
On Gaussian Extremizers for the Capacity Region

of the Gaussian Interference Channel

NG, Wai Ho

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Information Engineering

The Chinese University of Hong Kong
June 2021



Abstract of thesis entitled:
On Gaussian Extremizers for the Capacity Region of the Gaussian Interference

Channel
Submitted by NG, Wai Ho
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in June 2021

The Gaussian interference channel models the situation of multiple mutually
interfering point-to-point communications over a shared medium with additive
Gaussian noise. For such a setting, a quantity of interest is the set of message-
rates at which one can communicate reliably, or also called the capacity region. In
this thesis we focus exclusively on the two sender-receiver pair case. The primary
research questions tackled in this thesis concern the evaluation of and determin-
ing the optimality of the Han–Kobayashi achievable region for this setting. A
key difficulty arises from the non-convex nature of the optimization problem as-
sociated with computing the Han–Kobayashi achievable region, even restricted to
Gaussian input distributions.

In this thesis, we show that the multi-letter extensions of the Han–Kobayashi
achievable region with Gaussian input distributions do not improve on the single-
letter case. A second contribution of this thesis is the formulation of a conjecture
concerning the Gaussian extremality of a functional, that would imply that the
Han–Kobayashi achievable region with Gaussian input distributions will match
the capacity region for the Gaussian Z-interference channel. Finally, we establish
the above conjecture for some parameters which then implies the optimality of
the Han–Kobayashi achievable region for a collection of weighted sum-rates for
the Gaussian Z-interference channel.
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摘摘摘要要要

《《《論論論高高高斯斯斯干干干擾擾擾信信信道道道容容容量量量的的的高高高斯斯斯極極極值值值》》》

　　高斯干擾信道為一描述帶加性高斯雜訊的共用傳輸介質上互相干擾的多個

點對點通信的模型。此模型一重要的量為能使信息可靠傳送的信息率之集合，

又稱容量區域。本論文專注於兩對發送端和接收端的情況。本論文研究的主要

問題為高斯干擾信道的韓–小林（Han–Kobayashi）可達區域的計算和最優性判
定。此問題的關鍵難處之一在於，即使限制輸入為高斯分布，與計算韓–小林
可達區域相關的最佳化問題仍非凸。

　　我們在本論文中證明以高斯分布為輸入的韓–小林可達區域的多字符擴展
並不能改進單字符區域。其次，本論文提出一關於一泛函高斯極值的猜想；此

猜想若成立，則對於高斯Z干擾信道而言，以高斯分布為輸入的韓–小林可達
區域等於信道容量區域。最後，我們證明此猜想的部分情況，並由此推論高

斯Z干擾信道的韓–小林可達區域極大化若干加權總和速率。
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Notations

Here we describe the notations used in this thesis.

• A := B means A is defined as B.

• R is the set of real numbers and Rn is the n-dimensional Euclidean space
(n ≥ 1). Elements of Rn are column vectors.

• ‖x‖ denotes the Euclidean norm of a real vector x.

• 〈x, y〉 denotes the Euclidean inner product of real vectors x and y.

• AT denotes the transpose of a matrix A, tr(A) denotes its trace, and |A|
denotes its determinant. A � 0 means A is positive semidefinite. A � B

means A−B � 0.

• The cardinality of a set S is denoted by |S|.

• Random variables in general are denoted by uppercase letters (e.g. X, Y, Z, . . . )
and their realizations by lowercase letters (e.g. x, y, z, . . . ). The sets in
which random variables take values are denoted by uppercase calligraphic
letters (e.g. X ,Y ,Z, . . . ).

• Vector random variables are denoted by uppercase boldface letters (e.g.
X,Y,Z, . . . ) and their realizations by lowercase boldface letters (e.g. x,y, z, . . . ).

• Xj
i denotes the tuple (Xi, Xi+1, . . . , Xj) for i ≤ j. We may omit the sub-

script when it is 1, i.e., Xj = (X1, X2, . . . , Xj). When it is clear from the
context, we may denote the tuple (Xi1, Xi2, . . . , Xin) by Xn

i .

• p(y|x) is a collection of distributions on Y , one for every x ∈ X .

• X ∼ p(x) means X follows the distribution p(x).

• X ∼ N (µ,K) means X is a Gaussian random variable with mean µ and
covariance matrix (or variance) K.
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• X1 → X2 → · · · → Xn (n ≥ 3) forms a Markov chain if p(x1, x2, . . . , xn) =

p(x1)p(x2|x1) . . . p(xn|xn−1).

• h(X) is the differential entropy of X. h(X|Y ) is the conditional differential
entropy of X given Y .

• I(X;Y ) is the mutual information ofX and Y . I(X;Y |Z) is the conditional
mutual information of X and Y given Z.

• P(E) is the probability of event E.

• E[X] is the expectation (also called mean) of X. E[X|Y ] is the conditional
expectation of X given Y .

• Cov(X) := E[(X − E[X])(X − E[X])T ] is the covariance matrix of X.
Cov(X|U) is the conditional covariance matrix of X given U , defined as
Cov(X|U) := E[(X− E[X|U ])(X− E[X|U ])T |U ].

• Cx[f(x)] is the upper concave envelope of the functional f , defined as in
Definition 4.1.

• RHK
n is the n-letter extension of the Han–Kobayashi achievable region for

an interference channel, defined as in Definition 1.2.

• RHK-GS is the Han–Kobayashi achievable region with Gaussian inputs for
a Gaussian interference channel, defined as in Definition 1.3. RHK-GS

n is its
n-letter extension, defined as in Definition 1.4.
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Chapter 1

Introduction

As a natural extension to Shannon’s groundbreaking theory of the quantitative
treatment of point-to-point communication [Sha48], the field of network informa-
tion theory [EGK11] studies the fundamental limits on information flow in multi-
user communication networks. Classical mathematical models of fundamental
multi-terminal communication settings including the multiple-access channel, the
broadcast channel and the interference channel have been proposed as early as
in the 70s. Thanks to technological advancements, in particular the advent of
wireless communications, interest in the field boomed as the demand for high-
throughput wireless communications soared in the mid-90s. Network information
theory often deals with the capacities of network models abstracted from practi-
cal scenarios as well as practical coding schemes that approach the fundamental
limits. Apart from mathematical curiosity, understanding the structures behind
these limits has given insights on implementing efficient coding schemes in real-
world networks.

There is not yet a general theory: While the point-to-point communication
setting has been well-studied since the time of Shannon, most of the fundamental
problems in multi-user communications settings nevertheless remain unsolved.
This thesis focuses on the Gaussian interference channel, which is a model com-
monly encountered in wireless communications. This abstracts a communica-
tion setting where multiple point-to-point links suffer from crosstalk from each
other and noise from the environment. This thesis focuses exclusively on the two
sender-receiver pair case. The study of this setting dates back to the mid-70s,
however there is yet a computable characterization of the set of data rates that
allows reliable communications, or also called the capacity region, for the general
case. Nevertheless, there is a promising candidate for the capacity region, namely,
the Han–Kobayashi achievable region with Gaussian inputs, whose optimality, if
shown, would solve the long-standing fundamental open problem. This thesis in-
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vestigates the optimality of the Han–Kobayashi achievable region with Gaussian
inputs for the two-sender-receiver-pair Gaussian interference channel. The results
in this thesis provide evidence suggesting the optimality of the Han–Kobayashi
achievable region with Gaussian inputs. For the one-sided interference setting
this thesis conjectures an information inequality, whose veracity would imply the
optimality of the Han–Kobayashi achievable region with Gaussian inputs for this
setting. Furthermore, this thesis establishes the above conjecture in certain non-
trivial parameter regimes which also provide new results regarding the capacity
region for the above setting.

1.1 Interference channel

The interference channel as first introduced by Ahlswede [Ahl74] is the classical
model for the scenario of two mutually interfering point-to-point communications
over a shared medium. A discrete memoryless interference channel consists of
two sets of input alphabets X1,X2, two sets of output alphabets Y1,Y2, and a
stochastic map p(y1, y2|x1, x2) from X1 ×X2 to Y1 × Y2.

p(y1, y2|x1, x2)

Encoder 1

Encoder 2

Decoder 1

Decoder 2

M1

M2

M̂1

M̂2

Xn
1

Xn
2

Y n
1

Y n
2

Figure 1.1: A discrete memoryless interference channel

As shown in Figure 1.1, in a communication scenario, a transmitter wishes
to send a message M1 to its receiver, whilst another transmitter wishes to send
a message M2, independent of M1, to its receiver, and both communications use
a shared medium. Both transmitters respectively encode their messages into the
codewords Xn

1 ∈ X n
1 and Xn

2 ∈ X n
2 which are then sent over the channel, and the

receivers respectively decode the received vectors Y n
1 ∈ Yn1 and Y n

2 ∈ Yn2 they see
at the receiving sides to recover the messages.

We adopt the standard definition of achievable rates and capacity region.
The reader is referred to [EGK11] for the standard notions of network informa-
tion theory. A (2nR1 , 2nR2 , n) code for the interference channel consists of two
message sets Mi := {1, 2, . . . ,

⌊
2nRi

⌋
} (where bxc denotes the largest integer

≤ x), two encoding functions Enci : Mi → X n
i and two decoding func-
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tions Deci : Yni → Mi, where i = 1, 2. For a (2nR1 , 2nR2 , n) code, the average
probability of error is defined by

P (n)
e := P(M1 6= M̂1 or M2 6= M̂2),

where the pair of transmitted messages (M1,M2) is assumed to be uniformly
distributed overM1×M2, Xn

i := Enci(Mi) is the codeword sent by transmitter
i, and M̂i := Deci(Y

n
i ) is the decoded message at receiver i (i = 1, 2), where the

received vectors Y n
1 , Y

n
2 follow the distribution

(Y n
1 , Y

n
2 ) ∼

n∏
j=1

p(y1j, y2j|x1j, x2j).

A rate pair (R1, R2) ∈ R2
≥0 is achievable if there exists a sequence of (2nR1 , 2nR2 , n)

codes whose average probability of error goes to 0 as n goes to infinity. A subset
of R2

≥0 is an achievable region if it is the closure of a set consisting of achiev-
able rate pairs. The capacity region is defined to be the closure of the set of
all achievable rate pairs.

1.1.1 Han–Kobayashi achievable region

The best achievable region known for a general discrete memoryless interference
channel is given by Han and Kobayashi [HK81]. However it has been shown
[NXY15] that there is some discrete memoryless interference channel for which
the Han–Kobayashi achievable region is strictly contained in the capacity re-
gion, which was shown by establishing the strict inclusion of single-letter Han–
Kobayashi achievable region inside its multi-letter extension. It is known that
the limit of multi-letter extension of the Han–Kobayashi achievable region is the
capacity region, as shown in Proposition 1.1.

Definition 1.1. The Han–Kobayashi achievable region of a discrete mem-
oryless interference channel p(y1, y2|x1, x2) is the set of rate pairs (R1, R2) such
that

R1 ≤ I(X1;Y1|U2, Q), (1.1a)

R2 ≤ I(X2;Y2|U1, Q), (1.1b)

R1 +R2 ≤ I(U2, X1;Y1|Q) + I(X2;Y2|U1, U2, Q), (1.1c)

R1 +R2 ≤ I(U1, X2;Y2|Q) + I(X1;Y1|U1, U2, Q), (1.1d)

R1 +R2 ≤ I(U2, X1;Y1|U1, Q) + I(U1, X2;Y2|U2, Q), (1.1e)

2R1 +R2 ≤ I(U2, X1;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(U1, X2;Y2|U2, Q), (1.1f)

R1 + 2R2 ≤ I(U1, X2;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(U2, X1;Y1|U1, Q) (1.1g)

for some p(q)p(u1, x1|q)p(u2, x2|q).
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Theorem 1.1 ([HK81], Theorem 6.4 of [EGK11]). The Han–Kobayashi achiev-
able region of a discrete memoryless interference channel, defined as in Definition
1.1, is an achievable region.

Definition 1.2. Let n ≥ 1. The n-letter extension of the Han–Kobayashi
achievable region, denoted by RHK

n , for an interference channel is the set of rate
pairs (R1, R2) such that (nR1, nR2) is in the Han–Kobayashi achievable region of
the interference channel obtained by taking n independent copies of the original
interference channel.

Proposition 1.1. For an interference channel, the closure of
⋃∞
n=1RHK

n is the
capacity region.

Proof. One can see by grouping channel uses into blocks of n time slots that
RHK
n yields an achievable region for the original interference channel for every

n ≥ 1. So it suffices to show that the capacity region is contained inside the
closure of

⋃∞
n=1RHK

n . A standard application of Fano’s inequality gives that for
any sequence of codebooks of rate (R1, R2), whose average probability of error
goes to zero, there exists two sequences εn, ε′n of nonnegative real numbers such
that εn, ε′n → 0 as n→∞ and

R1 − εn ≤
1

n
I(Xn

1 ;Y n
1 ),

R2 − ε′n ≤
1

n
I(Xn

2 ;Y n
2 ),

which implies that (R1−εn, R2−ε′n) ∈ RHK
n which can be seen by setting U1, U2, Q

to be constants in the equations (1.1). Hence every achievable rate pair is a limit
of sequence in

⋃∞
n=1RHK

n . This completes the proof.

A special case of interest for the interference channel is the Z-interference
channel, which is when only one of the two transmitter-receiver pairs suffer
from crosstalk from the other transmitter, or, without loss of generality, Y1 is
independent of X2. For a Z-interference channel, the Han–Kobayashi achievable
region reduces to the following.

Proposition 1.2. The Han–Kobayashi achievable region of a discrete memoryless
Z-interference channel p(y1|x1)p(y2|x1, x2) is equal to the set of all rate pairs
(R1, R2) such that

R1 ≤ I(X1;Y1|Q),

R2 ≤ I(X2;Y2|U1, Q),

R1 +R2 ≤ I(U1, X2;Y2|Q) + I(X1;Y1|U1, Q)

for some p(q)p(u1, x1|q)p(x2|q).
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1.2 Gaussian interference channel

The Gaussian interference channel (GIC) as shown in Figure 1.2 is an in-
stance of an interference channel where the channel has additive Gaussian noise.
The general setting of a GIC is given by

Y1 = X1 + bX2 + Z1,

Y2 = X2 + aX1 + Z2,

where a, b ≥ 0 are real constants, Xi, Yi ∈ R are the transmitted symbol at
transmitter i and the received symbol at receiver i (i = 1, 2), respectively,
and Z1, Z2 ∼ N (0, 1) are standard scalar Gaussian random variables such that
X1, X2, Z1, Z2 are mutually independent. We assume the codebooks Xn

1 , X
n
2 sat-

isfy the expected average power constraints

E[‖Xn
1 ‖2] ≤ nP1,

E[‖Xn
2 ‖2] ≤ nP2,

where P1, P2 ≥ 0. TheGaussian Z-interference channel (GZIC) is the special
case of GIC where a > 0 and b = 0.

X1

X2

Y1

Y2

Z1 ∼ N (0, 1)

Z2 ∼ N (0, 1)

a

b

Figure 1.2: Gaussian interference channel

The GIC has been actively studied since mid-70s. Carleial [Car75] first intro-
duced the GIC with expected average power constraints and showed that in the
regime of very strong interference (a ≥

√
1 + P2 and b ≥

√
1 + P1) the capacity

region of GIC is the same as that without the interference. Sato [Sat81] gen-
eralized Carleial’s result by determining the capacity region of GIC with strong
interference to be the region requiring both transmitted messages to be decoded
at both receivers, and similarly for strong Z-interference. The best achievable
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region known for GIC is the Han–Kobayashi achievable region [HK81]. Deter-
mining a computable characterization of the capacity region of GIC for general
range of parameters has been a long-standing central open problem in the field.

1.2.1 Known results for capacity region of GIC

We summarize some known results for the capacity region of GIC.

(i) For strong interference (a, b ≥ 1) the capacity region is known [Sat81] to
be the set of rate pairs (R1, R2) such that

R1 ≤
1

2
log(1 + P1),

R2 ≤
1

2
log(1 + P2),

R1 +R2 ≤ min

{
1

2
log(1 + a2P1 + P2),

1

2
log(1 + P1 + b2P2)

}
.

This region is the same as requiring both transmitted messages to be de-
coded at both receivers.

(ii) For strong Z-interference (a ≥ 1 and b = 0) the capacity region is known
[Sat81] to be the set of rate pairs (R1, R2) such that

R1 ≤
1

2
log(1 + P1),

R2 ≤
1

2
log(1 + P2),

R1 +R2 ≤
1

2
log(1 + a2P1 + P2).

This region is the same as requiring receiver 2 to decode both transmitted
messages.

(iii) For weak Z-interference (0 < a ≤ 1 and b = 0) the capacity region is the
same as mixed interference with b = 1

a
and the same a [Cos85a].

(iv) The capacity region has two extreme points, also called corner points,
respectively of the form (C1, R

∗
2) and (R∗1, C2), where Ci := 1

2
log(1 + Pi)

(i = 1, 2) is the interference-free point-to-point capacity and R∗1, R∗2 have
been determined for all ranges of parameters.

In the cases of mixed interference (0 < a ≤ 1 and b ≥ 1), weak inter-
ference (0 < a ≤ 1 and 0 < b ≤ 1) and weak Z-interference (0 < a ≤ 1

and b = 0) the corner points are:
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R2

R1
1
2

log(1 + P1)R∗1

1
2

log(1 + P2)

R∗2

R∗1 =


1
2

log
(

1 + a2P1

1+P2

)
if b ≥

√
1 + P1

P2
(a2 − 1) or b = 0,

1
2

log
(

1 + P1+(b2−1)P2

1+P2

)
otherwise.

R∗2 =


1
2

log
(

1 + (a2−1)P1+P2

1+P1

)
if b ≥

√
1 + P1

P2
(a2 − 1) or b = 0,

1
2

log
(

1 + b2P2

1+P1

)
otherwise.

Figure 1.3: Capacity region of GIC when a ≥ 1 and (b ≥ 1 or b = 0)

• Costa–Sato corner point [Sat81], [Cos85b]:

(R1, R2) =


(
C1,

1
2

log
(

1 + P2

1+a2P1

))
if b ≥

√
1+P1

1+a2P1
or b = 0,(

C1,
1
2

log
(

1 + b2P2

1+P1

))
otherwise.

• Costa–Polyanskiy–Wu corner point [Cos85b], [PW15]:

(R1, R2) =

(
1

2
log

(
1 +

a2P1

1 + P2

)
, C2

)
.

Note that in the case of weak interference these two corner points are es-
sentially the same due to symmetry, and in such case both corner points
are called Costa–Polyanskiy–Wu corner point.

These corner points have a rich history in the field. The extremality of the
former corner point for GIC with mixed interference is established by Costa
[Cos85a] as a consequence of a work of Sato [Sat81]. Costa [Cos85a] first
claimed the extremality of the latter corner point via concavity of entropy
power. However Sason [Sas04] observed a gap (Lemma 1 of [Cos85b]) in
the finishing part of the proof. Polyanskiy and Wu [PW15] fixed the proof
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of Lemma 1 of [Cos85b] using Talagrand’s HWI inequality [Tal96] and thus
established the extremality of the latter corner point.

R2

R1
1
2

log(1 + P1)1
2

log(1 + a2P1

1+P2
)

1
2

log(1 + P2)

R∗2

Costa–Polyanskiy–Wu
corner point

Costa–Sato
corner point

R∗2 =


1
2

log
(

1 + P2

1+a2P1

)
if b ≥

√
1+P1

1+a2P1
or b = 0,

1
2

log
(

1 + b2P2

1+P1

)
otherwise.

Figure 1.4: Capacity region of GIC when 0 < a ≤ 1 and b ≥ 0

(v) For weak interference with a(1 + b2P2) + b(1 + a2P1) ≤ 1, the treating-
interference-as-noise point

(R1, R2) =

(
1

2
log

(
1 +

P1

1 + b2P2

)
,
1

2
log

(
1 +

P2

1 + a2P1

))
achieves the maximum sum-rate R1 +R2 [AV09; MK09; SKC09]. Moreover,
there is a discontinuity of the slope of boundary of capacity region at this
point, as shown by [Bei+16] for the symmetric interference case, and the
extension of this result to the general case is given as Theorem 3.4.

1.2.2 Han–Kobayashi achievable region for GIC

For GIC, the Han–Kobayashi achievable region coincides with the capacity region
in the regimes of strong interference and strong Z-interference whilst whether the
regions coincide in general is unknown.

We consider the Han–Kobayashi achievable region with input distribution
restricted to be Gaussians. It is an open question whether the Han–Kobayashi
achievable region evaluated with Gaussian inputs, as defined in Definition 1.3,
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R2

R1
1
2

log(1 + P1)1
2

log(1 + a2P1

1+P2
)

1
2

log(1 + P2)

1
2

log
(

1 + b2P2

1+P1

)

Costa–Polyanskiy–Wu
corner point

Costa–Polyanskiy–Wu
corner point

Maximum sum-rate point

1
2

log
(

1 + P1

1+b2P2

)

1
2

log
(

1 + P2

1+a2P1

)

Figure 1.5: Capacity region of GIC when a(1 + b2P2) + b(1 + a2P1) ≤ 1, showing
slope discontinuity at the maximum sum-rate point

matches the capacity region. It is known [ETW08] that the Hausdorff distance
(under L1-norm) between the capacity region and the Han–Kobayashi achievable
region with Gaussian inputs is at most 1, for all ranges of parameters.

Definition 1.3. The Han–Kobayashi achievable region with Gaussian in-
puts for GIC, denoted by RHK-GS, where GS stands for Gaussian signaling, is
the set of rate pairs (R1, R2) such that the inequalities (1.1) with Xi := Ui + Vi

(i = 1, 2) hold for some p(q)p(u1|q)p(v1|q)p(u2|q)p(v2|q) such that the conditional
distributions p(u1|q), p(v1|q), p(u2|q), p(v2|q) are zero-mean Gaussian distributions
for each q, and that the power constraints

E
[
U2

1 + V 2
1

]
≤ P1,

E
[
U2

2 + V 2
2

]
≤ P2

are satisfied.

As an attempt to disprove optimality, motivated by the result in [NXY15] in
which its authors establish the strict sub-optimality of Han–Kobayashi achievable
region for a certain interference channel by showing that the two-letter extension
of the Han–Kobayashi achievable region strictly improves on the single-letter
region, we naturally ask whether the same phenomenon happens for the Han–
Kobayashi achievable region with Gaussian inputs for GIC, for, if so, would con-
stitute a proof for the strict sub-optimality of this scheme. In Chapter 2 of this
thesis we will answer this question in the negative.

9



Definition 1.4. Let n ≥ 1. The n-letter extension of the Han–Kobayashi
achievable region with Gaussian inputs for GIC, denoted by RHK-GS

n , where
GS stands for Gaussian signaling, refers to the set of rate pairs (R1, R2) satisfying

R1 ≤
1

n
I(X1;Y1|U2, Q),

R2 ≤
1

n
I(X2;Y2|U1, Q),

R1 +R2 ≤
1

n
[I(U2,X1;Y1|Q) + I(X2;Y2|U1,U2, Q)] ,

R1 +R2 ≤
1

n
[I(U1,X2;Y2|Q) + I(X1;Y1|U1,U2, Q)] ,

R1 +R2 ≤
1

n
[I(U2,X1;Y1|U1, Q) + I(U1,X2;Y2|U2, Q)] ,

2R1 +R2 ≤
1

n
[I(U2,X1;Y1|Q) + I(X1;Y1|U1,U2, Q) + I(U1,X2;Y2|U2, Q)] ,

R1 + 2R2 ≤
1

n
[I(U1,X2;Y2|Q) + I(X2;Y2|U1,U2, Q) + I(U2,X1;Y1|U1, Q)] ,

where Xi := Ui + Vi (i = 1, 2), for some p(q)p(u1|q)p(v1|q)p(u2|q)p(v2|q) such
that the conditional distributions p(u1|q), p(v1|q), p(u2|q), p(v2|q) are n-dimensional
zero-mean Gaussian distributions for each q, and that the power constraints

EQ [tr (Cov(U1|Q) + Cov(V1|Q))] ≤ nP1,

EQ [tr (Cov(U2|Q) + Cov(V2|Q))] ≤ nP2

are satisfied.

On the other hand, a major obstacle hindering proving the optimality of
the Han–Kobayashi achievable region with Gaussian inputs is that time-sharing
between Gaussian distributions, or commonly called power control in the litera-
ture, is known to strictly improve on the achievable region with the time-sharing
variable Q being constant, as shown in [Cos11; CN12]. A naive application of
the previous techniques, either the monotone path argument [Sta59] or the ro-
tation/doubling based argument [GN14], will only work if time-sharing did not
improve on the achievable region. Motivated by this observation, in Chapter 4
we propose a conjecture based on the Fenchel dual representation of the upper
concave envelope, which postulates that a particular family of optimization prob-
lems have Gaussian extremizers (without time-division). We then show that this
conjecture, if true, would imply the optimality of Gaussian inputs (with time-
sharing) for the Han–Kobayashi achievable region for GZIC and further that the
Han–Kobayashi achievable region matches the capacity region for GZIC. We also
establish this conjecture in some regimes, which provides an outer bound to the
slope of the capacity region at the Costa–Polyanskiy–Wu corner point.
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1.3 Structure of this thesis

In Chapter 2 we consider the Han–Kobayashi achievable region with Gaussian
inputs, that is, the region in Definition 1.3, and we show that any multi-letter ex-
tension, defined as in Definition 1.4, to the region, coincides with the single-letter
region. This result implies that if the multi-letter Han–Kobayashi achievable re-
gion is attained by Gaussian inputs then the single-letter region with Gaussian
inputs is the capacity region. This result first appeared in [NN19].

In Chapter 3 we consider two different settings. Firstly, for the Han–Kobayashi
achievable region with Gaussian inputs for GZIC, we give a necessary and suffi-
cient condition for a weighted sum-rate to be attained at the Costa–Sato corner
point, hence giving the slope of the region at the corner point. This result first ap-
peared in [CNN17]. Secondly, for the capacity region of GIC under the condition
a(1 + b2P2) + b(1 + a2P1) ≤ 1, we show that a collection of weighted sum-rates is
attained at the maximum sum-rate point, which is also the treating-interference-
as-noise point, implying a slope discontinuity at this point. This computation is
new in this thesis as a slight generalization of the result in [Bei+16].

In Chapter 4 we propose a conjecture concerning Gaussian extremality of a
functional. The chapter consists of two parts. In the first part we establish that
the conjecture implies optimality of Han–Kobayashi achievable region for GZIC.
This result first appeared in [Cos+20]. In the second part we show an information
inequality that establishes the conjecture in some regimes. This inequality also
implies that a collection of weighted sum-rates of the capacity region of GZIC is
attained at the Costa–Polyanskiy–Wu corner point, yielding an improved outer
bound for the slope at the corner point. This result first appeared in [GNN21].

11



Chapter 2

Multi-letter extension of
Han–Kobayashi achievable region
for GIC

The main result of this chapter is Theorem 2.1, which says that the multi-letter
extension of the Han–Kobayashi achievable region with correlated vector Gaus-
sian inputs matches the single-letter region with scalar Gaussian inputs for the
GIC. The main ingredient of the proof is an inequality of Fiedler [Fie71] that
enables one to bound the determinant of a sum of Hermitian matrices in terms
of their eigenvalues and which generalizes the classical rearrangement inequality.
Application of Fiedler’s inequality yields upper bounds for each of the inequalities
characterizing the multi-letter region by suitable diagonal covariance matrices,
which in turn gives the single-letter region.

There have been attempts to study the local optimality of Gaussian distribu-
tions for the Han–Kobayashi achievable region with perturbations using Hermite
polynomials [AZ12] as well as using temporally correlated coding schemes. While
the former approach yielded interesting insights, so far the approach has not ex-
hibited any rate pair that lays outside the Han–Kobayashi achievable region with
Gaussian inputs. There have been some instances in network information theory
where multi-letter Gaussian schemes have been shown to match the single-letter
scheme, such as [CV93; Bei+16; CNN17]. The result of this chapter is a natural
extension of such results and deals with the Han–Kobayashi achievable region in
its entirety.

The result of this chapter first appeared in [NN19]. In a previous paper
[CNN17] we have shown the result for the special case of Z-interference.

Theorem 2.1. RHK-GS
n = RHK-GS

1 for any n ≥ 1.
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2.1 Proof of reduction of multi-letter region to

single-letter

Let λi(A) denote the i-th (i ≥ 1) smallest eigenvalue (counting multiplicity) of
a Hermitian matrix A. We first state some standard technical results that the
proof uses.

Theorem 2.2 (Fiedler [Fie71]). Let A,B be n × n Hermitian matrices with
λ1(A) + λ1(B) ≥ 0. Then

n∏
i=1

(λi(A) + λi(B)) ≤ |A+B| ≤
n∏
i=1

(λi(A) + λn+1−i(B)) .

Lemma 2.1. Let A,B be n×n Hermitian matrices with B � 0. Then λi(A+B) ≥
λi(A) for all 1 ≤ i ≤ n.

Proof. We have

λi(A+B)
(a)
= min

V⊆Cn

dimV=i

max
x∈V
‖x‖=1

x∗(A+B)x

(b)
≥ min

V⊆Cn

dimV=i

max
x∈V
‖x‖=1

x∗Ax

(a)
= λi(A),

where (a) is an application of the Courant-Fischer-Weyl min-max principle and
(b) follows from B � 0.

Proof of Theorem 2.1. From its definition we can write RHK-GS
n more explicitly

as the set of rate pairs (R1, R2) satisfying

R1 ≤ EQ

 1

2n
log

∣∣∣I +KQ
U1

+KQ
V1

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
 , (2.1a)

R2 ≤ EQ

 1

2n
log

∣∣∣I +KQ
U2

+KQ
V2

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
 , (2.1b)

R1 +R2 ≤ EQ

 1

2n
log

∣∣∣I +KQ
U1

+KQ
V1

+ b2KQ
U2

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
+

1

2n
log

∣∣∣I +KQ
V2

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
 , (2.1c)

R1 +R2 ≤ EQ

 1

2n
log

∣∣∣I +KQ
U2

+KQ
V2

+ a2KQ
U1

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
13



+
1

2n
log

∣∣∣I +KQ
V1

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
 , (2.1d)

R1 +R2 ≤ EQ

 1

2n
log

∣∣∣I +KQ
V1

+ b2KQ
U2

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
+

1

2n
log

∣∣∣I +KQ
V2

+ a2KQ
U1

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
 , (2.1e)

2R1 +R2 ≤ EQ

 1

2n
log

∣∣∣I +KQ
U1

+KQ
V1

+ b2KQ
U2

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
+

1

2n
log

∣∣∣I +KQ
V1

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
+

1

2n
log

∣∣∣I +KQ
V2

+ a2KQ
U1

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
 , (2.1f)

R1 + 2R2 ≤ EQ

 1

2n
log

∣∣∣I +KQ
U2

+KQ
V2

+ a2KQ
U1

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
+

1

2n
log

∣∣∣I +KQ
V2

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
+

1

2n
log

∣∣∣I +KQ
V1

+ b2KQ
U2

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
 , (2.1g)

for some p(q) and n× n positive semidefinite matrices Kq
U1
, Kq

V1
, Kq

U2
, Kq

V1
(de-

fined for every choice of Q = q) such that the power constraints

EQ

[
tr
(
KQ

U1
+KQ

V1

)]
≤ nP1,

EQ

[
tr
(
KQ

U2
+KQ

V2

)]
≤ nP2

are satisfied. By a standard application of cardinality-bounding techniques it
suffices to consider |Q| ≤ 9.

For any collection of n×n positive semidefinite matrices Kq
U1
, Kq

V1
, Kq

U2
, Kq

V2

define

K̂q
U1

:= diag
(
{λi(Kq

U1
+Kq

V1
)− λi(Kq

V1
)}
)
,

K̂q
V1

:= diag
(
{λi(Kq

V1
)}
)
,

K̂q
U2

:= diag
(
{λn+1−i(K

q
U2

+Kq
V2

)− λn+1−i(K
q
V2

)}
)
,
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K̂q
V2

:= diag
(
{λn+1−i(K

q
V2

)}
)
,

where diag({ai}) indicates a diagonal matrix with diagonal entries a1, . . . , an.
The positive semidefiniteness of K̂U1 , K̂U2 follows from Lemma 2.1, and it is
obvious that K̂q

V1
, K̂q

V2
are positive semidefinite. This choice of the matrices

K̂q
U1
, K̂q

V1
, K̂q

U2
, K̂q

V2
has the following properties:

(i) The replacement is trace preserving, i.e.,

tr(Kq
U1

+Kq
V1

) = tr(K̂q
U1

+ K̂q
V1

),

tr(Kq
U2

+Kq
V2

) = tr(K̂q
U2

+ K̂q
V2

).

(ii) The replacement preserves all the denominators of the terms in (2.1), i.e.,∣∣I + a2Kq
V1

∣∣ =
∣∣∣I + a2K̂q

V1

∣∣∣ ,∣∣I + b2Kq
V2

∣∣ =
∣∣∣I + b2K̂q

V2

∣∣∣ .
(iii) The replacement cannot decrease the numerators of the terms in (2.1): For

any c1, c2 ≥ 0, (A1, Â1) = (Kq
V1
, K̂q

V1
) or (Kq

U1
+ Kq

V1
, K̂q

U1
+ K̂q

V1
), and

(A2, Â2) = (Kq
V2
, K̂q

V2
) or (Kq

U2
+Kq

V2
, K̂q

U2
+ K̂q

V2
), we have

|I + c1A1 + c2A2| ≤
n∏
i=1

(1 + c1λi(A1) + c2λn+1−i(A2))

=
∣∣∣I + c1Â1 + c2Â2

∣∣∣ ,
where the inequality follows from Theorem 2.2.

Therefore replacing (Kq
U1
, Kq

V1
, Kq

U2
, Kq

V2
) by (K̂q

U1
, K̂q

V1
, K̂q

U2
, K̂q

V2
) cannot de-

crease any of the right-hand sides of (2.1). This shows that RHK-GS
n can be

attained by further assuming that the covariance matrices Kq
U1
, Kq

V1
, Kq

U2
, Kq

V2

are diagonal for every q.
When the matrices Kq

U1
, Kq

V1
, Kq

U2
, Kq

V2
are diagonal with diagonal entries

Kq
U1

(i), Kq
V1

(i), Kq
U2

(i), Kq
V2

(i) (i = 1, . . . , n), respectively, observe that, for in-
stance, we can express

EQ

[
1

2n
log
∣∣∣I +KQ

U2
+KQ

V2
+ a2KQ

U1
+ a2KQ

V1

∣∣∣]
=
∑
q

P(Q = q)

(
1

2n

n∑
i=1

log
(
1 +Kq

U2
(i) +Kq

V2
(i) + a2Kq

U1
(i) + a2Kq

V1
(i)
))

=
∑
q,i

P(Q̃ = (q, i))

(
1

2
log
(

1 +K
(q,i)
U2

+K
(q,i)
V2

+ a2K
(q,i)
U1

+ a2K
(q,i)
V1

))
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= EQ̃

[
1

2
log
(

1 +KQ̃
U2

+KQ̃
V2

+ a2KQ̃
U1

+ a2KQ̃
V1

)]
,

where we have defined a new time-sharing variable Q̃ taking values in Q ×
{1, . . . , n} by setting P(Q̃ = (q, i)) := 1

n
P(Q = q) as well as scalar variables

K
(q,i)
U1

:= Kq
U1

(i) and similarly for the others. Note that the last expression is an
expectation over scalar variables and corresponds to the expression in RHK-GS

1 .
All the other terms in (2.1) as well as the trace constraints can also be expressed
similarly. Now we can conclude the inclusion RHK-GS

n ⊆ RHK-GS
1 . Together with

the trivial inclusion RHK-GS
1 ⊆ RHK-GS

n this establishes Theorem 2.1.
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Chapter 3

Optimality of weighted sum-rates

This chapter consists of two parts. In the first part we compute the slope of
Han–Kobayashi achievable region with Gaussian inputs for GZIC at the Costa–
Sato corner point, which is also the maximum sum-rate point. This result first
appeared in [CNN17]. The computation uses similar techniques as in an earlier
paper [CN16] in which its authors compute the slope of the same region at the
Costa–Polyanskiy–Wu corner point. In the second part we focus on the capacity
region of GIC under the condition a(1+b2P2)+b(1+a2P1) ≤ 1, which is a subclass
of the weak interference regime, and we establish the discontinuity of slope at the
maximum sum-rate point, which is also the treating-interference-as-noise point:

(R1, R2) =

(
1

2
log

(
1 +

P1

1 + b2P2

)
,
1

2
log

(
1 +

P2

1 + a2P1

))
.

This result slightly generalizes the computation in [Bei+16], where the authors
show the same result under symmetric interference condition.

3.1 Slope at maximum sum-rate point for Han–

Kobayashi achievable region with Gaussian in-

puts of GZIC

For the GZIC, consider the multi-letter Han–Kobayashi achievable region with
Gaussian inputs, RHK-GS

n , as defined in Definition 1.4. In view of Theorem 2.1,
this region is the same for all n ≥ 1 and so it is the same as the single-letter
region RHK-GS. Obviously RHK-GS contains the Costa–Sato corner point of the
capacity region. In this section we establish Theorem 3.1, which concerns the
slope of RHK-GS around the Costa–Sato corner point.
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Theorem 3.1. For a GZIC, let λcritical be the largest value of λ ≥ 1 such that

sup
(R1,R2)∈RHK-GS

(R1 + λR2) =
1

2
log(1 + P1) +

λ

2
log

(
1 +

P2

1 + a2P1

)
. (3.1)

Then

λcritical = min

{
(1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)
, λ∗
}
,

where λ∗ is the unique positive solution of ψ(λ∗) = 0, where

ψ(λ) := λ

(
log

(
1 +

P2

1 + a2P1

)
− (1− a2)P2

(1 + a2P1)(1 + a2P1 + P2)

)
+ log

(
1− a2P2(1 + P1)

(1 + a2P1)(1 + a2P1 + P2)
λ

)
.

The region RHK-GS admits a reduction as given in Proposition 3.1 in a similar
manner to Proposition 1.2. To compute sup(R1,R2)∈RHK-GS(R1 + λR2) for λ ≥ 1

we notice that RHK-GS is a union of pentagons and (3.2b) and (3.2c) are the
only two tight constraints. We then parametrize U1|Q=q ∼ N (0, (1 − αq)K1q),
V1|Q=q ∼ N (0, αqK1q), X2|Q=q ∼ N (0, K2q), where K1q, K2q ≥ 0 and 0 ≤ αq ≤ 1

for each choice of q. With this parametrization, the power constraints (3.3) read
EQ[K1Q] ≤ P1 and EQ[K2Q] ≤ P2. Then

sup
(R1,R2)∈RHK-GS

(R1 + λR2)

= sup
p(q)p(u1|q)p(v1|q)p(x2|q)

(I(U1, X2;Y2|Q) + I(X1;Y1|U1, Q) + (λ− 1)I(X2;Y2|U1, Q))

= sup
p(q)p(u1|q)p(v1|q)p(x2|q)

(h(X2 + aU1 + aV1 + Z2|Q)− h(aV1 + Z2|Q)

+ h(V1 + Z1|Q)− h(Z1) + (λ− 1)(h(X2 + aV1 + Z2|Q)− h(aV1 + Z2|Q)))

= sup
p(q),K1q ,K2q ,αq

EQ

[1

2
log(1 + a2K1Q +K2Q)

+
λ

2
log

1 + a2αQK1Q +K2Q

1 + a2αQK1Q

+
1

2
log

1 + αQK1Q

1 + a2αQK1Q +K2Q

]
= sup

p(q),K1q ,K2q

EQ[fλ(K1Q, K2Q)],

where fλ is defined as in Corollary 3.1. The supremum in the last line is subjected
to the power constraints and hence is evaluated to the value of upper concave
envelope of fλ at (P1, P2). This yields Corollary 3.1.

Proposition 3.1. The region RHK-GS for GZIC is equal to the set of all rate
pairs (R1, R2) such that

R1 ≤ I(X1;Y1|Q), (3.2a)
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R2 ≤ I(X2;Y2|U1, Q), (3.2b)

R1 +R2 ≤ I(U1, X2;Y2|Q) + I(X1;Y1|U1, Q), (3.2c)

where X1 := U1 +V1, for some p(q)p(u1|q)p(v1|q)p(x2|q) such that the conditional
distributions p(u1|q), p(v1|q), p(x2|q) are zero-mean scalar Gaussian distributions
for each q, and that the power constraints

EQ [Cov(U1|Q) + Cov(V1|Q)] ≤ P1, (3.3a)

EQ [Cov(X2|Q)] ≤ P2 (3.3b)

are satisfied.

Corollary 3.1. For a GZIC, the value of sup(R1,R2)∈RHK-GS(R1 + λR2) for λ ≥ 1

is equal to the upper concave envelope of the functional fλ evaluated at (P1, P2),
where

fλ(Q1, Q2) :=
1

2
log(1 + a2Q1 +Q2)

+ max
0≤α≤1

(
λ

2
log

1 + a2αQ1 +Q2

1 + a2αQ1

+
1

2
log

1 + αQ1

1 + a2αQ1 +Q2

)
for Q1, Q2 ≥ 0.

Consider the functional fλ defined in Corollary 3.1. By taking derivative with
respect to α, we get the first-order condition for the optimal value α∗ for α:

λ =
1− a2 +Q2

a2Q2

(
a2 +

1− a2

1 + α∗Q1

)
.

We then define the regions

R1 :=

{
(Q1, Q2) ∈ R2

≥0 : λ ≥ 1− a2 +Q2

a2Q2

}
,

R2 :=

{
(Q1, Q2) ∈ R2

≥0 : λ ≤ (1− a2 +Q2)(1 + a2Q1)

a2Q2(1 +Q1)

}
,

R3 :=

{
(Q1, Q2) ∈ R2

≥0 :
(1− a2 +Q2)(1 + a2Q1)

a2Q2(1 +Q1)
< λ <

1− a2 +Q2

a2Q2

}
,

where R1,R2,R3 correspond to the cases α∗ = 0, α∗ = 1 and 0 < α∗ < 1,
respectively. This gives an explicit expression for fλ:

fλ(Q1, Q2) =



1
2

log(1 + a2Q1 +Q2) + λ−1
2

log(1 +Q2) if (Q1, Q2) ∈ R1,
λ
2

log(1 + Q2

1+a2Q1
) + 1

2
log(1 +Q1) if (Q1, Q2) ∈ R2,

1
2

log 1+a2Q1+Q2

a2Q2
+ λ−1

2
log(λ− 1)− λ

2
log λ

+λ
2

log 1−a2+Q2

1−a2 + 1
2

log(1− a2) if (Q1, Q2) ∈ R3.
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Now we compute the gradient and Hessian of fλ. In R1,

∂Q1fλ =
a2

2

1

1 + a2Q1 +Q2

,

∂Q2fλ =
1

2

1

1 + a2Q1 +Q2

+
λ− 1

2

1

1 +Q2

,

Hfλ =

(
−a4

2
1

(1+a2Q1+Q2)2
−a2

2
1

(1+a2Q1+Q2)2

−a2
2

1
(1+a2Q1+Q2)2

−1
2

1
(1+a2Q1+Q2)2

− λ−1
2

1
(1+Q2)2

)
.

In R2,

∂Q1fλ =
1

2

(
a2λ

1 + a2Q1 +Q2

− a2λ

1 + a2Q1

+
1

1 +Q1

)
,

∂Q2fλ =
λ

2

1

1 + a2Q1 +Q2

,

Hfλ =

1
2

(
−a4λ

(1+a2Q1+Q2)2
+ a4λ

(1+a2Q1)2
− 1

(1+Q1)2

)
−a2λ

2
1

(1+a2Q1+Q2)2

−a2λ
2

1
(1+a2Q1+Q2)2

−λ
2

1
(1+a2Q1+Q2)2

 .

In R3,

∂Q1fλ =
a2

2

1

1 + a2Q1 +Q2

,

∂Q2fλ =
1

2

(
1

1 + a2Q1 +Q2

− 1

Q2

+
λ

1− a2 +Q2

)
,

Hfλ =

−a42
1

(1+a2Q1+Q2)2
−a2

2
1

(1+a2Q1+Q2)2

−a2
2

1
(1+a2Q1+Q2)2

1
2

(
−1

(1+a2Q1+Q2)2
+ 1

Q2
2
− λ

(1−a2+Q2)2

) .

By checking the values and gradients of fλ at the boundaries, one can see that
fλ is continuously differentiable on R2

>0.
For λ slightly larger than (1−a2+P2)(1+a2P1)

a2P2(1+P1)
, we have (P1, P2) ∈ R3. The func-

tion

λ 7→ fλ(P1, P2)−
(
λ

2
log(1 +

P2

1 + a2P1

) +
1

2
log(1 + P1)

)
is equal to 0 and has derivative equal to 0 at λ = (1−a2+P2)(1+a2P1)

a2P2(1+P1)
, and has second

derivative larger than 0 for λ slightly larger than (1−a2+P2)(1+a2P1)
a2P2(1+P1)

. So we have

fλ(P1, P2) >
λ

2
log(1 +

P2

1 + a2P1

) +
1

2
log(1 + P1)

for λ slightly larger than (1−a2+P2)(1+a2P1)
a2P2(1+P1)

. Thus any λ satisfying (3.1) must also

satisfy λ ≤ (1−a2+P2)(1+a2P1)
a2P2(1+P1)

, or equivalently (P1, P2) ∈ R2.
Using Corollary 3.1 and Lemma 3.1, for any λ ≥ 1, (3.1) is equivalent to that

(P1, P2) ∈ R2 and gλ (Q1, Q2) attains global maximum at (P1, P2), where gλ is
defined by

gλ(Q1, Q2) := fλ(Q1, Q2)− 1

2

(
a2λ

1 + a2P1 + P2

− a2λ

1 + a2P1

+
1

1 + P1

)
Q1
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− 1

2

(
λ

1 + a2P1 + P2

)
Q2.

The proof of Theorem 3.1 is completed by analyzing the local behavior of gλ and
isolating the local maxima.

Lemma 3.1. Let f be a real-valued function defined on some convex subset of
Rn (n ≥ 1). Suppose f is differentiable at x ∈ Rn. Then Cf(x) = f(x) if and
only if f(·) − 〈∇f(x), ·〉 attains global maximum at x. Here Cf and ∇f denote
the upper concave envelope and gradient of f , respectively.

Proof. It suffices to show that Cf(x) ≤ f(x) if and only if for all h we have
f(x) ≥ f(x + h) − 〈∇f(x), h〉. The "if" part is immediate, by taking upper
concave envelope with respect to h and then putting h = 0.

For the "only if" part, suppose on the contrary that there is ε > 0 and h 6= 0

such that

f(x) + ε ≤ f(x+ h)− 〈∇f(x), h〉 .

By differentiability of f at x, for ‖ζ‖ small enough we have

|f(x+ ζ)− f(x)− 〈∇f(x), ζ〉| ≤ ε

2‖h‖
‖ζ‖.

Now, for any δ ∈ (0, 1) we have

f(x) ≥ Cf(x)

≥ δ · Cf(x+ h) + (1− δ) · Cf(x− δ

1− δ
h)

≥ δf(x+ h) + (1− δ)f(x− δ

1− δ
h)

≥ δε+ δf(x) + 〈∇f(x), δh〉+ (1− δ)f(x− δ

1− δ
h).

Rearranging gives

f(x) ≥ δ

1− δ
ε+ f(x− δ

1− δ
h)−

〈
∇f(x),− δ

1− δ
h

〉
≥ δ

1− δ
ε+ f(x)− ε

2‖h‖

∥∥∥∥− δ

1− δ
h

∥∥∥∥
= f(x) +

ε

2

δ

1− δ
,

for δ small enough. This gives a contradiction.

Interior analysis

Lemma 3.2. Let λcritical be defined as in Theorem 3.1. Then

λcritical ≤ min

{
(1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)
,

(
1 + a2P1

a2(1 + P1)

)2
}
.
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Proof. This is the condition that says (P1, P2) ∈ R2 and it is a local maximum
of gλ. λcritical ≤ (1−a2+P2)(1+a2P1)

a2P2(1+P1)
since (P1, P2) ∈ R2, and the second condition

λcritical ≤
(

1+a2P1

a2(1+P1)

)2

follows from |Hgλ(P1, P2)| ≥ 0.

Lemma 3.3. There is no local maximum of gλ in the interior of R1 for any
λ ≤

(
1+a2P1

a2(1+P1)

)2

.

Proof. Since gλ is concave in R1, there is at most one local maximum in the
interior of R1. The first-order condition yields

a2

2

1

1 + a2Q1 +Q2

=
1

2

(
a2λ

1 + a2P1 + P2

− a2λ

1 + a2P1

+
1

1 + P1

)
,

1

2

1

1 + a2Q1 +Q2

+
λ− 1

2

1

1 +Q2

=
1

2

(
λ

1 + a2P1 + P2

)
.

Solving for Q2 gives

Q2 =
(1 + a2P1)(1 + P1)

1 + P1 +
1− 1

a2

λ−1

.

But in R1 we have λ ≥ 1−a2+Q2

a2Q2
. Substituting for Q2 yields

λ ≥ 1 + a2P1

a4(1 + P1)
.

But we also have λ ≤
(

1+a2P1

a2(1+P1)

)2

, implying a2 ≥ 1. This gives a contradiction.

Lemma 3.4. There are at most 2 local maxima of gλ in the interior of R2.
The value of gλ at both points is bounded from above by gλ(P1, P2), when λ ≤(

1+a2P1

a2(1+P1)

)2

.

Proof. The first-order condition for local maximum yields

a2λ

1 + a2Q1 +Q2

− a2λ

1 + a2Q1

+
1

1 +Q1

=
a2λ

1 + a2P1 + P2

− a2λ

1 + a2P1

+
1

1 + P1

,

λ

1 + a2Q1 +Q2

=
λ

1 + a2P1 + P2

,

whose solutions are given by

Q1 = P1 or
1
a2
− 1

λ
k
− 1
− 1,

Q2 = P2 + a2(P1 −Q1),

where k := 1+a2P1

a2(1+P1)
≥ 1. If k ≥ λ, there is only one solution at (P1, P2), so we

can assume k < λ.
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Suppose (Q1, Q2) is any solution to the above, then

gλ(Q1, Q2) = fλ(Q1, Q2)− λ

2

a2Q1 +Q2

1 + a2Q1 +Q2

+
λ

2

a2Q1

1 + a2Q1

− 1

2

Q1

1 +Q1

= fλ(Q1, Q2) +
λ

2

1

1 + a2Q1 +Q2

− λ

2

1

1 + a2Q1

+
1

2

1

1 +Q1

− 1

2

=
λ

2
ϕ
(
1 + a2Q1 +Q2

)
− λ

2
ϕ
(
1 + a2Q1

)
+

1

2
ϕ (1 +Q1)− 1

2

=
λ

2
ϕ
(
1 + a2P1 + P2

)
− λ

2
ϕ
(
1 + a2Q1

)
+

1

2
ϕ (1 +Q1)− 1

2
,

where ϕ (x) := log x+ 1
x
.

Now let (Q1, Q2) be the solution other than (P1, P2). Then,

gλ(P1, P2)− gλ(Q1, Q2)

=
λ

2

(
ϕ
(
1 + a2Q1

)
− ϕ

(
1 + a2P1

))
− 1

2
(ϕ (1 +Q1)− ϕ (1 + P1))

=
λ

2

(
ϕ

(
(1− a2)

λ

λ− k

)
− ϕ

(
(1− a2)

k

k − 1

))
− 1

2

(
ϕ

(
1− a2

a2

k

λ− k

)
− ϕ

(
1− a2

a2

1

k − 1

))
.

Differentiating with respect to λ and simplifying gives

∂λ (gλ(P1, P2)− gλ(Q1, Q2)) =
1

2

(
log

(
1 +

k2 − λ
k(λ− k)

)
− k2 − λ
k(λ− k)

)
.

This implies

∂λ (gλ(P1, P2)− gλ(Q1, Q2)) ≤ 0,

since λ ≤
(

1+a2P1

a2(1+P1)

)2

= k2 and log(1 + x) ≤ x for all x ≥ 0. So

gλ(P1, P2)− gλ(Q1, Q2) ≥ gk2(P1, P2)− gk2(Q1, Q2) = 0

and hence gλ(P1, P2) ≥ gλ(Q1, Q2).

Lemma 3.5. There is no local maximum of gλ in the interior of R3 when λ <(
1+a2P1

a2(1+P1)

)2

.

Proof. The first-order condition for local maximum yields

a2

1 + a2Q1 +Q2

=
a2λ

1 + a2P1 + P2

− a2λ

1 + a2P1

+
1

1 + P1

,

1

1 + a2Q1 +Q2

− 1

Q2

+
λ

1− a2 +Q2

=
λ

1 + a2P1 + P2

.

Substituting the first equation into the second gives

Q2 = a2(1 + P1),
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while the second-order condition |Hfλ(Q1, Q2)| ≥ 0 is equivalent to

λ ≥
(

1− a2 +Q2

Q2

)2

=

(
1 + a2P1

a2(1 + P1)

)2

,

which contradicts with that λ <
(

1+a2P1

a2(1+P1)

)2

.

Thus the interior analysis shows that

λ ≤ min

{
(1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)
,

(
1 + a2P1

a2(1 + P1)

)2
}

if and only if the value of gλ(Q1, Q2) at any interior local maximum is bounded
from above by gλ(P1, P2) and (P1, P2) ∈ R2. The necessity follows from Lemma
3.3, 3.4, and 3.5 while sufficiency follows from Lemma 3.2.

Boundary analysis

The remaining cases are the boundaries Q1 = 0 and Q2 = 0. In this part, we
first establish that gλ(P1, P2) ≥ gλ(Q1, Q2) for any (Q1, Q2) on the boundaries if
and only if λ is smaller than or equal to the upper bound in Lemma 3.2 and λ∗

in Theorem 3.1. Then in Lemma 3.9 we reduce the minimum of three terms to
that of two of them, yielding λcritical in Theorem 3.1.

Lemma 3.6.

log(1 + P1) + 1
1+P1

− 1

log(1 + a2P1) + 1
1+a2P1

− 1
≥
(

1 + a2P1

a2(1 + P1)

)2

.

Proof. This is equivalent to

a4ϕ (P1)− ϕ
(
a2P1

)
≥ 0,

where ϕ (x) := (1 + x)2 log(1 + x)− (1 + x)x. Let

ψ(x) := a4ϕ(x)− ϕ(a2x).

Note that

ϕ′ (x) = 2(1 + x) log(1 + x)− x,

ϕ′′ (x) = 2 log(1 + x) + 1,

as well as

ψ′(x) = a4ϕ′ (x)− a2ϕ′
(
a2x
)
,
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ψ′′(x) = a4 · 2 log
1 + x

1 + a2x
≥ 0.

So ψ(x) is convex when x ≥ 0 and ψ′(0) = 0. This implies that ψ is convex and
increasing on x ≥ 0. Hence ψ(P1) ≥ ψ(0) = 0.

Lemma 3.7. Suppose

λ ≤ min

{
(1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)
,

(
1 + a2P1

a2(1 + P1)

)2
}
.

Then

gλ(P1, P2) ≥ max
Q2≥0

gλ(0, Q2).

Proof. We have

gλ(0, Q2) =
λ

2
log(1 +Q2)− λ

2

1

1 + a2P1 + P2

Q2.

Note that gλ(0, Q2) is concave in Q2 and is maximized at Q2 = a2P1 + P2. Since
(P1, P2) ∈ R2 we have

gλ(P1, P2)−max
Q2≥0

gλ(0, Q2)

= gλ(P1, P2)− gλ(0, a2P1 + P2)

= −λ
2

(
log(1 + a2P1) +

1

1 + a2P1

− 1

)
+

1

2

(
log(1 + P1) +

1

1 + P1

− 1

)
,

which is ≥ 0 if and only if λ ≤
log(1+P1)+ 1

1+P1
−1

log(1+a2P1)+ 1
1+a2P1

−1
, which is guaranteed by Lemma

3.6.

Lemma 3.8. Suppose

λ ≤ min

{
(1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)
,

(
1 + a2P1

a2(1 + P1)

)2
}
.

Then

gλ(P1, P2) ≥ max
Q1≥0

gλ(Q1, 0)

if and only if λ ≤ λ∗, where λ∗ is defined as in Theorem 3.1.

Proof. We have

gλ(Q1, 0) =
1

2
log(1 +Q1)− 1

2

(
a2λ

1 + a2P1 + P2

− a2λ

1 + a2P1

+
1

1 + P1

)
Q1.
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Note that gλ(Q1, 0) is concave in Q1 and is maximized when

1

1 +Q1

=
a2λ

1 + a2P1 + P2

− a2λ

1 + a2P1

+
1

1 + P1

.

The right-hand side is between 0 and 1 since λ ≤ (1−a2+P2)(1+a2P1)
a2P2(1+P1)

and hence such
a maximizing Q1 ≥ 0 always exists. After some manipulations, we can express

gλ(P1, P2)−max
Q1≥0

gλ(Q1, 0)

=
1

2

(
λ

(
log

(
1 +

P2

1 + a2P1

)
− (1− a2)P2

(1 + a2P1)(1 + a2P1 + P2)

)

+ log

(
1− a2P2(1 + P1)

(1 + a2P1)(1 + a2P1 + P2)
λ

))
=

1

2
ψ(λ),

where the function ψ is defined as in Theorem 3.1.
The function ψ is concave, is equal to 0 at 0, and has non-negative derivative

at 0. It follows that ψ(λ∗) = 0 has a unique positive solution λ∗, ψ(λ) > 0 for
0 < λ < λ∗, and ψ(λ) < 0 for λ > λ∗. Hence gλ(P1, P2) ≥ maxQ1≥0 gλ(Q1, 0) if
and only if λ ≤ λ∗.

Thus combining the interior and boundary analysis, we see that λcritical is the
minimum of three quantities, two of which is given by Lemma 3.2 and one given
by Lemma 3.8. Finally the proof of Theorem 3.1 is concluded by Lemma 3.9
which shows that one of the three quantities is redundant.

Lemma 3.9. The following holds:

min

{
(1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)
, λ∗
}

= min

{
(1− a2 + P2)(1 + a2P1)

a2P2(1 + P1)
,

(
1 + a2P1

a2(1 + P1)

)2

, λ∗

}
,

where λ∗ is defined as in Theorem 3.1.

Proof. It suffices to show that, if (1−a2+P2)(1+a2P1)
a2P2(1+P1)

≥
(

1+a2P1

a2(1+P1)

)2

, or equivalently

P2 ≤ a2(1 + P1), then
(

1+a2P1

a2(1+P1)

)2

≥ λ∗. That is, ψ
((

1+a2P1

a2(1+P1)

)2
)
≤ 0, where

ψ(·) is defined in Theorem 3.1.
Let θ := P2

1+a2P1
and k := 1+a2P1

a2(1+P1)
. Then θ ≤ 1

k
and k ≥ 1. We want to show

ψ(k2) ≤ 0, that is,

k2 log(1 + θ)− k(k − 1)
θ

θ + 1
+ log(1− kθ

1 + θ
) ≤ 0,
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or equivalently

k2

(
log(1 + θ) +

1

1 + θ
− 1

)
+

(
kθ

1 + θ
+ log(1− kθ

1 + θ
)

)
≤ 0. (3.4)

The derivative of left-hand side of (3.4) with respect to θ is equal to

k2 θ

(1 + θ)2
+

k

(1 + θ)2

kθ

kθ − (1 + θ)

=
k2θ

(1 + θ)2

(
1 +

1

kθ − (1 + θ)

)
=

k2θ2

(1 + θ)2

1− k
1 + θ − kθ

≤ 0.

Hence it suffices to establish (3.4) with θ = 0. Note that the left-hand side of
(3.4) is equal to 0 when θ = 0. So we are done.

This completes the proof of Theorem 3.1.

3.2 Slope discontinuity at maximum sum-rate point

for a subset of GIC

The following Theorem 3.4 is an extension to Theorem 1 in [Bei+16]. In [Bei+16]
the authors showed the special case where the GIC has symmetric interference
(a = b and P1 = P2) while a similar proof can also be applied to a subset of
the weak interference regime. The proof uses a genie-based outer bound [Liu16],
originally developed in [Bei+16], for discrete memoryless interference channels.

To complete the proof of Theorem 3.4 we will also need Corollary 3.2, which
follows from Theorem 3.3 (Theorem 1 of [GN14], originally established in [LV07])
concerning Gaussian optimality of a functional.

Theorem 3.2 (Theorem 2.1.1 of [Liu16]). Consider a discrete memoryless inter-
ference channel p(y1, y2|x1, x2). Let T1, T2 be any random variables such that the
joint distribution satisfies

p(y1, y2, t1, t2|x1, x2) = p(t1|x1)p(t2|x2)p(y1, y2|t1, t2, x1, x2),

and that the marginal distribution p(y1, y2|x1, x2) is consistent with the interfer-
ence channel. Then

sup
(R1,R2)∈C

(R1 + λR2) ≤ sup
p(x1)p(x2)

(
I(X1;T1, Y1) + λI(X2;T2, Y2)

+ Cp(x1)p(x2)[I(X1;T1|X2, T2)− λI(X1;Y2|X2, T2)]
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− (I(X1;T1|X2, T2)− λI(X1;Y2|X2, T2))

+ Cp(x1)p(x2)[I(X2;T2|X1, T1)− I(X2;Y1|X1, T1)]

− (I(X2;T2|X1, T1)− I(X2;Y1|X1, T1))
)
,

where C denotes the capacity region, and Cp(x1)p(x2)[·] denotes the upper concave
envelope evaluated with respect to the space of distributions p(x1)p(x2).

Theorem 3.3 (Theorem 1 of [GN14]). Let Z1,Z2 be independent n-dimensional
Gaussian random variables and let λ > 1. Suppose K is an n × n positive
semidefinite matrix. Then the maximization over distributions on (U,X), where
X is in Rn and (U,X),Z1,Z2 are mutually independent,

max
p(u|x)p(x)

E[XXT ]�K

(I(X;X + Z1|U)− λI(X;X + Z2|U)) ,

is attained by some Gaussian X and constant U .

Corollary 3.2. Let X be a random variable in Rn and Z1,Z2 be n-dimensional
Gaussian random variables such that X, Z1 and Z2 are mutually independent.
Let λ > 1. Then

CX [I(X;X + Z1)− λI(X;X + Z2)] ≤ I(X∗;X∗ + Z1|U∗)− λI(X∗;X∗ + Z2|U∗),

where X∗ = U∗ + V∗ with U∗,V∗ being independent n-dimensional zero-mean
Gaussian random variables, and E[X∗X∗T ] = E[XXT ].

Theorem 3.4. For a GIC with a(1 + b2P2) + b(1 + a2P1) ≤ 1, for any λ ≥ 1

satisfying

λ ≤ 1 +
(1− a(1 + b2P2))2 − b2(1 + a2P1)2

b2((1 + a2P1)2 + P2(1− a(1 + b2P2)))
,

it holds that

sup
(R1,R2)∈C

(λR1 +R2) =
λ

2
log

(
1 +

P1

1 + b2P2

)
+

1

2
log

(
1 +

P2

1 + a2P1

)
,

where C denotes the capacity region.

Proof. Consider the GIC

Y1 = X1 + bX2 + Z1,

Y2 = X2 + aX1 + Z2,

with power constraints E[X2
i ] = Pi (i = 1, 2). Let θ1, θ2 ∈ R. We parameterize

the Gaussian noise as

Z1 = Z11 sin θ1 + Z12 cos θ1,
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Z2 = Z21 sin θ2 + Z22 cos θ2,

where Zij ∼ N (0, 1) (i, j ∈ {1, 2}) are mutually independent standard scalar
Gaussian random variables. Define the auxiliary receivers

T1 := X1 + η1Z11,

T2 := X2 + η2Z21,

and let

Ŷ1 := aX1 + Z22 cos θ2,

Ŷ2 := bX2 + Z12 cos θ1,

where η1, η2 are defined by

η1 :=
1 + b2P2

sin θ1

,

η2 :=
1 + a2P1

sin θ2

.

For i = 1, 2, let X∗i be a zero-mean scalar Gaussian random variable such that
E[X∗i

2] = E[X2
i ], and define Y ∗i , T ∗i , Ŷ ∗i analogously as Yi, Ti, Ŷi by using X∗1 , X∗2

instead of X1, X2. Note that our choices of η1 and η2 ensures that X∗1 → Y ∗1 → T ∗1

and X∗2 → Y ∗2 → T ∗2 form Markov chains.
With our choice of T1, T2, Theorem 3.2 gives that for any λ ≥ 1 and achievable

rate pair (R1, R2) for the GIC we have

λR1 +R2 ≤ sup
p(x1)p(x2)

(
λI(X1;T1, Y1) + I(X2;T2, Y2)

+ CX1 [I(X1;T1)− I(X1; Ŷ1)]− (I(X1;T1)− I(X1; Ŷ1))

+ CX2 [I(X2;T2)− λI(X2; Ŷ2)]− (I(X2;T2)− λI(X2; Ŷ2))
)
. (3.5)

If θ1, θ2 satisfy

a2η2
1 ≤ cos2 θ2, (3.6)

b2η2
2 ≤ cos2 θ1, (3.7)

or in other words Ŷ1, Ŷ2 are stochastically degraded versions of T1, T2, respectively,
then the following holds:

• I(X1;T1)− I(X1; Ŷ1) is a concave functional in p(x1).

• We have

λI(X1;T1, Y1) + I(X2;T2, Y2)− (I(X2;T2)− λI(X2; Ŷ2))
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= λh(T1, Y1) + h(Y2|T2)− h(Ŷ1)− λ log(η1 cos θ1)

= λh(Y1|T1) + h(Y2|T2) + (λ− 1)h(T1) + (h(T1)− h(Ŷ1))− λ log(η1 cos θ1)

(a)
≤ λh(Y ∗1 |T ∗1 ) + h(Y ∗2 |T ∗2 ) + (λ− 1)h(T ∗1 ) + (h(T ∗1 )− h(Ŷ ∗1 ))− λ log(η1 cos θ1)

= λI(X∗1 ;T ∗1 , Y
∗

1 ) + I(X∗2 ;T ∗2 , Y
∗

2 )− (I(X∗2 ;T ∗2 )− λI(X∗2 ; Ŷ ∗2 ))

(b)
= λI(X∗1 ;Y ∗1 ) + I(X∗2 ;Y ∗2 )− (I(X∗2 ;T ∗2 )− λI(X∗2 ; Ŷ ∗2 )),

where (a) follows from the maximum conditional differential entropy prop-
erty of Gaussians, and we have used (3.6) for the term h(T1) − h(Ŷ1), and
(b) follows from the Markov chains X∗1 → Y ∗1 → T ∗1 and X∗2 → Y ∗2 → T ∗2 .

• By Corollary 3.2 we have

CX2 [I(X2;T2)− λI(X2; Ŷ2)] ≤ I(X∗2 ;T ∗2 |U∗2 )− λI(X∗2 ; Ŷ ∗2 |U∗2 )

for some independent scalar Gaussian random variables U∗2 , V ∗2 such that
X∗2 = U∗2 + V ∗2 .

Hence (3.5) reduces to

λR1 +R2 ≤ λI(X1;Y1) + I(X2;Y2) + max
0≤α≤1

(
λI(U2; Ŷ2)− I(U2;T2)

)
,

where U2 ∼ N (0, αP2), X1 ∼ N (0, P1) and X2 = U2 + V2 with V2 ∼ N (0, (1 −
α)P2) independent of U2. The maximization is attained by α = 0 (i.e., U2 is
trivial) if

cos2 θ1 − λb2η2
2

b2P2(λ− 1)
≥ 1. (3.8)

Note that (3.8) automatically implies (3.7).
Now we choose θ1 + θ2 = π

2
. For λ ≥ 1 to satisfy (3.6), (3.7) and (3.8) it

suffices that

a(1 + b2P2) ≤ sin2 θ1,

b2P2(λ− 1) cos2 θ1 ≤ cos4 θ1 − λb2(1 + a2P1)2.

After some computation one can show that there exists θ1 satisfying these con-
ditions if

λ ≤ max
θ1∈R

a(1+b2P2)≤sin2 θ1

(
1 +

cos4 θ1 − b2(1 + a2P1)2

b2P2 cos2 θ1 + b2(1 + a2P1)2

)

= 1 +
(1− a(1 + b2P2))2 − b2(1 + a2P1)2

b2((1 + a2P1)2 + P2(1− a(1 + b2P2)))
.

This concludes the proof.
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Chapter 4

A Gaussian extremality conjecture

In this chapter we propose the following Conjecture 4.1, which, if true, would
imply that the Han–Kobayashi achievable region for GZIC is attained by Gaus-
sian inputs (conditioned on the time-sharing variable Q), i.e., RHK

n = RHK-GS
n ,

and in turn, together with Theorem 2.1, would imply that the single-letter Han–
Kobayashi achievable region with Gaussian inputs RHK-GS

1 is a computable char-
acterization of the capacity region of GZIC.

Conjecture 4.1. Let λ ≥ 1, N2 ≥ 0, and let Σ1, A2 � 0 be n × n matrices
(n ≥ 1). The maximum

max
p(x1)p(x2)

E[X2XT
2 ]�A2

((λ− 1)h(X2 + X1 + Z1 + Z2) + h(X1 + Z1)− λh(X1 + Z1 + Z2)

− tr(Σ1 E[X1X
T
1 ])),

where Z1 ∼ N (0, I), Z2 ∼ N (0, N2I) and X1,X2,Z1,Z2 are random variables in
Rn, is attained by Gaussian X1 and X2.

This chapter has two main results:

(i) We show Theorem 4.1, which concerns a certain property that a matrix
functional has, via information-theoretic methods. The significance of this
result is that it bridges the gap between Conjecture 4.1 and the optimality
of Gaussian inputs for Han–Kobayashi achievable region of GZIC, as shown
in Proposition 4.3. This result first appeared in [Cos+20].

(ii) We then show an information inequality that establishes Conjecture 4.1 in
some regimes. This inequality also yields an outer bound for the slope at
the Costa–Polyanskiy–Wu corner point of capacity region of GZIC. This
result first appeared in [GNN21].
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Throughout this chapter we focus on the GZIC with weak interference (0 <
a ≤ 1). We consider an equivalent formulation [Cos85b] of the GZIC:

Y1 = X1 + Z1, (4.1a)

Y2 = X2 +X1 + Z1 + Z2, (4.1b)

where Z1 ∼ N (0, 1), Z2 ∼ N (0, N2) (with N2 := 1
a2
− 1 and 0 < a < 1) and

Xi, Yi, Zi (i = 1, 2) are random variables in R, under the power constraints P1

on X1 and 1
a2
P2 on X2. We also use the notations RHK

n (Q1, Q2) (respectively,
RHK-GS
n (Q1, Q2)) to denote the n-letter extension of the Han–Kobayashi achiev-

able region (respectively, the region with Gaussian inputs) of this Z-interference
channel with expected average power constraints Q1 on X1 and Q2 on X2, where
Q1, Q2 ≥ 0.

4.1 Prelimiaries

Upper concave envelope

Definition 4.1. The upper concave envelope Cx[f(x)] of a functional f defined
on some locally convex Hausdorff real topological vector space is defined by one of
the many equivalent ways (cf. [Nai13]):

(i) Cx[f(x)] := inf{g(x) : g is a concave functional with g ≥ f},

(ii) Cx[f(x)] := sup{
∫
f dµ : µ is a Borel probability measure with mean x},

(iii) Cx[f(x)] := infα (supx̂ (f(x̂)− 〈α, x̂〉) + 〈α, x〉), where the infimum is over
all linear functionals α, and 〈α, x〉 := α(x) denotes the evaluation of α at
a point x.

Proof for equivalence of the definitions (i),(ii),(iii). Let ϕ1, ϕ2, ϕ3 denote the func-
tionals in (i), (ii), (iii), respectively.

ϕ1 ≤ ϕ2: By taking µ to be the Dirac measure one can see ϕ2 ≥ f . It remains to
show concavity of ϕ2. Let µ1, µ2 be Borel probability measures with means
x1, x2, respectively, and let 0 ≤ t ≤ 1. Then µ := tµ1 + (1− t)µ2 is a Borel
probability measure with mean tx1 + (1− t)x2. Hence

t

∫
f dµ1 + (1− t)

∫
f dµ2 =

∫
f dµ ≤ ϕ2(tx1 + (1− t)x2).

Taking supremum over µ1, µ2 yields the result.

ϕ1 ≥ ϕ2: Let g be a concave functional with g ≥ f and µ be a Borel probability
measure with mean x. Jensen’s inequality gives g(x) ≥

∫
g dµ ≥

∫
f dµ.
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ϕ1 ≤ ϕ3: For any linear functional α the function x 7→ supx̂ (f(x̂)− 〈α, x̂〉) + 〈α, x〉
bounds f from above and is affine (hence concave).

ϕ1 ≥ ϕ3: It suffices that

g(x) ≥ inf
α

(
sup
x̂

(g(x̂)− 〈α, x̂〉) + 〈α, x〉
)

for any x and concave functional g. This is an immediate consequence of
the Hahn–Banach separation theorem (e.g. Theorem 1’ of [Las96]).

A few lemmas

We state a few lemmas useful for proving Gaussian extremality.

• Lemma 4.1 is a well-known property called double Markovity (cf. Problem
16.25 of [CK11]).

• Lemma 4.2 relies on the fact that the characteristic function of a Gaussian
random variable vanishes nowhere.

• Lemma 4.3 follows from a characterization of Gaussian random variables
given by Ghurye and Olkin [GO62], which was shown by solving a functional
equation, generalizing an earlier functional equation of Skitovich [Ski54],
satisfied by the characteristic functions.

• Lemma 4.4 is a form of the celebrated Prokhorov theorem in measure theory
which says that tight collections of distributions on Rd are weakly sequen-
tially compact.

• Lemma 4.5 establishes weak continuity of the entropy functional under ad-
ditive Gaussian noise.

• Lemma 4.6 establishes weak continuity of upper concave envelope of weakly
continuous functional, under a bounded moment condition.

• Lemma 4.4, 4.5 and 4.6 are used to justify the existence of optimizing dis-
tributions for a class of optimization problems involving information func-
tionals, through standard techniques in Appendix II of [GN14]: The covari-
ance constraints gives tightness of measures and hence Prokhorov’s theorem
(Lemma 4.4) guarantees the existence of a weakly convergent sequence of
distributions whose value of the objective functional tends to the maximum,
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and Lemma 4.5 and 4.6 can be applied for our objective functional to es-
tablish its weak continuity, implying the limiting distribution attains the
maximum. In particular, in our proof, the lemmas ensure the existence of
maximizer in Proposition 4.1 and 4.5 (iii).

Lemma 4.1 (Double Markovity). Let Q be a random variable and let X,Y,Z be
random variables in Rn such that for any q the conditional distribution p(x,y, z|q)
has everywhere non-zero density. Suppose

X→ (Y, Q)→ Z and Y → (X, Q)→ Z

form Markov chains. Then

(X,Y)→ Q→ Z

forms a Markov chain.

Proof. For any q,x,y, z, the given Markov chains imply

p(z|q,x) = p(z|q,x,y) = p(z|q,y)

and hence

p(z|q) = EX[p(z|q,X)|Q = q]

= EX[p(z|q,y)|Q = q]

= p(z|q,y)

= p(z|q,x,y)

as required.

Lemma 4.2 (Proposition 2 of [GN14]). Let X1,X2 be random variables in Rn

and Z1,Z2 be n-dimensional Gaussian random variables such that (X1,X2), Z1

and Z2 are mutually independent. Suppose X1 +Z1 and X2 +Z2 are independent.
Then X1 and X2 are independent.

Lemma 4.3 (Corollary 3 of [GN14]). Let X1,X2 be independent random variables
in Rn such that X1+X2 and X1−X2 are independent. Then X1,X2 are Gaussians
having the same covariance matrix.

Lemma 4.4 (Prokhorov’s, Theorem 4 of [GN14]). Let {Xn} be a sequence of
random variables in Rd (d ≥ 1). Suppose the sequence {Xn} is tight, i.e., for any
ε > 0 there exists a compact subset Kε of Rd such that P(Xn ∈ Kε) ≤ ε for any
n. Then {Xn} has a weakly convergent subsequence.
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Lemma 4.5 (Proposition 18 of [GN14]). Let {Xn} be a sequence of random
variables in Rd (d ≥ 1) converging weakly to X∗. Let Z ∼ N (0, I) be a d-
dimensional Gaussian random variable independent of each Xn and X∗. Suppose
there exists K � 0 such that E[X∗X∗T ] � K and E[XnX

T
n ] � K for all n. Then

(i) The distribution of Xn + Z weakly converges to that of X∗ + Z.

(ii) The density of Xn + Z converges pointwise to that of X∗ + Z.

(iii) h(Xn + Z) converges to h(X∗ + Z).

Lemma 4.6 (Proposition 21 of [GN14]). Let f be a real-valued functional defined
on the set of all Borel probability distributions on Rd (d ≥ 1). Suppose f is
bounded and has the following property, P: for any sequence of distributions {Xn}
converging weakly to X∗ and satisfying infκ>1 supn E[‖Xn‖κ] < ∞ we have that
f(Xn) converges to f(X∗). Then the upper concave envelope of f is also bounded
and has property P.

4.2 Conjecture 4.1 implies capacity region of GZIC

In this section we show Theorem 4.1, which constitutes a crucial step in the proof
of Proposition 4.3 which establishes that Conjecture 4.1 implies that for GZIC
the Han–Kobayashi achievable region with Gaussian inputs matches the capacity
region.

Theorem 4.1. Let λ ≥ 1 and N2 ≥ 0. The functional ψG defined by

ψG(K1, K2) :=
λ− 1

2
log |K2 +K1 + I +N2I|

+
1

2
log |K1 + I| − λ

2
log |K1 + I +N2I|, (4.2)

where K1, K2 � 0 are n× n matrices (n ≥ 1), satisfies

CK1

[
ψG(K1, K2)

]
= max

K̂1�0

K̂1�K1

ψG(K̂1, K2)

for any K1, K2 � 0.

Remark 4.1. For the scalar case Theorem 4.1 can be shown directly without
much effort by showing the following properties of the function ψG(Q1, Q2) for
scalar Q1, Q2 ≥ 0.

(i) Q1 7→ ψG(Q1, Q2) either is increasing on [0,+∞), is decreasing on [0,+∞),
or is increasing on [0, Q∗1) and decreasing on [Q∗1,+∞) for some Q∗1 > 0,
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(ii) ∂Q1ψG(Q1, Q2) ≥ 0 implies ∂2
Q1
ψG(Q1, Q2) ≤ 0,

(iii) limQ1→+∞ ψG(Q1, Q2) = 0.

However, for high-dimensional spaces it does not seem to admit a simple exten-
sion of the above argument especially since K1, K2 may not be simultaneously
diagonalizable. This necessitated us to come up with the different argument. This
technique adds to the list of linear algebra inequalities that have information-
theoretic proofs [DCT91].

Proof of Theorem 4.1. We first show the "≤" side. For independent random vari-
ables X1,X2 in Rn we denote

ψ(X1,X2) := (λ− 1)h(X2 + X1 + Z1 + Z2)

+ h(X1 + Z1)− λh(X1 + Z1 + Z2), (4.3)

where Z1 ∼ N (0, I) and Z2 ∼ N (0, N2I) are independent with (X1,X2). Notice
that when Xi ∼ N (0, Ki) for i = 1, 2 one has ψ(X1,X2) = ψG(K1, K2). Now fix
K2 � 0 and X2 ∼ N (0, K2), and we have

CK1

[
ψG(K1, K2)

] (a)
≤ max

p(x1)p(u1|x1)

E[X1XT
1 ]�K1

EU1 [ψ(X1|U1 ,X2)]

(b)
= max

K̂1�0

K̂1�K1

ψG(K̂1, K2)

for any K1 � 0, where (a) holds since the right-hand side is concave in K1 and
upper bounds ψG(K1, K2) (by taking U1 to be constant and X1 ∼ N (0, K1)), and
(b) follows from Proposition 4.1.

Now we show the "≥" side. Using the dual characterization of upper concave
envelope we get

CK1

[
ψG(K1, K2)

]
= inf

Σ1

Σ1=ΣT
1

(
sup
K̂1�0

(
ψG(K̂1, K2)− tr(Σ1K̂1)

)
+ tr(Σ1K1)

)

(a)
= inf

Σ1�0

(
sup
K̂1�0

(
ψG(K̂1, K2)− tr(Σ1K̂1)

)
+ tr(Σ1K1)

)
≥ sup

K̂1�0

inf
Σ1�0

(
ψG(K̂1, K2)− tr(Σ1K̂1) + tr(Σ1K1)

)
≥ max

K̂1�0

K̂1�K1

ψG(K̂1, K2)

for K1, K2 � 0, where (a) follows from the fact that

sup
K̂1�0

(
ψG(K̂1, K2)− tr(Σ1K̂1)

)
= +∞

for any symmetric Σ1 with Σ1 6� 0.
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Proposition 4.1. Let λ ≥ 1, let K1 � 0 be an n × n matrix and let X2,Z1,Z2

be independent Gaussian random variables in Rn (n ≥ 1). Then the maximum

max
p(x1)p(u1|x1)

E[X1XT
1 ]�K1

((λ− 1)h(X2 + X1 + Z1 + Z2|U1)

+ h(X1 + Z1|U1)− λh(X1 + Z1 + Z2|U1))

is attained by some zero-mean Gaussian X1 and constant random variable U1.

Proof. By the translation-invariance of entropy we can without loss of generality
assume X2,Z1,Z2 are zero-mean Gaussians. For any distribution p(x1) on Rn

denote

ψ(p(x1)) := (λ− 1)h(X2 + X1 + Z1 + Z2) + h(X1 + Z1)− λh(X1 + Z1 + Z2)

where X1 ∼ p(x1). Let p∗(x1, u1) be a maximizer (existence of which can be
justified using Lemma 4.4, 4.5 and 4.6 through techniques in Appendix II of
[GN14]) for

v := max
p(x1)p(u1|x1)

E[X1XT
1 ]�K1

EU1 [ψ(p(x1|U1))].

Assume without loss of generality that p∗(x1|u1) has mean zero, or otherwise re-
place X1 by X1 − E[X1|U1], which indeed satisfies the constraint. To prove our
proposition it suffices to show that p∗(x1|u1) is a Gaussian distribution with co-
variance matrix independent of choice of u1. We shall show this by a subadditivity
argument.

Define the random variables

(X∗11, U
∗
11,X

∗
12, U

∗
12) ∼ p∗(x∗11, u

∗
11)p∗(x∗12, u

∗
12),

as well as

X11 :=
X∗11 + X∗12√

2
, X12 :=

X∗11 −X∗12√
2

,

and U1 := (U∗11, U
∗
12). For i = 1, 2 denote

Y1i := X1i + Z1i,

Y2i := X1i + Z1i + Z2i,

Y3i := X1i + Z1i + Z2i + X2i,

where (X2i,Z1i,Z2i) are identically distributed with (X2,Z1,Z2). We have

2v = EU∗11
[ψ(p(x∗11|U∗11))] + EU∗12

[ψ(p(x∗12|U∗12))]
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= EU1 [ψ(p(x∗11|U1)) + ψ(p(x∗12|U1))]

(a)
= (λ− 1)h(Y31,Y32|U1) + h(Y11,Y12|U1)− λh(Y21,Y22|U1)

= (λ− 1)(h(Y31|Y32, U1) + h(Y32|Y11, U1) + I(Y11;Y32|U1))

+ (h(Y11|Y32, U1) + h(Y12|Y11, U1) + I(Y11;Y32|U1))

− λ(h(Y21|Y32, U1) + h(Y22|Y11, U1)

+ I(Y21;Y32|U1) + I(Y11;Y22|U1)− I(Y21;Y22|U1))

= E[ψ(p(x11|Y32, U1))] + E[ψ(p(x12|Y11, U1))]

+ λ(I(Y11;Y32|U1)− I(Y21;Y32|U1)− I(Y11;Y22|U1) + I(Y21;Y22|U1))

(b)
≤ 2v − λI(Y11;Y22|Y21,Y32, U1),

where (a) can be shown by rotational invariance of entropy, and (b) follows from

I(Y11;Y32|U1)− I(Y21;Y32|U1)− I(Y11;Y22|U1) + I(Y21;Y22|U1)

(c)
= I(Y11;Y32|U1)− I(Y21;Y32|U1)− I(Y11;Y22,Y32|U1) + I(Y21;Y22,Y32|U1)

= −I(Y11;Y22|Y32, U1) + I(Y21;Y22|Y32, U1)

(d)
= −I(Y11,Y21;Y22|Y32, U1) + I(Y21;Y22|Y32, U1)

= −I(Y11;Y22|Y21,Y32, U1),

where (c) holds since Y32 → (Y22, U1)→ Y11 and Y32 → (Y22, U1)→ Y21 form
Markov chains, and (d) holds since Y21 → (Y11,Y32, U1)→ Y22 forms a Markov
chain. Hence we have I(Y11;Y22|Y21,Y32, U1) = 0 and so

Y11 → (Y21,Y32, U1)→ Y22

forms a Markov chain. Since we also have the Markov chain

Y21 → (Y11,Y32, U1)→ Y22,

by Lemma 4.1 we obtain a Markov chain

(Y11,Y21)→ (Y32, U1)→ Y22.

Again we also have the Markov chain

(Y11,Y21)→ (Y22, U1)→ Y32,

and hence by Lemma 4.1 we obtain a Markov chain

(Y11,Y21)→ U1 → (Y22,Y32).

Lemma 4.2 yields the Markov chain X11 → U1 → X12. Hence for any u∗11, u
∗
12 we

have that X∗11|U∗11=u∗11
+X∗12|U∗12=u∗12

and X∗11|U∗11=u∗11
−X∗12|U∗12=u∗12

are independent,
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which, by Lemma 4.3, in turn implies that p(x∗11|u∗11) and p(x∗12|u∗12) are Gaussian
distributions having the same covariance matrix. Thus we can conclude that the
maximizing distribution (X1, U1) ∼ p∗(x1, u1) must satisfy

X1|U1=u1 ∼ N (µu1 , K̂1)

for some µu1 ∈ Rn and K̂1 � 0. Finally µu1 = 0 since p∗(x1|u1) is zero-mean.

It can be shown that for λ ≥ 1 and Q1, Q2 ≥ 0 we have

max
(R1,R2)∈RHK

n (Q1,Q2)
n(R1 + λR2) = CQ1,Q2

[
max

p(x1)p(x2)
E[‖X1‖2]≤nQ1

E[‖X2‖2]≤nQ2

fλ(X1,X2)
]
, (4.4)

max
(R1,R2)∈RHK-GS

n (Q1,Q2)
n(R1 + λR2) = CQ1,Q2

[
max

K1,K2�0
tr(K1)≤nQ1

tr(K2)≤nQ2

fGS
λ (K1, K2)

]
, (4.5)

where

fλ(X1,X2) := h(X2 + X1 + Z1 + Z2)− h(Z1) + CX1

[
ψ(X1,X2)

]
, (4.6)

fGS
λ (K1, K2) :=

1

2
log |K2 +K1 + I +N2I|+ max

K̂1�0

K̂1�K1

ψG(K̂1, K2), (4.7)

with ψ, ψG defined by (4.3), (4.2), respectively.
One of the main difficulties in making a Gaussian extremality conjecture di-

rectly for the expression in (4.6) is that previous work has shown that Gaussian
signaling with non-trivial Q (or power control) can improve on Gaussian signal-
ing with a constant Q. Hence, Conjecture 4.1 is obtained by utilizing a carefully
constructed dual functional.

As the reader will see the main difficulty in provingRHK
n (P1, P2) = RHK-GS

n (P1, P2)

is to establish the upper bound

CX1

[
ψ(X1,X2)

]
≤ max

K̂1�0

K̂1�K1

ψG(K̂1, K2)

with Ki = E[XiX
T
i ] (i = 1, 2). While Conjecture 4.1 implies

CX1

[
ψ(X1,X2)

]
≤ CK1

[
ψG(K1, K2)

]
as one can see in the proof of Proposition 4.3, there is still a missing link as it
is in general not true for all functionals φ that CK1 [φ(K1)] = max0�K̂1�K1

φ(K̂1).
However Theorem 4.1 says thatK1 7→ ψG(K1, K2) has such property, constituting
the key step towards Proposition 4.3.

Proposition 4.2. Let n ≥ 1. The following are equivalent:

39



(i) For any P1, P2 ≥ 0 it holds that

RHK
n (P1, P2) = RHK-GS

n (P1, P2).

(ii) For any λ ≥ 1 and α1, α2 ≥ 0 it holds that

sup
p(x1)p(x2)

(
fλ(X1,X2)− α1 E[‖X1‖2]− α2 E[‖X2‖2]

)
≤ sup

K1,K2�0

(
fGS
λ (K1, K2)− α1 tr(K1)− α2 tr(K2)

)
,

where X1,X2 are in Rn, K1, K2 are n×n matrices, and fλ, fGS
λ are defined

by (4.6), (4.7), respectively.

Proof. By (4.4) one has that for λ ≥ 1 and P1, P2 ≥ 0,

max
(R1,R2)∈RHK

n (P1,P2)
n(R1 + λR2)

= inf
α1,α2∈R

(
sup

Q1,Q2≥0, p(x1)p(x2)
E[‖X1‖2]≤nQ1

E[‖X2‖2]≤nQ2

(
fλ(X1,X2)− α1nQ1 − α2nQ2

)
+ α1nP1 + α2nP2

)

= inf
α1,α2≥0

(
sup

p(x1)p(x2)

(
fλ(X1,X2)− α1 E[‖X1‖2]− α2 E[‖X2‖2]

)
+ α1nP1 + α2nP2

)
,

and similarly by (4.5),

max
(R1,R2)∈RHK-GS

n (P1,P2)
n(R1 + λR2)

= inf
α1,α2≥0

(
sup

K1,K2�0

(
fGS
λ (K1, K2)− α1 tr(K1)− α2 tr(K2)

)
+ α1nP1 + α2nP2

)
.

Note that this already gives that (ii) implies (i). Now assuming (i) we have

sup
K1,K2�0

(
fGS
λ (K1, K2)− α1 tr(K1)− α2 tr(K2)

)
≥ max

(R1,R2)∈RHK-GS
n (P1,P2)

n(R1 + λR2)− α1nP1 − α2nP2

≥ max
p(x1)p(x2)

E[‖X1‖2]≤nP1

E[‖X2‖2]≤nP2

fλ(X1,X2)− α1nP1 − α2nP2

for any λ ≥ 1, P1, P2 ≥ 0 and α1, α2 ≥ 0. Finally, taking supremum over
P1, P2 ≥ 0 on the last step gives (ii).

Proposition 4.3. Conjecture 4.1 implies that

RHK
n (P1, P2) = RHK-GS

n (P1, P2)

for any n ≥ 1 and P1, P2 ≥ 0.
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Proof. We shall prove the proposition by showing that Conjecture 4.1 implies (ii)
of Proposition 4.2.

Conjecture 4.1 implies that for any Σ1, A2 � 0 we have

sup
p(x1)p(x2)

E[X2XT
2 ]�A2

(
ψ(X1,X2)− tr(Σ1 E[X1X

T
1 ])
)

= sup
K1,K2�0, µ1,µ2∈Rn

K2+µ2µT2 �A2

(
ψG(K1, K2)− tr(Σ1K1)− µT1 Σ1µ1

)
= sup

K1,K2�0
K2�A2

(
ψG(K1, K2)− tr(Σ1K1)

)
= sup

K1�0

(
ψG(K1, A2)− tr(Σ1K1)

)
, (4.8)

where the last equality is a consequence of the monotonicity of ψG(K1, K2) in K2.
Then for any p(x1)p(x2) it holds that

CX1

[
ψ(X1,X2)

]
(a)
≤ inf

Σ1�0

(
sup
p(x̂1)

(
ψ(X̂1,X2)− E[X̂T

1 Σ1X̂1]
)

+ E[XT
1 Σ1X1]

)
≤ inf

Σ1�0

(
sup

p(x̂1)p(x̂2)

E[X̂2X̂T
2 ]�E[X2XT

2 ]

(
ψ(X̂1, X̂2)− tr(Σ1 E[X̂1X̂

T
1 ])
)

+ tr(Σ1 E[X1X
T
1 ])
)

(b)
= inf

Σ1�0

(
sup
K1�0

(
ψG(K1,E[X2X

T
2 ])− tr(Σ1K1)

)
+ tr(Σ1 E[X1X

T
1 ])
)

(c)
= inf

Σ1

Σ1=ΣT
1

(
sup
K1�0

(
ψG(K1,E[X2X

T
2 ])− tr(Σ1K1)

)
+ tr(Σ1 E[X1X

T
1 ])
)

(d)
= CK1

[
ψG(K1,E[X2X

T
2 ])
]∣∣∣
K1=E[X1XT

1 ]
,

where (a) holds since the right-hand side is a concave functional in p(x) that upper
bounds ψ(X1,X2), (b) follows from (4.8), (c) holds since the inner supremum
equals +∞ for any symmetric Σ1 with Σ1 6� 0, and (d) is the dual characterization
of upper concave envelope. Now note also that for any p(x1)p(x2),

h(X2 + X1 + Z1 + Z2)− h(Z1) ≤ 1

2
log |E[X2X

T
2 ] + E[X1X

T
1 ] + I +N2I|

and hence for any λ ≥ 1 and α1, α2 ≥ 0 we have

sup
p(x1)p(x2)

(
fλ(X1,X2)− α1 E[‖X1‖2]− α2 E[‖X2‖2]

)
≤ sup

K1,K2�0

(1

2
log |K2 +K1 + I +N2I|+ CK1

[
ψG(K1, K2)

]
− α1 tr(K1)− α2 tr(K2)

)
(e)
= sup

K1,K2�0

(
fGS
λ (K1, K2)− α1 tr(K1)− α2 tr(K2)

)
as required, where (e) follows from (4.7) and Theorem 4.1.
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4.3 Proof of Conjecture 4.1 in some regimes

In this section we present a proof of the following Theorem 4.2 which is an infor-
mation inequality that implies Conjecture 4.1 for some choices of parameters.

Theorem 4.2. Let X1,X2,Z1,Z2 be mutually independent random variables in
Rn (n ≥ 1) with Z1 ∼ N (0, N1I) and Z2 ∼ N (0, N2I), where N1, N2 > 0.
Suppose

E[X1] = E[X2] = 0,

E[‖X1‖2], E[‖X2‖2] <∞.

Then for any λ ≥ λ1, where

λ1 := 1 +
N2

N1

1(
1−

√
N1+N2

1
n

E[‖X2‖2]+N1+N2

)2 ,

we have

(λ− 1)h(X2 + X1 + Z1 + Z2) + h(X1 + Z1)− λh(X1 + Z1 + Z2)

≤ n

2

(
(λ− 1) log

(
1

n
E[‖X2‖2] +N1 +N2

)
+ logN1 − λ log(N1 +N2)

)
. (4.9)

Remark 4.2. The following points are worth noting:

(i) The inequality is tight when X1 = 0 and X2 ∼ N (0, P2I), for any P2 ≥ 0.
Hence it establishes Conjecture 4.1 for λ ≥ λ1, A2 = P2I and any choice of
Σ1 � 0.

(ii) The inequality does not hold for

λ < 1 +
N2

N1

1(
1 + N1+N2

1
n

E[‖X2‖2]

) .
This can be seen by setting X2 ∼ N (0, P2I) and X1 = εI, and taking
derivative of the left-hand side of the inequality with respect to ε at ε = 0.

(iii) The inequality implies an outer bound to the slope of capacity region of GZIC
around the Costa–Polyanskiy–Wu corner point, as shown in Proposition 4.4.

Proposition 4.4. For a GZIC, for any λ ≥ λ2, where

λ2 := 1 +
(1 + P2)(1− a2)

a2P2

(1 +
√

1 + P2)2

P2

,

we have

sup
(R1,R2)∈C

(R1 + λR2) =
1

2
log

(
1 +

a2P1

1 + P2

)
+
λ

2
log(1 + P2),

where C denotes the capacity region.
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Proof. We consider an equivalent formulation (4.1) of the GZIC. From Fano’s
inequality, any sequence of codebooks of rate (R1, R2), whose average probability
of error goes to zero, must satisfy

R1 + λR2 − εn

≤ 1

n
(I(Xn

1 ;Y n
1 ) + λI(Xn

2 ;Y n
2 ))

=
1

n
(h(Y n

2 )− h(Y n
1 |Xn

1 ) + (λ− 1)h(Y n
2 ) + h(Y n

1 )− λh(Y n
2 |Xn

2 ))

=
1

n
(h(Xn

2 +Xn
1 + Zn

1 + Zn
2 )− h(Zn

1 )

+ (λ− 1)h(Xn
2 +Xn

1 + Zn
1 + Zn

2 ) + h(Xn
1 + Zn

1 )− λh(Xn
1 + Zn

1 + Zn
2 ))

(a)
≤ 1

2

(
log

(
P2

a2
+ P1 +

1

a2

)
+ (λ− 1) log

(
P2

a2
+

1

a2

)
− λ log

(
1

a2

))
=

1

2
log

(
1 +

a2P1

1 + P2

)
+
λ

2
log(1 + P2),

where εn → 0, (a) follows from upper bounding h(Xn
2 +Xn

1 + Zn
1 + Zn

2 ) with the
value of a Gaussian with the same power, and the latter terms using Theorem
4.2, where we use λ ≥ λ2.

Outline of the proof of Theorem 4.2

The proof of Theorem 4.2 follows the following steps.

(i) We upper bound the left-hand side of (4.9) by a functional Θλ,α obtained
by a relaxation of the optimization problem.

(ii) We show that Θλ,α has Gaussian maximizers under certain covariance con-
straints. The proof employs the doubling technique developed by [GN14].
Instead of showing Gaussian optimality of Θλ,α directly, we show that for
a perturbed functional Θ

(ε,δ)
λ,α , which possesses a strict subadditive property

as demonstrated in Lemma 4.7, giving the desired Markov chains for estab-
lishing Gaussian optimality. The Gaussian optimality of the unperturbed
functional Θλ,α then follows from uniform convergence as shown in Lemma
4.8.

Apart from Gaussian optimality, the doubling argument also gives the fol-
lowings:

• Θλ,α is additive at the Gaussian maximizer, as shown in Proposition
4.5 (i).

• The maximum value of Θλ,α is concave in the power constraints, as
shown in Proposition 4.5 (ii).
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These properties are essential in the further reduction of the maximum
value of Θλ,α.

(iii) We optimize Θλ,α(X1,X2) over Gaussian distributions to show that, for
large enough λ, the maximizer in given byX2 being Gaussian with full power
and X1 being constant. Further for this choice the value of Θλ,α(X1,X2)

matches the left-hand side of (4.9).

At the end of the section we state all the lemmas required for the proof of
Theorem 4.2.

Notation

Throughout the proof of Theorem 4.2 we shall use the following notations un-
less otherwise specified. Let X1i, X2i (i = 1, . . . , n) be random variables in Rd

(d ≥ 1) and let V,W be random variables in arbitrary alphabet sets. The joint
distribution of (Xn

1 ,X
n
2 , V,W ) is arbitrary. For i = 1, . . . , n, let

Y1i := X1i + Z1i,

T2i := X2i + Z1i + Z2i,

Y2i := X2i + X1i + Z1i + Z2i = T2i + X1i,

where Z1i ∼ N (0, N1I) and Z2i ∼ N (0, N2I) are Gaussian random variables in
Rd mutually independent of each other and of (Xn

1 ,X
n
2 , V,W ). For any λ ≥ 1

and 0 ≤ α ≤ 1, on the set of distributions p(xn1 )p(xn2 ) define the functional

Θλ,α(Xn
1 ,X

n
2 ) := sup

p(v,w|xn
1 ,x

n
2 )

Xn
1→(V,W )→Xn

2
W→V→Xn

2
Xn

1⊥(V,Xn
2 )

θλ,α(Xn
1 ,X

n
2 |V,W ),

where

θλ,α(Xn
1 ,X

n
2 |V,W )

:= (λ− 1)α · I(Xn
2 ;Tn

2 |V ) + (λ− 1)(1− α) · (h(Yn
2 |W )− h(Yn

1 |W ))

+ (1 + (λ− 1)(1− α)) · (h(Yn
1 |Xn

2 ,W )− h(Yn
2 |Xn

2 ,W )) ,

and its perturbed version, for ε, δ ∈ R,

Θ
(ε,δ)
λ,α (Xn

1 ,X
n
2 ) := sup

p(v,w|xn
1 ,x

n
2 )

Xn
1→(V,W )→Xn

2
W→V→Xn

2
Xn

1⊥(V,Xn
2 )

θ
(ε,δ)
λ,α (Xn

1 ,X
n
2 |V,W ),

where

θ
(ε,δ)
λ,α (Xn

1 ,X
n
2 |V,W )
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:= (λ− 1)α · I(Xn
2 ; (T̃

(δ)
2 )n|V ) + (λ− 1)(1− α) ·

(
h((Ỹ

(δ)
2 )n|W )− h(Yn

1 |W )
)

+ (1 + (λ− 1)(1− α)) ·
(
h(Yn

1 |Xn
2 ,W )− h((Ỹ

(δ)
2 )n|Xn

2 ,W )
)

− ε
(
I(Xn

2 ; (T̃
(δ)
2 )n + Gn|V ) + h(Yn

1 |W ) + h(Yn
1 |V,W )

)
,

whereGi’s are independent Gaussian random variables of suitable dimension with
identity covariance matrix, and the perturbed variables are defined by

T̃
(δ)
2i :=

(
0 I

0 δI

)(
X1i

X2i

)
+

(
Z1i

Ẑ1i

)
+

(
Z2i

Ẑ2i

)
,

Ỹ
(δ)
2i :=

(
I I

0 δI

)(
X1i

X2i

)
+

(
Z1i

Ẑ1i

)
+

(
Z2i

Ẑ2i

)
,

where Ẑ1i ∼ N (0, N1I) and Ẑ2i ∼ N (0, N2I) are Gaussian random variables in
Rd mutually independent of each other and of (Zn1 ,Z

n
2 ,X

n
1 ,X

n
2 , V,W ).

Note that for ε = δ = 0 the functionals θ(ε,δ)
λ,α and θλ,α differ by only a constant

θ
(0,0)
λ,α (Xn

1 ,X
n
2 |V,W ) = θλ,α(Xn

1 ,X
n
2 |V,W )− h(Ẑn1 + Ẑn2 ).

Thus θ(ε,δ)
λ,α can be viewed as a perburbation of θλ,α via both ε and δ.

Proof of Theorem 4.2

Lemma 4.7. Let ε, δ ∈ R, λ ≥ 1 and 0 ≤ α ≤ 1. Fix any distribution
p(xn1 ,x

n
2 , v, w). Define the random variables

Vi := (V, (T̃
(δ)
2 )i−1), (4.10a)

Wi := (W,Yn
1(i+1), (Ỹ

(δ)
2 )i−1), (4.10b)

for i = 1, . . . , n. Then we have the followings:

(i) It holds that

θ
(ε,δ)
λ,α (Xn

1 ,X
n
2 |V,W )

=
n∑
i=1

θ
(ε,δ)
λ,α (X1i,X2i|Vi,Wi)−

n∑
i=1

(
(1 + (λ− 1)(1− α))I(Y1i;X

n\i
2 |X2i, Ỹ

(δ)
2i ,Wi)

+ εI((T̃
(δ)
2 )i−1; T̃

(δ)
2i + Gi|(T̃(δ)

2 )i−1 + Gi−1, V )

+ εI((Ỹ
(δ)
2 )i−1;Y1i|Yn

1(i+1),W ) + εI((T̃
(δ)
2 )i−1, (Ỹ

(δ)
2 )i−1;Y1i|Yn

1(i+1), V,W )
)
.

(ii) Suppose Xn
1 → (V,W )→ Xn

2 and W → V → Xn
2 form Markov chains and

Xn
1 ⊥ (V,Xn

2 ). Then X1i → (Vi,Wi) → X2i and Wi → Vi → X2i form
Markov chains and X1i ⊥ (Vi,X2i) for i = 1, . . . , n.
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Proof of Lemma 4.7 (i). The proof follows from putting the following calcula-
tions together, with (?) denoting application of chain rule and (]) denoting ap-
plication of Csiszár’s sum identity.

(i) We have

I(Xn
2 ; (T̃

(δ)
2 )n|V )

(?)
=

n∑
i=1

I(Xn
2 ; T̃

(δ)
2i |(T̃

(δ)
2 )i−1, V )

(a)
=

n∑
i=1

I(X2i; T̃
(δ)
2i |(T̃

(δ)
2 )i−1, V )

=
n∑
i=1

I(X2i; T̃
(δ)
2i |Vi),

where (a) holds since

X
n\i
2 → (X2i, (T̃

(δ)
2 )i−1, V )→ T̃

(δ)
2i

forms a Markov chain.

(ii) We have

h((Ỹ
(δ)
2 )n|W )− h(Yn

1 |W )

(?)
=

n∑
i=1

(
h(Ỹ

(δ)
2i |(Ỹ

(δ)
2 )i−1,W )− h(Y1i|Yn

1(i+1),W )
)

(])
=

n∑
i=1

(
h(Ỹ

(δ)
2i |(Ỹ

(δ)
2 )i−1,W )− h(Y1i|Yn

1(i+1),W )

+ I((Ỹ
(δ)
2 )i−1;Y1i|Yn

1(i+1),W )− I(Yn
1(i+1); Ỹ

(δ)
2i |(Ỹ

(δ)
2 )i−1,W )

)
(?)
=

n∑
i=1

(
h(Ỹ

(δ)
2i |Yn

1(i+1), (Ỹ
(δ)
2 )i−1,W )− h(Y1i|Yn

1(i+1), (Ỹ
(δ)
2 )i−1,W )

)
=

n∑
i=1

(
h(Ỹ

(δ)
2i |Wi)− h(Y1i|Wi)

)
.

(iii) We have

h(Yn
1 |Xn

2 ,W )− h((Ỹ
(δ)
2 )n|Xn

2 ,W )

(?)
=

n∑
i=1

(
h(Y1i|Xn

2 ,Y
n
1(i+1),W )− h(Ỹ

(δ)
2i |Xn

2 , (Ỹ
(δ)
2 )i−1,W )

)
(])
=

n∑
i=1

(
h(Y1i|Xn

2 ,Y
n
1(i+1),W )− h(Ỹ

(δ)
2i |Xn

2 , (Ỹ
(δ)
2 )i−1,W )

+ I(Yn
1(i+1); Ỹ

(δ)
2i |Xn

2 , (Ỹ
(δ)
2 )i−1,W )− I((Ỹ

(δ)
2 )i−1;Y1i|Xn

2 ,Y
n
1(i+1),W )

)
(?)
=

n∑
i=1

(
h(Y1i|Xn

2 ,Y
n
1(i+1), (Ỹ

(δ)
2 )i−1,W )− h(Ỹ

(δ)
2i |Xn

2 ,Y
n
1(i+1), (Ỹ

(δ)
2 )i−1,W )

)
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=
n∑
i=1

(
h(Y1i|Xn

2 ,Wi)− h(Ỹ
(δ)
2i |Xn

2 ,Wi)
)

(?)
=

n∑
i=1

(
h(Y1i|X2i,Wi)− h(Ỹ

(δ)
2i |X2i,Wi)

+ I(Ỹ
(δ)
2i ;X

n\i
2 |X2i,Wi)− I(Y1i;X

n\i
2 |X2i,Wi)

)
(a)
=

n∑
i=1

(
h(Y1i|X2i,Wi)− h(Ỹ

(δ)
2i |X2i,Wi)

+ I(Ỹ
(δ)
2i ;X

n\i
2 |X2i,Wi)− I(Y1i, Ỹ

(δ)
2i ;X

n\i
2 |X2i,Wi)

)
(?)
=

n∑
i=1

(
h(Y1i|X2i,Wi)− h(Ỹ

(δ)
2i |X2i,Wi)

)
−

n∑
i=1

I(Y1i;X
n\i
2 |X2i, Ỹ

(δ)
2i ,Wi),

where (a) holds since

Ỹ
(δ)
2i → (Y1i,X2i,Wi)→ X

n\i
2

forms a Markov chain.

(iv) Denoting S2i := T̃
(δ)
2i + Gi we have

I(Xn
2 ; (T̃

(δ)
2 )n + Gn|V )

= I(Xn
2 ;Sn2 |V )

(?)
=

n∑
i=1

I(Xn
2 ;S2i|Si−1

2 , V )

(a)
=

n∑
i=1

I(X2i;S2i|Si−1
2 , V )

(?)
=

n∑
i=1

(
I(X2i,S

i−1
2 ;S2i|V )− I(Si−1

2 ;S2i|V )
)

(b)
=

n∑
i=1

(
I(X2i, (T̃

(δ)
2 )i−1;S2i|V )− I(Si−1

2 ;S2i|V )
)

(?)
=

n∑
i=1

(
I(X2i;S2i|(T̃(δ)

2 )i−1, V ) + I((T̃
(δ)
2 )i−1;S2i|V )− I(Si−1

2 ;S2i|V )
)

(c)
=

n∑
i=1

(
I(X2i;S2i|(T̃(δ)

2 )i−1, V ) + I((T̃
(δ)
2 )i−1,Si−1

2 ;S2i|V )− I(Si−1
2 ;S2i|V )

)
(?)
=

n∑
i=1

(
I(X2i;S2i|(T̃(δ)

2 )i−1, V ) + I((T̃
(δ)
2 )i−1;S2i|Si−1

2 , V )
)

=
n∑
i=1

I(X2i; T̃
(δ)
2i + Gi|Vi) +

n∑
i=1

I((T̃
(δ)
2 )i−1; T̃

(δ)
2i + Gi|(T̃(δ)

2 )i−1 + Gi−1, V ),

where (a) holds since

X
n\i
2 → (X2i,S

i−1
2 , V )→ S2i
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forms a Markov chain, (b) holds since

((T̃
(δ)
2 )i−1,Si−1

2 )→ (X2i, V )→ S2i

forms a Markov chain, (c) holds since

Si−1
2 → ((T̃

(δ)
2 )i−1, V )→ S2i

forms a Markov chain.

(v) We have

h(Yn
1 |W )

(?)
=

n∑
i=1

h(Y1i|Yn
1(i+1),W )

(?)
=

n∑
i=1

(
h(Y1i|Yn

1(i+1), (Ỹ
(δ)
2 )i−1,W ) + I((Ỹ

(δ)
2 )i−1;Y1i|Yn

1(i+1),W )
)

=
n∑
i=1

h(Y1i|Wi) +
n∑
i=1

I((Ỹ
(δ)
2 )i−1;Y1i|Yn

1(i+1),W ).

(vi) We have

h(Yn
1 |V,W )

(?)
=

n∑
i=1

h(Y1i|Yn
1(i+1), V,W )

(?)
=

n∑
i=1

(
h(Y1i|Yn

1(i+1), (Ỹ
(δ)
2 )i−1, (T̃

(δ)
2 )i−1, V,W )

+ I((T̃
(δ)
2 )i−1, (Ỹ

(δ)
2 )i−1;Y1i|Yn

1(i+1), V,W )
)

=
n∑
i=1

h(Y1i|Vi,Wi) +
n∑
i=1

I((T̃
(δ)
2 )i−1, (Ỹ

(δ)
2 )i−1;Y1i|Yn

1(i+1), V,W ).

Proof of Lemma 4.7 (ii). The Markov chain

Xn
1 → (V,W )→ Xn

2

implies

(X1i,Y
n
1(i+1),X

i−1
1 )→ (V,W )→ (X2i, (T̃

(δ)
2 )i−1)

which in turn implies

X1i → (V,W,Yn
1(i+1),X

i−1
1 , (T̃

(δ)
2 )i−1)→ X2i
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which, since Ỹ
(δ)
2i = T̃

(δ)
2i +

(
X1i

0

)
, is the same as

X1i → (V,W,Yn
1(i+1), (Ỹ

(δ)
2 )i−1, (T̃

(δ)
2 )i−1)→ X2i

or equivalently

X1i → (Vi,Wi)→ X2i.

Moreover, from both of the Markov chains in the assumption we have a Markov
chain

(W,Xn
1 )→ V → Xn

2

which implies

(W,Yn
1(i+1),X

i−1
1 )→ V → (X2i, (T̃

(δ)
2 )i−1)

which in turn implies

(W,Yn
1(i+1),X

i−1
1 )→ (V, (T̃

(δ)
2 )i−1)→ X2i

which, since Ỹ
(δ)
2i = T̃

(δ)
2i +

(
X1i

0

)
, is the same as

(W,Yn
1(i+1), (Ỹ

(δ)
2 )i−1)→ (V, (T̃

(δ)
2 )i−1)→ X2i

or equivalently

Wi → Vi → X2i.

Finally, X1i ⊥ (Vi,X2i) is immediate from Xn
1 ⊥ (V,Xn

2 ).

Lemma 4.8. Let λ ≥ 1 and 0 ≤ α ≤ 1. Let n ≥ 1. Let D be any set of
distributions p(xn1 )p(xn2 ) such that E[‖Xn

1‖2] and E[‖Xn
2‖2] are bounded. Then

lim
(ε,δ)→(0,0)

sup
p(xn

1 )p(xn
2 )∈D

Θ
(ε,δ)
λ,α (Xn

1 ,X
n
2 ) = sup

p(xn
1 )p(xn

2 )∈D
Θ

(0,0)
λ,α (Xn

1 ,X
n
2 ).

Proof. By applying Lemma 4.9 one can show, after some computations, that

sup
p(xn

1 ,x
n
2 ,v,w)

p(xn
1 ,x

n
2 )∈D

Xn
1→(V,W )→Xn

2
W→V→Xn

2
Xn

1⊥(V,Xn
2 )

∣∣∣θ(ε,δ)
λ,α (Xn

1 ,X
n
2 |V,W )− θλ,α(Xn

1 ,X
n
2 |V,W )

∣∣∣ = O(|ε|+ δ2).

The result then follows from Lemma 4.10.
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Proposition 4.5. Let λ ≥ 1 and 0 ≤ α ≤ 1. Let K1i,K2i (i = 1, . . . , n) be sets
of d× d matrices (d ≥ 1). Denote

v
(n)
(K11,K21),...,(K1n,K2n) := sup

p(xn
1 )p(xn

2 )
E[Xn

1 ]=E[Xn
2 ]=0

Cov(X1i)∈K1i,Cov(X2i)∈K2i

Θ
(ε,δ)
λ,α (Xn

1 ,X
n
2 ).

Then we have the followings:

(i) Let ε ≥ 0 and δ ∈ R. Then

n∑
i=1

v
(1)
(K1i,K2i)

= v
(n)
(K11,K21),...,(K1n,K2n).

(ii) Let ε ≥ 0 and δ ∈ R. For any 0 ≤ t ≤ 1 we have

v
(1)
(K11,K21) + v

(1)
(K12,K22) ≤ v

(1)

(Kt
11,Kt

21)
+ v

(1)

(Kt
12,Kt

22)
,

where the sets of d× d matrices Kt11,Kt21,Kt12,Kt22 are defined by

Kt11 := tK11 + (1− t)K12, Kt21 := tK21 + (1− t)K22,

Kt12 := (1− t)K11 + tK12, Kt22 := (1− t)K21 + tK22.

(iii) Let ε > 0 and δ 6= 0, or let ε = δ = 0. Suppose K1,K2 are compact
convex sets of d×d matrices. Then there exists a maximizer p∗(x1,x2, v, w)

for v(1)
(K1,K2) such that p∗(x1|w), p∗(x1|v, w) and p∗(x2|v) are Gaussians with

covariance matrices independent of choice of v and w.

Proof of Proposition 4.5 (i). We shall first show

n∑
i=1

v
(1)
(K1i,K2i)

≤ v
(n)
(K11,K21),...,(K1n,K2n).

Suppose (X∗1i,X
∗
2i, V

∗
i ,W

∗
i ) are random variables satisfying the constraints of

v
(1)
(K1i,K2i)

, and are mutually independent among i = 1, . . . , n. Then the random
variables defined by

(Xn
1 ,X

n
2 , V,W ) := ((X∗1)n, (X∗2)n, (V ∗)n, (W ∗)n)

satisfy the constraints of v(n)
(K11,K21),...,(K1n,K2n), as well as

n∑
i=1

θ
(ε,δ)
λ,α (X∗1i,X

∗
2i|V ∗i ,W ∗

i )
(a)
= θ

(ε,δ)
λ,α (Xn

1 ,X
n
2 |V,W ) ≤ v

(n)
(K11,K21),...,(K1n,K2n),

where (a) follows from the additivity of entropy for independent random variables.
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Now we show
n∑
i=1

v
(1)
(K1i,K2i)

≥ v
(n)
(K11,K21),...,(K1n,K2n).

Suppose (Xn
1 ,X

n
2 , V,W ) are random variables satisfying the constraints of v(n)

(K11,K21),...,(K1n,K2n).
Then

θ
(ε,δ)
λ,α (Xn

1 ,X
n
2 |V,W )

(a)
≤

n∑
i=1

θ
(ε,δ)
λ,α (X1i,X2i|Vi,Wi)

(b)
≤

n∑
i=1

v
(1)
(K1i,K2i)

,

where Vi,Wi are defined by (4.10), (a) follows from Lemma 4.7 (i) and we have
used ε ≥ 0, and (b) holds since (X1i,X2i, Vi,Wi) satisfies the constraints of
v

(1)
(K1i,K2i)

, as a result of Lemma 4.7 (ii).

Proof of Proposition 4.5 (ii). Suppose (X∗1i,X
∗
2i, V

∗
i ,W

∗
i ) are random variables

satisfying the constraints of v(1)
(K1i,K2i)

, and are independent among i = 1, 2. Let

(V,W ) := ((V ∗1 , V
∗

2 ), (W ∗
1 ,W

∗
2 )), (4.11a)(

X11

X12

)
:=

( √
tI

√
1− tI

−
√

1− tI
√
tI

)(
X∗11

X∗12

)
, (4.11b)(

X21

X22

)
:=

( √
tI

√
1− tI

−
√

1− tI
√
tI

)(
X∗21

X∗22

)
. (4.11c)

It is immediate that the distribution of ((X11,X12), (X21,X22), V,W ) satisfies
the assumption in Lemma 4.7 (ii) and hence the distribution of (X1i,X2i, Vi,Wi),
where Vi,Wi are defined by (4.10), satisfies the constraints of v(1)

(Kt
1i,Kt

2i)
. Now we

have

θ
(ε,δ)
λ,α (X∗11,X

∗
21|V ∗1 ,W ∗

1 ) + θ
(ε,δ)
λ,α (X∗12,X

∗
22|V ∗2 ,W ∗

2 )

(a)
= θ

(ε,δ)
λ,α ((X∗11,X

∗
12), (X∗21,X

∗
22)|V,W )

(b)
= θ

(ε,δ)
λ,α ((X11,X12), (X21,X22)|V,W )

(c)
= θ

(ε,δ)
λ,α (X11,X21|V1,W1)︸ ︷︷ ︸

≤v(1)
(Kt

11,K
t
21)

+ θ
(ε,δ)
λ,α (X12,X22|V2,W2)︸ ︷︷ ︸

≤v(1)
(Kt

12,K
t
22)

− (1 + (λ− 1)(1− α)) · I(Y11;X22|X21, Ỹ
(δ)
21 ,W1)

− (1 + (λ− 1)(1− α)) · I(Y12;X21|X22, Ỹ
(δ)
22 ,W2)

− εI(T̃
(δ)
21 ; T̃

(δ)
22 + G2|T̃(δ)

21 + G1, V )− εI(Ỹ
(δ)
21 ;Y12|W )

− εI(T̃
(δ)
21 , Ỹ

(δ)
21 ;Y12|V,W )

≤ v
(1)

(Kt
11,Kt

21)
+ v

(1)

(Kt
12,Kt

22)
, (4.12)

where (a) follows from the additivity of entropy for independent random variables,
(b) follows from rotational invariance of entropy, and (c) is established by Lemma
4.7 (i).
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Proof of Proposition 4.5 (iii). The existence of maximizer can be justified using
Lemma 4.4, 4.5 and 4.6 through standard techniques in Appendix II of [GN14].

Now consider ε > 0 and δ 6= 0. The proof follows the same lines of reason-
ing in the proof of Proposition 4.5 (ii), with the choice K1i = K1 and K2i =

K2, from which we have Kt1i = K1 and Kt2i = K2 for any choice of t, since
K1,K2 are convex sets. Take two independent copies (X∗11,X

∗
21, V

∗
1 ,W

∗
1 ) and

(X∗12,X
∗
22, V

∗
2 ,W

∗
2 ) of a maximizer p∗(x1,x2, v, w) for v(1)

(K1,K2). With t = 1
2
define

((X11,X12), (X21,X22), V,W ) as in (4.11). Following the steps in (4.12) we have

2v
(1)
(K1,K2) = θ

(ε,δ)
λ,α (X∗11,X

∗
21|V ∗1 ,W ∗

1 ) + θ
(ε,δ)
λ,α (X∗12,X

∗
22|V ∗2 ,W ∗

2 )

= θ
(ε,δ)
λ,α (X11,X21|V1,W1)︸ ︷︷ ︸

≤v(1)
(K1,K2)

+ θ
(ε,δ)
λ,α (X12,X22|V2,W2)︸ ︷︷ ︸

≤v(1)
(K1,K2)

− (1 + (λ− 1)(1− α)) · I(Y11;X22|X21, Ỹ
(δ)
21 ,W1)

− (1 + (λ− 1)(1− α)) · I(Y12;X21|X22, Ỹ
(δ)
22 ,W2)

− εI(T̃
(δ)
21 ; T̃

(δ)
22 + G2|T̃(δ)

21 + G1, V )− εI(Ỹ
(δ)
21 ;Y12|W )

− εI(T̃
(δ)
21 , Ỹ

(δ)
21 ;Y12|V,W )

≤ 2v
(1)
(K1,K2).

Non-negativity of mutual information forces the Markov chains

T̃
(δ)
21 → (T̃

(δ)
21 + G1, V )→ T̃

(δ)
22 + G2, (4.13)

Ỹ
(δ)
21 → W → Y12, (4.14)

(T̃
(δ)
21 , Ỹ

(δ)
21 )→ (V,W )→ Y12, (4.15)

where (4.13) together with the Markov chain

T̃
(δ)
21 + G1 → (T̃

(δ)
21 , V )→ T̃

(δ)
22 + G2

implies by double Markovity (Lemma 4.1) that

(T̃
(δ)
21 , T̃

(δ)
21 + G1)→ V → T̃

(δ)
22 + G2 (4.16)

forms a Markov chain. Using the fact that δ 6= 0, applying Lemma 4.2 to (4.16),
(4.14), (4.15), respectively, gives the Markov chains

X21 → V → X22,

X11 → W → X12,

X11 → (V,W )→ X12,

which, by Lemma 4.3, imply that for any v∗1, v∗2, w∗1, w∗2 each of the pairs of con-
ditional distributions

(X∗21|V ∗1 =v∗1
,X∗22|V ∗2 =v∗2

),
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(X∗11|W ∗1 =w∗1
,X∗12|W ∗2 =w∗2

),

(X∗11|V ∗1 =v∗1 ,W
∗
1 =w∗1

,X∗12|V ∗2 =v∗2 ,W
∗
2 =w∗2

)

consists of Gaussians with the same covariance matrix. Since v∗1, v∗2, w∗1, w∗2 are
arbitrary, we can conclude that p∗(x1|w), p∗(x1|v, w) and p∗(x2|v) are Gaussians
with covariance matrices independent of choice of v and w.

Finally we show the case ε = δ = 0. Let ṽ(1)
(K1,K2) be defined in the same

way as v(1)
(K1,K2) but with the additional constraint that p(xn1 |w), p(xn1 |v, w) and

p(xn2 |v) are Gaussians with covariance matrices independent of choice of v and
w. Then we have ṽ(1)

(K1,K2) = v
(1)
(K1,K2) for ε > 0 and δ 6= 0. One can take the limit

(ε, δ)→ (0, 0) and apply Lemma 4.8 to get the result.

Proposition 4.6. Let λ ≥ 1 and 0 ≤ α ≤ 1. Let K1,K2 be compact convex sets
of d× d matrices (d ≥ 1). Then

sup
p(x1)p(x2)

E[X1]=E[X2]=0
Cov(X1)∈K1,Cov(X2)∈K2

Θλ,α(X1,X2) = sup
A2,B1,B2,C1,C2,Σ∈Rd×d

A2,

(
B1 Σ
ΣT B2

)
,

(
C1 −Σ
−ΣT C2

)
�0

B1+C1∈K1, A2+B2+C2∈K2

gλ,α(A2, B1, B2,Σ),

(4.17)

where

gλ,α(A2, B1, B2,Σ)

:=
1

2

(
(λ− 1)α (log |A2 +N1I +N2I| − log |N1I +N2I|)

+ (λ− 1)(1− α)
(

log |B1 +B2 + Σ + ΣT + A2 +N1I +N2I|

− log |B1 +N1I|
)

+ (1 + (λ− 1)(1− α))
(

log |B1 − Σ(A2 +B2)−1ΣT +N1I|

− log |B1 − Σ(A2 +B2)−1ΣT +N1I +N2I|
))

. (4.18)

Proof. Denote the left-hand side and right-hand side of (4.17) by vL and vR,
respectively.

We first show vL ≤ vR. By Proposition 4.5 (iii) vL admits a maximizing dis-
tribution (X1,X2, V,W ) such that p(x1|w), p(x1|v, w) and p(x2|v) are Gaussians
with covariance matrices independent of choice of v and w. Let

A2 := E[Cov(X2|V )],(
B1 Σ

ΣT B2

)
:= E

[
Cov

((
X1

X2

)∣∣∣∣W
)]
−

(
0 0

0 A2

)
,

C1 := Cov(X1)−B1,

C2 := Cov(X2)−B2 − A2.
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One can then verify

h(X2 + Z1 + Z2|V )− h(Z1 + Z2)

(a)
≤ 1

2
(log |A2 +N1I +N2I| − log |N1I +N2I|) ,

h(X2 + X1 + Z1 + Z2|W )− h(X1 + Z1|W )

(b)
≤ 1

2

(
log |B1 +B2 + Σ + ΣT + A2 +N1I +N2I| − log |B1 +N1I|

)
,

h(X1 + Z1|X2,W )− h(X1 + Z1 + Z2|X2,W )

(c)
≤ 1

2
(log |E[Cov(X1|X2,W )] +N1I| − log |E[Cov(X1|X2,W )] +N1I +N2I|)

(d)
≤ 1

2

(
log |B1 − Σ(A2 +B2)−1ΣT +N1I|

− log |B1 − Σ(A2 +B2)−1ΣT +N1I +N2I|
)
,

where (a) holds since X2|V=v is Gaussian of covariance A2 for all v, (b) follows
from Lemma 4.13 and that X1|W=w is Gaussian of covariance B1 for all w, (c)
follows from Lemma 4.12, and (d) follows from Lemma 4.11 and that

E[Cov(X1|X2,W )] � B1 − Σ(A2 +B2)−1ΣT ,

which is shown below. Observe that the orthogonality property of conditional
expectation (implying also the vector extension of minimum mean square error
property) yields the following:

E[Cov(X1|X2,W )] = E[(X1 − E[X1|X2,W ])(X1 − E[X1|X2,W ])T ]

� E[(X1 − X̃1)(X1 − X̃1)T ]

for any X̃1 that is σ(X2,W ) measurable and E[‖X̃1‖2] <∞. In particular we set

X̃1 := X1 − X̂1 + E[X̂1X̂
T
2 ] E[X̂2X̂

T
2 ]−1X̂2,

where X̂1 := X1 − E[X1|W ] and X̂2 := X2 − E[X2|W ]. Then

E[(X1 − X̃1)(X1 − X̃1)T ] = E[X̂1X̂
T
1 ]− E[X̂1X̂

T
2 ] E[X̂2X̂

T
2 ]−1 E[X̂2X̂

T
1 ]

= B1 − Σ(A2 +B2)−1ΣT .

Putting these together gives

θλ,α(X1,X2|V,W ) ≤ gλ,α(A2, B1, B2,Σ).

Now we verify A2, B1, B2, C1, C2,Σ satisfy the constraints of vR. We have

E

[
Cov

((
X1

X2

)∣∣∣∣W
)]

(a)
� E

[
Cov

((
X1

X2

)∣∣∣∣V,W
)]
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(b)
=

(
E[Cov(X1|V,W )] 0

0 E[Cov(X2|V )]

)

�

(
0 0

0 A2

)
,

where (a) follows from Lemma 4.14 and (b) holds since X1 → (V,W )→ X2 and
W → V → X2 form Markov chains. This gives(

B1 Σ

ΣT B2

)
� 0.

We also have(
C1 −Σ

−ΣT C2

)
=

(
Cov(X1) 0

0 Cov(X2)

)
− E

[
Cov

((
X1

X2

)∣∣∣∣W
)]

(a)
= Cov

((
X1

X2

))
− E

[
Cov

((
X1

X2

)∣∣∣∣W
)]

(b)
� 0,

where (a) holds since X1 ⊥ X2 and (b) follows from Lemma 4.14. The remaining
constraints, namely,

A2 � 0,

B1 + C1 ∈ K1,

A2 +B2 + C2 ∈ K2,

are obvious.
Next we show vL ≥ vR. Suppose A2, B1, B2, C1, C2,Σ are matrices that satisfy

the constraints of vR. Let
A2

B1

B2

C1

C2

 ∼ N
0,


A2

B1 Σ

ΣT B2

C1 −Σ

−ΣT C2



 ,

and let

X1 := B1 + C1,

X2 := A2 + B2 + C2,

V := B2 + C2,

W := (C1,C2).
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Then one can readily verify

θλ,α(X1,X2|V,W ) = gλ,α(A2, B1, B2,Σ).

and that (X1,X2, V,W ) satisfies the constraints of vL.

Proposition 4.7. Let λ ≥ 1 and 0 ≤ α ≤ 1. Define the functional

G
(n)
λ,α(P1, P2) := sup

p(xn1 )p(xn2 ):
E[Xn

1 ]=E[Xn
2 ]=0

E[‖Xn
1 ‖2]≤nP1,E[‖Xn

2 ‖2]≤nP2

Θλ,α(Xn
1 , X

n
2 ),

for n ≥ 1 and P1, P2 ≥ 0, where X1i, X2i (i = 1, . . . , n) are random variables in
R. Then we have the followings:

(i) G(n)
λ,α(P1, P2) = n ·G(1)

λ,α(P1, P2).

(ii) For P1, P2 > 0,

G
(n)
λ,α(P1, P2) = n · sup

B1,B2,Σ≥0
Σ≤
√
B1B2

B1
P1

+
B2
P2
≤1

gλ,α(P2 −
P1B2

P1 −B1

, B1, B2,Σ),

where gλ,α is defined as in (4.18), and 0
0
is understood to be 0.

(iii) If λ ≥ λ0, where

λ0 := 1 +
N2

N1

1

(1−
√

N1+N2

P2+N1+N2
)2
,

then there exists 0 ≤ α ≤ 1 such that the maximization on right-hand side
of (ii) is attained by B1 = B2 = Σ = 0.

(iv) If λ ≥ λ0 where λ0 is defined as in (iii), then

inf
0≤α≤1

G
(n)
λ,α(P1, P2) ≤ n

2
((λ− 1) log(P2 +N1 +N2) + logN1 − λ log(N1 +N2)) .

Proof of Proposition 4.7 (i). Proposition 4.5 (i) (with Kji := {K : tr(K) ≤ Pj})
implies that

G
(n)
λ,α(P1, P2) ≥ n ·G(1)

λ,α(P1, P2),

as well as (with Kji := {K : tr(K) ≤ Qji}) that

G
(n)
λ,α(P1, P2) ≤ sup

Q1i,Q2i≥0∑n
i=1Q1i≤nP1∑n
i=1Q2i≤nP2

n∑
i=1

G
(1)
λ,α(Q1i, Q2i).
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It then suffices to show that (P1, P2) 7→ G
(1)
λ,α(P1, P2) is concave. Indeed Proposi-

tion 4.5 (ii) (with Kji := {K : tr(K) ≤ Pji} and t := 1
2
) implies

G
(1)
λ,α(P11, P21) +G

(1)
λ,α(P12, P22) ≤ 2 ·G(1)

λ,α

(
P11 + P12

2
,
P21 + P22

2

)
for any P1i, P2i ≥ 0 (i = 1, 2), i.e., G(1)

λ,α is midpoint-concave. This together
with the fact that G(1)

λ,α is continuous, which can be shown by Lemma 4.15 by
considering the matrix expression (4.17), implies that G(1)

λ,α is concave.

Proof of Proposition 4.7 (ii). In view of (i) it suffices to show the scalar case, i.e.,
n = 1. Proposition 4.6 gives

G
(1)
λ,α(P1, P2) = sup

A2,B1,B2,C1,C2≥0,Σ∈R
Σ2≤B1B2

Σ2≤C1C2
B1+C1≤P1

A2+B2+C2≤P2

gλ,α(A2, B1, B2,Σ),

where gλ,α is defined as in (4.18) for scalars:

gλ,α(A2, B1, B2,Σ) =
1

2

(
(λ− 1)α log

A2 +N1 +N2

N1 +N2

+ (λ− 1)(1− α) log
B1 +B2 + 2Σ + A2 +N1 +N2

B1 +N1

+ (1 + (λ− 1)(1− α)) log
B1 − Σ2

A2+B2
+N1

B1 − Σ2

A2+B2
+N1 +N2

)
.

Now we simplify this maximization. The variables C1, C2 can be eliminated:

sup
A2,B1,B2≥0,Σ∈R

Σ2≤B1B2

Σ2≤(P1−B1)(P2−A2−B2)
B1≤P1

A2+B2≤P2

gλ,α(A2, B1, B2,Σ).

We can assume B1B2 ≤ (P1 − B1)(P2 − A2 − B2) (otherwise we could increase
the objective by increasing A2 while fixing A2 +B2):

sup
A2,B1,B2≥0,Σ∈R

Σ2≤B1B2
B1≤P1

A2+B2≤P2
B1B2≤(P1−B1)(P2−A2−B2)

gλ,α(A2, B1, B2,Σ).

We can further assume B1B2 = (P1−B1)(P2−A2−B2) (otherwise we would also
have A2 +B2 < P2 and we could increase the objective by increasing A2 since the
objective is increasing in A2):

sup
A2,B1,B2≥0,Σ∈R

Σ2≤B1B2
B1≤P1

A2+B2≤P2
B1B2=(P1−B1)(P2−A2−B2)

gλ,α(A2, B1, B2,Σ).
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If B1 6= P1 then the constraint B1B2 = (P1 −B1)(P2 − A2 −B2) means

A2 = P2 −
P1B2

P1 −B1

. (4.19)

If B1 = P1 then the constraints imply B2 = 0 and Σ = 0, and the maximizer
is given by A2 = P2. In both cases (4.19) is satisfied if 0

0
is understood to be

0. From (4.19) the constraint A2 + B2 ≤ P2 is automatically satisfied and the
constraint A2 ≥ 0 is equivalent to B1

P1
+ B2

P2
≤ 1, which implies the constraint

B1 ≤ P1. So the maximization further simplifies to:

sup
B1,B2≥0,Σ∈R

Σ2≤B1B2
B1
P1

+
B2
P2
≤1

gλ,α(P2 −
P1B2

P1 −B1

, B1, B2,Σ).

Finally, since replacing Σ by |Σ| does not decrease the objective, we can assume
Σ ≥ 0:

sup
B1,B2,Σ≥0
Σ≤
√
B1B2

B1
P1

+
B2
P2
≤1

gλ,α(P2 −
P1B2

P1 −B1

, B1, B2,Σ).

Proof of Proposition 4.7 (iii). It suffices to show that the maximization

sup
B1,B2≥0
B1
P1

+
B2
P2
≤1

g̃λ,α(P2 −
P1B2

P1 −B1

, B1, B2,
√
B1B2), (4.20)

is attained by B1 = B2 = 0, where the functional g̃λ,α defined by

g̃λ,α(A2, B1, B2,Σ) :=
1

2

(
(λ− 1)α log

A2 +N1 +N2

N1 +N2

+ (λ− 1)(1− α) log
B1 +B2 + 2Σ + A2 +N1 +N2

B1 +N1

+ (1 + (λ− 1)(1− α)) log
B1 +N1

B1 +N1 +N2

)
is an upper bound to gλ,α.

The maximization (4.20) is attained by B1 = B2 = 0 if and only if for any
B1, B2 satisfying the constraints we have

1

2

(
(λ− 1)α

(
log

(
P2 −

P1B2

P1 −B1

+N1 +N2

)
− log (N1 +N2)

)
+ (λ− 1)(1− α) log

(
B1 +B2 + 2

√
B1B2 + P2 −

P1B2

P1 −B1

+N1 +N2

)
+ log (B1 +N1)− (1 + (λ− 1)(1− α)) log (B1 +N1 +N2)

)
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≤ 1

2

(
(λ− 1)α (log (P2 +N1 +N2)− log (N1 +N2))

+ (λ− 1)(1− α) log (P2 +N1 +N2)

+ log (N1)− (1 + (λ− 1)(1− α)) log (N1 +N2)
)
,

or equivalently

(λ− 1)α log

(
1− P1B2

P1 −B1

1

P2 +N1 +N2

)

+ (λ− 1)(1− α) log

1 +

B1+2
√
B1B2− B1B2

P1−B1

P2+N1+N2
(N1 +N2)−B1

B1 +N1 +N2


+ log

(
1 +

B1N2

(B1 +N1 +N2)N1

)
≤ 0.

By dividing the above inequality by λ and utilizing concavity of x 7→ log(1 + x),
this is implied by

− (λ− 1)α
P1B2

P1 −B1

1

P2 +N1 +N2

+ (λ− 1)(1− α)

B1+2
√
B1B2− B1B2

P1−B1

P2+N1+N2
(N1 +N2)−B1

B1 +N1 +N2

+
B1N2

(B1 +N1 +N2)N1

≤ 0,

or equivalently (by multiplying by (B1+N1+N2)(P2+N1+N2)
N1+N2

)

− (λ− 1)α
P1(B1 +N1 +N2)

(P1 −B1)(N1 +N2)
B2

+ (λ− 1)(1− α)

(
2
√
B1

√
B2 −

B1

P1 −B1

B2 −
B1P2

N1 +N2

)
+
B1N2(P2 +N1 +N2)

N1(N1 +N2)

≤ 0.

Since the left-hand side is quadratic in
√
B2 with negative leading coefficient, this

is implied by

(λ− 1)2(1− α)2B1 +

(
(λ− 1)α

P1(B1 +N1 +N2)

(P1 −B1)(N1 +N2)
+ (λ− 1)(1− α)

B1

P1 −B1

)
·
(
B1N2(P2 +N1 +N2)

N1(N1 +N2)
− (λ− 1)(1− α)

B1P2

N1 +N2

)
≤ 0,
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or equivalently (by multiplying by P1−B1

B1(λ−1)
)

(λ− 1)(1− α)2(P1 −B1) +

(
α

(
P1 +

P1

N1 +N2

B1

)
+ (1− α)B1

)
·
(
N2

N1

(
1 +

P2

N1 +N2

)
− (λ− 1)(1− α)

P2

N1 +N2

)
≤ 0.

Since the left-hand side is linear in B1, this is true for all B1 ≥ 0 if the linear
coefficient and the constant term are ≤ 0, that is

− (λ− 1)(1− α)2 +

(
α

P1

N1 +N2

+ (1− α)

)
·
(
N2

N1

(
1 +

P2

N1 +N2

)
− (λ− 1)(1− α)

P2

N1 +N2

)
≤ 0, (4.21)

(λ− 1)(1− α)2P1

+ αP1

(
N2

N1

(
1 +

P2

N1 +N2

)
− (λ− 1)(1− α)

P2

N1 +N2

)
≤ 0. (4.22)

Inequality (4.22) implies

N2

N1

(
1 +

P2

N1 +N2

)
− (λ− 1)(1− α)

P2

N1 +N2

≤ 0,

which implies (4.21). Thus, it suffices to satisfy (4.22) since it implies (4.21).
(4.22) is equivalent to

N2

N1

(
1 +

P2

N1 +N2

)
≤ (λ− 1)

(
(1− α)

P2

N1 +N2

− (1− α)2

α

)
.

It can be shown using basic calculus that the right-hand side is ≥ 0 if and only
if α ≥ N1+N2

P2+N1+N2
, and is maximized by α =

√
N1+N2

P2+N1+N2
. Putting this maximizing

α and rearranging we get

λ ≥ 1 +
N2

N1

1(
1−

√
N1+N2

P2+N1+N2

)2 = λ0.

To conclude, if λ ≥ λ0 then letting α =
√

N1+N2

P2+N1+N2
gives that (4.20) is attained

by B1 = B2 = 0. Note that (4.20) upper bounds the maximization on right-hand
side of (ii) and both objective functions are equal to each other when B1 = B2 = 0

(in such case Σ must be 0). This completes the proof.

Proof of Proposition 4.7 (iv). This is immediate from (ii) and (iii).

Finally we have all the ingredients to prove Theorem 4.2.
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Proof of Theorem 4.2. Denote

Y1 := X1 + Z1,

T2 := X2 + Z1 + Z1,

Y2 := X2 + X1 + Z1 + Z2 = T2 + X1.

Then, for λ ≥ 1 and 0 ≤ α ≤ 1,

(λ− 1)h(X2 + X1 + Z1 + Z2) + h(X1 + Z1)− λh(X1 + Z1 + Z2)

= (λ− 1)h(Y2) + h(Y1)− λh(Y2|X2)

= (λ− 1)αI(X2;Y2) + (λ− 1)(1− α) (h(Y2)− h(Y1))

+ (1 + (λ− 1)(1− α)) (h(Y1|X2)− h(Y2|X2))

(a)
≤ (λ− 1)αI(X2;T2) + (λ− 1)(1− α) (h(Y2)− h(Y1))

+ (1 + (λ− 1)(1− α)) (h(Y1|X2)− h(Y2|X2))

(b)
≤ Θλ,α(X1,X2)

(c)
≤ G

(n)
λ,α

(
E[‖X1‖2]

n
,
E[‖X2‖2]

n

)
,

where (a) follows from data processing inequality, (b) follows from the definition
of Θλ,α, and (c) follows from the definition of G(n)

λ,α, where G
(n)
λ,α is defined as in

Proposition 4.7. Since α is arbitrary, we can take infimum over α and we have

(λ− 1)h(X2 + X1 + Z1 + Z2) + h(X1 + Z1)− λh(X1 + Z1 + Z2)

≤ inf
0≤α≤1

G
(n)
λ,α

(
E[‖X1‖2]

n
,
E[‖X2‖2]

n

)
(d)
≤ n

2

(
(λ− 1) log

(
1

n
E[‖X2‖2] +N1 +N2

)
+ logN1 − λ log(N1 +N2)

)
,

where (d) is a consequence of Proposition 4.7 (iv), where we use the condition
λ ≥ λ1.

Some lemmas

Here we state the lemmas that have been invoked in the proof of Theorem 4.2.

• Lemma 4.9 and 4.10 are required in the proof of Lemma 4.8 which justifies
that the perturbed functional Θ

(ε,δ)
λ,α converges uniformly and hence one can

take limit of maximum value of the perturbed functional to obtain maximum
value of the unperturbed functional Θλ,α. Lemma 4.9 is a statement of
asymptotic bound on entropy by power. Lemma 4.10 allows interchanging
limit and maximization under uniform convergence.
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• Lemma 4.11, 4.12, 4.13 and 4.14 are used in the proof of Proposition 4.6
which gives an explicit expression for the maximization of Θλ,α(X1,X2) over
the space of Gaussian distributions.

• Lemma 4.15 gives a general condition for which the optimal value of an
objective function is continuous under variation of the feasible set. Together
wtih Proposition 4.5 (ii) which implies midpoint-concavity of G(n)

λ,α(P1, P2),
the maximium value of Θλ,α(Xn

1 , X
n
2 ) under power constraints P1 and P2,

Lemma 4.15 establishes its continuity, and hence concavity and additivity
as shown in Proposition 4.7 (i).

Lemma 4.9. Let Z be a Gaussian random variable in Rd (d ≥ 1) with an invert-
ible covariance matrix. Then there exists c ≥ 0 depending only on the covariance
matrix of Z such that

0 ≤ h(X + Z|U)− h(Z) ≤ c · E[‖X‖2]

for any random variables (X, U) ⊥ Z where X is in Rd.

Proof. We have

h(X + Z|U)− h(Z) = h(X + Z|U)− h(X + Z|X, U)

= I(X;X + Z|U)

≥ 0.

On the other hand, with

K := Cov(Z)−1/2 Cov(X) Cov(Z)−1/2,

we have

h(X + Z|U)− h(Z) ≤ h(X + Z)− h(Z)

(a)
≤ 1

2
log
∣∣2πe(Cov(X) + Cov(Z))

∣∣− 1

2
log
∣∣2πeCov(Z)

∣∣
=

1

2
log |K + I|

=
1

2

d∑
i=1

log (1 + λi(K))

(b)
≤ d

2
log

(
1 +

d∑
i=1

1

d
λi(K)

)

=
d

2
log

(
1 +

1

d
tr(K)

)
(c)
≤ 1

2
tr(K)
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=
1

2
tr(Cov(X) Cov(Z)−1)

(d)
≤ tr(Cov(X))

2λmin(Cov(Z))

≤ E[‖X‖2]

2λmin(Cov(Z))
,

where (a) holds since Gaussian maximizes entropy, (b) follows from Jensen’s in-
equality, (c) holds since log(1+x) ≤ x for x ≥ 0, (d) follows from von Neumann’s
trace inequality, and λi(·) (respectively, λmin(·)) denotes the i-th largest (respec-
tively, the smallest) eigenvalue functional.

Lemma 4.10. Let f and fn (n ≥ 1) be real-valued functions defined on the same
set. Suppose

lim
n→∞

sup
x
|fn(x)− f(x)| = 0.

Then

lim
n→∞

sup
x
fn(x) = sup

x
f(x).

Proof. Let εn := supx |fn(x)−f(x)|. Note that εn is bounded for sufficiently large
n since εn converges. We have

f(x)− εn ≤ fn(x) ≤ f(x) + εn

for any x and sufficiently large n. Taking supremum over x gives

sup
x
f(x)− εn ≤ sup

x
fn(x) ≤ sup

x
f(x) + εn.

Then the result follows by squeezing.

Lemma 4.11. Let A,B,K, K̃ be square matrices of same size such that A �
B � 0 and K̃ � K � 0. Then

log |K +B| − log |K + A| ≤ log |K̃ +B| − log |K̃ + A|.

Proof. The inequality is equivalent to

I(X;X + Z) ≥ I(X;X + Z + Z̃)

for mutually independent Gaussian random variables X ∼ N (0, A − B), Z ∼
N (0, K + B) and Z̃ ∼ N (0, K̃ − K), which follows from the data processing
inequality.
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Lemma 4.12. Let U,X,Z1,Z2 be random variables where X is real-vector-valued,
Z1,Z2 are Gaussians of the same dimension as X, and (U,X), Z1, Z2 are mutu-
ally independent. Then

h(X + Z1|U)− h(X + Z1 + Z2|U)

≤ 1

2

(
log
∣∣E[Cov(X|U)] + Cov(Z1)

∣∣− log
∣∣E[Cov(X|U)] + Cov(Z1) + Cov(Z2)

∣∣) .
Remark 4.3. The scalar version of Lemma 4.12 is rather well-known. This is
Exercise 9.21 in [CT91], for instance. It is also possible that the vector case is
known but we present a short proof here for completeness.

Proof. We have

h(X + Z1|U)− h(X + Z1 + Z2|U)

≤ h(X− E[X|U ] + Z1|U)− h(X− E[X|U ] + Z1 + Z2|U)

≤ sup
p(v,x̃)

E[X̃X̃T ]�E[Cov(X|U)]

(V,X̃)⊥(Z1,Z2)

(
h(X̃ + Z1|V )− h(X̃ + Z1 + Z2|V )

)

(a)
= sup

0�K�E[Cov(X|U)]

1

2

(
log
∣∣K + Cov(Z1)

∣∣− log
∣∣K + Cov(Z1) + Cov(Z2)

∣∣)
(b)
=

1

2

(
log
∣∣E[Cov(X|U)] + Cov(Z1)

∣∣− log
∣∣E[Cov(X|U)] + Cov(Z1) + Cov(Z2)

∣∣) ,
where (a) is a consequence of Theorem 3.3, and (b) follows from Lemma 4.11.

Lemma 4.13. Let U,X be random variables where X is real-vector-valued. Then

h(X|U) ≤ 1

2
log
∣∣2πeE[Cov(X|U)]

∣∣.
Proof. We have

h(X|U)
(a)
≤ E

[
1

2
log
∣∣2πeCov(X|U)

∣∣]
(b)
≤ 1

2
log
∣∣2πeE[Cov(X|U)]

∣∣,
where (a) holds since Gaussian maximizes entropy, and (b) follows from Jensen’s
inequality and concavity of log-determinant.

Lemma 4.14. Let U,X be random variables where X is real-vector-valued. Then

Cov(X)− E[Cov(X|U)] � 0.

Proof. This follows from the law of total variance.
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Lemma 4.15. Let f be a real-valued function defined on a metric space (X, d).
Suppose f is Lipschitz, i.e., there exists a constant C ≥ 0 such that

|f(x)− f(y)| ≤ C · d(x, y)

for any x, y ∈ X. Suppose S and Sn (n ≥ 1) are subsets of X such that Sn
converges to S in Hausdorff distance, i.e.,

lim
n

max

{
sup
x∈Sn

inf
y∈S

d(x, y), sup
x∈S

inf
y∈Sn

d(x, y)

}
= 0.

Then

lim
n

sup
x∈Sn

f(x) = sup
x∈S

f(x).

Proof. For any x ∈ Sn and y ∈ S it holds that

f(x) ≤ f(y) + C · d(x, y),

and hence

sup
x∈Sn

f(x) ≤ sup
y∈S

f(y) + C · sup
x∈Sn

inf
y∈S

d(x, y).

Taking limit superior yields

lim sup
n

sup
x∈Sn

f(x) ≤ sup
x∈S

f(x).

Similarly for any x ∈ S and y ∈ Sn it holds that

f(x) ≤ f(y) + C · d(x, y),

and hence

sup
x∈S

f(x) ≤ sup
y∈Sn

f(y) + C · sup
x∈S

inf
y∈Sn

d(x, y).

Taking limit inferior yields

sup
x∈S

f(x) ≤ lim inf
n

sup
x∈Sn

f(x).

This gives the result.
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Chapter 5

Conclusion

The complete determination of capacity region of GIC has been a long-standing
open problem in network information theory. The results in this thesis constitute
a progress towards it.

In Chapter 2 we show that any multi-letter extensions to the Han–Kobayashi
achievable region with Gaussian inputs for GIC coincide with the single-letter
region. As a consequence, if one could show that the multi-letter extensions to
the Han–Kobayashi achievable region is attained by Gaussian inputs, then the
single-letter Han–Kobayashi achievable region with Gaussian inputs would be the
capacity region.

In Chapter 3 we present two results. One of which is the computation of
the slope of Han–Kobayashi achievable region with Gaussian inputs for GZIC
at the Costa–Sato corner point. Another one of which concerns optimality of
weighted sum-rates for a subclass of GIC with weak interference, establishing
slope discontinuity at the maximum sum-rate point for the capacity region.

In Chapter 4 we propose a conjecture concerning Gaussian extremality of a
functional, which would imply the optimality of Han–Kobayashi achievable region
for GZIC. We then show an information inequality that establishes the conjecture
in some regimes. The inequality also gives an outer bound for the slope of capacity
region of GZIC at the Costa–Polyanskiy–Wu corner point.

Beyond the two-user case, for interference channel with additive Gaussian
noise with three or more sender-receiver pairs it is known that structured codes
that employ interference alignment [CJ08] outperform a natural generalization of
the Han–Kobayashi scheme for the two receiver case. The results in this thesis
suggest that for the two-user case, the Han–Kobayashi scheme with Gaussian
signaling may also already be enough to be capacity-achieving.
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