2 .

One way to generate this is the following: ω ∈ (0, 1
4 ] =⇒ X(ω) = Y (ω) = 0,

ω ∈ ( 14 ,
1
2 ] =⇒ X(ω) = 0, Y (ω) = 1, ω ∈ ( 12 ,

3
4 ] =⇒ X(ω) = 1, Y (ω) = 0,

ω ∈ ( 34 , 1] =⇒ X(ω) = 1, Y (ω) = 1. Observe that X and Y are independent with
the right distribution as desired.

Now, let us do something more interesting. Again we desire two independent
and identically distributed random variables X and Y that are both uniformly
distributed in the interval (0, 1]. Clearly if we set X(ω) = ω, then X has the right
distribution. But it is hard to describe an independent Y easily.

So how does one generate two independent and identically distributed random
variables X and Y that are both uniformly distributed in the interval (0, 1]. This
is where product spaces come to the rescue. Consider (0, 1]× (0, 1], and consider
the Lebesgue measure to be the probability measure. Set X(ω1, ω2) = ω1 and
Y (ω1, ω2) = ω2. Now, observe (see exercise below) that we have two independent
and identically distributed random variables X and Y that are both uniformly
distributed in the interval (0, 1]. Thus independent random variables and product
spaces go hand-in-hand.

More generally, we have the following exercise.

Exercise 3.1.1. Two random variables X and Y defined on the same probability
space are independent iff the measure induced by the joint mapping (ω1, ω2) →
(X(ω1), Y (ω2)), is the product measure.

Exercise 3.1.2. Show that for independent random variables X and Y and
measurable functions f and g where E[|f(X)|], E[|g(Y )|], and E[|f(X)||g(Y )|] are
finite,

E[f(X)g(Y )] = E[f(X)]E[g(Y )].

Remark 3.1.3. This implies that ϕX+Y (t) = ϕX(t)ϕY (t). Note that the reverse
does not hold, meaning that

ϕX+Y (t) = ϕX(t)ϕY (t) ⇏ X and Y are independent

On the other hand note that

E[ei(t1X+t2Y )] = E[eit1X ]E[eit2Y ] ∀t1, t2 ⇐⇒ X and Y are independent

3.2. Weak Law of Large Numbers

Theorem 3.2.1. X1, ..., Xn are pairwise independent random variables, sat-
isfying E(Xi) = 0 and E(X2

i ) = σ2
i < B. Then Sn

n → 0 in measure, where
Sn = X1 + ...+Xn.
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Proof. Note that

E

(
Sn

n

)2

=
1

n2
E(X2

i ) ≤
B

n
.

Hence

ϵ2P

(∣∣∣∣Sn

n

∣∣∣∣ > ϵ

)
≤ E

(
Sn

n

)2

≤ B

n
.

□

Definition 3.2.1. A collection of random variables {Xα} is called uniformly
integrable (U-I) if

lim
M→∞

sup
α

E(|Xα|1|Xα|>M ) = 0.

Theorem 3.2.2. If X1, ..., Xn are pairwise independent and uniformly integrable
random variables with mean zero, then Sn

n → 0 in measure.

Proof. Given δ > 0, take M (it exists by uniform integrability) such that

E
(
|Xi|1|Xi|>M

)
< δ, ∀i.

Truncate Xi to two parts XT
i and Y T

i as follows

XT
i = Xi1{|Xi|≤M} E[XT

i ] = ai
Y T
i = Xi1{|Xi|>M} E[Y T

i ] = −ai
GT

n = XT
1 + ...+XT

n −
∑n

i=1 ai BT
n = Y T

1 + ...+ Y T
n +

∑n
i=1 ai.

Note that |ai| < δ for all i. Clearly Xi = XT
i + Y T

i . Now consider the quantity

E[|Sn

n
|] = E[|G

T
n +BT

n

n
|] ≤ E[|G

T
n

n
|] + E[|B

T
n

n
|]

≤ E[|G
T
n

n
|] + 2δ.(3.1)

Where the last inequality follows from

E[|B
T
n

n
|] = E[|

∑
Y T
i + ai
n

|] ≤
∑ E[|Y T

i |] + |ai|
n

U−I
≤ 2δ.

Note that
E((XT

i − ai)
2) ≤ (M + |ai|)2 ≤ (M + δ)2.

Therefore (from Cauchy-Schwartz)

E[|G
T
n

n
|] ≤

√
E[(

GT
n

n
)2] ≤

√
1

n
(M + δ)2.

By Markov’s inequality

P (|Sn

n
| > ϵ) ≤

E[|Sn

n |]
ϵ

≤
1√
n
(M + δ) + 2δ

ϵ
.

Taking limsup we get P (|Sn

n | > ϵ) is upper bounded by 2δ
ϵ ; but since δ > 0 is

arbitrary, we are done. □
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3.3. Strong Law of Large Numbers

So far we considered convergence in measure of a sequence of random variables.
We could get away without showing that one can actually define an infinite sequence
of independent random variables. But one can formally talk about such a collection.
To do so, let us start with a lemma.

Lemma 3.3.1. Given any Borel set A ⊂ Rn and a probability measure P , for any
ϵ > 0 there exists a closed and bounded set Kϵ ⊂ A such that P (A \Kϵ) < ϵ.

Proof. Boundedness of Kϵ is simple. Just truncate the space to within a
closed ball, whose outside probability is at most, say ϵ

3 . Let us try to prove it for
n = 1. Consider A = (a, b]. By right continuity the probability of [a+ 1

n , b] goes to
(a, b]. Hence the statement is true for such intervals, as well as finite disjoint union
of such intervals. The set of all such A is a monotone class (why?) (Hint: truncate
the countable union to a finite union with a small probability loss; for each set now
approximate by closed set, and take their finite union. Quantifiers can be chosen
show that total probability loss is small.)

For larger n start with finite disjoint union of rectangles and proceed similarly.
□

A family of probability measures Pn on Rn is said to be consistent if Pn+1((A,R)) =
Pn(A) for all A, a Borel set in Rn.

Let Ω = {x1, ..., xn, ...} = R∞ be the space of all real sequences. Consider the
natural sigma field, Σ, generated by the field of all finite dimensional cylinder sets,
i.e., sets of the form A× R× R · · · , where A is Borel set in Rn for some n.

Theorem 3.3.2 (Kolmogorov’s consistency theorem). Given a consistent family
of finite-dimensional distributions Pn, there is a unique P on (Ω,Σ) such that for
every n, under the natural projection Πn, the induced measure PΠ−1

n (A) = Pn(A)
for all A ∈ Bn.

Proof. Consider the field of all finite dimensional cylinder sets. For A in
this field define P (A) = Pn(A) (defined uniquely because of the finite-dimensional
consistency of the family). Suffices to show that this P is countably additive on
the field (Caratheodory’s extension theorem does the rest). Assume not. Hence
there is An ↓ ∅ but P (An) ≥ δ > 0. Since An is a finite dimensional cylinder set
of Bkn

∈ Rkn , from lemma, we can find a closed and bounded (hence compact) set
Kkn

⊂ Bkn
with Pn(Bkn

\Kkn
) ≤ δ

2n+2 . Let Cn ⊂ An denote the closed cylinder
generated by Kkn

. Let Dn = ∩m≤nCm. Note that

An \Dn = ∪m≤n(An \ Cm) ⊂ ∪m≤n(Am \ Cm).

Hence

P (An \Dn) ≤
n∑

m=1

P (Am \ Cm) =

n∑
m=1

Pn(Bkm
\Kkm

) ≤
n∑

m=1

δ

2m+2
≤ δ

4
.

Therefore P (Dn) ≥ 3δ
4 , hence Dn is non-empty closet set of Ω. Further Dn ↓ ∅.

Define En,k = Πk(Dn). Clearly from construction En,k is a decreasing sequence
(in n) of compact sets, and since Dn is non-empty, each En,k is non-empty. Therefore
let Πk(Dn) ↓ Fk, and as Πk(Dn) are a decreasing sequence of non-empty compact
sets of Rk, we get that Fk = ∩nΠk(Dn) is non-empty subset of Rk.
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For k ≥ 2 observe that Πk−1(En,k) = Πk−1(Dn) = En,k−1. Consequently,
Πk−1(Fk) = Πk−1(∩nΠk(Dn)) = ∩n(Πk−1(Πk(Dn))) = ∩nΠk−1(Dn) = Fk−1.

Now construct a vector (sequence) x = (x1, x2, ...) ∈ R∞ inductively as follows.
Let x1 ∈ F1. Since Π1(F2) = F1, there exists x2 such that (x1, x2) ∈ F2. Proceeding
inductively, let (x1, ..., xk−1) ∈ Fk−1. Since Πk−1(Fk) = Fk−1, we can find xk

such that (x1, .., xk) ∈ Fk. Note that this limit point belongs to Dm for every m,
contradicting Dm ↓ ∅. □

We first prove a vanilla version of the main theorem by imposing a constraint
on the fourth moment of the random variables.

Theorem 3.3.3. X1, ..., Xn are fourwise-independent random variables such
that E(Xi) = 0 and E[X4

i ] = c <∞. Then Sn

n → 0 almost surely.

Proof. Consider

E

((
Sn

n

)4
)

=
1

n4

∑
i

E(X4
i ) + 6

∑
i<j

E(X2
i )(X

2
j )

 .(3.2)

Note that all the other cross terms are zero. (why?). Further E(X2
i ) ≤

√
c. Therefore

E

(
Sn

n

4)
≤ 1

n4
(n+ 3n(n− 1))c ≤ 3c

n2
.

Therefore, by Markov’s inequality,

P (|Sn

n
| > ϵ) ≤ 1

ϵ4
E

(
Sn

n

4)
≤ 3c

ϵ4n2
.

Let An = {ω : |Sn

n | > ϵ}. Since
∑

n P (An) < ∞, from Borel-Cantelli Lemma we
know that P (An i.o.) = 0.

Note that the set Bϵ := An i.o is same as the set of omega’s for which
lim supn |Sn

n | > ϵ. We have P (Bϵ) = 0 for any ϵ > 0; hence P (∪mB1/m) = 0.
Therefore the set of omega’s for which lim supn |Sn

n | > 0 has probability 0, estab-
lishing almost sure convergence.

□

Theorem 3.3.4. Let X1, . . . , Xn, . . . be pairwise independent and identically
distributed non-negative random variables (say same as X) with E(X) = µ < ∞
and Sn =

∑n
i=1 Xi. Then Sn

n → µ a.s.

Proof. Step 1: (Truncation) Let Yk = Xk1(Xk≤k). Let Tn =
∑n

k=1 Yk. Define
Zk = Xk − Yk. Note that

∞∑
k=1

P (Zk > 0) =

∞∑
k=1

P (X > k)

≤
∫ ∞

0

P (X > t)dt =

∫ ∞

0

∫
1X>tdPdt

=

∫ ∫ X

0

1X>tdtdP =

∫
XdP = µ <∞.

Hence (by Borel-Cantelli) P (Zk > 0 i.o.) = 0. Let A = {ω : Zk(w) = 0 eventually}.
Thus P (A) = 1.
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Let Am = {ω : Zk(ω) = 0 ∀k ≥ m}. We know that Am ↑ A. For all ω ∈ Am we

have
∑n

k=1 Zk

n =
∑min{n,m}

k=1 Zk

n . Thus

0 ≤ lim inf
n

∑n
k=1 Zk

n
≤ lim sup

n

∑n
k=1 Zk

n
≤ lim sup

n

∑m
k=1 Zk

n
= 0.

Taking union over m we obtain that

0 = lim
n

∑n
k=1 Zk

n
= lim

n

Sn − Tn

n
,∀ω ∈ A.

As Tn ≤ Sn implies that lim supn
E(Tn)

n ≤ µ.
Note that E(Zn) = E(X1X>n))→ 0, hence (by Cesaro-sum)

lim
n

1

n
E(Sn − Tn) = 0.

Therefore the theorem is proved if we establish that

(3.3) lim
n

Tn − E(Tn)

n
→ 0 a.s.

Step 2: (Subsequence convergence). Let α > 1 be arbitrary and let kn = ⌊αn⌋.
Then note that

∞∑
n=1

P (|Tkn
− E(Tkn

)| ≥ ϵkn) ≤
∞∑

n=1

var(Tkn
)

ϵ2k2n

=

∞∑
n=1

1

ϵ2k2n

kn∑
m=1

var(Ym)

=

∞∑
m=1

var(Ym)

 ∑
n:kn≥m

1

ϵ2⌊αn⌋2


≤

∞∑
m=1

var(Ym)

ϵ2m2

( ∞∑
n=0

4

α2n

)

= 4
α2

ϵ2(α2 − 1)

∞∑
m=1

var(Ym)

m2

≤ 16
α2

ϵ2(α2 − 1)
E(X) <∞.

The first inequality follows from Chebychev’s inequality. To obtain the second
inequality let n0 be the smallest n such that kn ≥ m. Then note that ∀n ≥ n0 we
have

⌊αn⌋ = ⌊αn0αn−n0⌋ ≥ ⌊αn0⌋⌊αn−n0⌋ ≥ m
αn−n0

2
.

The third inequality follows from Lemma 3.3.5 below.
Hence (by Borel-Cantelli)

lim
n

Tkn
− E(Tkn

)

kn
= 0 a.s. =⇒ lim

n

Tkn

kn
= µ a.s.

since E(Tkn )
kn

→ µ.
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Step 3: (Sandwich) Note that

αn+1 − 1

αn
≤ kn+1

kn
≤ αn+1

αn − 1
, =⇒ lim

n

kn+1

kn
= α.

For every m let nm be such that knm
≤ m < knm+1. We know that

knm

knm+1

Tknm

knm

≤ Tm

m
≤ knm+1

knm

Tknm+1

knm+1
.

Thus on the set where limn
Tkn

kn
= µ we have

µ

α
≤ lim inf

m

Tm

m
≤ lim sup

m

Tm

m
≤ αµ.

Since α > 1 is arbitrary, we have limm
Tm

m = µ a.s. □

Lemma 3.3.5. Let X1, . . . , Xn be pairwise independent and identically distributed
non-negative random variables (say same as X) with E(X) = µ < ∞. Let Yk =
Xk1(Xk≤k). Then

∞∑
k=1

var(Yk)

k2
≤ 4E(X).

Proof. Recall that we have Yk ≥ 0. Note that
∞∑
k=1

var(Yk)

k2
≤

∞∑
k=1

E(Y 2
k )

k2

=

∞∑
k=1

∫ (∫ Yk

0
2tdt

)
dP

k2

=

∞∑
k=1

∫ ∫∞
0

2t1Yk>tdtdP

k2

(a)
=

∞∑
k=1

∫∞
0

2tP (Yk > t)dt

k2

≤
∞∑
k=1

∫ k

0
2tP (X > t)dt

k2

(b)
=

∫ ∞

0

2tP (X > t)

 ∑
k:k≥max{t,1}

1

k2

 dt

≤
∫ ∞

0

P (X > t)

(
2t
π2

6
1t≤1 + 2t

(
π2

6
− 1

)
11<t≤2 +

2t

t− 1
1t>2

)
dt

≤
∫ ∞

0

4P (X > t)dt

= 4E(X).

Here (a), (b) use Fubini, the second inequality uses that Xk ≥ Yk implying P (Yk >
t) ≤ P (X ≥ t), and the third inequality is just a case decomposition of t into three
intervals. □
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Theorem 3.3.6. (Kolmogorov’s zero-one law) Suppose X1, ..., Xn, ... are inde-
pendent random variables. Let Fn = σ(Xn, ...) and define F∞ = ∩

n
Fn. Then

∀A ∈ F∞, P (A) ∈ {0, 1}.

Proof. We will see that A ∈ F∞ is independent of itself. W.l.o.g. let P (A) > 0.
Given any n ≥ 1, we know that A ∈ Fn+1. Since A ∈ F∞ ⊂ Fn+1 it is

independent of F ′
n := σ(X1, ..., Xn). Therefore A is also independent of sets in the

field F ′ = ∪nF ′
n.

Consider the class of sets, A, that are independent of A. Define two countably
probability additive probability measures on σ(F ′), one according to (i)P (A∩B)

P (A) and
the other according to (ii)P (B). Note that these two probability measures agree on
the field F ′; hence must agree on σ(F ′).

Note that Fn is generated by finite dimensional cylinder sets; but each of these
finite dimensional cylinder sets will be in some F ′

n. Hence Fn ⊂ σ(F ′).
We have

∩
n
Fn = F∞ ⊂ σ(F ′).

and since A ∈ F∞, A is independent of itself hence P (A) = P 2(A). □

3.4. Central limit theorem

3.4.1. Some useful lemmas regarding real and complex numbers.

Lemma 3.4.1. ∣∣e−z − 1 + z
∣∣ ≤ |z|2, 0 ≤ |z| ≤ 1.

Proof. From Taylor expansion, suffices to show that
∞∑

n=2

|z|n

n!
≤ |z|2.

This follows immediately since |z|n
n! ≤

|z|2
2n−1 for |z| ≤ 1, n ≥ 2. □

Lemma 3.4.2. ∣∣∣∣∣eix −
n∑

m=0

(ix)m

m!

∣∣∣∣∣ ≤ min

{
|x|n+1

(n+ 1)!
,
2|x|n

n!

}
.

Proof. Using integration by parts, verify that

eix −
n∑

m=0

(ix)m

m!
=

in+1

n!

∫ x

0

(x− s)neisds.

Therefore, we will bound the right-hand-side in two ways. Observe that∣∣∣∣∣eix −
n∑

m=0

(ix)m

m!

∣∣∣∣∣ =
∣∣∣∣ in+1

n!

∫ x

0

(x− s)neisds

∣∣∣∣ ≤
∣∣∣∣∣ 1n!

∫ |x|

0

snds

∣∣∣∣∣ = |x|n+1

(n+ 1)!
.

On the other hand applying the same bound to n− 1 yields∣∣∣∣∣eix −
n−1∑
m=0

(ix)m

m!

∣∣∣∣∣ ≤ |x|nn!
.

From triangle inequality, the second upper bound follows. □
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Lemma 3.4.3. Let z1, .., zn and ω1, .., ωn be complex numbers whose absolute value
is bounded by θ. Then∣∣∣∣∣

n∏
m=1

zm −
n∏

m=1

wm

∣∣∣∣∣ ≤ θn−1
n∑

m=1

|zm − ωm|.

Proof. Note that∣∣∣∣∣
n∏

m=1

zm −
n∏

m=1

wm

∣∣∣∣∣ ≤
∣∣∣∣∣z1
(

n∏
m=2

zm −
n∏

m=2

wm

)∣∣∣∣∣+
∣∣∣∣∣(z1 − ω1)

n∏
m=2

wm

∣∣∣∣∣
≤ θ

∣∣∣∣∣
n∏

m=2

zm −
n∏

m=2

wm

∣∣∣∣∣+ θn−1|z1 − ω1|.

Bounding the first term (induction) finishes the proof.
□

Lemma 3.4.4. Let X be a random variable such that E[X] = 0, E[X2] = σ2. Then

lim
n→∞

n

(
ϕX

(
t√
n

)
− 1 +

E[X2]

2

t2

n

)
= 0.

Proof.

n

(
ϕX

(
t√
n

)
− 1 +

E[X2]

2

t2

n

)
= nE

(
e
iX t√

n − 1− iX
t√
n
+

X2

2

t2

n

)
.

Let us split the integral into two parts |X| > ϵ
√
n

2|t| and |X| ≤ ϵ
√
n

2|t| . Consider

E

(∣∣∣∣n(eiX t√
n − 1)− iX

√
nt+

X2

2
t2
∣∣∣∣ 1|X|> ϵ

√
n

2|t|

)
≤ 2nP

(
|X| > ϵ

√
n

2|t|

)
+ |t|
√
nE

(
|X|1|X|> ϵ

√
n

2|t|

)
+

t2

2
E

(
|X|21|X|> ϵ

√
n

2|t|

)
.

Each of the term goes to 0 as n goes to infinity. The last term clearly goes to zero
(by dominated convergence theorem); and the first two terms are upper bounded by
a constant times last term. For instance,

n1|X|> ϵ
√

n
2|t|
≤ 4

t2

ϵ2
|X|21|X|>

√
n

2|t|
.

Now consider

E

(∣∣∣∣n(eiX t√
n − 1)− iX

√
nt+

X2

2
t2
∣∣∣∣ 1|X|≤ ϵ

√
n

2|t|

)
.

From Lemma 3.4.2 we have |eiz − 1− iz + z2

2 | ≤
|z|3
6 , |z|2. Hence (for ϵ < 1)∣∣∣∣n(eiX t√

n − 1)− iX
√
nt+

X2

2
t2
∣∣∣∣ 1|X|≤ ϵ

√
n

2|t|
≤ n

6

(
|Xt|√

n

)3

1|X|≤ ϵ
√

n
2|t|
≤ |Xt|2.

Hence by dominated convergence theorem, the expectation goes to zero. □
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Theorem 3.4.5. (Central Limit Theorem, Vanilla Version) if X1, ..., Xn are
i.i.d random variables with E[Xi] = 0, E[X2

i ] = σ2. Then
X1 + ...+Xn√

n

w⇒ N (0, σ2).

Proof.

E[e
it

X1+...+Xn√
n ] =

n∏
i=1

E[e
it

Xi√
n ]

= ϕX(
t√
n
)n.

Using previous lemma we obtain

ϕX(
t√
n
)n → e−σ2t2/2

which is the characteristic function of N (0, σ2). □

Theorem 3.4.6. (Lindeberg-Feller Theorem) For each n, let Xn,m, 1 ≤ m ≤ n,
be independent random variables with E(Xn,m) = 0. Suppose

(1) limn

∑n
m=1 E(X2

n,m) = σ2 > 0

(2) For all ϵ > 0, limn

∑n
m=1 E

(
X2

n,m1|Xn,m|>ϵ

)
= 0.

Then Sn = Xn,1 + · · ·+Xn,n
w⇒ N (0, σ2).

Proof. Let ϕn,m(t) = E
(
eitXn,m

)
and σ2

n,m = E(X2
n,m). Suffices (by Levy’s

continuity theorem) to show that

lim
n→∞

n∏
m=1

ϕn,m(t) = e−t2σ2/2.

Let an = sup1≤m≤n σ
2
n,m. Note that

an = sup1≤m≤nE(X2
n,m) ≤ ϵ2 +

n∑
m=1

E
(
X2

n,m1|Xn,m|>ϵ

)
.

Therefore lim supn an ≤ ϵ2, but since ϵ > 0 is arbitrary an → 0.
Hence for any t > 0, there exists n0 large enough so that for all n ≥ n0,

|1− t2an

2 | ≤ 1. Applying Lemma 3.4.3 (with θ = 1, n ≥ n0) we obtain∣∣∣∣∣
n∏

m=1

ϕn,m(t)−
n∏

m=1

(1−
t2σ2

n,m

2
)

∣∣∣∣∣
≤

n∑
m=1

|ϕn,m(t)− (1−
t2σ2

n,m

2
)|

=

n∑
m=1

∣∣∣∣∣E
(
eitXn,m − 1− itXn,m +

t2X2
n,m

2

)∣∣∣∣∣
(a)

≤
n∑

m=1

E

(
min

{
|tXn,m|3

6
, |tXn,m|2

})

≤
n∑

m=1

E

(
|t|ϵ
6
|tXn,m|21|Xn,m|≤ϵ + |tXn,m|21|Xn,m|>ϵ

)
.
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In the above (a) follows from Lemma 3.4.2. Hence

lim sup
n

∣∣∣∣∣
n∏

m=1

ϕn,m(t)−
n∏

m=1

(
1−

t2σ2
n,m

2

)∣∣∣∣∣ ≤ ϵ
|t|3σ2

6
,

however since ϵ > 0 is arbitrary, the limit is zero.
To complete the proof, it suffices to show that

lim sup
n

∣∣∣∣∣
n∏

m=1

(
1−

t2σ2
n,m

2

)
−

n∏
m=1

e−t2σ2
n,m/2

∣∣∣∣∣ = 0.

Again applying Lemma 3.4.3 (with θ = 1, n ≥ n0) we obtain∣∣∣∣∣
n∏

m=1

(
1−

t2σ2
n,m

2

)
−

n∏
m=1

e−t2σ2
n,m/2

∣∣∣∣∣
≤

n∑
m=1

∣∣∣∣∣e−t2σ2
n,m/2 −

(
1−

t2σ2
n,m

2

)∣∣∣∣∣
(a)

≤
n∑

m=1

t4σ4
n,m

2
≤ t4an

2

n∑
m=1

σ2
n,m.

In the above (a) follows from Lemma 3.4.1. Since an → 0 and
∑n

m=1 σ
2
n,m → σ2,

we are done.
□

Lemma 3.4.7 (Borel-Cantelli 2). If an infinite sequence of mutually independent
events Ai satisfy

∑
i P (Ai) =∞, then P (An i.o.) = 1.

Proof. Define
Bk = ∪m≥kAm.

Then, by independence,

P (Bk) = 1−
∏
m≥k

(1− P (Am)) ≥ 1−
∏
m≥k

e−P (Am) = 1.

where the inequality follows since (1− x) ≤ e−x, 0 ≤ x ≤ 1. Now Bk ↓ An i.o. and
we are done. □

3.4.2. Convergence to a Poisson random variable. A Poisson(λ) random
variable, Z, takes values in N and satisfies P (Z = n) = λne−λ

n! .

Theorem 3.4.8. Let Xn,m, 1 ≤ m ≤ n be independent non-negative integer
valued random variables with P (Xn,m = 1) = pn,m, and P (Xn,m ≥ 2) = ϵn,m. If

(1)
∑m

n=1 pn,m → λ ∈ (0,∞)
(2) max1≤m≤n pn,m → 0, and
(3)

∑n
m=1 ϵn,m → 0,

then Sn :=
∑n

m=1 Xn,m
w⇒ Z, where Z is Poisson(λ).

Proof. Note that E
(
eitSn

)
=
∏n

m=1 E
(
eitXn,m

)
. From Lemma 3.4.3 (with

θ = 1) we have∣∣∣∣∣
n∏

m=1

E
(
eitXn,m

)
−

n∏
m=1

(
1− pn,m + pn,meit

))
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≤
n∑

m=1

∣∣E (eitXn,m
)
−
(
1− pn,m + pn,meit

)∣∣
=

n∑
m=1

∣∣E (−ϵn,m + E
(
eitXn,m1Xn,m≥2

))∣∣ ≤ 2

n∑
m=1

ϵn,m → 0.

From Lemma 3.4.1 we know that as long as pn,m ≤ 1
2∣∣∣e−pn,m(1−eit) −

(
1− pn,m + pn,meit

)∣∣∣ ≤ 4p2n,m.

Again, from Lemma 3.4.3 (with θ = 1) we have∣∣∣∣∣
n∏

m=1

e−pn,m(1−eit) −
n∏

m=1

(
1− pn,m + pn,meit

))

≤
n∑

m=1

∣∣∣e−pn,m(1−eit) −
(
1− pn,m + pn,meit

)∣∣∣
≤ 4

n∑
m=1

p2n,m ≤ 4

(
max

1≤m≤n
pn,m

) n∑
m=1

pn,m → 0.

Finally as ∣∣∣e−∑n
m=1 pn,m(1−eit) − e−λ(1−eit)

∣∣∣→ 0,

we are done. □



CHAPTER 4

Signed measures and Conditional Expectation

4.1. Signed Measure

Definition 4.1.1. Let (Ω,F) be a measurable space. A finite signed-measure is a
mapping of F to R satisfying: if {Ai} are pairwise disjoint; then λ(∪iAi) =

∑
i λ(Ai).

Note that λ(∅) = 0.

Lemma 4.1.1. Let λ be a finite signed measure, then supA∈F |λ(A)| <∞.

Proof. For any set A, let λ+(A) := supB⊆A |λ(B)|. If there exists any set A
such that λ+(A) and λ+(A

c) are both finite, we are done. This is because, for any
B ∈ F ,

|λ(B)| = |λ(B ∩A) + λ(B ∩Ac)| ≤ λ+(A) + λ+(A
c).

Assume otherwise, i.e. for every set A, at least one of λ+(A) or λ+(A
c) is infinite.

Wl.o.g. A such that λ+(A) = ∞. Let A1 ⊂ A such that |λ(A1)| > n(1 + |λ(A)|)
and λ+(A1) =∞. Such A1 exists because: for any B ⊆ A, if |λ(B)| ≥ k(1+ |λ(A)|),
then

|λ(A \B)| ≥ |λ(B)| − |λ(A)| ≥ k + (k − 1)|λ(A)| ≥ (k − 1)(1 + |λ(A)|).
Further λ+(A) ≤ λ+(B) + λ+(A \B).

Repeat. Take A2 ⊂ A1 such that |λ(A2)| > n(1+ |λ(A1)|) > n2(1+ |λ(A)|) and
λ+(A2) =∞.

Therefore by induction, we have a decreasing sequence of sets An ↓ A∗. Hence by
countable additivity λ(An)→ λ(A∗); however |λ(An)| → ∞, contradicting finiteness
of λ(A∗). □

Definition 4.1.2. A set A is called totally positive, if for every B ⊆ A we have
λ(B) ≥ 0.

Lemma 4.1.2. If λ(A) = l ≥ 0, then these exists a totally positive set A+ ⊆ A
such that λ(A+) ≥ l.

Proof. Let m = infB⊆A λ(B). w.l.o.g. m < 0 (else m = 0 and set A+ = A).
Let B1 satisfy λ(B1) < m

2 . Set A1 = A \ B1. Clearly λ(A1) ≥ l and m1 =
infB⊆A1

λ(B) > m
2 .

repeat. Take B2 ⊆ A1 such that λ(B1) <
m1

2 , and set A2 = A1 \B2. Note that
m2 = infB⊆A2

λ(B) > m1

2 > m
4 . Further λ(A2) ≥ l.

Proceeding similarly we have that An ↓ A∗ such that mk = infB⊆Ak
λ(B) >

m
2k
∀k and λ(Ak) ≥ l. Hence λ(A∗) ≥ l and m∗ = infB⊆A∗ λ(B) ≥ 0. This A∗ is

the required totally positive subset of A. □

Note that the class of totally positive sets is closed under countable unions.
Further any subset of a totally positive set is also totally positive.
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Lemma 4.1.3. There is a partition of Ω into a totally positive set Ω+ and a totally
negative set Ω−.

Proof. Let m = λp(Ω) := supA⊆Ω λ(A). Assume m > 0 (else set Ω+ = ∅).
Then pick a totally positive A1 such that λ(A1) >

m
2 , and set B1 = Ω\A1. It is clear

that m1 = λp(B1) ≤ m
2 . Now pick a totally positive A2 ⊂ B1 such that λ(A2) ≥ m1

2 ,
and set B2 = B1 \A2 = Ω \ (A1 ∪A2). Note that m2 = λp(B2) ≤ m1

2 ≤
m
4 .

Define Ω+ = ∪iAi, and let Bi ↓ Ω−. Note that Ω+ and Ω− partition Ω and Ω+

is a totally positive set and Ω− is a totally negative set. □

Remark: Note that this partitioning is not necessarily unique; however any two
partitions differ by a set that is both totally positive and totally negative (hence it
and all its subsets have measure 0). Let us call the sets that are totally positive and
totally negative to be totally zero sets.

Therefore every finite signed measure λ induces two non-negative finite measures
defined by: µ+(A) = λ(A ∩ Ω+), and µ−(A) = −λ(A ∩ Ω−). Further λ(A) =
µ+(A)− µ−(A).

Let f(ω) be an integrable function. Then define

λ(A) :=

∫
f1Adµ.

Observe that λ is a signed measure. (Countable additivity follows from dominated
convergence theorem.) Further if µ(A) = 0 then λ(A) = 0. To see this, let µ(A) = 0
and note that

0 = nµ(A) ≥
∫
(|f | ∧ n)1Adµ ↑

∫
|f |1Adµ ≥ |λ(A)|.

Definition 4.1.3. Let (Ω,F) be a measurable space and let λ be a finite signed-
measure on this space and µ be a non-negative measure on this space. Then λ is
said to be absolutely continuous with respect to µ, denoted by λ≪ µ, if µ(A) = 0
implies λ(A) = 0.

Theorem 4.1.4 (Radon-Nikodym). Let λ be a finite-signed-measure on (Ω,F)
and µ be a non-negative measure on (Ω,G),G ⊇ F , such that µ(Ω) <∞. If λ≪ µ,
then there exists a integrable function f , measurable w.r.t. F such that

λ(A) =

∫
f1Adµ, ∀A ∈ F .

Proof. For every q ∈ Q, define the finite-signed-measure on (Ω,F)

λq(A) = λ(A)− qµ(A).

Let Ωq
+ be a totally positive partition of Ω induced by λq. Further by suitably

discarding totally zero sets, we can have Ωq
+ to be a decreasing sequence of sets in q.

(Argue why?). Once we have this collection, define

f(ω) = sup{q : ω ∈ Ωq
+}.

To show the measurability of f , note that

{ω : f(ω) > x} = ∪q>xΩ
q
+.

Nest step is to show finiteness of f(ω) almost everywhere. Let A = ∩qΩq
+. Since

λq(A) ≥ 0 ∀q, we have λ(A) ≥ qµ(A) ∀q, which can happen only if µ(A) = 0 (by
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finiteness of λ), and by absolute continuity λ(A) = 0 as well. Thus A∞ := {ω :
f(ω) =∞}, satisfies µ(A∞) = 0 and λ(A∞) = 0.

Suppose there is a set A such that A ∩ Ω+
q = ∅ for all q ∈ Q. This implies

that A ⊆ (∪qΩq
+)

c which is essentially same as ∩qΩ−
q . Hence λ(A) − qµ(A) ≤ 0

for all q. This can only happen again only if µ(A) = 0 and hence λ(A) = 0. Thus
A−∞ := {ω : f(ω) = −∞}, satisfies µ(A−∞) = 0 and λ(A−∞) = 0. Thus f(ω) is
finite on a set of measure 1.

For any two real number a < b, consider the set

I(a,b] ⊆ {ω : f(ω) ∈ (a, b]}.

Therefore I(a,b] ⊆ Ω+
a ∀q ≤ a and I[a,b] ⊆ (Ωq)

− ∀q > b. This implies that
λ(I[a,b]) − qµ(I[a,b]) ≥ 0 ∀q ≤ a and λ(I[a,b]) − qµ(I[a,b]) ≤ 0 ∀q ≥ b. Hence
aµ(I(a,b]) ≤ λ(I(a,b]) ≤ bµ(I(a,b]).

Lat h > 0, consider a grid and set

In = {ω : nh < f(ω) ≤ (n+ 1)h}, −∞ ≤ n ≤ ∞.

Now, note that for all A ∈ F and every n

λ(A ∩ In)− hµ(A ∩ In) ≤ nhµ(A ∩ In) ≤
∫
A∩In

fdµ

≤ (n+ 1)hµ(A ∩ In) ≤ λ(A ∩ In) + hµ(A ∩ In).(4.1)

Take A+ = {ω : f(ω) > 0}.
Summing over n (and using countable additivity and monotone convergence

theorem) we obtain

λ(A+)− hµ(A+) ≤
∫
A+

fdµ =

∫
Ω

f+dµ ≤ λ(A+) + hµ(A+).

This shows that
∫
f+ <∞. Similarly

∫
f− <∞; thus f is integrable.

Now take a generic A and sum (4.1) over n and (and using countable additivity
and dominated convergence theorem) we get

λ(A)− hµ(A) ≤
∫
A

fdµ ≤ λ(A) + hµ(A).

Taking h→ 0 completes the proof. □

Remark 4.1.1. Note that the Radon-Nikodym derivative is essentially unique.
To see this, suppose f, d were two derivatives, let Aϵ = {ω : f(ω)− g(ω) ≥ ϵ}. Then
since µ(Aϵ) =

∫
Aϵ

fdµ =
∫
Aϵ

gdµ, which on the other hand
∫
Aϵ
(f − g)dµ ≥ ϵµ(Aϵ)

we must have µ(Aϵ) = 0. This shows that the functions match almost surely.

4.2. Conditional Expectation

Proposition 4.2.1. Let f be an integrable function defined on (Ω,F , µ). Let G ⊂ F .
Then there is a G-measurable and integrable function g such that∫

A

fdµ =

∫
A

gdµ ∀A ∈ G.

Further if g1 and g2 are two such functions, then g1 = g2 almost surely.
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Proof. Define a finite-signed-measure on (Ω,G) by

λ(A) =

∫
A

fdµ ∀A ∈ G.

Note that λ ≪ µ. Hence by Radon-Nikodym theorem, there exists an integrable
function ĝ = dλ

dµ that is G-measurable such that

λ(A) =

∫
A

ĝdµ ∀A ∈ G.

Setting g = ĝ completes the first part.
Now let Aϵ = {ω : g1(ω)− g2(ω) > ϵ}. Since Aϵ is G measurable for every ϵ > 0,

we must have ∫
Aϵ

g1dµ =

∫
Aϵ

g2dµ =⇒ µ(Aϵ) = 0.

Now A+ = {ω : g1(ω) − g2(ω) > 0} = ∪nA1/n and hence µ(A+) = 0. Similarly,
by symmetry, we see that µ(A−) = 0 where A− = {ω : g2(ω) − g1(ω) > 0} =
∪nA′

1/n. □

Thus we denote any g(ω) that satisfies the proposition as the conditional
expectation E(f |G).

Theorem 4.2.2 (Properties of Conditional Expectation). Let f be integrable
and (Ω,F)-measurable. Let G ⊂ F . The following properties hold:

(1) E(f) = E(E(f |G)).
(2) f ≥ 0 implies that E(f |G) ≥ 0 a.s.
(3) If f1, f2 be integrable and (Ω,F)-measurable then

E(af1 + bf2|G) = aE(f1|G) + bE(f2|G) a.s.
(4) E(|f |) ≥ E(|E(f |G)|)
(5) If h is bounded and G-measurable, then

E(hf |G) = hE(f |G) a.s.
(6) If G1 ⊆ G then

E(f |G1) = E(E(f |G)|G1) a.s.
(7) (Jensen’s inequality) If Φ is a convex function then

E(Φ(f)|G) ≥ Φ(E(f |G)) a.s.
Proof. The proofs are rather straightforward
(1) Take A = Ω and apply definition.
(2) For ϵ > 0, let A−

ϵ = {ω : E(f |G) ≤ −ϵ}. Then argue that µ(A−
ϵ ) = 0. Take

ϵn = 1
n ↓ 0.

(3) Follows from definition and linearity of expectation.
(4) Let A+ = {ω : E(f |G) ≥ 0}. Since A+ ∈ G, by definition,∫

A+

E(f |G)dµ =

∫
A+

fdµ ≤
∫
A+

|f |dµ.

Similarly we can consider A− = {ω : E(f |G) < 0}. Again

−
∫
A−

E(f |G)dµ = −
∫
A−

fdµ ≤
∫
A−

|f |dµ.

Adding them yields the desired result.
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(5) If h = 1A for A ∈ G, this is immediate from definition. Linearity extends
it to simple functions. Let hn be simple and hn → h uniformly. Let
gn = E(hnf |G) and g = E(hf |G). Note that from 4)∫

|gn − g|dP ≤
∫
(|hn − h||f |)dP → 0.

Therefore for any fixed A ∈ G∫
A

gdP ←
∫
A

gndP =

∫
A

hnfdP →
∫
A

hfdP.

(6) This follows from definitions easily. (Check!)
(7) The key is again to write a convex function as the pointwise supremum of

a set of affine functions. For each such affine function we have

Φ(f) ≥ aαf + bα =⇒ E(Φ(f)|G) ≥ aα E(f |G) + hα.

Now taking supremum over the class of affine functions that yields Φ
implies the result.

□

4.2.1. Conditional Probability. The goal of this section is to define a
conditional probability distribution which is defined below.

Definition 4.2.1. Let (Ω,F , P ) be a probability space and let G ⊆ F . A
mapping µ : Ω× F → [0, 1] is called a regular conditional probability if it satisfies
the following:

(1) For every A ∈ F , µ(ω,A) = E(1A|G)
(2) For almost every ω, µ(ω,A) is a probability measure on (Ω,F).

It turns out that these regular conditional probabilities need not always exist.
However, if the space is "nice", then they do exist. When is a space "nice": If Ω is a
Polish space, F is its Borel σ-algebra, and G is a countably generated sub σ-algebra
of F , then the space is "nice" enough.

Clearly, an initial approach would be to define for every A ∈ F , µ(ω,A) :=
E(1A|G). This would meet condition (1) above, but it is not necessary that for every
ω, and for A ⊂ B ∈ F we would have µ(ω,A) ≤ µ(ω,B). Of course, we can throw
away a set of measure zero and make the previous inequality hold. However of there
are uncountable such pairs of sets, then this would cause issues. On the other hand,
if the space is nice and if the σ-algebra is countably generated then we can try to
avoid the above issue. We will work with Ω = [0, 1] and F to be the Borel σ-algebra.

We consider the collection Aq = (−∞, q] for q ∈ Q, and we define

µ(ω,Aq) = E(1Aq |G) q ∈ Q.

Since this collection is countable, we know that we can obtain a set S with P (S) = 1
such that for all ω ∈ S, µ(ω,Aq) is non-decreasing in q, and µ(ω,Aq) = 1 for all
q ≥ 1 and µ(ω,Aq) = 0 for all q < 0.

Consider the set Ay = (−∞, y], y ∈ R and define

µ(ω,Ay) = inf
q>y

µ(ω,Aq).

Clearly, the above Fω(y) := µ(ω,Ay) is a distribution function for every ω ∈ S. Since
this is in natural 1-1 correspondence with a probability measure (see Lebesgue’s
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theorem) on (R,BR) we set µ(ω,A) to be that probability measure. Hence we are
left to show that this choice also satisfies the first condition.

Observe that, by construction, if A = (−∞, q], q ∈ Q then the first condition is
satisfied. Consider the interval Ay = (−∞, y] for y in reals. Then for any q > y we
have ∫

1AqdP =

∫
µ(ω,Aq)dP.

Let q ↓ y, monotone convergence theorem (on both sides) implies that∫
1Ay

dP =

∫
µ(ω,Ay)dP.

Hence from linearity of conditional expectation, equality holds on the algebra
comprised of finite disjoint unions of intervals of the form (a, b]. Now consider the
collection, S, of all sets for which∫

1AdP =

∫
µ(ω,A)dP.

This is a monotone class, since the limit on the left hand side is argued using
monotone convergence theorem. On the left hand side, for every ω ∈ S the limit
exists and now dominated convergence theorem implies that S is a monotone class.
Hence S contained the σ-filed generated by the algebra of finite disjoint union of
left-open right-closed intervals, completing the proof.



CHAPTER 5

Martingales

5.1. Martingales

In this section we will study an important class of sequences of random variables
that arise naturally in many settings, and unnaturally in other settings as a tool to
prove certain results.

Definition 5.1.1. Given a measurable space (Ω,F) a filtration is an increasing
sequence of σ-algebra’s Fi ⊂ F , i.e. if i ≤ j then Fi ⊆ Fj .

Definition 5.1.2. A sequence of random variables {Xi} is said to be adapted
to the filtration {Fi} of sigma-algebra’s if Xi is Fi-measurable for every i.

Definition 5.1.3. A sequence {Xi}, i ≥ 1 of integrable random variables,
adapted to a filtration {Fi}, i ≥ 1, is said to be a martingale if, for all i ≥ 1,

E(Xi+1|Fi) = Xi a.s.

A sequence {Xi}, i ≥ 1 of integrable random variables, adapted to a filtration
{Fi}, i ≥ 1, is said to be a sub-martingale if, for all i ≥ 1,

E(Xi+1|Fi) ≥ Xi a.s.

A sequence {Xi}, i ≥ 1 of integrable random variables, adapted to a filtration
{Fi}, i ≥ 1, is said to be a super-martingale if, for all i ≥ 1,

E(Xi+1|Fi) ≤ Xi a.s.

Remark 5.1.1. Usually, given a sequence of random variables {Xn}, we can
define a natural filtration according to Fn = σ(X1, .., Xn). Hence, unless otherwise
specified, this will be the underlying filtration.

The following statements are easy to verify:
(1) If {Xi} is a sequence of independent integrable random variables. Define

Sn = X1 + · · ·+Xn. Then {α(Sn − E(Sn)) + β} is a martingale.
(2) If {Xi} is a martingale and Φ is a concave function such that Φ(Xi) is

integrable, then {Φ(Xi)} is a super-martingale.

Proof. From Jensen’s inequality E(Φ(Xi+1)|Fi) ≤ Φ(E(Xi+1|Fi)) =
Φ(Xi) a.s.. □

(3) Similarly, if {Xi} is a martingale and Φ is a non-decreasing convex function
such that Φ(Xi) is integrable, then {Φ(Xi)} is a sub-martingale.

(4) Given a filtration Fi, if X is integrable then Xi := E(X|Fi) is a martingale
sequence.

(5) If {Xi} is a martingale, then for i ≤ j, E(Xj |Fi) = Xi a.s.. The equality be-
comes the appropriate inequality for sub-martingales and super-martingales.
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Definition 5.1.4. Given a filtration {Fi}, a sequence {Xi}, i ≥ 1 of integrable
random variables is said to be a predictable if, for all i ≥ 1, Xi+1 is Fi-measurable.

Theorem 5.1.1 (Doob’s inequality). Suppose Xn is a martingale (or a non-
negative sub-martingale) sequence of length n. Define

Al := {ω : sup
1≤j≤n

|Xj(ω)| ≥ l}.

Then
P (Al) ≤

1

l

∫
Al

|Xn|dP ≤
1

l
E(|Xn|).

Proof. First note that {|Xn|} is a sub-martingale. Then we partition Al as
follows. Let

Bj = {ω : |X1(ω)| < l, . . . , |Xj−1(ω)| < l, |Xj(ω)| ≥ l}, 1 ≤ j ≤ n.

Note that Bj ∈ Fj . Further since {|Xn|} is a sub-martingale, we have that
E(|Xn||Fj) ≥ |Xj | a.s., implying that∫

Bj

|Xn|dP =

∫
Bj

E(|Xn||Fj)dP ≥
∫
Bj

|Xj |dP ≥ lP (Bj).

Observing that Al = ⊔nj=1Bj completes the proof. □

Lemma 5.1.2. If X,Y are two non-negative random variables on the same proba-
bility space such that

P(Y ≥ l) ≤ 1

l

∫
Y≥l

XdP

then for every p > 1 ∫
Y pdP ≤

(
p

p− 1

)p ∫
XpdP.

Proof. Let F (x) = P(Y ≤ x) be the distribution function. Let T (x) =
1− F (x) = P (Y > x). Then∫

Y pdP =

∫ ∞

0

ypdF (y)

= −
∫ ∞

0

ypdT (y)

= p

∫ ∞

0

yp−1T (y)dy (integration by parts)

≤ p

∫ ∞

0

yp−2

(∫
Y >y

XdP

)
dy

= p

∫
X

(∫ Y

0

yp−2dy

)
dP

=
p

p− 1

∫
XY p−1dP

≤ p

p− 1

(∫
XpdP

) 1
p
(∫

Y pdP

) p−1
p

(Hölder).

If E(Y p) <∞, we are done. Otherwise, obtain the result for Ym = min{Y,m} and
pass to the limit to get the desired inequality. □
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Corollary 5.1.3 (Doob). Let Xn is a non-negative sub-martingale ( or a martingale)
sequence of length n. Define S = sup1≤j≤n |Xj(ω)|. Then∫

SpdP ≤
(

p

p− 1

)p ∫
|Xn|pdP.

Definition 5.1.5 (Martingale Transform). Given a predictable process Cn and
a martingale sequence {Xn}, the martingale transform is given by

(C ◦X)n =

n∑
m=1

Cm(Xm −Xm−1).

Remark 5.1.2. This is the discrete analogue of a stochastic integral. Note that
if Cm is bounded, then (C ◦X)n is a Martingale(why?).

Definition 5.1.6 (Stopping Time). A mapping T : Ω 7→ {0, 1, 2, 3, ...,∞} is
called a stopping time with respect to a filtration {Fn}n≥0 if

{ω : T (ω) ≤ n} ∈ Fn, ∀n.

Theorem 5.1.4. If Xn is a super-martingale sequence and T is a stopping time,
then the stopped process

XT
n (ω) := XT (ω)∧n(ω)

is a super-martingale. Consequently,

E (XT∧n) ≤ E(X0).

If Xn is a martingale, then {XT
n } is a martingale and further equality holds above.

Proof. Observe that XT
n is Fn measurable from the definitions. Now

E(XT∧(n+1)|Fn) = E(XT∧(n+1)1T≤n +XT∧(n+1)1T>n|Fn)

= E(XT∧n1T≤n +Xn+11T>n|Fn)

= XT∧n1T≤n + 1T>n E(Xn+1|Fn) a.s.

≤ XT∧n1T≤n + 1T>nXn a.s.

= XT∧n.

The proof for the martingale case follows with the inequality in the above step
replaced with equality (from definition). □

Theorem 5.1.5 (Doob’s Optional Stopping Time Theorem). The following
results hold:

(1) Let Xn be a supermartingale and T is a stopping time. If any of the
following conditions is satisfied:
(a) T is bounded
(b) Xn is uniformly bounded and T is finite almost surely
(c) E(T ) <∞ and |Xn −Xn−1| is uniformly bounded (say by K)

then E(XT ) ≤ E(X0).
(2) If Xn is a martingale and any of the above three conditions hold, then

E(XT ) = E(X0).
(3) Let {Cn} be uniformly bounded predictable sequence and {Xn} be a mar-

tingale such that |Xn −Xn−1| is uniformly bounded, and T is a stopping
time such that E(T ) <∞. Then E ((C ◦X)T ) = 0.



48 5. MARTINGALES

(4) If Xn is a non-negative super-martingale and T is almost surely finite,
then E(XT ) ≤ E(X0).

Proof. We will establish each part in sequence.
(1) Here Xn is a supermartingale.

(a) Let T ≤ N , then XT∧N = XT . The inequality follows from the
previous theorem.

(b) If T is finite almost surely, then XT∧n → XT almost surely. Since Xn

is uniformly bounded (hence XT∧n, XT are also bounded by the same
constant), bounded convergence theorem implies that E(XT∧n) →
E(XT ). Applying previous theorem completes the proof.

(c) Note that

|XT∧n −X0| =

∣∣∣∣∣
T∧n∑
k=1

Xk −Xk−1

∣∣∣∣∣
≤

T∧n∑
k=1

|Xk −Xk−1| ≤ K(T ∧ n) ≤ KT.

Since K is a constant and T is integrable KT is integrable. Hence,
the dominated convergence theorem says that

E(XT −X0) = E(lim
n
(XT∧n −X0)) = lim

n
E(XT∧n −X0) ≤ 0.

(2) Apply the earlier part to Xn and −Xn to get the desired equality.
(3) We know that (C ◦ X)n is a zero-mean martingale. Further, the given

conditions imply that |(C ◦X)n−(C ◦X)n−1| is uniformly bounded. Hence,
using the previous parts, we are done.

(4) This is a direct consequence of Fatou’s Lemma and that E(XT∧n) ≤ E(X0).

□

Lemma 5.1.6. If T is a stopping time and N be a number such that P (T ≤
n+N |Fn) > ϵ a.s. then E(T ) <∞.

Proof. Observe that

P (kN < T ) = E(1T>(k−1)N1T>(k−1)N+N )

= E(E(1T>(k−1)N1T>(k−1)N+N |F(k−1)N ))

= E(1T>(k−1)N E(1T>(k−1)N+N |F(k−1)N )

≤ (1− ϵ) E(1T>(k−1)N ) = (1− ϵ)P (T > (k − 1)N).

Hence by induction P (T > kN) ≤ (1− ϵ)k.
Now note that

E(T ) =
∑
n≥0

P(T > n) =
∑
l≥0

N−1∑
m=0

P(T > lN +m)

≤ N
∑
l≥0

P(T > lN) ≤ N
∑
l≥0

(1− ϵ)l =
N

ϵ
<∞.

□
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Example 5.1.7. Consider a Monkey typing characters on a 26-key keyboard.
Assume that the characters typed are i.i.d. and each character is uniformly chosen.
What is the expected time before the Monkey types “WOWOWOW"?

Solution. The expected time is 267 + 265 + 263 + 26. A beautiful argument
using Martingales for such problems was developed by Li(1980).

Let Xn, n ≥ 1 denote the characters typed by the monkey. Define a stopping
time according to

T = inf{n : (Xn−6, .., Xn) = (W,O,W,O,W,O,W )}.

Clearly this stopping time satisfies the previous lemma with N = 7 and ϵ = (26)−7.
Hence E(T ) <∞. For every m ≥ 1 define the process Y (m)

n , n ≥ m− 1 according to
the following: Y

(m)
n−1 = 1, Y (m)

m+l−1 = 26l∧7 for l ≥ 1 if (Xm, .., Xm+(l∧7)−1) matches
the first (l ∧ 7) characters of “WOWOWOW", else set Y (m)

n = 0. Clearly Y
(m)
n is Fn

measurable. Further E(Y (m)
n+1 |Fn+1) = Y

(m)
n for all n ≥ m− 1. Further if n ≥ m+ 6

then Y
(m)
n+1 = Y

(m)
n , and Y

(m)
n ≤ (26)7.

Observe that Mn =
∑n+1

m=1 Y
(m)
n − n − 1 is a zero-mean martingale. Further

observe that

Mn −Mn−1 =

n∑
m=1

Y (m)
n − Y

(m)
n−1

=

n∑
m=1∨(n−6)

Y (m)
n − Y

(m)
n−1 .

Hence |Mn −Mn−1| ≤ 2× 7× (26)7 (can improve this easily). Therefore, we can
apply part c) of Doob’s optional stopping time theorem and obtain

E(MT ) = 0 =⇒ E

(
T+1∑
m=1

Y
(m)
T − T − 1

)
= 0.

From the definition of the stopping time and Yn,m, we see that Y (T−6)
T = (26)7, Y

(T−4)
T =

(26)5, Y
(T−2)
T = (26)3, Y

(T )
T = 26, Y

(T+1)
T = 1, and the rest are zeros. Therefore

E(T ) = 267 + 265 + 263 + 26. □

The following elegant combinatorial lemma is often regarded as an example of
the reflection principle.

Lemma 5.1.7. Consider the set of sequences, S, sn ∈ Z, n ≥ 0 such that |sn+1 −
sn| = 1. Let k, l be arbitrary integers, and let m ≤ min{k − 1, l}. Let Snk,l,m ⊂ S be
the set of sequences such that s0 = k and sn = l, and there exists q ∈ [1 : n] such
that sq = m. Then

|Snk,l,m| =


0 (n− k + l) ≡ 1(mod2)

0 |l − k| > n(
n

n+k+l−2m
2

)
otherwise

Proof. Define Ŝnk,l,m ⊂ S be the set of sequences such that s0 = 2m− k and
sn = l. Since 2m − k < m ≤ l, every such sequence must have q ∈ [1 : n] such
that sq = m. Observe that we can construct a bijection between the sequences in



50 5. MARTINGALES

Ŝnk,l,m and Snk,l,m, by reflecting the sequence about m until the first time q such that
sq = m. The result then follows immediately from the cardinality of Ŝnk,l. □

Here is a simple example that demonstrates the following: Xn is a martingale
with bounded increments, i.e |Xn −Xn−1| ≤ K. T is a stopping time that is almost
surely finite. Yet E(XT ) ̸= E(X0).

Consider a symmetric random walk in 1-dimension with X0 = 0. Let Xn denote
the location of the random walk at time n. Let T = inf{n : Xn = −1}. Then clearly,
if T is finite almost surely, then E(XT ) = −1 ̸= E(X0) = 0. To show that T is finite
almost surely, we use Lemma 5.1.7. Consider the event Tn := {ω : T (ω) > n} and
consider the following collection of events, for 0 ≤ k ≤ n:

Enk = {ω : X0(ω) = 0, .., Xn(ω) = k}
Hn

k = {ω : X0(ω) = 0, .., Xn(ω) = k,∃m ∈ [1 : n] s.t. Xm(ω) = −1}

Observe that we can partition as Tn = ∪nk=0(Enk \ Hn
k ). Therefore we get

P (T > 2n) =

n∑
k=0

P(E2n2k \ H2n
2k )

=

n∑
k=0

1

22n

(
2n

n+ k

)((
2n

n+ k

)
−
(

2n

n+ k + 1

))
=

1

22n

(
2n

n

)
≤ 1√

πn
.

Thus T is finite almost surely.

5.1.1. Convergence theorems.

Definition 5.1.8 (Upcrossing). Given a sequence of random variables {Xn}
and two numbers a < b, we define a non-negative integer-valued non-decreasing
sequence of random variables Un[a, b] according to

Un[a, b] = max{k : ∃ 0 ≤ s1 < t1 < · · · < sk < tk ≤ n, s/t Xsi ≤ a,Xti > b}.

If {Xn} is adapted to the filtration {Fn} then {Un[a, b]} is also adapted to the
filtration {Fn}.

Lemma 5.1.8 (Doob’s Upcrossing inequality). The following hold:
(1) Let {Xn} be a supermartingale. Then for any n ≥ 1 and a < b

(b− a) E(Un[a, b]) ≤ E((Xn − a)−) ≤ E(|Xn|) + |a|.
(2) Let {Xn} be a submartingale. Then for any n ≥ 1 and a < b

(b− a) E(Un[a, b]) ≤ E((Xn − a)+)− E((X0 − a)+) ≤ E(|Xn|) + |a|.

Proof. (1) Define a predictable process inductively as follows

C1 = 1X0≤a

Cn = 1Cn−1=11Xn−1≤b + 1Cn−1=01Xn−1≤a.

In words, Cn is a sequence that takes a value 1, starting from an instance
the process goes below a, till the instance the process goes above b for the
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first time. Then Cn becomes zero, and turns to 1 only when the process
goes below a again.

Define Y0 = 0 and Yn = (C ◦ X)n, n ≥ 1 and note that this is a
supermartingale. Clearly,

Yn ≥ (b− a)Un[a, b]−max{0, a−Xn}(=: (Xn − a)−).

Taking expectations and noting that E(Yn) ≤ E(Y0) = 0 we obtain the
result.

(2) Let Zn = (Xn − a)+ + a. Observe that Zn is a sub-martingale and further
it has the same number of up-crossings as Xn. Define Yn = (C ◦Z)n, n ≥ 1
as before. Clearly

Yn ≥ (b− a)Un[a, b].

Define similarly Ỹn = ((1 − C) ◦ Z)n, n ≥ 1. Clearly Ỹn is also a sub-
martingale and E(Ỹn) ≥ 0 (verify). Now Yn + Ỹn = Zn − Z0, hence
E(Yn) ≤ E(Zn − Z0) = E((Xn − a)+)− E((X0 − a)+).

□

Theorem 5.1.9 (Martingale Convergence Theorem). Let Xn be a super(or
sub)-martingale with supn E(|Xn|) <∞, then Xn will converge almost surely to a
finite limit.

Proof. Clearly we have

{ω : lim inf
n

Xn(ω) < lim sup
n

Xn(ω)}

= ∪a,b∈Q,a<b{ω : lim inf
n

Xn(ω) < a < b < lim sup
n

Xn(ω)}

= ∪a,b∈Q,a<b{ω : U∞[a, b] =∞}
From Doob’s upcrossing inequality and monotone convergence theorem we have

(b− a) E(U∞[a, b]) ≤ sup
n

E(|Xn|) + |a| <∞.

Hence for every a, b ∈ Q, a < b we have P ({ω : U∞[a, b] = ∞}) = 0. This implies
that either Xn converges to a finite limit or |Xn| → ∞.

We now only need to worry about |Xn(ω)| → ∞. Let BM,k = {ω : |Xn(ω)| ≥
M, ∀n ≥ k}. From Markov’s inequality, we have P(BM,k) ≤ supn E(Xn)

M . Taking
M →∞ we see that the limit of Xn is finite almost surely. □

Corollary 5.1.10. If {Xn} is a non-negative supermartingale, then E(|Xn|) =
E(Xn) ≤ E(X0) <∞. Hence it always converges.

Theorem 5.1.11. Let Xn, n ≥ 0 be a martingale with bounded increments, i.e.
|Xn −Xn−1| ≤ K for all n, ω. Define

C = {ω : lim
n

Xn(ω) exists and is finite}

D = {ω : lim inf
n

Xn(ω) = −∞ and lim sup
n

Xn(ω) =∞}

Then P (C ∪D) = 1.

Proof. Since Xn−X0 is also a martingale with bounded increments, we assume
w.l.o.g that X0 = 0. For any M > 0, define the stopping time TM = inf{n : Xn <
−M}. Then Xn∧TM

+K +M is a martingale, and further Xn∧TM
+M +K ≥ 0.
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Applying Corollary 5.1.10 we see that Xn∧TM
+K +M has a finite limit almost

surely. This implies that on
{ω : TM =∞},

the sequence Xn has a finite limit almost surely. Taking M →∞ along the integers
we see that the sequence Xn has a finite limit almost surely on {ω : infn Xn(ω) >
−∞}. Similarly by taking −Xn we can argue that the sequence Xn has a finite
limit almost surely on {ω : supn Xn(ω) <∞}. On the other hand, if infn Xn = −∞
and supn Xn = +∞ then clearly ω ∈ D completing the proof. □

Theorem 5.1.12. Let {Xn} be a Martingale adapted to the filtration {Fn}.
If supn E(X

2
n) < ∞ then Xn → X∞ a.s. and E((Xn − X∞)2) → 0. Further

E(X2
∞) <∞ and Xn = E(X∞|Fn) a.s..

Proof. Since supn E(X
2
n) < ∞ we have supn E(|Xn|) < ∞; and Doob’s con-

vergence theorem yields the almost sure convergence. Fatou yields E(X2
∞) <∞.

W.l.o.g. let us center the Martingale and assume X0 = 0. Further define
Yn = Xn −Xn−1, n ≥ 1. Observe that

E(YnXn−1) = E(Xn−1(Xn −Xn−1)) = E(E(Xn−1(Xn −Xn−1)|Fn−1)) = 0

In the last step we used that E(Xn−1Xn|Fn) = Xn−1 E(Xn|Fn) = X2
n−1 a.s.

with the justification that tower property holds as Xn−1Xn is integrable (Cauchy-
Schwatrz). Hence by induction

E(X2
n) =

n∑
m=1

E(Y 2
m).

Note that (Fatou yields)

E((X∞ −Xn)
2) ≤ lim

m→∞
E((Xm −Xn)

2) =

∞∑
m=n+1

E(Y 2
m)→ 0

as n→∞ as
∑

n≥1 E(Y
2
n ) is finite.

Note that for m > n

E((X∞ −Xm)|Fn) = E(X∞|Fn)−Xn a.s.

Since E((X∞ −Xm)2)→ 0 we have Xn = E(X∞|Fn) a.s. □

Lemma 5.1.13. Let Xn be integrable and X be integrable. Then E(|Xn −X|)→ 0
if (i) Xn → X in probability and (ii) {Xn} is uniformly integrable.

Proof. Let Y K
n = Xn1|Xn|≤K + sgn(Xn)K1|Xn|>K and Y K = X1|X|≤K +

sgn(X)K1|Xn|>K . Since |Y K
n −Y K | ≤ |Xn−X| we see that Y K

n → Y K in probability
and hence from bounded convergence theorem E(|Y K

n − Y K |)→ 0.
Note that UI implies supn E(|Xn − Y K

n |) ≤ supn E(|Xn|1|Xn|>K)→ 0 and K →∞.
Now

lim sup
n

E(|Xn −X|) ≤ lim sup
n

E(|Xn − Y K
n |) + lim sup

n
E(|Y K

n − Y K |) + E(|X − Y K |)

≤ sup
n

E(|Xn|1|Xn|>K) + E(|X|1|X|>K),

and the right hand side tends to 0 as K →∞. □
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Theorem 5.1.14. Let {Xn} be an uniformly-integrable Martingale adapted
to the filtration {Fn}. Then Xn → X∞ a.s. and E(|Xn − X∞|) → 0. Further
E(|X∞|) <∞ and Xn = E(X∞|Fn) a.s..

Proof. {Xn} is U-I implies supn E(|Xn|) < ∞. Hence, from convergence
theorem, Xn → X∞ a.s. and Fatou yields E(|X∞|) <∞. From previous lemma, we
also have E(|Xn −X∞|)→ 0. Note that for m > n

E((X∞ −Xm)|Fn) = E(X∞|Fn)−Xn a.s.

Since E(|X∞ −Xm|)→ 0 we have

E(|E(X∞|Fn)−Xn|) ≤ E(E(|X∞ −Xm||Fn)) = E(|X∞ −Xm|)→ 0.

Hence Xn = E(X∞|Fn) a.s. □

Theorem 5.1.15. Fix p > 1. Let {Xn} be a Martingale adapted to the filtration
{Fn}. If supn E(|Xn|p) <∞ then Xn → X∞ a.s. and E(|Xn−X∞|p)→ 0. Further
E(|X∞|p) <∞ and Xn = E(X∞|Fn) a.s..

Proof. supn E(|Xn|p) <∞ implies uniform integrability. Further Martingale
convergence theorem implies almost sure convergence to a random variable X∞ and
Fatou implies X∞ satisfies E(|X∞|p) <∞. Previous theorem implies convergence
in L1.

Further a similar argument as before yields that

E((X∞ −Xm)|Fn) = E(X∞|Fn)−Xn a.s.

Since E(|X∞ −Xm|)→ 0 we have Xn = E(X∞|Fn) a.s.

Define Y K
∞ as before (from X∞) and let Ŷ K

n = E(Y K
∞ |Fn). Note that (Jensen

for conditional expectation) ∥Xn − Ŷ K
n ∥p ≤ ∥X∞ − Y K

∞ ∥p. Hence

∥Xn−X∞∥p ≤ ∥Xn−Ŷ K
n ∥p+∥X∞−Y K

∞ ∥p+∥Y K
∞−Ŷ K

n ∥p ≤ 2∥X∞−Y K
∞ ∥p+∥Y K

∞−Ŷ K
n ∥p.

By construction Ŷ K
n is a bounded martingale sequence. Hence Ŷ K

n converges to Ŷ K
∞

a.s. and in L2. Further E(Ŷ K
∞ |Fn) = Yn a.s.

What is left is to show that Ŷ K
∞ = Y K

∞ almost surely. By construction,
X∞, Y K

∞ , Ŷ K
∞ are σ(∪nFn)-measurable. Further since, for every Fn

Ŷ K
n = E(Ŷ K

∞ |Fn) = E(Y K
∞ |Fn)a.s

we have that, for all n and for all A ∈ Fn∫
A

Y K
∞ dP =

∫
A

Ŷ K
∞ dP.

The collection of all A for which the above equality holds is a monotone class (here
use integrability of Y K

∞ and Ŷ K
∞ ) and we are done. □
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Theorem 5.1.16 (Doob’s decomposition). Let {Xn}, n ≥ 0 be a process adapted
to {Fn}. Then we can express

Xn = X0 +Mn +An,

where Mn is a martingale null at zero and An is a predictable. Further this decom-
position is unique almost surely. Finally {Xn} is a sub-martingale if and only if An

is a non-decreasing sequence, almost surely.

Proof. Note that if such a decomposition exists, then

E(Xn −Xn−1|Fn−1) = An −An−1.

Therefore, by telescopic sum,

An =

n∑
k=1

E(Xk −Xk−1|Fk−1)

since A0 = 0. What remains to be verified is that {Xn −X0 −An} is a Martingale,
but this is immediate. The uniqueness comes from the construction and essential
uniqueness of the conditional expectation. The sub-martingale consequence is also
immediate from the construction. □

Definition 5.1.9 (Angle-bracket process). Let {Xn} be a square-integrable
martingale which is null at zero. Then {X2

n} is a sub-martingale and it has a Doob’s
decomposition leading to a predictable process {An}. Then we define An = ⟨Xn⟩.

Note that if E(A∞) < ∞ then supn E(X
2
n) ≤ E(A∞) < ∞ and Xn converges

almost-surely and in L2.

Theorem 5.1.17. Let {Xn} be a square-integrable martingale which is null at
zero. Let An = ⟨Xn⟩. Then

(i) If A∞(ω) <∞ then limn Xn(ω) exists (except possibly on a null set)
(ii) If Xn has uniformly bounded increments, the converse is true: i.e. when

limn Xn(ω) exists and is finite, then A∞(ω) < ∞ (except possibly on a null
set)

Proof. (i) Define a stopping time

S(k) = inf{n : An+1 > k}.

Then note that

An∧S(k) = AS(k)1S(k)≤n−1 +An1S(k)>n−1,

hence An∧S(k) is predictable.
Observe that

E(X2
n∧S(k) −An∧S(k)|Fn−1) =

(
X2

(n−1)∧S(k) −A(n−1)∧S(k)

)
.

Thus An∧S(k) = ⟨Xn∧S(k)⟩. Since An∧S(k) is bounded, hence E(A∞∧S(k)) ≤ k
implying Xn∧S(k) converges almost surely. This implies Xn converges almost
surely on {ω : S(k) =∞}. Taking k →∞ we have that If A∞(ω) <∞ then
limn Xn(ω) exists.
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(ii) Define a new stopping time

T (k) = inf{n : |Xn| > k}.
Hence, similar to before,

E(X2
n∧T (k)) = E(An∧T (k)) ≤ (k +K)2.

There on {ω : T (k) =∞} we know that A∞ is finite. Take k →∞. □

Theorem 5.1.18 (Levy’s extension of Borel-Cantelli Lemmas). Let {Fn} be a
filtration and let Gn ∈ Fn. Define

Zn =

n∑
k=1

1Gk
.

Let Bn = E(1Gn
|Fn−1) and let

Yn =

n∑
k=1

Bk.

Then, almost surely,
• Y∞ <∞ implies Z∞ <∞
• Y∞ =∞ implies Zn

Yn
→ 1.

Proof. Observe that

E(Zn − Yn|Fn−1) = Zn−1 − Yn−1,

hence Mn := Zn − Yn is a Martingale. Let An = ⟨Mn⟩. Note that

An =

n∑
k=1

E(M2
k −M2

k−1|Fk−1) =

n∑
k=1

E((Mk −Mk−1)
2|Fk−1)

=

n∑
k=1

E((1Gk
−Bk)

2|Fk−1) =

n∑
k=1

Bk(1−Bk) ≤ Yn.

If Y∞ < ∞ then A∞ < ∞ and from previous theorem, limn Mn exists and hence
Z∞ <∞.

To get the second part, note that if A∞ < ∞ then limn Mn exists. Hence if
Y∞ =∞ then Zn

Yn
→ 1 (trivially). The more interesting case is when A∞ =∞.

We will show that the Martingale transform

Un =

n∑
k=1

Mk −Mk−1

1 +Ak

is a square integrable martingale, where U0 = 0. To observe this note that (please
fill in the skipped steps),

E(U2
n) = E

(
n∑

k=1

Mk −Mk−1

1 +Ak

)2

= E

(
n∑

k=1

(
Mk −Mk−1

1 +Ak

)2

+ 2
∑
k<l

(Mk −Mk−1)

(1 +Ak)

(Ml −Ml−1)

(1 +Al)

)

= E

(
n∑

k=1

(
Mk −Mk−1

1 +Ak

)2
)
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= E

(
n∑

k=1

(
1Gk
−Bk

1 +Ak

)2
)

= E

(
n∑

k=1

Bk(1−Bk)

(1 +Ak)2

)

= E

(
n∑

k=1

Ak −Ak−1

(1 +Ak)2

)

≤ E

(
n∑

k=1

(
Ak

1 +Ak
− Ak−1

1 +Ak−1

))

= E

(
An

1 +An

)
≤ 1.

Now observe that, similarly,

⟨Un⟩ =
n∑

k=1

E((Uk − Uk−1)
2|Fk−1)

=

n∑
k=1

E

(
M2

k −M2
k−1

(1 +Ak)2
|Fk−1

)
a.s.
=

n∑
k=1

Ak −Ak−1

(1 +Ak)2

≤
n∑

k=1

(
Ak

1 +Ak
− Ak−1

1 +Ak−1

)
=

An

1 +An
≤ 1.

Since ⟨Un⟩ ≤ 1, hence Un converges to a finite limit. Hence, Kronecker’s lemma
says that Mn

1+An
→ 0. (Take xk = (Mk−Mk−1)

1+Ak
and bk = 1 +Ak.) □

Lemma 5.1.19 (Kronecker). Let
∑n

m=1 xm be a convergent. It a sequence of
positive numbers bn ↑ ∞ then ∑n

k=1 bkxk

bn
→ 0.

Proof. Let sn =
∑n

m=1 xm, and sn → s, and let s0 = 0. The key is to express
n∑

k=1

bkxk

bn
=

n∑
k=1

bk((sk − s)− (sk−1 − s))

bn
= sn − s−

n−1∑
k=1

(bk+1 − bk)(sk − s)

bn
.

Given ϵ > 0 we know that ∃n0 such that |sn − s| ≤ ϵ,∀n ≥ n0. Hence for n > n0

we have ∣∣∣∣∣
n∑

k=1

bkxk

bn

∣∣∣∣∣ ≤ |sn − s|+
n−1∑
k=1

(bk+1 − bk)|sk − s|
bn

≤ ϵ+
(bn − bn0)

bn
ϵ+

1

bn

n0∑
k=1

(bk+1 − bk)|sk − s|.

Taking lim supn we obtain an upper bound of 2ϵ and since ϵ > 0 is arbitrary we are
done. □
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Theorem 5.1.20 (Kakutani’s theorem for Product Martingales). Let X1, X2, · · ·
be independent non-negative random variables, each of mean 1. Define M0 = 1 and
let

Mn := X1 · · ·Xn.

Then {Mn} is a non-negative martingale; hence M∞ := limn Mn exists almost
surely.

Secondly, the following five statements are equivalent:
(a)

∑
n(1− an) <∞.

(b)
∏

n an > 0, where an = E(
√
Xn).

(c) {Mn} is UI.
(d) Mn →M∞ in L1.
(e) E(M∞) = 1.
If one of the statements fail to hold then P(M∞ = 0) = 1.

Proof. Note that 0 < an ≤ 1 (the second inequality follows by Jensen). The
proof follows by showing that (a) ⇐⇒ (b). Then we will show that (b) =⇒
(c) =⇒ (d) =⇒ (e) =⇒ (b). Finally we will show that if

∏
n an = 0 then

P(M∞ = 0) = 1.
(a) ⇐⇒ (b): The equivalence between (a) and (b) is standard. Since e−x ≥ 1−x,

we have ∏
n

an ≤ e−
∑

n(1−an),

therefore (b) implies (a). Note that e−2x ≤ 1 − x, 0 ≤ x ≤ 1
2 . Let

∑
n(1 − an) =

B <∞. Let I = {n : an ≤ 1
2}. Observe that |I| ≤ 2B. Let a∗ = minn∈I an. Then

observe that
∏

n∈I an ≥ a
|I|
∗ > 0 and

∏
n/∈I an ≥ e−2

∑
n/∈I(1−an) > 0. Hence (a)

implies (b).
(b) =⇒ (c): Define

Yn =

√
X1X2 · · ·Xn

a1a2 · · · an
=

√
Mn

bn
,

where bn =
∏n

k=1 ak. Since Yn is a non-negative Martingale we know that Yn

converges almost-surely to a finite limit. If b∞ =
∏

n an > 0, then supn E(Y
2
n ) =

1
b2∞

<∞. Now

E( sup
1≤k≤n

Mk) ≤ E( sup
1≤k≤n

Y 2
k ) ≤ 4E(Y 2

n ) ≤ 4 sup
n

E(Y 2
n ) <∞.

The second inequality is Doob’s inequality for submartingales (Corollary 5.1.3),
specialized to p = 2. Hence monotone convergence theorem yields

E(sup
n

Mn) <∞.

Defining M∗ = supn Mn, since E(M∗) <∞. Since, for every n, E(|Mn|1|Mn|>K) ≤
E(|M∗|1|M∗|>K) we have

lim
K→∞

sup
n

E(|Mn|1|Mn|>K) ≤ lim
K→∞

E(|M∗|1|M∗|>K) = 0,

where the last equality being due to the integrability of M∗. Thus {Mn} is UI.
Hence (b) implies (c).

(c) =⇒ (d): As Mn → M∞ almost surely and {Mn} is uniformly integrable,
Lemma 5.1.13 implies (d).
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(d) =⇒ (e): Note that E(M∞) ≥ E(Mn)−E(|Mn−M∞|) = 1−E(|Mn−M∞|).
Therefore (d) implies, by taking n→∞ that E(M∞) ≥ 1. On the other hand, from
Fatou E(M∞) ≤ lim infn E(Mn) = 1. This establishes (e).

(e) =⇒ (b): Consider Yn defined as earlier. We knew that as Yn is a non-
negative Martingale it converges almost-surely to a finite limit. Now assume that
bn ↓ 0. Then it must be that M∞ = 0 almost surely. This contradicts E(M∞) = 1.

Finally, if one of the conditions fail, say (b), then we have b∞ = 0. Then it is
clear from the almost-sure convergence of Yn that M∞ = 0 almost surely. □

Theorem 5.1.21 (Law of iterated Logarithm for Gaussians). Let {Xn} be i.i.d.
random variables, each distributed as N (0, 1). Let Sn =

∑n
i=1 Xi. Then

lim sup
n

Sn√
2n log log n

= 1 a.s.

Proof. Let h(n) =
√
2n log log n, n ≥ 3. Further, it is easy to see that

E(eθSn) = e
1
2 θ

2n.

Now {eθSn} is a sub-martingale, hence

P ( sup
1≤k≤n

Sk ≥ l) ≤ e−θle
1
2 θ

2n.

Optimizing over θ yields

P ( sup
1≤k≤n

Sk ≥ l) ≤ e−
l2

2n .

Take K > 1 and ln = Kh(Kn−1). Now observe that

P

(
sup

1≤k≤Kn

Sk ≥ ln

)
≤ e−

l2n
2Kn = e−K log logKn−1

=
1

((n− 1) logK)
K
.

From B-C 1, we have, almost surely, for all Kn−1 ≤ k ≤ Kn, and n large-enough
Sk ≤ sup1≤k≤Kn Sk ≤ ln = Kh(Kn−1) ≤ Kh(k). Hence lim supk

S(k)
h(k) ≤ K almost

surely. Since K > 1 is arbitrary, we are done with the upper bound. By symmetry,
we also have that lim infk

S(k)
h(k) ≥ −1 almost surely.

Let N be an integer larger than 4. Note that S(Nn+1)−S(Nn)√
Nn+1−Nn

is a Gaussian.
Now, from Lemma below, we have

P (Fn) := P

(
S(Nn+1)− S(Nn)√

Nn+1 −Nn
≥ (1− ϵ)

h(Nn+1 −Nn)√
Nn+1 −Nn

)
≥ g((1− ϵ)

√
2 log log(Nn+1 −Nn))

= g((1− ϵ)
√
2 log(n log(N) + log(N − 1))),

where g(x) = 1√
2π(x+x−1)

e−x2/2. We leave it as an exercise to verify that

∞∑
n=1

g((1− ϵ)
√

2 log(n log(N) + log(N − 1))) =∞.

Therefore,
∑∞

n=1 P (Fn) = ∞ and consequently, from B-C 2, infinitely often, we
have

S(Nn+1)− S(Nn) ≥ (1− ϵ)h(Nn+1 −Nn)
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infinitely often. However from earlier part S(Nn) ≥ −Kh(Nn) for K > 1 eventually
(in n), so infinitely often we have

S(Nn+1) ≥ (1− ϵ)h(Nn+1 −Nn)−Kh(Nn).

Therefore

lim sup
k

S(k)

h(k)
≥ lim sup

n

S(Nn+1)

h(Nn+1)
≥ (1− ϵ) + θ(1/

√
N).

Letting N →∞ completes the proof. □

Lemma 5.1.22. Let X be standard normal. Then

P (X > x) ≥ 1√
2π(x+ x−1)

e−x2/2.

Proof. Let ϕ(x) be the density. Then (x−1ϕ(x))′ = −(1 + x−2)ϕ(x). Hence

x−1ϕ(x) = −
∫ ∞

x

(y−1ϕ(y))′dy =

∫ ∞

x

(1 + y−2)ϕ(y)dy ≤ (1 + x−2)P (X > x).

□

5.1.2. Backwards Martingales.

Definition 5.1.10. A backwards martingale is a sequence of random variables
{Xn}, n ≤ 0, adapted to a filtration, {Fn}n≤0 defined by

Xn := E(X0|Fn), n ≤ 0,

where X0 is an integrable random variable.

Lemma 5.1.23. Let (Ω,F , P ) be a probability space and X be an integrable random
variable. Consider the collection

{Y : Y = E(X|G), for some G ⊂ F}.
Then the collection of random variables is uniformly integrable.

Remark: Formally, the collection contains versions of conditional expectation.

Proof. Let ϵ > 0 be given. Let cδ = supA∈F :P (A)≤δ E(|X|1A). We know from
dominated convergence theorem that cδ ↓ 0 and δ ↓ 0. Choose δ0 such that cδ0 ≤ ϵ.
Choose M such that 1

M E(|X|) ≤ δ0.
Jensen’s inequality says that |Y | ≤ E(|X||G) a.s. In particular E(|Y |) ≤ E(|X|).

Hence P (|Y | > M) ≤ 1
M E(|Y |) ≤ δ0. From the definition of conditional expectation

E(|Y |1|Y |>M ) ≤ E(|X|1|Y |>M ) ≤ ϵ.

□

Theorem 5.1.24. The limit X−∞ = limn→−∞ Xn exists a.s. and in L1. Fur-
ther, if F−∞ = ∩n≤0Fn, then X−∞ = E(X0|F−∞)a.s.

Proof. Doob’s upcrossing inequality for the number of upcrossings, Un, be-
tween [a, b] made by X−n, . . . , X0 yields (b− a) E(Un) ≤ E(X0 − a)+ <∞. Hence
the limit exists almost surely. Since the collection is uniformly integrable, we
have convergence in L1 (Lemma 5.1.13). Let A ∈ F−∞. Now, observe that
Xn1A → X−∞1A and the collection {Xn1A} is uniformly integrable. Therefore,
by Lemma 5.1.13, we get that E(Xn1A) → E(X−∞1A). On the other hand
A ∈ F−∞ =⇒ A ∈ Fn and Xn = E(X0|Fn), therefore E(Xn1A) = E(X01A).
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Therefore, E(X01A) = E(X−∞1A). To complete the proof, it suffices to show that
X−∞ is F−∞ measurable. To this end, observe the following: define for a < b,

Gn((a, b)) = ∩m≥n{ω : Xm ∈ (a, b)}.
It is immediate (by the nested nature) that Gϵ,n((a, b)) ∈ Fn. Note that Gn((a, b))
is an increasing family of sets in n and ∪k≥nGk((a, b)) = {ω : X−∞ ∈ (a, b)}.
Therefore {ω : X−∞ ∈ (a, b)} ∈ Fn, for every n. This shows that X−∞ is F−∞
measurable. □

5.1.3. Exchangeable Processes and de Finetti’s theorem. Given a col-
lection of random variables X1, X2, ..., take any measurable function f(X1, .., Xn, ...)
and generate

An(f) =
1

n!

∑
π∈Sn

f(Xπ(1), Xπ(2), .., Xπ(n), Xn+1, Xn+2, ...).

Define En to be the σ-algebra generated by ({An(f)}). In other words, let Fn be the
class of all measurable functions that are symmetric in the subset X1, .., Xn. Hence
En is generated by all random variables in Fn. It is immediate that Fn+1 ⊆ Fn,
hence En+1 ⊆ En. Define E = ∩nEn to be the exchangeable σ-algebra.

Definition 5.1.11. A sequence X1, X2, .. is said to be exchangeable if for every n
and for every permutation π ∈ Sn,the distributions of (X1, .., Xn) and Xπ(1), .., Xπ(n)

are the same.

Theorem 5.1.25 (de Finetti). If X1, X2, .. are exchangeable, then conditioned
on E, the random variables X1, ... are independent and identically distributed.

Proof. Let f : Rk → R be a bounded measurable function. Define Bn(f)
acting on (X1, X2, ..) by

Bn(f) :=
1

nP k

∑
i⊂[n]

f(Xi1 , .., Xik).

Verify that An(Bn(f)) = Bn(f). Therefore, {ω : Bn(f) ≤ x} ∈ En. Consequently,

Bn(f) = E(Bn(f)|En) =
1

nP k

∑
I⊂[n],|I|=k

E(f(Xi1 , .., Xik)|En) = E(f(X1, .., Xk)|En).

From backwards martingale theorem Bn(f)→ B−∞(f) = E(f(X1, .., Xk)|E).
Let f, g be a bounded measurable functions on Rk−1 and R respectively. Consider

ϕ(x1, .., xk) = f(x1, .., xk−1)g(xk) and define ϕj(x1, .., xk−1) = f(x1, .., xk−1)g(xj)
for 1 ≤ j ≤ k − 1. Then verify that

nP k−1Bn(f)nBn(g) =
nP kBn(ϕ) +

nP k−1

k−1∑
j=1

Bn(ϕj) ⇐⇒

Bn(f)Bn(g) =
n− k + 1

n
Bn(ϕ) +

1

n

k−1∑
j=1

Bn(ϕj).

Taking n→∞ we obtain B−∞(f)B−∞(g) = B−∞(ϕ), or

E(f(X1, .., Xk−1)|E) E(g(Xk)|E) = E(f(X1, .., Xk−1)g(Xk)|E).
The rest is routine. □



CHAPTER 6

Ergodic Theorem

Definition 6.0.1. A sequence of random variables {Xn} is said to be stationary
if the distribution of {X1, ..., Xn} is identical to that of {X1+k, ..., Xn+k} for all
n ≥ 1 and k ≥ 1.

Definition 6.0.2. Let (Ω,F , P ) be a probability space. A measurable mapping
T : Ω→ Ω is said to be measure-preserving if P(T−1(A)) = P (A) for all A ∈ F .

A measure-preserving map naturally gives rise to a stationary sequence as
follows: let X(ω) be a random variable; define Xn(ω) = X(Tn(ω)), n ≥ 0, where
T 0(ω) := ω.
To see that the above process is stationary, define B := {ω : (X1, ..., Xn) ∈ A}. Then
note that T−k(B) = {ω : (X1+k, ..., Xn+k) ∈ A}. Since T is measure-preserving, we
are done.

This part of the notes will focus on measure-preserving transformations and
hence T will always be assumed to be measure-preserving.

Definition 6.0.3. A set A is said to be strictly-invariant if T−1(A) = A, while
a set A is said to be invariant if P (T−1(A)∆A) = 0.

Exercise 6.0.1. Show the following basic properties of mappings and sets.
(1) T−1(∪iAi) = ∪iT−1(Ai).
(2) T (T−1(A)) = A, T−1(T (A)) ⊇ A.
(3) A∆B = Ac∆Bc.
(4) ∪i(Ai∆Bi) ⊇ (∪iAi)∆(∪iBi).
(5) T−1(Ac) = (T−1(A))c

(6) T−1(A∆B) = T−1(A)∆T−1(B).
(7) A∆(∪∞i=1Bi) ⊆ (A∆B1) ∪ (∪∞i=1(Bi∆Bi+1))

From the above properties, it is immediate that I - the collection of invariant
sets - is a σ-algebra. we will call this to be the invariant-σ-algebra. Similarly, we
can also define the strictly-invariant-σ-algebra.

Lemma 6.0.1. Let A be an invariant set. Then, there exists a strictly invariant
set C such that P(A∆C) = 0.

Proof. Given an invariant set A, let B := ∪∞n=0T
−n(A). Note that A ⊆ B

and T−1(B) = ∪∞n=1T
−n(A) ⊆ B. Define C := ∩∞n=0T

−n(B). Note that T−1(C) =
∩∞n=1T

−n(B); however since B ∩ T−1(B) = T−1(B) we have T−1(C) = C.
We will argue that P (A∆C) = 0. From part (7) of exercise above, A∆ ∪∞n=0

T−n(A) ⊆ (A∆A)∪
(
∪∞n=0(T

−n(A)∆T−(n+1)(A))
)
. Therefore P (A∆B) ≤ P (A∆A)+∑∞

n=0 P (T−n(A)∆T−(n+1)(A)). Since A is invariant and T is measure preserving we
have P(T−n(A)∆T−(n+1)(A)) = 0 implying that P(A∆B) = 0. Since T−1(B) ⊆ B,
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we have T−n(B) is a decreasing sequence and T−n(B) ↓ C. Further as P(T−n(B)) =
P(B) and T−n(B) is a decreasing sequence, we have P(B∆T−n(B)) = 0. Therefore
by monotone limits property, we have P(B∆C) = 0. Now as A,C ⊆ B, observe
that A∆C ⊆ (A∆B) ∪ (B∆C). Consequently P(A∆C) = 0, as desired. □

Lemma 6.0.2. If X is I-measurable then X(T (ω)) = X(ω) almost surely.

Proof. If A is invariant then T−1(A) is also invariant (use (6) in Exercise
along with measure-preserving property). Therefore X(T (ω)) is also I-measurable.
Given two rational numbers p < q let Ap,q = {ω : X(ω) < p,X(T (ω)) > q}, and let
Bp = {ω : X(ω) < p}. It is clear that Ap,q ⊆ Bp∆T−1(Bp) and hence P (Ap,q) = 0.
Now the lemma follows immediately. □

Definition 6.0.4. A measure-preserving transformation associated with a
stationary process is called ergodic if A ∈ I, the invariant σ-algebra, implies that
P (A) = 0 or P (A) = 1.

Lemma 6.0.3 (Maximal Ergodic Lemma). Let Xj(ω) = X(T k(ω)), Sk =
∑k−1

i=0 Xi(ω),
and Mk(ω) = max(0, S1(ω), .., Sk(ω)). Then E(X1Mk>0) ≥ 0.

Proof. If j ≤ k then Mk(T (ω)) ≥ Sj(T (ω)), implying

X(ω) ≥ Sj+1(ω)−Mk(T (ω)), j = 0, .., k

Therefore

E(X(ω)1Mk>0) ≥
∫
Mk>0

max{S1(ω), ..., Sk(ω)} −Mk(T (ω))dP

=

∫
Mk>0

Mk(ω)−Mk(T (ω))dP ≥ 0.

The last inequality is due to the following observation: Mk(ω) = 0 we have
Mk(T (ω)) ≥ 0. However since integrals of Mk(ω) and Mk(T (ω)) are same (measure-
preserving property of T ), the inequality follows. □

Theorem 6.0.4 (Birkhoff’s Ergodic Theorem). For any X ∈ L1,

1

n

n−1∑
m=0

X(Tm(ω))→ E(X|I) a.s.

and in L1.

Proof. Since E(X|I) is invariant under T (see Lemma 6.0.2 above) w.l.o.g. we
can center X and assume E(X|I) = 0. Let X̄ = lim sup Sn

n and let D = {ω : X̄ > ϵ}.
Since X̄(T (ω)) = X̄(ω), we have that D ∈ I.

Define a new sequence of random variables Y (ω) = (X(ω) − ϵ))1D and let
Un = Y0 + · · ·+ Yn−1. Let Mn(ω) = max(0, U1(ω), .., Un(ω)). Observe that Mn ↑
and limn Mn > 0 on D. Let En = {ω : Mn > 0}. Hence En ↑ D. Since |Y | ≤ |X|+ϵ
we have

0 ≤ E(Y 1En
)→ E(Y 1D).

where the inequality comes from Maximal ergodic lemma. Hence

E((X(ω)− ϵ))1D) ≥ 0 =⇒ E(E(((X(ω)− ϵ)1D|I))) = E(1D E(X|I)− ϵ1D) ≥ 0.
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Since we have X centered, E(X|I) = 0 almost surely, implying that P(D) = 0.
Similarly working with −X (and hence the lim inf) completes the almost sure
convergence.

To show convergence in L1, let XM = X1|X|<M . Almost sure convergence
above and bounded convergence theorem says that

E

∣∣∣∣∣ 1n
n−1∑
m=0

XM (Tm(ω))− E(XM |I)

∣∣∣∣∣→ 0.

Let X̂M = X −XM . By triangle inequality and measure-preserving property of
T we have

E

∣∣∣∣∣ 1n
n−1∑
m=0

X̂M (Tm(ω))

∣∣∣∣∣ ≤ E(|X̂M |).

Note also that |E(E(X̂M |I))| ≤ E(|X̂M |). Combining

E

∣∣∣∣∣ 1n
n−1∑
m=0

X(Tm(ω))− E(X|I)

∣∣∣∣∣
≤ E

∣∣∣∣∣ 1n
n−1∑
m=0

XM (Tm(ω))− E(XM |I)

∣∣∣∣∣+ E

∣∣∣∣∣ 1n
n−1∑
m=0

X̂M (Tm(ω))− E(X̂M |I)

∣∣∣∣∣
≤ E

∣∣∣∣∣ 1n
n−1∑
m=0

XM (Tm(ω))− E(XM |I)

∣∣∣∣∣+ E

∣∣∣∣∣ 1n
n−1∑
m=0

X̂M (Tm(ω))

∣∣∣∣∣+ E
∣∣∣E(X̂M |I)

∣∣∣
≤ E

∣∣∣∣∣ 1n
n−1∑
m=0

XM (Tm(ω))− E(XM |I)

∣∣∣∣∣+ 2E(|X̂M |).

Since the first term of the right hand side goes to zero as n → ∞, we have that
the lim supn of the term on the left-hand-side is upper bounded by 2E(|X|1|X|≥M ).
Since X is integrable and M is arbitrary, we are done. □

Given a measurable transformation T , let M denote the convex set of all
probability measures that is T -invariant ( this could be empty).

Theorem 6.0.5. A probability measure P ∈M is ergodic if and only if it is an
extreme point of M.

Proof. Assume that P is ergodic and yet P = aP1 + (1− a)P2 for 0 < a < 1.
Since P is ergodic, it implies that P1 = P2 on I, hence P1 and P2 are also ergodic.
Let f be any bounded measurable function on (ω,F). Define

h(ω) = lim
n→∞

1

n

(
f(ω) + f(Tω) + · · ·+ f(Tn−1ω)

)
when it exists. From Ergodic theorem, we know that the limit exists on a set E with
P1(E) = P2(E) = 1. Further, from bounded convergence theorem we also know that

EPi
(h) =

∫
fdPi i = 1, 2.

However since h is I measurable and P1 = P2 on I, we see that
∫
fdP1 =

∫
fdP2

for any bounded measurable function (in particular indicator functions). Hence
P1 = P2 on F .
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If P is an extreme point of M and P is not ergodic, then there exists A ∈ I
with 0 < P (A) < 1. Define P1(E) = P (E∩A)

P (A) and P2(E) = P (E∩Ac)
P (Ac) . Note that

P1, P2 belong to M and P is a convex combination of P1 and P2. To show that
P1 ̸= P2, observe that we cannot have P (E∩A)

P (A) = P (E∩Ac)
P (Ac) ∀E ∈ F as it does not

hold for E = A. Hence P (which can be written as a non-trivial convex combination
of P1, P2) is not extremal in M. □

Lemma 6.0.6. For any stationary measure P , the regular conditional probability
of P given I, denoted by Q(ω, :), is stationary and ergodic.

Proof. We know that almost surely

Q(ω,A) = E(1A|I).
We need to show that Q(ω,A) = Q(ω, TA). Suffices to show that for all I ∈ I∫

I

1AdP =

∫
I

1TAdP

or in other words P (A ∩ I) = P (TA ∩ I) which is immediate due to invariance of I.
To show ergodicity, we need to show that Q(ω, I) = 0 or 1, for I ∈ I for almost

all ω. This is again immediate. (note that the issue of throwing away too many null
sets was covered during definition of regular conditional probabilities). □

Theorem 6.0.7. Any invariant measure P ∈ M can be written as a convex
combination of ergodic measures, i.e.

P =

∫
Me

QµP (dQ).

Proof. By regular conditional probabilities

P =

∫
Q(w, :)dP.

By previous lemma Q(ω, :) ∈ Me and hence we have a induced measure µ on
measures in Me. By changing the integration with respect to that measure, we are
done. □
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