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This thesis establishes the sub-optimality of two specific achievable regions: one

for the interference channel and the other for the three-receiver broadcast chan-

nel with two degraded message sets. Determining the optimality or the sub-

optimality of the two achievable regions were posed as open questions in the

book Network Information Theory, [11].

An interference channel models multiple point-to-point communication links

over a shared medium. Han and Kobayashi formulated an achievable region for

two receiver interference channels in 1981. In particular, open problem 6.4 in [11]

asks: Is the Han–Kobayashi region tight in general? We answer this question in

the negative by exhibiting specific interference channels where achievable rates

are found that lie outside the Han–Kobayashi region.

A broadcast channel models a downlink scenario where a single sender wishes

to reliably communicate (possibly) different messages simultaneously to different

receivers. A two degraded message sets setting is one where there are two inde-

pendent messages, and there is a set of receivers that wishes to decode one of
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the messages, while the rest of the receivers wish to decode both of the messages.

For the case of two receivers, the capacity region for this setting was determined

in a seminal work by Korner and Marton in 1977. The extension of this result

to three or more receivers has remained open since then. In particular, open

problem 8.2 in [11] asks: Is superposition coding optimal for this setting? We

again answer this question in the negative by exhibiting specific scenarios where

achievable rates are found that lie outside the superposition coding region.

The two results mentioned above have been obtained by using the same (rather

well-known) idea: by demonstrating that the multi-letter extensions of the can-

didate achievable regions outperform the original ones for specific examples. The

main contribution of this thesis is in developing techniques and ideas that enable

one to make explicit characterizations of the extremizers of the non-convex op-

timization problems that are needed to evaluate the various achievable regions.

This thesis also makes novel contributions related to developing outer bounds to

the capacity regions in the specific examples under consideration that improve

on the previously best-known ones.
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摘摘摘要要要

本文研究是信息中的基通信模型，即干信道和具有降信息集合和三接收者的播

信道。於通信模型，作者明了目前已知可到的最大速率非其最信道容量。

干信道是一用模 或更多接受端通共享媒介行通的模型。1981年，Han

和Kobayashi 推出干信道的一可到的 速率域。自此之後， 速率域是否是

其信道容量的疑 而未 三十年。因此，《 信息》一中在尚未解的 6.4中提

出：Han-Kobayashi 速率域是否就是干信道的最解？本篇文中，作者在特定的

干信道中，可到的最大速率超出Han-Kobayashi 速率域。通反例，作者而未的

出了否定的答案。

播信道是一用模一端想同(可能)不同的信息定送不同的接收端的模型。特

地，如果有互相立的信息，而且一部分接收端只想解接收其中一信息，而其

接收端想要解接收信息，我之具有降信息集合的播信道。考只有接收端的情

，1977年Korner和Marton性地通加的方法出了情下的信道容量。然而自那之

後，果在三或者更多接收端的情下的推是否就是播信道的信道容量的疑一直未

能解。因此，《信息》一中在尚未解的8.2中提出：加在三或者更多接收端的情

下是否就是播信道的最解？本篇文中，作者同找到了特定的播信道中，可到的

最大速率超出加的速率域。藉由反例，作者出了否定的答案。

以上果都是用相同的（同也是相有名的）思路明的：找出特定的例子，使

得待定的可到速率域在送多字下的延伸原本的可到速率域。本文的主要是展了

iii



一系列思想和方法，可以助明算定各可到的速率域中所需解的非凸化中的最

解。文也在推特定例子下的信道容量的上界上做出了新性的工作，所推出的信

道容量的上界之前已知的最佳上界。
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Notations

This is a general guideline for the notation used in this thesis. Deviations from

this guideline are pointed out as they happen.

• script letters X ,Y ,Z... denote finite sets and |X | is the cardinality of set X .

• R is the real line and Rd is the d-dimensional Euclidean space.

• Z and N respectively denote integer and natural numbers.

• Lowercase letters x, y, z, ... denote constants and values of random variables.

• x̄ = 1− x.

• Uppercase letters U,X, Y, Z,Q denote random variables.

• Uppercase letter W denotes channel transition matrices.

• We use Xj
i = (Xi, Xi+1, ..., Xj) to denote a (j − i + 1) vector for 1 ≤ i ≤ j.

When i = 1 we drop the subscript, i.e., Xj = (X1, X2, ..., Xj).

• Script letters A ,C ,S denote rate regions ⊆ Rd.

• ⊗ is the Kronecker product operator and W⊗n = W ⊗ ...⊗W︸ ︷︷ ︸
n

.
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• ⊕M is the Minkowski sum of two sets.

• [i : 2a] = {i, i + 1, ..., �2a�}, where �x� is the largest integer smaller than or

equal to x.

• Probability of an event A is denoted by P (A)

• X ∼ p(xn) means that p(xn) is the probability mass function (pmf) of the

discrete random vector Xn. The function pXn(x̃n) is equal to P{Xn = x̃n}

for all x̃n ∈ X n. We drop the subscript when refering to pXn(xn).

• p(yn|xn) is a collection of conditional pmfs, one for every xn ∈ X n.

• We say that X → Y → Z forms a Markov chain if p(x, y, z) = p(x)p(y|x)p(z|y).

• The upper concave envelope of a function f(x) over domain D is defined as

C[f(x)](x0) = inf{g(x0) : g(x) is concave in x ∈ D, g(x) ≥ f(x)∀x ∈ D}.

• Hb(x) denotes the binary entropy function

Hb(x) := −x log x− (1− x) log(1− x).

Remark: We extensively use information-theoretic quantities such as entropy,

conditional entropy, mutual information, and their properties throughout this

thesis. Since these are named quantities (or inequalities) and we use the standard

notation (such as the one in [11]), we do not repeat them here.
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Chapter 1

Introduction

The tenets of information theory were developed by Shannon in his seminal pa-

per [27]. This work laid the foundations for digital communications and under-

standing the limits of communication for a point-to-point setting. The principles

and ideas have led to many advances in communications and coding; the point-

to-point communication setting is considered a rather mature field.

Network information theory, on the other hand, studies the fundamental limits

of communication in a multi-user (network) setting where several communication

requirements happen simultaneously over a shared medium; or in the case of

wireless communication, over a shared electromagnetic spectrum. To develop a

theory for understanding these limits it is imperative that we understand the

limits of the basic building blocks. Two of the basic building blocks of a network

communication setting are the broadcast channel and the interference channel.
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CHAPTER 1. INTRODUCTION 2

Broadcast Channel

A broadcast channel models the simultaneous communication of information from

one source to several receivers. The information may be independent or nested.

Examples of broadcast channel include digital TV broadcasting or communication

of a cellular tower to cell phone users in its coverage area [6].

A 2-receiver discrete memoryless broadcast channel consists of an input al-

phabet X and output alphabets Y and Z, all of finite sizes, and a probability

transition matrix W (y, z|x).

(M0,M1,M2) Encoder
Xn

W⊗n(y, z|x)

Y n

Zn

Decoder 1

Decoder 2

M̂0, M̂1

M̃0, M̃2

Figure 1.1: A two-receiver memoryless broadcast channel

Figure 1.1 represents a communication model where there is a single trans-

mitter and two receivers. A message M0 needs to be communicated to both the

receivers, while messages M1 and M2 needs to be communicated to its intended

receivers Y and Z respectively. A (2nR0 , 2nR1 , 2nR2 , n) code for this model consists

of

• Message sets M0, M1, and M2 of sizes �2nR0�, �2nR1�, and �2nR2�, respec-

tively. The messages M0, M1, and M2 are assumed to be independent and

uniformly distributed over the message sets.

• An encoder that maps the set of possible message triples to sequences of
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input symbols, i.e., xn = Enc(m0,m1,m2) where xn ∈ X n.

• Two decoders, one at each receiver, that maps its received sequence to an es-

timated message pair, i.e., (m̂0, m̂1) = Dec1(y
n) and (m̃0, m̃2) = Dec2(z

n),

where (m̂0, m̂1) ∈ M0 ×M1, and (m̃0, m̃2) ∈ M0 ×M2.

The probability of error, P
(n)
ε , is defined as

P (n)
ε = P

({
(M̂0, M̂1) 
= (M0,M1)

}
∪
{
(M̃0, M̃2) 
= (M0,M2)

})
.

A rate triple (R0, R1, R2) is said to be achievable if there is a sequence of

(2nR0 , 2nR1 , 2nR2 , n) codes for which the probability of error goes to zero as n

goes to infinity. The capacity region is defined as the closure of the set of all

achievable rate triples.

Interference Channel

An interference channel models simultaneous communication of messages between

sender receiver pairs over a shared medium. A 2-receiver discrete memoryless

interference channel consists of two input alphabets X1 and X2 and two out-

put alphabets Y1 and Y2, all of finite sizes, and a probability transition matrix

W (y1, y2|x1, x2).

Figure 1.2 models a communication setting where there are two sender-receiver

pairs. One transmitter wishes to communicate a message M1 to its receiver, while

the other transmitter wishes to communicate an independent message M2 to its

receiver. A (2nR1 , 2nR2 , n) code for this model consists of

• Message sets M1 and M2 of sizes �2nR1� and �2nR2�, respectively. The mes-

sages M1 and M2 are assumed to be independent and uniformly distributed
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M1

M2

Encoder 1

Encoder 2

Xn
1

Xn
2

W⊗n(y1, y2|x1, x2)

Y n
1

Y n
2

Decoder 1

Decoder 2

M̂1

M̂2

Figure 1.2: A two-receiver memoryless interference channel

over the message sets.

• Two independent encoders that separately map the messages to sequences

of input symbols, i.e., xn
1 = Enc(m1) and xn

2 = Enc(m2) where xn
1 ∈ X n

1

and xn
2 ∈ X n

2 .

• Two decoders, one at each receiver, that map its received sequence to an

estimated message, i.e., m̂1 = Dec1(y
n
1 ) and m̂2 = Dec2(y

n
2 ), where m̂1 ∈

M1, and m̂2 ∈ M2.

The probability of error, P
(n)
ε , is defined as

P (n)
ε = P

({
(M̂1, M̂2) 
= (M1,M2)

})
.

A rate pair (R1, R2) is said to be achievable if there is a sequence of (2nR1 , 2nR2 , n)

codes for which the probability of error goes to zero as n goes to infinity. The

capacity region is defined as the closure of the set of all achievable rate pairs.

Generic setting

A set of data rate tuples is said to be achievable for a given communication

setting if there is a sequence, in the number of channel uses, of encoding and
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decoding strategies such that the probability of decoding error goes to zero as

the number of channel uses tends to infinity. The closure of the set of all pos-

sible achievable rate tuples is defined to be the capacity region for the given

communication setting.

On computable characterizations of capacity regions

The holy-grail for such communication problems in network information theory is

to obtain a computable-characterization of the capacity region. As is wont in the

information theory literature, we will adopt a narrower definition of computabil-

ity wherein we would like to compute the capacity region as an optimization

problem of a continuous function over a compact subset of a finite dimensional

Euclidean space. In particular optimization problems, that evaluate to the ca-

pacity region, involving functionals defined over a single-use of the channel are

informally referred to as single-letter characterizations.

Computable characterizations of the capacity region of the models depicted

in Figures 1.1 and 1.2 are central open questions in network information theory.

1.1 Background and Summary of contributions

A vast majority of the major contributions in network information theory came

during the 1970’s and early 1980’s, and several achievable regions for fundamental

settings were formulated during this period. The optimality of a few of them had

been settled early on; yet the optimality of a large number of them remained

undetermined.

Being two fundamental building blocks of the communication networks field,
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considerable effort has been expended on studying the capacity regions of broad-

cast and interference channel models. There have been successful characteri-

zations of the capacity region for special classes of broadcast and interference

channels [1–3, 5, 8–10, 12, 14, 15, 17–21, 25, 26, 29]. We refer interested readers to

Chapters 5, 6, 8, and 9 of the book [11] for an overview of known results and

techniques.

For instance, open problems numbered 5.1, 5.2, 6.1, 6.4, 8.2, 8.3, 8.4, 9.3

in [11] concern the capacity regions or the optimality of certain achievable re-

gions for some classes of interference and broadcast channels. For each question

above, there is a candidate (natural) achievable region whose optimality or sub-

optimality had not been established and the answers to these were considered

the natural next steps for improving our understanding of the state-of-the-art

coding schemes. The candidate achievable region for open problem 5.2 had been

shown to be sub-optimal in [22], while the optimality of the candidate region for

problem 9.3 was established in [13]. This thesis demonstrates the sub-optimality

of the candidate achievable regions for open questions 6.4 and 8.2. The results in

this thesis first appeared in [23] and [24] respectively.

1.1.1 Superposition coding region and the broadcast channel

Cover [6] introduced the idea of superposition coding motivated by channels where

one receiver is stronger than the other receiver. The idea is to have the codewords

grouped into well-separated clusters with the “cluster-centers” carrying the mes-

sage that both receivers decode, denoted by an auxiliary codebook {Un}, and

the codewords {Xn} within a cluster carrying different messages for the other
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(stronger) receiver. An illustration of the superposition coding idea is given in

Figure 1.3.

Codewords that share
the same M0

X n

Noise ball of the
weaker receiver

Noise ball of the
stronger receiver

generic codeword

Figure 1.3: Superposition coding strategy

Consider the communication model depicted in Figure 1.1. Superposition coding

strategy can be used to obtain the rate-triple (R0, R1, 0) stated in Theorem 1.

Theorem 1 ((8.1) & Theorem 8.1 in [11], Superposition coding region). The set

of rate pairs (R0, R1) that satisfy

R0 ≤ I(U ;Z),

R0 +R1 ≤ I(U ;Z) + I(X;Y |U),

R0 +R1 ≤ I(X;Y ),

for some p(u, x) with |U| ≤ |X |+ 1 is achievable.
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In a seminal paper Korner and Marton [15] established that the superposition

coding region matches restriction of the capacity region, of the communication

model in Figure 1.1, to the plane R2 = 0.

Remark 1. Note that the restriction of the capacity region for the communication

model in Figure 1.1 to the plane R1 = R2 = 0 asks for the maximum rate of the

common message that can be simultaneously communicated to both the receivers.

In this case this maximum rate is given by maxp(x) min{I(X;Y ), I(X;Z)}. This

result also extends naturally to the case when there are three or more receivers.

A natural follow-up question is the following: does the optimality of the super-

position coding region extend to the case when there are three or more receivers?

The two simplest extensions along these lines are the following:

• Setting A: In this setting the common message M0 is to be decoded by all

the three receivers while the message M1 is to be decoded by one of the

receivers.

• Setting B: In this setting the common message M0 is to be decoded by all

the three receivers while the message M1 is to be decoded by two of the

receivers.

For the setting A, Nair and El Gamal [19] showed that the extension of the

superposition coding region is strictly sub-optimal. The idea was to exploit the

channel diversity to the receivers requiring only the common message to improve

the rate region. The use of channel diversity was done through an indirect de-

coding idea which is presented in Section 8.2 of [11].

For the setting B, two receivers need to decode the transmitted codeword while



CHAPTER 1. INTRODUCTION 9

one receiver needs to decode the cluster corresponding to the common message.

Since there is only one receiver requiring only the common message, there is no

channel diversity to be exploited here. The region obtained using an extension of

the indirect decoding approach also collapsed to the superposition coding region

for setting B (see Proposition 9 in [19]). Thus open question 8.2 in [11] asked:

Is superposition coding optimal for the general 3-receiver discrete memoryless

broadcast channel with one message to all three receivers and another message

to two receivers?

In answer to this, one of the main results in this thesis is the following theorem.

Theorem 2. There are channel settings for which the superposition coding region

is strictly inside the capacity region for the three-receiver broadcast channel with

one message to all three receivers and another message to two receivers.

The proof of this theorem follows immediately from Theorem 7 in Chapter 2.

1.1.2 Han–Kobayashi region and the interference channel

In interference channel model depicted in Figure 1.2 each receiver receives a noisy

version of a combination of all the transmitted signals. Two natural coding

strategies in the presence of interference are either to treat the interference as

noise or to completely decode the interference and cancel it. Han and Kobayashi

devised a coding strategy that incorporated both these strategies. Each receiver

decodes a part of the interfering message and treats the undecoded part of the

interference as noise. This scheme includes the two natural strategies as the two

extreme cases.
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Theorem 3 (Theorem 6.4 in [11], Han–Kobayashi achievable region). A rate-pair

(R1, R2) is achievable for the channel, W , described in Figure 1.2 if

R1 < I(X1;Y1|U2, Q),

R2 < I(X2;Y2|U1, Q),

R1 +R2 < I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q),

R1 +R2 < I(X2, U1;Y2|Q) + I(X1;Y1|U1, U2, Q),

R1 +R2 < I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q),

2R1 +R2 < I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q),

R1 + 2R2 < I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q)

for some pmf p(q)p(u1, x1|q)p(u2, x2|q), where |U1| ≤ |X1| + 4, |U2| ≤ |X2| + 4,

and |Q| ≤ 7.

Let the achievable region given by Theorem 3 be denoted by A HK(W ).

Remark 2. Auxiliary random variables in Theorem 3 represent the interference

that is decoded by the unintended receiver. That is, U1 is the part of M1 that Y2

decodes and U2 is the part of M2 that Y1 decodes.

A simpler achievable region for the interference channel can be obtained by

treating interference as noise.

Theorem 4 (Interference-as-noise achievable region). A rate-pair (R1, R2) is

achievable for the channel, W , described in Figure 1.2 if

R1 < I(X1;Y1|Q), (1.1)

R2 < I(X2;Y2|Q), (1.2)

for some pmf p(q)p(x1|q)p(x2|q), where |Q| ≤ 2.
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Let the achievable region given by Theorem 4 be denoted by A TIN(W ).

Corollary 1. A TIN(W ) ⊆ A HK(W ) for all W .

Proof. This can be seen immediately by setting U1 = U2 = 0, constant random

variables, in the Han–Kobayashi achievable region.

Remark 3. Interference cancellation region is a special case of the Han–Kobayashi

region when U1 = X1, U2 = X2. This strategy achieves the set of rate pairs that

satisfy

R1 ≤ I(X1;Y1|X2, Q),

R2 ≤ I(X2;Y2|X1, Q),

R1 +R2 ≤ min{I(X1, X2;Y1|Q), I(X1, X2;Y2|Q)}

for some p(q)p(x1|q)p(x2|q).

Open question 6.4 in [11], naturally, asked: Is Han–Kobayashi bound tight in

general?

In answer to this, the second main result of this thesis is the following.

Theorem 5. Han–Kobayashi region is not optimal for the interference channel

with two sender-receiver pairs.

The proof follows immediately from Corollary 7 in Chapter 3.

1.2 A generic approach for testing the optimality of achiev-

able schemes

The idea that we explain in this section (Lemma 1) is not new. The main con-

tribution of this thesis however, is to make the idea in Lemma 1 work in the two
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instances mentioned previously.

To describe the idea, we first define the multi-letter extension of an achievable

region for a communication setting S. Let us fix a generic communication setting

S and an achievable strategy for this setting. For a channel W the achievable

strategy induces an achievable region, denoted by A (W ) ⊆ Rd
+ for some finite

dimension d. In general we can assume that: (i) A (W ) is closed, (ii) αA (W ) ⊆

A (W ), ∀α ∈ [0, 1], and (iii) using a time-sharing argument that A (W ) is convex.

By viewing the k consecutive time-slots we obtain the channelW⊗k, and the same

achievable strategy induces a region A (W⊗k) for this k-letter extension of the

original channel. Clearly the region 1
k
A (W⊗k) is achievable region for the original

channel by treating k consecutive time-slots as a single large time-slot.

Definition 1. An achievable strategy defined for a generic communication setting

S is said to be asymptotically capacity achieving if the sequence of regions

1
n
A (W⊗n) converges to the capacity region C (W ) for every W .

Lemma 1. An asymptotically capacity achieving achievable strategy defined for

a communication setting S is optimal if and only if

A (W⊗2) = A (W )⊕M A (W ) ∀W.

Proof. First we show that A (W⊗2) = A (W )⊕M A (W ) ∀W , implies optimality.

From the convexity of A (W ) for any W , it is immediate that

A (W ) =
1

2
(A (W )⊕M A (W )) =

1

2
A (W⊗2).

Hence by induction, for all k ≥ 1 we have

A (W ) =
1

2k
A (W⊗2k) ∀W.
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Since A is asymptotically capacity achieving, ∀ε > 0, ∃Nε such that

n(1− ε)C (W ) ⊆ A (W⊗n) ∀n ≥ Nε.

Considering k such that 2k > Nε, we obtain

2k(1− ε)C (W ) ⊆ A (W⊗2k) = 2kA (W ).

This implies that (1−ε)C (W ) ⊆ A (W ). Since A (W ) is assumed to be closed, by

taking ε → 0 we obtain C (W ) ⊆ A (W ), the non-trivial direction. This concludes

the “if” direction.

To show the other direction, if there is a W such that A (W⊗2) � A (W )⊕M

A (W ), then as C (W ) ⊇ 1
2
A (W⊗2) (argued earlier), we see that C (W ) � A (W ).

Definition 2. An achievable strategy defined for a generic communication setting

S is said to be super-additive if A (W⊗(m+n)) ⊇ A (W⊗m)⊕M A (W⊗n) where

⊕M denotes the Minkowski sum of the two regions.

Remark 4. Most natural achievable strategies are super-additive for memoryless

channels as one can concatenate (small-probability of error) codes of length m

for W⊗m and codes of length n for W⊗n to obtain a (small-probability of error)

code of length (m+ n) for W⊗(m+n).

1.2.1 Remarks on employing the strategy for testing optimality

There are several instances in network information theory, see open problems 5.1,

5.2, 6.1, 6.4, 8.2, 8.3, 8.4, 9.3 in [11] for a sub-collection, where the optimality of

a given achievable scheme is not known. Given infinite computational power and



CHAPTER 1. INTRODUCTION 14

time, the generic method described above should enable one to answer each of

these questions. In particular, to show sub-optimality one just needs to exhibit

a W for which A (W⊗2) � 2A (W ). The main difficulty in carrying out this

program easily is the difficulty in the evaluation of A (W ). Even for small prob-

lem instances, optimization problems that come up in the evaluation of A (W )

are usually non-convex and the dimensionality of the space makes it practically

infeasible to test the containment. Hence, to employ this generic strategy, one

needs to come up with new tools and ideas to tackle the non-convex problems

that arise as well as develop strong intuitions for the classes of channels for which

A (W⊗2) � 2A (W ). The thesis does the above for the two problems mentioned

previously. There are a few other instances (open problems 5.1, 6.1, 8.3, 8.4

in [11]) where the same idea has not yet yielded concrete results.

In Chapter 2, we will exhibit a class of channels that demonstrate the sub-

optimality of the superposition coding region for the three receiver broadcast

channel with two degraded message set and in Chapter 3 we present a class of

binary interference channels that show the sub-optimality of the Han–Kobayashi

region for the interference channel.

� End of chapter.



Chapter 2

3-receiver broadcast channel with

two degraded message sets

A sender X, who has access to two independent messages (M0,M1), wishes to

communicate M0 reliably to three receivers, denoted by Y, Ŷ , and Z, and M1

reliably to a subset of the receivers Y, Ŷ . The sender encodes the messages,

uniformly distributed over sets [1 : 2nR0 ]× [1 : 2nR1 ], into a sequence Xn, which is

then transmitted over a discrete memoryless broadcast channel, W⊗n(y, ŷ, z|x).

Three receivers who receive sequences Y n, Ŷ n, Zn, respectively, wish to decode

messages as depicted in Figure 2.1.

The following achievable region is the straightforward extension of the super-

position coding region for two receivers, Theorem 1, to the described scenario.

Theorem 6 (Superposition coding achievable region, Corollary 1 [19]). The union

of the set of rate pairs (R0, R1) satisfying

R0 ≤ I(U ;Z)

15
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(M0,M1) Enc
Xn

W⊗n(y, ŷ, z|x)

Y n

Ŷ n

Zn

Dec1

Dec2

Dec3

(M †
0 ,M

†
1)

(M̂0, M̂1)

M̃0

Figure 2.1: Three receiver broadcast channel with two degraded message sets

R0 +R1 ≤ I(U ;Z) + min{I(X;Y |U), I(X; Ŷ |U)}

R0 +R1 ≤ min{I(X;Y ), I(X; Ŷ )}

where the union is taken over all pairs of random variables (U,X) such that

|U| ≤ |X |+ 2 and U → X → (Y, Ŷ , Z) forms a Markov chain is achievable.

Let A SC(W ) denote the above region for the channel W . It is immediate

that A SC(W ) is convex and hence it is uniquely characterized by its supporting

hyper-planes. In particular the set of A SC
λ (W ) := max(λR0 + R1), (R0, R1) ∈

A SC(W ), ∀λ ≥ 1, uniquely determine A SC
λ (W ). We use the term sum-rate to

refer to the above when λ = 1 and the term weighted sum-rate when talking

about a generic λ.

Lemma 2. Superposition coding region stated in Theorem 6 is asymptotically ca-

pacity achieving.

Proof. This is a standard argument and the proof is presented only for complete-

ness. By Fano’s inequality and the data-processing inequality any sequence of

coding strategies, such that the probability of error goes to zero, for the described
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setting satisfies

R0 ≤
1

n
I(M0;Z

n) + εn,

R0 +R1 ≤
1

n
(I(M0;Z

n) + I(Xn;Y n|M0)) + εn,

R0 +R1 ≤
1

n
(I(M0;Z

n) + I(Xn; Ŷ n|M0)) + εn,

R0 +R1 ≤
1

n
I(Xn;Y n) + εn

R0 +R1 ≤
1

n
I(Xn; Ŷ n) + εn

for some εn that tends to zero as n → ∞. Note that the codebook as well as the

channel induces the distribution on (M0,M1, X
n, Y n, Ŷ n, Zn). Setting U = M0 in

(see Theorem 6 and its n-letter extension) shows that 1
n
A SC(W⊗n) → C which

completes the proof.

In the next section we show that Theorem 6 can be strictly smaller than the

capacity region.

2.1 Strict sub-optimality of the superposition coding achiev-

able region

The example that shows the strict sub-optimality is a reversely degraded multi-

level broadcast erasure channel, belonging to the class depicted in Figure 2.2.

Each sub-channel is a binary erasure channel (BEC) with erasure probability

Xa → Ya : BEC(ea), Xb → Yb : BEC(eb)

Xa → Ŷa : BEC(êa), Xb → Ŷb : BEC(êb)

Xa → Za : BEC(fa), Xb → Zb : BEC(fb).



CHAPTER 2. 3-RECEIVER BROADCAST CHANNEL 18

Xa

Xb

Ya

Ŷb

Za

Zb

Ŷa

Yb

0

1

1

0

0

1

1

0

E

E

ωa1

ωb1

ωa2

ωb2

ωa3

ωb3

ωa1

ωb1

ωa2

ωb2

ωa3

ωb3

Figure 2.2: Product broadcast erasure channel

The order of channels in Figure 2.2 implies that êa ≥ fa ≥ ea and eb ≥ fb ≥ êb.

In particular the erasure probabilities of sub-channels are given by

ea = ωa1 , 1− fa = (1− ωa1)(1− ωa2), 1− êa = (1− ωa1)(1− ωa2)(1− ωa3)

êb = ωb1 , 1− fb = (1− ωb1)(1− ωb2), 1− eb = (1− ωb1)(1− ωb2)(1− ωb3).

Proposition 1. For the broadcast channel in Figure 2.2, it suffices to consider

uniform distribution on X = (Xa, Xb) to obtain the superposition coding region

(Theorem 6).

Proof. This is a symmetrization argument similar to the one in [18]. The argu-

ment is presented in a slightly more general fashion that is required for the proof

of the proposition, in that the number of product components can be larger than

2.

Let π be either of the two permutations of {0, 1}. By an abuse of notation, let

π also denote the induced permutation of {0, E, 1} by mapping E to E. Then note
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for any generic symmetric erasure channel as in Figure 2.2, W (Y = π(y)|X =

π(x)) = W (Y = y|X = x). Now consider a product erasure channel structure

where the inputs are x1, ..., xk and let the corresponding outputs be y1, .., yk.

Given any probability distribution p(x1, ..., xk), let p(y1, .., yk) denote the induced

output distribution. Let π1, ..., πk be any set of permutations of {0, 1}; and let

r(x1, .., xk) = p(π1(x1), ..., πk(xk)) denote an induced input distribution. Then

note that the induced output distribution is given by

r(y1, ..., yk) =
∑

x1,..,xk

r(x1, .., xk)
k∏

i=1

Wi(yi|xi)

(a)
=

∑
x1,..,xk

r(x1, .., xk)
k∏

i=1

Wi(πi(yi)|πi(xi))

=
∑

x1,..,xk

p(π1(x1), .., πk(xk))
k∏

i=1

Wi(πi(yi)|πi(xi))

= p(π1(y1), ..., π1(yk)).

In the above, (a) follows from the symmetry of the component channels. Thus the

output probability vector r(y) is just a permutation of the original probability

vector p(y), and hence entropy of Y1, .., Yk remains unchanged.

Given a joint distribution p(u, x1, .., xk) (or on (U,Xa, Xb) as is this case), let

Q denote a uniform random variable distributed over [1 : 2k]. Identify with each

Q a unique collection of permutations πq
1, .., π

q
k. (for instance, using the binary

representation). Define Ũ = (Q,U) and consider a joint distribution defined as

follows:

r((q, u), x1, .., xk) =
1

2k
p(u, πq

1(x1), ..., π
q
k(xk)).
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Note that the induced distributions on (X1, .., Xk) is uniform and that

r(x1, .., xk|(q, u)) = p(πq
1(x1), ..., π

q
k(xk)|u)

r(y1, .., yk|(q, u)) = p(πq
1(y1), ..., π

q
k(yk)|u)

where the second equality follows the argument presented earlier.

Hence note the following inequalities for any collection of outputs of symmetric

channels

Hp(Y1, .., Yk)
(a)

≤ Hr(Y1, .., Yk)

Hp(Y1, .., Yk|U)
(b)
= Hr(Y1, .., Yk|U,Q)

Hp(Y1, .., Yk|X1, .., Xk, U)
(b)
= Hr(Y1, .., Yk|X1, ..., Xk, U,Q),

where (a) follows since uniform input distribution maximizes entropy for sym-

metric erasure channels, and equalities denoted by (b) is due to the fact that

permutations of probability vectors do not change their entropies. Thus every

term occurring in the superposition coding region is non-decreasing by virtue of

this symmetrization using Q, which induces a uniform distribution on X.

The following corollary is immediate.

Corollary 2. Superposition coding region for the product broadcast erasure channel

in Fig 2.2 is the intersection of {(R0, R1)|R0 +R1 < min(cY , cŶ )} and the region

S defined as the union of the set of rate pairs (R0, R1) satisfying

R0 < I(U ;Z)

R0 +R1 < I(U ;Z) + min{I(X;Y |U), I(X; Ŷ |U)}

where the union is taken over all pairs of random variables (U,X) such that

|U| ≤ |X | + 2, U → X → (Y, Ŷ , Z) forms a Markov chain, and X = (Xa, Xb) is
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uniformly distributed. cY = (1 − ea) + (1 − eb) and cŶ = (1 − êa) + (1 − êb) are

the capacities for channels W (y|x) and W (ŷ|x).

Thus the key difficulty in computation of the superposition coding region is

reduced to computation of region S .

Proposition 2. For any λ > 1, Sλ := max(λR0 +R1), (R0, R1) ∈ S is given by

Sλ = λcZ + min
α∈[0,1]

max
p(x)

(
αI(X;Y ) + ᾱI(X; Ŷ )− λI(X;Z)

)
,

where cZ is the capacity for channel W (z|x).

Proof. We know that it suffices to consider X to be uniformly distributed. Thus

max
S

(λR0 +R1) is given by

max
p(u|x)

(
λI(U ;Z) + min{I(X;Y |U), I(X; Ŷ |U)}

)
,

where X is uniform.

An immediate application of min-max result, Corollary 2 in [12], yields that

max
p(u|x)

(
λI(U ;Z) + min

(
I(X;Y |U), I(X; Ŷ |U)

))

= min
α∈[0,1]

max
p(u|x)

(
λI(U ;Z) + αI(X;Y |U) + (1− α)I(X; Ŷ |U)

)
.

Noting that I(U ;Z) = I(X;Z)− I(X;Z|U) = cZ − I(X;Z|U) (since uniform X

achieves cZ), we re-write the above as

min
α∈[0,1]

max
p(u|x)

(
λI(U ;Z) + αI(X;Y |U) + (1− α)I(X; Ŷ |U)

)
= min

α∈[0,1]
max
p(u|x)

(
λcZ + αI(X;Y |U) + (1− α)I(X; Ŷ |U)− λI(X;Z|U)

)
=λcZ + min

α∈[0,1]
max
p(x)

(
αI(X;Y ) + ᾱI(X; Ŷ )− λI(X;Z)

)
.
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The non-trivial part of the last equality follows by applying the symmetriza-

tion argument to p(x), the distribution that maximizes the quantity αI(X;Y ) +

ᾱI(X; Ŷ )− λI(X;Z).

Remark 5. Note that the above two propositions regarding computation of su-

perposition coding region for product broadcast channels apply to all symmetric

(appropriately defined) channels and do not depend on the fact that the symmet-

ric channel under consideration is an erasure channel. The next lemma on the

other hand uses the erasure nature of the component channels.

Lemma 3. Consider a product erasure channel mapping X1, .., Xk to Y1, .., Yk with

erasure probabilities ε1, ..., εk. Then

I(X1, ..., Xk;Y1, ..., Yk) =
∑

S⊆[1:k]

⎛
⎝∏

i∈S

(1− εi)
∏
j /∈S

εj

⎞
⎠H(XS),

where XS = (Xi : i ∈ S).

Proof. This is proved by induction on k. Observe that k = 1 is immediate. Note

that I(X1, ..., Xk;Y1, ..., Yk) = I(X1, ..., Xk−1;Y1, ..., Yk−1) + I(Xk;Yk|Y1, , , Yk−1).

A simple calculation yields that

I(Xk;Yk|Y1, ..., Yk−1)

=
∑

S1⊆[1:k−1]

⎛
⎝∏

i∈S1

(1− εi)
∏
j /∈S1

εj

⎞
⎠ (1− εk)H(Xk|XS1

).

Combining this term with induction hypothesis completes the proof.

Remark 6. Combining Proposition 2 with Lemma 3 shows that computation of

the superposition coding region for a product erasure broadcast channel reduces

to computation of the maximum of a linear combination of entropic-vectors, a

subset of R2k−1 generated by subsets of k binary random variables. When k = 2,
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for every α ∈ [0, 1], we wish to maximize a linear combination of the vector

[H(Xa), H(Xb), H(Xa, Xb)], where the coefficients are determined using Proposi-

tion 2 and Lemma 3. Note that Xa and Xb are binary random variables.

2.1.1 A specific example

There are many examples where two-letter superposition coding region beats the

single-letter superposition coding region. However, below we produce a concrete

example where using the machinery developed above we are able to explicitly

demonstrate the gap between single-letter and 2-letter regions.

Theorem 7. For the reversely degraded three receiver product broadcast erasure

channel as shown in Figure 2.2 with parameters

ea = 1/2 êa = 1 fa = 17/22

eb = 1/2 êb = 0 fb = 9/34

the following holds:

(i) the non-trivial boundary (i.e. excluding the axes) of the superposition coding

region is determined by the two lines:

R0 +R1 = 1 and
11

10
R0 +R1 =

18

17
.

(ii) the non-trivial boundary of the 2-letter superposition coding region is deter-

mined by the two lines:

R0 +R1 = 1 and
484

435
R0 +R1 =

528

493
.
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Proof. From Corollary 2, and cY = cŶ = 1, the line R0 + R1 = 1 is immediate.

To compute the superposition coding region (single-letter or 2-letter) it remains

to compute the region S .

Proof of (i), i.e. Computation of the single-letter region.

For the single-letter superposition coding region, we first show that any (R0, R1) ∈

S satisfies

11

10
R0 +R1 ≤

18

17
.

Since cZ = (1 − fa) + (1 − fb) = 180
187

, from Proposition 2 (taking α = 1
2
), the

inequality above will follow if we show that

1

2
I(X;Y ) +

1

2
I(X; Ŷ )− 11

10
I(X;Z) ≤ 0 ∀p(x).

Here X = (Xa, Xb), Y = (Ya, Yb), Ŷ = (Ŷa, Ŷb) and Z = (Za, Zb). Expanding the

left hand side using Lemma 3 and substituting our choices of erasures yields

1

2
I(X;Y ) +

1

2
I(X; Ŷ )− 11

10
I(X;Z) = − 1

17
H(Xb|Xa),

implying the upper bound.

Next we show that the intersection of the two lines R0 + R1 = 1 and 11
10
R0 +

R1 = 18
17

belongs to the superposition coding region (completing the characteri-

zation).

Let U be a ternary random variable such that P(U = 0) = 13/34, P(U = 1) =

7/34, P(U = 2) = 14/34. Conditionals are given by:

(Xa, Xb)|(U = 0) = (0, 0)

(Xa, Xb)|(U = 1) = (M, 0)

(Xa, Xb)|(U = 2) = (M,M),
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where M is an unbiased binary random variable. Let Q be a random variable

that symmetrizes the distribution of X (in the sense of the proof of Proposition

1) and let Ũ = (U,Q). Substituting (Ũ , X) into Theorem 6 yields:

R0 ≤ I(Ũ ;Za, Zb) =
10

17

R0 +R1 ≤ min{I(Xa, Xb;Y |Ũ), I(Xa, Xb; Ŷa, Ŷb|Ũ)}+ I(Ũ ;Za, Zb) = 1

R0 +R1 ≤ min{I(Xa, Xb;Y ), I(Xa, Xb; Ŷa, Ŷb)} = 1.

Thus (R0, R1) = (10
17
, 7
17
) lying at the intersection of the two lines R0 + R1 = 1

and 11
10
R0 +R1 =

18
17

belongs to the superposition coding region. This establishes

the superposition coding region.

Proof of (ii), i.e. Computation of the 2-letter region.

The proof mimics the single-letter case. We show that any (R0, R1) belonging to

the region S for the 2-letter channel satisfies

484

435
R0 +R1 ≤

528

493
.

Since cZ = (1−fa)+(1−fb) =
180
187

= 528×435
493×484

, from Proposition 2 (taking α = 88
174

),

the inequality above will follow if we show that

88

174
I(X;Y ) +

86

174
I(X; Ŷ )− 484

435
I(X;Z) ≤ 0 ∀p(x).

In the above, X = (Xa1, Xb1, Xa2, Xb2) and similarly for others. Expanding the

left hand side using Lemma 3 and substituting our choices of erasures yields

− 17

174
I(Xb1;Xb2)−

19

2958

(
I(Xb1;Xb2|Xa1) + I(Xb1;Xb2|Xa2)

)
− 2

29
I(Xa1;Xa2|Xb1Xb2)−

2543

50286
I(Xb1;Xb2|Xa1Xa2)

− 35

493

(
H(Xb1|Xa1Xa2Xb2) +H(Xb2|Xa1Xb1Xa2)

)
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− 1

174

(
I(Xa1;Xb1|Xa2) + I(Xa1;Xb2|Xa2)

+ I(Xa2;Xb1|Xa1) + I(Xa2;Xb2|Xa1)
)

− 1

174

(
I(Xa1;Xb1|Xa2Xb2) + I(Xa1;Xb2|Xa2Xb1)

+ I(Xa2;Xb1|Xa1Xb2) + I(Xa2;Xb2|Xa1Xb1)
)
,

which is term-by-term upper bounded by zero, implying the bound 484
435

R0+R1 ≤

528
493

.

Let U be a ternary random variable such that P(U = 0) = 20/119, P(U =

1) = 88/119, P(U = 2) = 11/119. Conditionals are given by:

(Xa1, Xb1, Xa2, Xb2)|(U = 0) = (0, 0, 0, 0)

(Xa1, Xb1, Xa2, Xb2)|(U = 1) = (M1,M1,M1, 0)

(Xa1, Xb1, Xa2, Xb2)|(U = 2) = (M1, 0,M2, 0),

where M1 and M2 are two independent unbiased binary random variables. Let

Q be a random variable that symmetrizes the distribution of X (in the sense of

the proof of Proposition 1) and let Ũ = (U,Q). Substituting (Ũ , X) into the

normalized two-letter version of Theorem 6 yields:

R0 ≤
1

2
I(Ũ ;Z) =

75

119

R0 +R1 ≤
1

2

(
I(Ũ ;Z) + min{I(X;Y |Ũ), I(X; Ŷ |Ũ)}

)
= 1

R0 +R1 ≤
1

2
min{I(X;Y ), I(X; Ŷ } = 1,

whereX = (Xa1, Xb1, Xa2, Xb2) and similarly for others. Thus (R0, R1) = ( 75
119

, 44
119

)

lying at the intersection of the two lines R0+R1 = 1 and 484
435

R0+R1 =
528
493

belongs

to the two-letter superposition coding region. This establishes Theorem 7.

Figure 2.3 shows the single-letter and 2-letter superposition coding regions for this
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channel. The blue line-segments indicate the 2-letter superposition coding region

and the red line-segments indicate the one-letter superposition coding region. The

bottom plot zooms on the part where the gap between the two region is more

visible, i.e., the intersection points of the two lines that constitute the single-letter

and 2-letter superposition coding regions.

44
119

7
17

1

180
187

R1

R0

A SC(W )
1
2A

SC(W⊗2)
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44
119

7
17

10
17

75
119

R1

R0

A SC(W )
1
2A

SC(W⊗2)

Figure 2.3: Plots (full and zoomed) of the single-letter and 2-letter superposition coding

regions

2.2 Outer bound via concentration of mutual information

over memoryless erasure channels

For any distribution p(xn
a , x

n
b ) define

Hn(k, l) =
1(

n
k

)(
n
l

) ∑
S,T⊆[n]:|S|=k,|T |=l

H(XaS, XbT ).

Lemma 4. The following inequalities hold:

(i) Hn(k, l) ≤ Hn(k + 1, l) ≤ k+1
k
Hn(k, l), 1 ≤ k ≤ n− 1.

(ii) Hn(k, l) ≤ Hn(k, l + 1) ≤ l+1
l
Hn(k, l), 1 ≤ l ≤ n− 1.

(iii) (Concavity) Hn(k − 1, l) +Hn(k + 1, l) ≤ 2Hn(k, l).

Proof. Clearly the (ii) can be obtained in a similar fashion as (i) by exchanging

the coordinates. Hence it suffices to establish (i). Observe that for any S ′, T ⊆
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[n] : |S ′| = k + 1, |T | = l, we have

(k + 1)H(XaS′ , XbT ) =
∑
i∈S′

(
H(XaS′

i
, XbT ) +H(Xai|XaS′

i
, XbT )

)
,

where S ′
i = S ′ � {i}. Further,

∑
i∈S′

H(XaS′
i
, XbT ) ≤

∑
i∈S′

(
H(XaS′

i
, XbT ) +H(Xai|XaS′

i
, XbT )

)
≤ H(XaS′ , XbT ) +

∑
i∈S′

H(XaS′
i
, XbT ).

Hence

∑
i∈S′

H(XaS′
i
, XbT ) ≤ (k + 1)H(XaS′ , XbT ) ≤

k + 1

k

∑
i∈S′

H(XaS′
i
, XbT ).

Summing over all S ′, T ⊆ [n] : |S ′| = k + 1, |T | = l we obtain

(n− k)
∑

S,T ⊆[n]:
|S|=k
|T |=l

H(XaS , XbT ) ≤ (k + 1)
∑

S′,T ⊆[n]:|S′|=k+1,|T |=l

H(XaS′ , XbT )

≤ k + 1

k
(n− k)

∑
S,T ⊆[n]:
|S|=k
|T |=l

H(XaS , XbT ).

Substituting we obtain,

(n− k)

(
n

k

)(
n

l

)
Hn(k, l) ≤ (k + 1)

(
n

k + 1

)(
n

l

)
Hn(k, l)

≤ k + 1

k
(n− k)

(
n

k

)(
n

l

)
Hn(k, l).

This is equivalent to (i) after canceling the binomial coefficients.

To establish (iii) we start with the following (immediate) inequality, For any

S ⊂ [n] and i, j ∈ [n]� S we have

H(XaS , XbT ) +H(XaSi,j , XbT ) ≤ H(XaSi , XbT ) +H(XaSj , XbT ),
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where S i,j = S ∪ {i, j},S i = S ∪ {i}, and Sj = S ∪ {j}. Summing the above

inequality over all S with |S| = k−1, T with |T | = l, and over all pairs {i, j} /∈ S

we obtain(
n− k + 1

2

)(
n

k − 1

)(
n

l

)
Hn(k − 1, l) +

(
k + 1

2

)(
n

k + 1

)(
n

l

)
Hn(k + 1, l)

≤2k

(
n

k

)(
n

l

)
Hn(k, l).

This is equivalent to (iii) after canceling the binomial coefficients.

Remark 7. The above Lemma can be considered as a minor generalization of the

well-known Han’s inequality or Shearer’s lemma.

The following corollary is immediate from Lemma 4 by an induction argument,

and hence its proof is omitted.

Corollary 3. The following inequalities hold:

(i) Hn(k, l) ≤ Hn(k + k0, l + l0) ≤ k+k0
k

l+l0
l
Hn(k, l)

for 0 ≤ k0 ≤ n− k, 0 ≤ l0 ≤ n− l.

(ii) k−k0
k

l−l0
l
Hn(k, l) ≤ Hn(k − k0, l − l0) ≤ Hn(k, l) for 0 ≤ k0 ≤ k, 0 ≤ l0 ≤ l.

(iii) (Concavity) m
n
Hn(k1, l) +

n−m
n

Hn(k2, l) ≤ Hn

(
mk1+(n−m)k2

n
, l
)

for 0 ≤ m, k1, k2, l ≤ n.

Proposition 3 (Concentration of mutual information over memoryless product

erasure channel). Consider a product erasure channel, Wa(ya|xa) ⊗ Wb(yb|xb),

mapping Xa, Xb to Ya, Yb with erasure probabilities εa, εb, respectively.

Let the channel from (Xn
a , X

n
b ) to (Y n

a , Y
n
b ) be defined according to∏n

i=1Wa(yai|xai)Wb(ybi|xbi). Then

I(Xn
a , X

n
b ;Y

n
a , Y

n
b ) = H(�n(1− εa)�, �n(1− εb)�) +O

(√
n log n

)
.
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Proof. In the proof, we will assume that 0 < εa, εb < 1. The boundary cases are

easier and the reader can check that the proofs follow similarly. Using Lemma 3

we have

I(Xn
a , X

n
b ;Y

n
a , Y

n
b ) =

∑
S,T ⊆[n]

(
(1− εa)

|S|εn−|S|
a (1− εb)

|T |ε
n−|T |
b

)
H(XaS , XbT )

=
∑

0≤k,l≤n

(
(1− εa)

kεn−k
a (1− εb)

lεn−l
b

) ∑
S,T ⊆[n]:
|S|=k
|T |=l

H(XaS , XbT )

=
∑

0≤k,l≤n

(
n

k

)
(1− εa)

kεn−k
a

(
n

l

)
(1− εb)

lεn−l
b H(k, l).

For any |S| = k, |T | = l, 0 ≤ H(XaS , XbT ) ≤ ∑
i∈S H(Xai) +

∑
j∈T H(Xbj),

implies

0 ≤ H(k, l) ≤ k log |Xa|+ l log |Xb| ≤ n log |Xa||Xb|.

Hoeffding’s inequality says that

∑
k/∈[n(1−p−δ),n(1−p+δ)]

(
n

k

)
(1− p)kpn−k ≤ 2e−2δ2n.

Define K = {k : n(1 − εa − δ) ≤ k ≤ n(1 − εa + δ), k ∈ N} and L = {l :

n(1− εb − δ) ≤ k ≤ n(1− εb + δ), l ∈ N}.

Observe that⎛
⎝ ∑

0≤k,l≤n

(
n

k

)
(1− εa)

kεn−k
a

(
n

l

)
(1− εb)

lεn−l
b H(k, l)

⎞
⎠−H(�n(1− εa)�, �n(1− εb)�)

≤
∑

0≤k,l≤n

(
n

k

)
(1− εa)

kεn−k
a

(
n

l

)
(1− εb)

lεn−l
b |H(k, l)−H(�n(1− εa)�, �n(1− εb)�)|

=
∑
k/∈K

(
n

k

)
(1− εa)

kεn−k
a

⎛
⎝ ∑

0≤l≤n

(
n

l

)
(1− εb)

lεn−l
b |H(k, l)−H(�n(1− εa)�, �n(1− εb)�)|

⎞
⎠

+
∑
l/∈L

(
n

l

)
(1− εb)

lεn−l
b

(∑
k∈K

(
n

k

)
(1− εa)

kεn−k
a |H(k, l)−H(�n(1− εa)�, �n(1− εb)�)|

)

+
∑

l∈L,k∈K

(
n

k

)
(1− εa)

kεn−k
a

(
n

l

)
(1− εb)

lεn−l
b |H(k, l)−H(�n(1− εa)�, �n(1− εb)�)|
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≤ 2ne−2δ2n log |Xa||Xb|+ 2ne−2δ2n log |Xa||Xb|

+
∑

l∈L,k∈K

(
n

k

)
(1− εa)

kεn−k
a

(
n

l

)
(1− εb)

lεn−l
b |H(k, l)−H(�n(1− εa)�, �n(1− εb)�)| .

The last inequality follows from Hoeffding’s inequality and from the uniform

bound on H(k, l).

From Corollary 3 it follows that for k ∈ K, l ∈ L

|H(k, l)−H(�n(1− εa)�, �n(1− εb)�)|

≤H(�n(1− εa)�, �n(1− εb)�)
(

δ

1− εa
+

δ

1− εb
+

δ2

(1− εa)(1− εb)

)

≤2n

(
δ

1− εa
+

δ

1− εb
+

δ2

(1− εa)(1− εb)

)
log |Xa||Xb|.

Therefore we obtain

∑
0≤k,l≤n

(
n

k

)
(1− εa)

kεn−k
a

(
n

l

)
(1− εb)

lεn−l
b H(k, l)

≤ 2ne−2δ2n log |Xa||Xb|+ 2ne−2δ2n log |Xa||Xb|

+ 2n

(
δ

1− εa
+

δ

1− εb
+

δ2

(1− εa)(1− εb)

)
log |Xa||Xb|

+H(�n(1− εa)�, �n(1− εb)�).

Taking δ =
√

logn
n

and putting things together, we obtain

I(Xn
a , X

n
b ;Y

n
a , Y

n
b ) = H(�n(1− εa)�, �n(1− εb)�) +O

(√
n log n

)

thus establishing the proposition.

Theorem 8 (Outer bound). Any achievable rate pair (R0, R1) for the channel

depicted in Figure 2.2 with parameters

ea = 1/2 êa = 1 fa = 17/22
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eb = 1/2 êb = 0 fb = 9/34,

must satisfy the constraints

R0 +R1 ≤ 1 and
187

160
R0 +R1 ≤

18

16
.

Proof. Since cY = cŶ = 1, the line R0 + R1 ≤ 1 is immediate. The non-trivial

and the interesting part of the proof is the fact that by analyzing the limiting

n-letter superposition coding region which is asymptotically capacity achieving

we are able to derive the constraint

187

160
R0 +R1 ≤

18

16
.

Similar to the computation of the single-letter and 2-letter superposition cod-

ing regions, from Proposition 2 (taking α = 85
160

), the inequality above will follow

if we show that

lim sup
n

max
p(xn

a ,x
n
b )

1

n

(
85

160
I(Xn

a , X
n
b ;Y

n
a , Y

n
b ) +

75

160
I(Xn

a , X
n
b ; Ŷ

n
a , Ŷ

n
b )

− 187

160
I(Xn

a , X
n
b ;Z

n
a , Z

n
b )

)
≤ 0.

From Proposition 3 it suffices to show that:

lim sup
n

max
p(xn

a ,x
n
b )

1

n

(
85

160
H(n(1− ea), n(1− εb)) +

75

160
H(n(1− êa), n(1− êb))

− 187

160
H(n(1− fa), n(1− fb))

)
≤ 0.

Substituting for the parameters, we wish to show that

lim sup
n

max
p(xn

a ,x
n
b )

1

n

(
85

160
H(

n

2
,
n

2
) +

75

160
H(0, n)− 187

160
H(

5n

22
,
25n

34
)

)
≤ 0.
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From Corollary 3 we have the following inequalities:

Hn(
n

2
,
n

2
) ≤ Hn(

n

2
,
25n

34
),

5

11
Hn(

n

2
,
25n

34
) +

6

11
Hn(0,

25n

34
) ≤ H(

5n

22
,
25n

34
),

8

17
Hn(0, n) +

9

17
Hn(0,

n

2
) ≤ Hn(0,

25n

34
),

17

25
Hn(0,

25n

34
) ≤ Hn(0,

n

2
).

Multiplying the first inequality by 85, the second by 187, the third by 75×17
8

,

and the fourth by 27×25
8

and adding together we obtain

85Hn(
n

2
,
n

2
) + 75Hn(0, n) ≤ 187H(

5n

22
,
25n

34
),

establishing the upper bound.
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Figure 2.4: Plots (full and zoomed) of the single-letter, 2-letter superposition coding

regions and the (new) outer bound
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2.3 Summary and Discussion

The strict sub-optimality of the superposition coding region for the message set-

ting in Figure 2.1 is shown by demonstrating a channel for which the 2-letter

superposition coding region strictly outperforms the single-letter region. For the

specific example, we are able to completely characterize the 2-letter superposition

coding region. Notice that the optimizing distributions (that yield the non-trivial

corner point along the R0 + R1 = 1 line in the counterexample) have optimiz-

ers where the same X is transmitted across the parallel channels. Further, in

the 2-letter scheme, the same X is even transmitted across two consecutive-time

slots, for some choices of U . This shows that superposition coding does not fully

exploit the spatial and temporal diversity provided by the different channels to

Y and Ŷ . Hidden in the optimizers are some hints as to how best to exploit the

missing diversity gains.

The computation of higher-letter superposition coding regions boils down to

finding choices of λ and α that make a certain linear combination of entropies of

subsets of binary random variables negative for all probability distributions. Sec-

ondly, using the sub-modularity of entropy and the idea behind testing Shannon-

type inequalities, one can get upper bounds on the critical λ, the slope of the

capacity region around (R0, R1) = (cZ , 0). Even in the two-letter case (where

the four variables Xa1, Xb1, Xa2, Xb2 involved are binary) restricting oneself to

Shannon-type inequalities and maximizing the linear combination could have re-

sulted in an non-entropic extreme point [28]. This would have led to an outer

bound to the 2-letter superposition coding region. Luckily for us, the extreme
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point in the region calculations using sub-modularity (Shannon-type) constraints

turns out to be achievable; thus yielding a precise characterization of the 2-letter

superposition coding region. One interesting question that is worth pursuing

is whether this phenomenon continues to hold for higher-letter computations as

well.

A very interesting observation is that the optimizing code for the 2-letter

region is a (simple) linear code on block of length 2. This demonstrates that linear

block codes outperform memoryless codes in this setting. It is worth investigating

the performance limits of linear codes for this setting.

Finally, another important contribution of our analysis that opens up po-

tential avenues for research is that we obtained an explicit outer bound for the

capacity region, not from a single-letter expression but analyzing limiting multi-

letter achievable regions. This opens up potentially different ways of obtaining

computable outer bounds.

� End of chapter.



Chapter 3

Interference Channel

3.1 Strict sub-optimality of the Han–Kobayashi achiev-

able region

In this section we show the sub-optimality of the Han–Kobayashi achievable re-

gion for the interference channel. For completeness we recall the Han–Kobayashi

achievable region.

[Theorem 6.4 in [11], Han–Kobayashi achievable region] A rate-pair (R1, R2)

is achievable for the channel, W , described in Figure 1.2 if

R1 < I(X1;Y1|U2, Q), (3.1)

R2 < I(X2;Y2|U1, Q), (3.2)

R1 +R2 < I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q), (3.3)

R1 +R2 < I(X2, U1;Y2|Q) + I(X1;Y1|U1, U2, Q), (3.4)

R1 +R2 < I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q), (3.5)

2R1 +R2 < I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q), (3.6)

38
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R1 + 2R2 < I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q) (3.7)

for some pmf p(q)p(u1, x1|q)p(u2, x2|q), where |U1| ≤ |X1| + 4, |U2| ≤ |X2| + 4,

and |Q| ≤ 7.

Lemma 5. The Han–Kobayashi achievable region is asymptotically capacity achiev-

ing.

Proof. Since 1
n
A HK(W⊗n) ⊆ C (W ) ∀n, it suffices to show the other direction.

We will in particular show that 1
n
A TIN(W⊗n) → C (W ) and this suffices due to

Corollary 1. By Fano’s inequality and data-processing inequality any sequence of

good codebooks for an interference channel satisfies,

R1 ≤
1

n
I(M1;Y

n
1 )+εn ≤ 1

n
I(Xn

1 ;Y
n
1 )+εn, R2

1

n
I(M2;Y12

n)+εn ≤ 1

n
I(Xn

2 ;Y
n
2 )+εn

for some εn that tends to zero n → ∞. This shows that 1
n
A TIN(W⊗n) → C (W ),

completing the proof.

This justifies the use of Lemma 1 to test the optimality of the Han–Kobayashi

region. As discussed in Chapter 1, to conduct the optimality test, one needs

to evaluate the region for some non-trivial channels. But even numerical com-

putation of the Han–Kobayashi region is computationally infeasible for random

channels with binary inputs. This is essentially due to the non-convexity of the

underlying optimization problem. One strategy is to consider interference chan-

nels where the computation becomes tractable. Along these lines, the following

class was defined in [16].

Definition 3. An interference channel W (y1, y2|x1, x2) is said to have very weak
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interference if

I(U1;Y2|X2) ≤ I(U1;Y1),

I(U2;Y1|X1) ≤ I(U2;Y2).

for all auxiliaries (U1, U2) such that the joint probability distribution satisfies

p(u1, u2, x1, x2, y1, y2) = p1(u1, x1)p2(u2, x2)p(y1, y2|x1, x2).

By considering (3.5) and the very weak interference conditions, it can be read-

ily shown that for this class the sum-rate of the Han–Kobayashi region reduces

to the treating interference as noise,

max(R1 +R2) = max
p(x1)
p(x2)

I(X1;Y1) + I(X2;Y2), (R1, R2) ∈ Han–Kobayashi region.

This simplification allowed the authors of [16] to test whether the the Han–

Kobayashi region is sum-rate optimal or not for this class. Numerical simulations

suggested that it is optimal and the authors could establish it for some classes

within very weak interference channels. On the contrary the weighted sum rate

of the Han–Kobayashi region does not simplify readily under the very weak in-

terference assumptions and its computation remains infeasible.

Here we define a further sub-class of the very weak interference channels where

the computation of the entire Han–Kobayashi region becomes viable.

Definition 4. Let clean Z interference channel (CZIC) be the class of interference

channels where one of the sender–receiver pairs has a clean communication link.

In this thesis it is assumed that the second sender-receiver pair has this property,

i.e. Y2 = X2. This setting is depicted in Figure 3.1.
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M1

M2

Encoder 1

Encoder 2

Xn
1

W⊗n(y1|x1, x2)
Y n
1

Y n
2 = Xn

2

Decoder 1

Decoder 2

M̂1

M̂2

Figure 3.1: CZIC - Clean Z Interference Channel

The simplicity of this class allows us to simplify the characterization of the

Han–Kobayashi region for CZIC. Proposition 3.12 shows an equivalent character-

ization of the Han–Kobayashi region for this class.

Proposition 4. The Han–Kobayashi region for CZIC is identical to the set of rate

pairs (R1, R2) that satisfy

R1 < I(X1;Y1|U2, Q), (3.8)

R2 < H(X2|Q), (3.9)

R1 +R2 < I(X1, U2;Y1|Q) +H(X2|U2, Q) (3.10)

for some pmf p(q)p(u2|q)p(x2|u2)p(x1|q), where |U2| ≤ |X2| and |Q| ≤ 2.

Proof. On one hand, it is a simple exercise to note that the Han–Kobayashi region

for CZIC reduces to the three constraints above by setting U1 = φ. Hence, the

above region is a subset of the Han–Kobayashi region.

Conversely, (3.8) is identical to (3.1) of the Han–Kobayashi region. (3.9)

and (3.10) are respectively looser constraints than (3.2) and (3.3) of the Han–

Kobayashi region, which makes the above region at least as large as the original

Han–Kobayashi region, thus proving their equivalence.

Note that the changes in cardinality of U2 and Q follow from standard applica-
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tions of cardinality reduction techniques all while the underlying region remains

the same, as shown in Appendix C of [11]. Therefore, we do not have to take

these changes into account when talking about the two regions’ equivalence.

The time sharing random variable Q in the Han–Kobayashi region makes sure

that this region is convex. Hence to investigate the Han–Kobayashi region in

relation to the capacity region we consider the regions’ supporting hyper-planes,

that is

A HK
λ := max(λR1 +R2), ∀(R1, R2) ∈ Han–Kobayashi achievable region

Cλ := max(λR1 +R2), ∀(R1, R2) ∈ capacity region

We consider two regimes for λ, λ ∈ [0, 1] and λ ∈ (1,∞). First we show that

the Han–Kobayashi region is optimal in the first regime.

Proposition 5. For CZIC, A HK
λ = Cλ for λ ∈ [0, 1].

Proof. The proof is a standard converse argument. By Fano’s inequality, any

achievable (2nR1 , 2nR2 , n) code must satisfy

n(λR1 +R2)− nε ≤ H(Xn
2 ) + λI(Xn

1 ;Y
n
1 )

The right hand side of the above inequality, by chain rule, equals to

n∑
i=1

H(X2i|X i−1
2 ) + λI(Xn

1 ;Y1i|Y i−1
1 )

≤
n∑

i=1

H(X2i|X i−1
2 ) + λI(Xn

1 , Y
i−1
1 ;Y1i)

(a)

≤
n∑

i=1

H(X2i|X i−1
2 ) + λI(X1i, X

i−1
2 ;Y1i)

≤
n∑

i=1

H(X2i)− I(X2i;X
i−1
2 ) + λI(X1i;Y1i) + λI(X i−1

2 ;Y1i|X1i)
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(b)

≤
n∑

i=1

H(X2i)− I(X2i;X
i−1
2 ) + λI(X1i;Y1i) + λI(X i−1

2 ;X2i) (3.11)

where (a) follows from the Markov chain formed by (Y i−1
1 , Xn�i

1 ) →
(
X1i, X

i−1
2

)
→

Y1i and (b) from the Markov chain formed by X i−1
2 → (X1i, X2i) → Y1i and the

independence of Xn
1 and Xn

2 .

For 0 ≤ λ ≤ 1, (3.11) is less than or equal to n (max(H(X2) + λI(X1;Y1)) which

shows that, as ε tends to zero, any achievable rate pair (R1, R2) must satisfy,

λR1 +R2 ≤ max
p1(x1)p2(x2)

H(X2) + λI(X1;Y1).

The proof is complete by observing that the above rate can be achieved by setting

U2 = φ in the Han–Kobayashi region.

In the second regime, λ ∈ (1,∞), we show that Cλ can be strictly larger than

A HK
λ which proves the sub-optimality of the Han–Kobayashi region for IC. The

proof involves evaluating the Han–Kobayashi region for a particular CZIC. The

following Proposition helps us evaluate A HK
λ for λ > 1.

Proposition 6. For CZIC, for all λ > 1, A HK
λ equals to

max
p1(x1)
p2(x2)

(
I(X1, X2;Y1) + C

p2(x2)

[
H(X2)− I(X2;Y1|X1) + (λ− 1)I(X1;Y1)

])
.

(3.12)

Proof. Consider the constraints on R1+R2 and R1 as stated in Proposition 4. and

observe that any (R1, R2) in the Han–Kobayashi region must satisfy the following

inequality for some p(q)p2(u2, x2|q)p1(x1|q).

A HK
λ ≤ (λ− 1)I(X1;Y1|U2, Q) + I(X1, U2;Y1|Q) +H(X2|U2, Q) (3.13)
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Rewrite the right hand side of the above as

I(X1, X2;Y1|Q) +H(X2|U2, Q)− I(X2;Y1|U2, X1, Q) + (λ− 1)I(X1;Y1|U2, Q)

(a)
=I(X1, X2;Y1|Q) + C

p2(x2|q)

[
H(X2|Q)− I(X2;Y1|X1, Q) + (λ− 1)I(X1;Y1|Q)

]
(b)

≤max
p1(x1)
p2(x2)

(
I(X1, X2;Y1) + C

p2(x2)

[
H(X2)− I(X2;Y1|X1) + (λ− 1)I(X1;Y1)

])
,

where (a) follows directly from the definition of the upper concave envelope and

(b) from the fact that Q computes an average, and the average is less than the

maximum.

On the other hand, for any p2(u2, x2)p1(x1), the following rate pair

(R1, R2) = (I(X1;Y1|U2), H(X2|U2) + I(U2;Y1))

belongs to the Han–Kobayashi region as it satisfies the constraints. Thus, A HK
λ

is larger than or equal to

max
p2(u2,x2)
p1(x1)

λI(X1;Y1|U2) +H(X2|U2) + I(U2;Y1)

= max
p2(u2,x2)
p1(x1)

I(X1, U2;Y1) +H(X2|U2) + (λ− 1)I(X1;Y1|U2)

= max
p2(u2,x2)
p1(x1)

I(X1, X2;Y1) +H(X2|U2)− I(X2;Y1|U2, X1) + (λ− 1)I(X1;Y1|U2)

(c)
= max

p2(x2)
p1(x1)

(
I(X1, X2;Y1) + C

p2(x2)

[
H(X2)− I(X2;Y1|X1) + (λ− 1)I(X1;Y1)

])
,

where (c) also follows directly from the definition of the upper concave envelope,

see [4]. This establishes the converse and completes the proof of the proposition.

The two following lemmas help us simplify the expression in Proposition 6.
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Lemma 6. The following holds for any f(x) and g(x).

C
x
[f(x) + g(x)] ≤ C

x
[f(x)] + C

x
[g(x)].

Proof. C
x
[f(x)] +C

x
[g(x)] is concave as it is the sum of two concave envelopes. On

the other hand C
x
[f(x)] and C

x
[g(x)] are by definition respectively larger than or

equal to f(x) and g(x). The proof is complete by noting that C
x
[f(x) + g(x)] is

the smallest concave function that dominates f(x) + g(x).

Lemma 7. Let l(x) be an affine function of x. For any f(x) we have

C
x
[f(x) + l(x)] = C

x
[f(x)] + l(x).

Proof. Consider the Lemma 6 for the two functions (f(x) + l(x)) and (−l(x)).

C
x
[(f(x) + l(x)− l(x)] ≤ C

x
[f(x) + l(x)] + C

x
[−l(x)] = C

x
[f(x) + l(x)]− l(x).

This establishes the non-trivial direction to prove the lemma.

Corollary 4. For CZIC, for all λ > 1, A HK
λ equals to

A HK
λ = max

p1(x1)
p2(x2)

(
H(Y1) + C

p2(x2)
[H(X2) + (λ− 1)H(Y1)− λH(Y1|X1)]

)
. (3.14)

Proof. From Proposition 6, A HK
λ is equal to

max
p1(x1)
p2(x2)

(
I(X1, X2;Y1) + C

p2(x2)

[
H(X2)− I(X2;Y1|X1) + (λ− 1)I(X1;Y1)

])
.

Note that H(Y1|X1, X2) is linear in P2(X2), hence by Lemma 7

C
p2(x2)

[
H(X2)− I(X2;Y1|X1) + (λ− 1)I(X1;Y1)

]
= C

p2(x2)

[
H(X2) + (λ− 1)H(Y1)− λH(Y1|X1)

]
+H(Y1|X1, X2),

which establishes the Corollary.
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The main obstacle of computing A HK
λ lies in the evaluation of the concave

envelope in (3.14). In general computing the concave envelope of multi-variate

functions is a difficult task, however, for single-variate functions it’s rather easy

to be carried out with extremely high precision. Here we are mainly concerned

with the function C
p2(x2)

[H(X2) + (λ− 1)H(Y1)− λH(Y1|X1)]. It is easy to verify

that this function has at most two two inflection points when X2 is binary. Figure

3.2 shows one instance of the above function when the there are two inflection

points.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p(x2)

H(X2) + (λ− 1)H(Y1)− λH(Y1|X1)

C
p(x2)

[H(X2) + (λ− 1)H(Y1)− λH(Y1|X1)]

Figure 3.2: The shape of the concave envelope for binary CZIC

We consider W (Y1|X1, X2) ∈ CZIC with binary X1, X2 and Y1 where we are

able to numerically evaluate A HK
λ (W ) with extremely high precision. Within this

class of channels, it is rather easy to find W s where

A HK
λ (W ) <

1

2
A TIN

λ (W⊗2), for some fixed λ ∈ (1,∞). (3.15)

This implies that the Han–Kobayashi region is strictly sub-optimal for the inter-

ference channel, thus establishing Theorem 5.
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A number of examples where the capacity region is larger than the Han–

Kobayashi region, i.e. inequality 3.15 holds, are listed in Table 3.1. The channels

in Table 3.1 are represented using matrices of the form⎡
⎢⎢⎣P (Y1 = 0|(X1, X2) = (0, 0)) P (Y1 = 0|(X1, X2) = (0, 1))

P (Y1 = 0|(X1, X2) = (1, 0)) P (Y1 = 0|(X1, X2) = (1, 1))

⎤
⎥⎥⎦ ,

and the values of A HK
λ (W ) and 1

2
A TIN

λ (W⊗2) are truncated to six decimal places.

λ W (Y1|X1, X2) A HK
λ (W ) 1

2A
TIN
λ (W⊗2)

2

⎡
⎢⎢⎣1 0.5

1 0

⎤
⎥⎥⎦ 1.107516 1.108141

9

⎡
⎢⎢⎣0.12 0.89

0.21 0.62

⎤
⎥⎥⎦ 1.074484 1.075544

12

⎡
⎢⎢⎣0.01 0.58

0.20 0.74

⎤
⎥⎥⎦ 1.289830 1.293760

14

⎡
⎢⎢⎣0.78 0.07

0.46 0.05

⎤
⎥⎥⎦ 1.426526 1.432419

15

⎡
⎢⎢⎣0.91 0.22

0.66 0.15

⎤
⎥⎥⎦ 1.323766 1.339065

16

⎡
⎢⎢⎣0.91 0.13

0.62 0.06

⎤
⎥⎥⎦ 1.515421 1.534724

18

⎡
⎢⎢⎣0.38 0.87

0.12 0.79

⎤
⎥⎥⎦ 1.449959 1.468577

Table 3.1: Examples
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Remark 8. Given the importance of this sub-optimality result to the field, it is

important that we need to make sure that the gains are not the result of numerical

inaccuracies (of computing the concave envelope and the global maximizers). To

this end, we first identify a sub-class where the concave envelope is computed

explicitly and since the resultant expressions are elementary functions we employ

interval arithmetic1 to give formal bounds on the global maximizers.

3.1.1 A specific sub-class

Definition 5. S(c) is the class of CZIC with binary inputs and outputs where⎡
⎢⎢⎣P (Y1 = 0|(X1, X2) = (0, 0)) P (Y1 = 0|(X1, X2) = (0, 1))

P (Y1 = 0|(X1, X2) = (1, 0)) P (Y1 = 0|(X1, X2) = (1, 1))

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣1 c

1 0

⎤
⎥⎥⎦ ,

This channel is depicted in Figure 3.3 as two point-to-point channels X1 → Y1

for different choices of X2.

X2 = 0 X2 = 1

X1

0

1

Y1

0

1

X1

0

1

Y1

0

1

c

c̄

Figure 3.3: A special class of binary CZIC - S(c)

Consider the the function under the concave envelope operator in (3.14),

H(X2) + (λ− 1)H(Y1)− λH(Y1|X1)

1See https://en.wikipedia.org/wiki/Interval_arithmetic for the use of interval arithmetic as

a numerical tool.
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For the channel S(c) the above is equal to

f(λ,c)(p, q) := (1− λp̄)Hb(q) + (λ− 1)Hb(q + pcq̄)− λpHb(q + cq̄). (3.16)

where p := P (X1 = 0) and q := P (X2 = 0).

The following Lemma characterizes the concave envelope of f(λ,c)(p, q).

Lemma 8. Consider the bivarite function f(λ,c)(p, q), over (p, q) ∈ [0, 1]× [0, 1].

C
q
[f(λ,c)(p, q)] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(λ,c)(p, q) q ≥ max(0, q̂)

f(λ,c)(p, q̂)− f(λ,c)(p, 0)

q̂
q + f(λ,c)(p, 0) Otherwise

,

where q̂ is the solution of
f(λ,c)(p, q̂)− f(λ,c)(p, 0)

q̂
=

∂f(λ,c)(p, q)

∂q

∣∣∣
q̂
.

Proof. Consider the first and second partial derivatives of f(p, q) w.r.t. q,

∂f(λ,c)(p, q)

∂q
= (1− λp̄)J(q) + (λ− 1)(1− pc)J(q + pcq̄)− λpc̄J(q + cq̄) (3.17)

∂2f(λ,c)(p, q)

∂q2
=

pc (c(λp̄− 1)− (c(λp̄− 1) + 1)q)

ln 2qq̄(cp+ (1− cp)q)(c+ c̄q)
(3.18)

where J(x) = log(
1− x

x
) is the derivative of the binary entropy function. Observe

that

1. If p ∈ (λ−1
λ
, 1), then (3.18) is negative for q ∈ (0, 1), i.e., if p > λ−1

λ
, f(λ,c)(p, q)

is concave in q and C
q
[f(λ,c)(p, q)] = f(λ,c)(p, q).

2. If p ∈ (0, λ−1
λ
), then (3.18) has one solution, q∗ ∈ (0, 1).

q∗ =
c(λp̄− 1)

c(λp̄− 1) + 1
.

In fact, f(λ,c)(p, q) is convex for q ∈ (0, q∗) and concave for q ∈ (q∗, 1). Thus

C
q
[f(λ,c)(p, q)] consists of two parts. First part is a tangent line from the
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point f(λ,c)(p, 0) to the function f(λ,c)(p, q̂) and the second part is equal to

f(λ,c)(p, q). Figure 3.4 depicts this function for (p, λ, c) = (
2

10
, 2,

1

2
).

To find the point where the tangent line meets the function, (q̂), we need to

solve the following equation

f(λ,c)(p, q̂)− f(λ,c)(p, 0)

q̂
=

∂f(λ,c)(p, q)

∂q

∣∣∣
q̂
. (3.19)

Because the function is initially convex and then concave, the above equation

will have at most one solution q̂ 
= 0. Furthermore the first derivative (3.17)

at q = 1 and q = 0 equals −∞, which implies that for all λ > 1, there is a

solution in (0, 1) and this completes the proof.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

q

f(2, 1
2
)(0.2, q)

C
q
[f(2, 1

2
)(0.2, q)]

Figure 3.4: The shape of the concave envelope for S(c)

Remark 9. It is easy to verify that at λ = 2 the solution of the equation (3.19) is



CHAPTER 3. INTERFERENCE CHANNEL 51

equal to q̂ =
c(1− 2p)

c(1− 2p) + p
. In particular when c = 1

2

C
q
[f(2, 1

2
)(p, q)] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(2, 1
2
)(p, q) q ≥ max(0, 1− 2p)

f
(2, 12 )

(p,1−2p)−f
(2, 12 )

(p,0)

1−2p
q + f(2, 1

2
)(p, 0) Otherwise,

The following Proposition helps us demonstrate that the capacity region of

the channel S(
1

2
) is strictly larger than the Han–Kobayashi achievable region. To

this end we compare the following quantities:

A HK
2 (S(

1

2
)) := max

(R1,R2)∈A HK(S( 1
2
))
2R1 +R2

A TIN
2 (S(

1

2
)⊗2) := max

(R1,R2)∈A TIN(S( 1
2
)⊗2)

2R1 +R2

C2(S(
1

2
)) := max

(R1,R2)∈C
2R1 +R2.

Proposition 7. A HK
2 (S(1

2
)) ≤ 1.10769 < 1.1081 < 1

2
A TIN

2 (S(1
2
)⊗2) ≤ C2(S(

1
2
)).

Proof. We first show that A HK
2 (S(1

2
)) ≤ 1.10769. By substituting the upper

concave envelope from Remark 9 into (3.14) we get A HK
2 (S(1

2
)) = max

p,q∈[0,1]2
g(p, q)

where

g(p, q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Hb(q +
p
2
q̄) + f(2, 1

2
)(p, q) q ≥ max(0, 1− 2p)

Hb(q +
p
2
q̄) +

f
(2, 12 )

(p,1−2p)−f
(2, 12 )

(p,0)

1−2p
q + f(2, 1

2
)(p, 0) Otherwise,

and as defined in (3.16)

f(2, 1
2
)(p, q) = (2p− 1)Hb(q) +Hb(q +

pq̄

2
)− 2pHb(q +

q̄

2
).

Note that g(p, q) has a closed-form expression that includes basic arithmetic

functions and logarithm. The interval arithmetic method is a technique which

yields formal bounds for functions consisting of basic arithmetic functions and
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commonly used functions such as logarithms and trigonometric functions. We

use the Julia based implementation of this formal method and it yielded that

max g(p, q) ∈ [1.10751, 1.10769]. Refer to the appendix for the code that yields

this bound.

Remark 10. Using the numerical minimization tool of Scilab and by plotting the

function the following is a very good approximation of the maximum of g(p, q).

max
p,q

(g(p, q)) = 1.107577, (p∗, q∗) argmax = (0.507829413, 0.436538150)

.

Figure 3.5 depicts the function g(p, q) with various resolutions.

On the other hand, it is easy to verify that the 2-letter treating interference

as noise region achieves the rate pair

(R1, R2) = (0.064029, 0.980083), where 2R1 +R2 = 1.108141,

The distribution that achieves the above rate pair for the treating interference as

noise region is as follows,

P ((X11, X12) = (0, 0)) = p∗ P ((X11, X12) = (1, 1)) = 1− p∗

P ((X21, X22) = (0, 0)) = 0.36q∗ P ((X21, X22) = (1, 1)) = 1− 1.64q∗

P ((X21, X22) = (0, 1)) = 0.64q∗ P ((X21, X22) = (1, 0)) = 0.64q∗

This demonstrates that 1.1081 < 1
2
A TIN

2 (S(1
2
)⊗2) and hence completes the proof

of the proposition as the last inequality follows by definition of the capacity region.

Without providing further details, we present our numerical computations of

the single-letter and 2-letter Han–Kobayashi regions for the channel S(1
2
). This is
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Figure 3.5: g(p, q)
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basically done by conducting a numerically accurate approximation to the concave

envelope and taking a fine grid.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

R1

R2

A HK(S(12))
1
2A

HK(S(12)
⊗2)

Figure 3.6: Single-letter and 2-letter Han–Kobayshi regions
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3.2 Deterministic Binary Interference channel

This section concerns the set of achievable rate pairs for a deterministic inter-

ference channel where the inputs are binary and one receiver (Y1) receives the

(logical) AND of the two inputs while the other receiver (Y2) receives the (logical)

OR of the two inputs. This is the only deterministic interference channel setting

(up to isomorphism) with binary inputs and outputs whose capacity region has

not been established. Etkin and Ordentlich in section (V) of [7] conjectured that

the capacity region of this setting (AND–OR channel) coincides with the time-

division region (R1+R2 ≤ 1). We disprove this conjecture by demonstrating that

the sum-rate of the Han–Kobayashi achievable region is at least 1.0157.

Proposition 8. Any non-negative R1 +R2 satisfying

R1 +R2 ≤I(X1;Y1|U2, Q) + I(X2;Y2|U1, Q) (3.20)

R1 +R2 ≤I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q) (3.21)

R1 +R2 ≤I(X2, U1;Y2|Q) + I(X1;Y1|U1, U2, Q) (3.22)

R1 +R2 ≤I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q) (3.23)

for some p(q)p(u1, x1|q)p(u2, x2|q) is achievable.

Proof. This follows by applying Fourier-Motzkin elimination on the Han–Kobayashi

region in Theorem 3.

The following Proposition helps find a simpler characterization of the sum-rate

of the Han–Kobayashi achievable region for the AND–OR channel.
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Proposition 9. For the AND–OR channel, any non-negative R1 +R2 satisfying

R1 +R2 ≤ I(X1;Y1|U2, Q) + I(X2;Y2|U1, Q) (3.24)

R1 +R2 ≤
1

2

(
I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q)

+ I(X2, U1;Y2|Q) + I(X1;Y1|U1, U2, Q)
)

(3.25)

R1 +R2 ≤ I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q) (3.26)

for some p(q)p(u1, x1|q)p(u2, x2|q) is achievable.

Proof. Given a joint distribution p(q)p1(u1, x1|q)p2(u2, x2|q), let the constraints

(3.24) = a, (3.25) = b and (3.26) = c. We now define an induced symmetrized

distribution. Let S ∈ {0, 1} be a binary random variable. Define Q̃ = (S,Q) and

consider a joint distribution r(Q̃, Ũ1, X̃1, Ũ2, X̃2) defined as

r
(
Q̃ = (0, q), (Ũ1, X̃1) = (u1, x1), (Ũ2, X̃2) = (u2, x2)

)
=

1

2
p(q)p1(u1, x1|q)p2(u2, x2|q),

r
(
Q̃ = (1, q), (Ũ1, X̃1) = (u2, x2), (Ũ2, X̃2) = (u1, x1)

)
=

1

2
p(q)p1(u1, x̄1|q)p2(u2, x̄2|q).

Observe that substituting the symmetrized distribution r into Proposition 8 for

the AND–OR channel yields (3.20) = a, (3.21) = b, (3.22) = b and (3.23) =

c. This shows that any non-negative R1 + R2 satisfying the constraints of this

proposition also satisfies the constraints of Proposition 8 for the symmetrized

distribution. Therefore the sum-rate given by this proposition is equal to the

sum-rate of the Han–Kobayashi achievable region.
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Proposition 10. The maximum sum–rate of the Han–Kobayashi region for the

AND–OR channel is larger than 1.015.

Proof. This is done by providing a joint distribution p(q)p1(u1, x1|q)p2(u2, x2|q)

on (Q,U1, U2, X1, X2) for which all of the constraints in Proposition 9 are larger

than 1.015. Let Q ∈ {1, 2} be a binary random variable and p1(u1, x1|q =

1)p2(u2, x2|q = 1) be such that

U1 = X1, U2 = X2, P (X1 = 0) = 0.3331, P (X2 = 1) = P (X1 = 0)

Let p1(u1, x1|q = 2)p2(u2, x2|q = 2) be such that

U1 = 1, U2 = X2, P (X1 = 0) = 0.4838, P (X2 = 0) = 0.0792

By setting P (Q = 1) = 0.0773, the three constraints (3.24), (3.25) and (3.26)

on sum-rate respectively evaluate to 1.0395, 1.0157 and 1.0157 which finishes the

proof of the proposition.

3.3 Summary and Discussion

In this chapter we presented two results. First we showed that there are chan-

nels for which Han–Kobayashi achievable region is strictly contained inside the

capacity region. Towards this end, we identified a class of channels where the

weighted sum-rate expression simplifies and can be computed numerically to a

high degree of precision. We identified a further sub-class where we could use in-

terval arithmetic to exhibit a gap. All of these involved working with extremizers

of non-convex optimization problems and identifying optimal auxiliary variables.
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Our 2-letter distribution that outperforms the single-letter distribution indi-

cates that even repetition coding improved on the memoryless coding. This again,

similar to previous chapter, points to the fact that the current schemes do not

fully utilize the temporal diversity gains in a memoryless setting.

Finally using the tools we developed to compute the Han–Kobayashi region,

we were able to disprove a conjecture (belief) by Etkin and Ordentlich on the

optimality of the time-division strategy for the AND-OR interference channel.

� End of chapter.



Appendix

In [1]: using IntervalArithmetic

using IntervalOptimisation

In [2]: function binH(r)

if r*(1-r)<10^(-8)

h=0

else

h = -(r*log(2,r) + (1-r)*log(2,1-r))

end

return h

end

Out[2]: binH (generic function with 1 method)

In [3]: function f(p,q)

x = (2*p-1)*binH(q) - 2*p*binH((1+q)/2) + binH(q + p*(1-q)/2)

return x

end

Out[3]: f (generic function with 1 method)

In [4]: function G(p,q)

if q+2*p < 1

59



Appendix 60

x = binH(q+p*(1-q)/2) + (f(p,1-2*p)-f(p,0))*q/(1-2*p)

+ f(p,0)

else

x = binH(q+p*(1-q)/2) + f(p,q)

end

return x

end

Out[4]: G (generic function with 1 method)

In [5]: @time global_max, maximisers = maximise(X ->((x,y) = X; G(x,y)),

(0.01..0.99) x (0.01..0.99),0.2*1e-4);

9848.472772 seconds (699.59 k allocations: 420.560 MiB, 0.00% gc time)

In [6]: @interval(global_max)

Out[6]: [1.10751, 1.10769]
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