Midterm Examination I

Question	Points	Score
Convergence	10	
Almost sure convergence	5	
Independence	16	
Strong Law	18	
Metrizing Weak Convergence	13	
Intersection of Σ -algebras	18	
Total:	80	

Due: March 7, 2022

You are not allowed to use resources and forums outside those given in Piazza for this class or your own notes from this class ALWAYS JUSTIFY YOUR ANSWERS. NOTE: Describing your ideas can help even if execution is not perfect.

Question 1 [10 points]: Convergence

Show that $X_n \xrightarrow{a.s.} 0$ if and only if for each $\epsilon > 0$, there is an n such that for every random integer M with $M(\omega) \ge n, \forall \omega \in \Omega$ we have that

 $P(\{\omega : |X_{M(\omega)}(\omega)| > \epsilon\}) < \epsilon.$

Question 2 [5 points]: Almost sure convergence

Let $X_1, X_2, ...$ be a sequence of random variables such that

$$X_k = \begin{cases} 3 & \text{with probability } 1 - \frac{1}{k^2} \\ k^2 & \text{with probability } \frac{1}{k^2} \end{cases}$$

Let $A_n = \frac{X_1 + \dots + X_n}{n}$. Define

$$C = \{\omega : \lim_{n} A_n(\omega) \text{ exists}\}.$$

Further, let

$$A_{\infty} = \begin{cases} \lim_{n \to \infty} A_n & \omega \in C \\ 0 & \omega \notin C \end{cases}$$

- (a) [3 points] Determine P(C)
- (b) [2 points] Determine $E(A_{\infty})$.

Question 3 [16 points]: Independence

Let s > 1 and define $\zeta(s) = \sum_{n \ge 1} \frac{1}{n^s}$. Let X and Y be independent random variables taking values in \mathbb{N} according to

$$P(X = n) = P(Y = n) = \frac{n^{-s}}{\zeta(s)}.$$

For p > 1, p being a prime number, define the events

$$E_p = \{ \omega : X(\omega) \equiv 0 \pmod{p} \},\$$

corresponding to X being a multiple of p. Let $C = \bigcup_p E_p$.

- (a) [5 points] Prove that the events $\{E_p\}$ are mutually independent.
- (b) [2 points] Using $C^c = \bigcap_p E_p^c$ prove that

$$\frac{1}{\zeta(s)} = \prod_p \left(1 - \frac{1}{p^s}\right).$$

(c) [4 points] Prove that

$$P(\text{no square other than 1 is a factor of } X) = \frac{1}{\zeta(2s)}.$$

(d) [5 points] Prove that

$$P(g.c.d.(X,Y) = n) = \frac{n^{-2s}}{\zeta(2s)}.$$

Question 4 [18 points]: Strong Law

Let X_1, \ldots, X_n be pairwise independent non-negative random variables satisfying $\sup_i E(\phi(X_i)) \leq B < \infty$ for some convex non-negative non-decreasing function $\phi(x)$ satisfying $\lim_{x\to\infty} \frac{\phi(x)}{x} = \infty$. Further assume that we have $\lim_n \frac{\sum_{k=1}^n E(X_k)}{n} = \mu$ and let $\sum_{k=1}^\infty \frac{1}{\phi(k)} < \infty$. Define $S_n = \sum_{i=1}^n (X_i - E(X_i))$; then $\frac{S_n}{n} \to 0$ a.s.

(Hint: mimic the steps of Etemadi's proof of SLLN, which is given in the notes, with estimates for the i.i.d. case replaced by the given conditions).

Question 5 [13 points]: Metrizing Weak Convergence

For two distribution functions F, G on \mathbb{R} define

$$d(F,G) = \inf\{\varepsilon > 0 : F(x-\varepsilon) - \varepsilon \le G(x) \le F(x+\varepsilon) + \varepsilon, \forall x\}.$$

Show that

- (a) d(F,G) is a metric in the space of distribution functions, i.e.
 - i. [3 points] $d(F,G) \ge 0$ with equality iff F = G.
 - ii. [3 points] d(F,G) = d(G,F).
 - iii. [3 points] $d(F,G) + d(G,H) \ge d(F,H)$.
- (b) [4 points] $F_n \stackrel{w}{\Rightarrow} F$ iff $d(F_n, F) \to 0$.

Question 6 [18 points]: Intersection of Σ -algebras

Let X_0, X_1, X_2, \dots be (mutually) independent random variables with $P(X_k = 1) = P(X_k = -1) = \frac{1}{2}$. For $n \ge 1$, define

$$Y_n = X_0 X_1 \dots X_n.$$

Let $\mathcal{F} = \sigma(X_1, X_2, ..)$ and $\mathcal{G}_n = \sigma(\{Y_r\}_{r>n})$. Thus $\mathcal{G}_\infty = \cap_{n \ge 1} \mathcal{G}_n$ is the tail σ -algebra.

- (a) [3 points] Show that Y_1, Y_2, \ldots are mutually independent.
- (b) [15 points] Show that

$$\mathcal{F}_1 := \bigcap_n \sigma(\mathcal{F}, \mathcal{G}_n) \neq \sigma(\mathcal{F}, \mathcal{G}_\infty) =: \mathcal{F}_2.$$

(Hint: Show that for every n, X_0 is $\sigma(\mathcal{F}, \mathcal{G}_n)$ -measurable, while X_0 is not $\sigma(\mathcal{F}, \mathcal{G}_\infty)$ measurable. One way is to characterize \mathcal{F}_2 . Kolmogorov's 0-1 law regarding tail σ -algebras may be useful.)