\qquad

Midterm Examination I

Due: March 7, 2022

Question	Points	Score
Convergence	10	
Almost sure convergence	5	
Independence	16	
Strong Law	18	
Metrizing Weak Convergence	13	
Intersection of Σ-algebras	18	
Total:	80	

You are not allowed to use resources and forums outside those given in Piazza for this class or your own notes from this class
Always Justify your answers.
NOTE: Describing your ideas can help even if execution is not perfect.

Question 1 [10 points]: Convergence

Show that $X_{n} \xrightarrow{\text { a.s. }} 0$ if and only if for each $\epsilon>0$, there is an n such that for every random integer M with $M(\omega) \geq n, \forall \omega \in \Omega$ we have that

$$
\mathrm{P}\left(\left\{\omega:\left|X_{M(\omega)}(\omega)\right|>\epsilon\right\}\right)<\epsilon .
$$

Question 2 [5 points]: Almost sure convergence

Let $X_{1}, X_{2}, .$. be a sequence of random variables such that

$$
X_{k}=\left\{\begin{array}{cc}
3 & \text { with probability } 1-\frac{1}{k^{2}} \\
k^{2} \quad \text { with probabilty } \frac{1}{k^{2}}
\end{array}\right.
$$

Let $A_{n}=\frac{X_{1}+\cdots+X_{n}}{n}$. Define

$$
C=\left\{\omega: \lim _{n} A_{n}(\omega) \text { exists }\right\} .
$$

Further, let

$$
A_{\infty}=\left\{\begin{array}{cc}
\lim _{n} A_{n} & \omega \in C \\
0 & \omega \notin C
\end{array}\right.
$$

(a) [3 points] Determine $P(C)$
(b) [2 points] Determine $E\left(A_{\infty}\right)$.

Question 3 [16 points]: Independence

Let $s>1$ and define $\zeta(s)=\sum_{n \geq 1} \frac{1}{n^{s}}$. Let X and Y be independent random variables taking values in \mathbb{N} according to

$$
P(X=n)=P(Y=n)=\frac{n^{-s}}{\zeta(s)} .
$$

For $p>1, p$ being a prime number, define the events

$$
E_{p}=\{\omega: X(\omega) \equiv 0(\bmod p)\}
$$

correspoding to X being a multiple of p. Let $C=\cup_{p} E_{p}$.
(a) [5 points] Prove that the events $\left\{E_{p}\right\}$ are mutually independent.
(b) [2 points] Using $C^{c}=\cap_{p} E_{p}^{c}$ prove that

$$
\frac{1}{\zeta(s)}=\prod_{p}\left(1-\frac{1}{p^{s}}\right) .
$$

(c) [4 points] Prove that

$$
P(\text { no square other than } 1 \text { is a factor of } X)=\frac{1}{\zeta(2 s)} .
$$

(d) [5 points] Prove that

$$
P(\text { g.c.d. }(X, Y)=n)=\frac{n^{-2 s}}{\zeta(2 s)} .
$$

Question 4 [18 points]: Strong Law

Let X_{1}, \ldots, X_{n} be pairwise independent non-negative random variables satisfying $\sup _{i} E\left(\phi\left(X_{i}\right)\right) \leq$ $B<\infty$ for some convex non-negative non-decreasing function $\phi(x)$ satisfying $\lim _{x \rightarrow \infty} \frac{\phi(x)}{x}=\infty$. Further assume that we have $\lim _{n} \frac{\sum_{k=1}^{n} E\left(X_{k}\right)}{n}=\mu$ and let $\sum_{k=1}^{\infty} \frac{1}{\phi(k)}<\infty$. Define $S_{n}=$ $\sum_{i=1}^{n}\left(X_{i}-E\left(X_{i}\right)\right)$; then $\frac{S_{n}}{n} \rightarrow 0$ a.s.
(Hint: mimic the steps of Etemadi's proof of SLLN, which is given in the notes, with estimates for the i.i.d. case replaced by the given conditions).

Question 5 [13 points]: Metrizing Weak Convergence

For two distribution functions F, G on \mathbb{R} define

$$
d(F, G)=\inf \{\varepsilon>0: F(x-\varepsilon)-\varepsilon \leq G(x) \leq F(x+\varepsilon)+\varepsilon, \forall x\} .
$$

Show that
(a) $d(F, G)$ is a metric in the space of distribution functions, i.e.
i. [3 points] $d(F, G) \geq 0$ with equality iff $F=G$.
ii. [3 points] $d(F, G)=d(G, F)$.
iii. [3 points] $d(F, G)+d(G, H) \geq d(F, H)$.
(b) [4 points] $F_{n} \stackrel{w}{\Rightarrow} F$ iff $d\left(F_{n}, F\right) \rightarrow 0$.
\qquad

Question 6 [18 points]: Intersection of Σ-algebras

Let $X_{0}, X_{1}, X_{2}, \ldots$ be (mutually) independent random variables with $\mathrm{P}\left(X_{k}=1\right)=\mathrm{P}\left(X_{k}=\right.$ $-1)=\frac{1}{2}$. For $n \geq 1$, define

$$
Y_{n}=X_{0} X_{1} \ldots X_{n}
$$

Let $\mathcal{F}=\sigma\left(X_{1}, . X_{2}, ..\right)$ and $\mathcal{G}_{n}=\sigma\left(\left\{Y_{r}\right\}_{r>n}\right)$. Thus $\mathcal{G}_{\infty}=\cap_{n \geq 1} \mathcal{G}_{n}$ is the tail σ-algebra.
(a) [3 points] Show that Y_{1}, Y_{2}, \ldots are mutually independent.
(b) $[15$ points $]$ Show that

$$
\mathcal{F}_{1}:=\cap_{n} \sigma\left(\mathcal{F}, \mathcal{G}_{n}\right) \neq \sigma\left(\mathcal{F}, \mathcal{G}_{\infty}\right)=: \mathcal{F}_{2} .
$$

(Hint: Show that for every n, X_{0} is $\sigma\left(\mathcal{F}, \mathcal{G}_{n}\right)$-measurable, while X_{0} is not $\sigma\left(\mathcal{F}, \mathcal{G}_{\infty}\right)$ measurable. One way is to characterize \mathcal{F}_{2}. Kolmogorov's $0-1$ law regarding tail σ-algebras may be useful.)

