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Information inequalities play a fundamental role in establishing outer bounds

of the achievable region in multi-user information theory. Beyond this specific

application, these inequalities serve important roles in multidisciplinary research.

This thesis focuses on utilizing information-theoretic tools to build connections and

equivalence theorems across various fields including projection theory, functional

analysis, and additive combinatorics. Additionally, we aim to utilize ideas from

these fields to develop machinery and tools for proving new entropic inequalities.

We begin by studying a fundamental supermodularity inequality for mutual

information, which is associated with the “compression” partial order from com-

binatorics. By constructing appropriate auxiliary random variables, we simplify

proofs of existing results and generalize the supermodularity results to Fisher

information, Kullback–Leibler divergence, and strong data processing inequality

constant, among others.

By combining supermodularity with “rotation”-trick, we develop machinery for

establishing the optimality of uniform distributions in optimizing entropic func-

tionals over finite abelian groups. This approach leads to a discrete analogue

of the entropy power inequality and has direct applications to the polynomial

Freiman-Ruzsa conjecture.

We further extend our submodularity results to sumset inequalities through

an equivalence theorem framework. By introducing copies of random variables

with suitable Markovian structures, we establish new entropic inequalities via

submodularity. We also propose an entropic formulation for magnification ratio

in a bipartite graph, laying groundwork for deeper connections between sumset

theory and information theory.



論文題為《資訊不等式：次可加性與加法組合學之關聯》之摘要

呈交者：劉展華

申請哲學博士學位

於香港中文大學，2025 年 5 月

資訊不等式在多用戶資訊理論中，對於建立可行區域的外界範圍起著基礎性

作用。除了此特定應用外，這些不等式在跨學科研究中也擔當重要角色。本論

文聚焦運用資訊理論工具，在投影理論、泛函分析與加法組合學等多個領域間

建立聯繫與等價定理，並致力將這些領域的思想轉化為證明新型熵不等式的方

法工具。

我們首先研究互資訊的基礎超模性不等式，其與組合學中「壓縮」偏序關係

相關。通過構建適當輔助隨機變量，我們簡化了現有結果的證明，並將超模性結

果推廣至費雪資訊量、Kullback–Leibler 散度及強數據處理不等式常量等領域。

結合超模性與「旋轉」技巧，我們建立了一套方法論用於證明有限阿貝爾群

上均勻分布對熵泛函優化的最優性。此方法導出熵冪不等式的離散類比，並可

直接應用於多項式形式的 Freiman–Ruzsa 猜想。

我們進一步通過等價定理框架將次模性結果延伸至和集不等式。藉由引入具

有適當馬可夫結構的隨機變量副本，利用次模性建立新型熵不等式。同時提出

二部圖擴展性的熵形式化表述，為和集理論與資訊理論的深度聯繫奠定基礎。
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Notation

This section provides a general guideline for the notation used throughout this

thesis. Any deviations from these conventions are explicitly noted when they

occur.

Z the set of integers

Zd the d-dimensional integer lattice

R the set of real numbers

Rd d-dimensional Euclidean space

〈·, ·〉 the inner product in Rd

| · | the Euclidean norm on Rd

q � p q is absolutely continuous with respect to p

[a : b] the set of integers from a to b, inclusive

|S| the cardinality of set S

A � 0 A is a positive definite matrix

A � B A− B � 0

f, g, . . . functions

X,Y, . . . random variables

X ,Y , . . . the support of discrete random variables X,Y

x, y, . . . constants or values of random variables

XS the tuple of random variables {Xi}i∈S

P(E) the probability of an event E

pX the probability mass function of discrete random variable X

pX,Y the joint probability mass function

ix



of discrete random variables X and Y

pY |X the conditional probability mass function of Y given X

Π(X1, . . . , Xn) the collection of joint distributions pX1,...,Xn

that are consistent with the marginal distributions pX1 , . . . , pXn

W transition channel between two random variables

µX the probability density function of continuous random variable X

X ∼ pX random variable X follows the probability mass function pX

supp(pX) the support of probability mass function pX

X ⊥ Y random variables X and Y are independent

X ⊥ Y |Z random variables X and Y are conditionally independent given Z

X1 → · · · → Xn random variables X1, . . . , Xn form a Markov chain

E[X] the expectation of random variable X

E[Y |X] the conditional expectation of random variable Y given X

H(X) the entropy of a discrete random variable X

H(X) := −
∑

x pX(x) log pX(x)

H(Y |X) the conditional entropy of a discrete random variable Y given X

H(Y |X) := −
∑

x,y pX,Y (x, y) log pY |X(y|x)

h(X) the differential entropy of a continuous random variable X

h(X) := −
∫
x
µX(x) logµX(x)

h(Y |X) the differential entropy of a continuous random variable Y given X

h(Y |X) := −
∫
x,y
µX,Y (x, y) logµY |X(y|x)

ρX(X) the score function of a continuous random variables X

ρX(X) := ∇ log fX

J(X) the Fisher information of a continuous random variable X

J(X) := E[‖ρX(X)‖2]
dµ
dν

the Radon–Nikodym derivative

of distribution µ with respect to distribution ν

D(µ‖ν) the Kullback–Leibler divergence

of distribution µ from distribution ν

x



D(µ‖ν) := Eµ

[
log
(
dµ
dν

)]
I(X;Y ) the mutual information between random variables X and Y

I(X;Y ) := D(µX,Y ‖µXµY )

I(X;Y |Z) the conditional mutual information

between random variables X and Y given Z

I(X;Y |Z) := EµZ

[
D(µX,Y |Z‖µX|ZµY |Z)

]
G,H, . . . finite groups

T a finitely generated torsion-free Abelian group
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Chapter 1

Introduction

Information inequalities play a fundamental role in establishing outer bounds of

the achievable region in multi-user information theory. Beyond this specific appli-

cation, these inequalities serve important roles in multidisciplinary research. This

thesis focuses on utilizing information-theoretic tools to build connections and

equivalence theorems across various fields including projection theory, functional

analysis, and combinatorics. It aims to simplify and generalize existence results

through a submodularity framework. Additionally, we seek to utilize ideas from

these fields to develop machinery and tools for proving new entropic inequalities.

In this chapter, we provide necessary preliminaries on the fields that we intend

to connect with information inequalities. We begin with Section 1.1, which covers

the fundamental entropic inequalities that will appear frequently throughout this

thesis.

By leveraging the basic information inequalities from entropic algebra, we can

establish that entropy and differential entropy are both subadditive and submod-

ular. In Section 1.2, we briefly explore several applications of submodular en-

tropic inequalities, including Shearer’s Lemma and the entropy power inequality.

These results motivate our search for a more generalized family of supermodular-

ity inequalities, and their relationships to different information quantities, such as

Fisher information and KL divergence.

1



Through Legendre duality, we can establish equivalence between functional

inequalities and entropic inequalities. In Section 1.3, we start with a simple en-

tropic proof of Hölder’s inequality. By combining the concepts of subadditivity

and the “rotation” technique, we establish the Gaussian optimality of a family

of differential entropic functionals for continuous random variables, which unifies

the entropic formulation of the Brascamp–Lieb inequality and the entropy power

inequality. In this thesis, we develop a discrete counterpart of this mechanism,

which establishes the optimality of uniform distribution for a family of entropic

functionals.

In Section 1.4, we introduce the concept of sumsets from additive combinatorics

and the potential parallelism between sumset inequalities and entropic inequali-

ties. We also discuss previous attempts to build connections between these two

domains. Inspired by these attempts, we establish a generalized equivalence theo-

rem between sumset inequalities and entropic inequalities, and provide standalone

entropic proofs derived from combinatorial construction techniques.

In Section 1.5, we outline the overall structure of this thesis and summarize

our contributions.

1.1 Preliminaries of entropic algebra

We now introduce fundamental inequalities in entropic algebra. For a comprehen-

sive treatment and proofs of these properties, we refer the reader to Chapter 2 of

Cover and Thomas [CT91].

• Optimality of uniform distribution: For a discrete random variable X

with finite support X , we have H(X) ≤ log |X |, with equality if and only if

X follows a uniform distribution on X .

• Non-negativity of entropy: For any discrete random variable X, we have

H(X) ≥ 0.
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• Chain rule of entropy: For a sequence of discrete random variables

X1, . . . , Xn, we have H(X1, . . . , Xn) =
∑n

i=1H(Xi|X1, . . . , Xi−1).

• Conditional mutual information: For discrete random variables X,Y, Z,

we have I(X;Y |Z) = H(X,Z)+H(Y, Z)−H(X,Y, Z)−H(Z). Furthermore,

I(X;Y |Z) ≥ 0.

• Data processing inequality: If X → Y → Z forms a Markov chain, then

I(X;Y ) ≥ I(X;Z).

1.2 Application for subadditive and submodular

inequality

In this section, we demonstrate applications of subadditivity and submodularity

in various scenarios. In Section 1.2.1, we present direct consequences of the sub-

modularity of entropy and its applications in projection theory and combinatorics.

In Section 1.2.2, we show how a subadditivity approach establishes Gaussian op-

timality. By combining these results, we derive the entropy power inequality

(EPI) using a novel proof technique in Section 2.3.1, following our introduction to

different EPI formulations in Section 1.2.3.

First, we introduce the definitions of subadditivity and submodularity, then

establish that both entropy and differential entropy satisfy these properties.

Definition 1.2.1 (Subadditivity and submodularity). Let Ω be a finite set with

power set P(Ω). For a function f : P(Ω) → R, we say:

• f is subadditive if f(A ∪ B) ≤ f(A) + f(B) for all subsets A,B ⊆ Ω.

• f is submodular if f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B) for all subsets

A,B ⊆ Ω.

Proposition 1.2.2 (Subadditivity and submodularity of entropy and differential

entropy). Let n be a positive integer and Ω = [1 : n]. For a tuple of discrete-
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valued random variables (X1, . . . , Xn), define f(A) = H(XA) = H({Xi}i∈A) where

A ⊆ Ω. Then f is both subadditive (f(A ∪ B) ≤ f(A) + f(B)) and submodular

(f(A∪B)+ f(A∩B) ≤ f(A)+ f(B)). Analogous results hold for f(A) := h(XA)

(differential entropy) when X1, . . . , Xn are continuous-valued random variables.

Proof. Both properties follow directly from information theory: subadditivity

from the non-negativity of mutual information, and submodularity from the non-

negativity of conditional mutual information.

1.2.1 Shearer’s Lemma and Han’s inequality

A direct consequence of submodularity of entropy is Shearer’s Lemma (prominent

in theoretical computer science) or Han’s inequality (well-established in informa-

tion theory):

Lemma 1.2.3 ([CGFS86, Han78]). Let X1, . . . , Xn be random variables. For

subsets S1, . . . , Sm of Ω := [1 : n] where each element i ∈ Ω appears in at least r

subsets, we have

H(X1, . . . , Xn) ≤
1

r

m∑
k=1

H(XSk
).

Shearer’s Lemma immediately yields the following equivalent projection in-

equality:

Theorem 1.2.4 ([BB12, Ruz09a]). Let K ⊆ Rd be a finite set of points. Let

Ω := [1 : d] and consider subsets S1, . . . , Sm of Ω where each element i ∈ Ω

appears in at least r subsets. For each subset Sj, define the projection KSj
as:

KSj
:= {πSj

(x) : x ∈ K}

where πSj
: Rd → R|Sj | is the projection onto the coordinate subspace indexed by

Sj. Specifically, for x = (x1, x2, . . . , xd) ∈ K, we have πSj
(x) = (xi)i∈Sj

.
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Then the following inequality holds:

|K|r ≤
m∏
j=1

|KSj
|.

Proof. For X1, . . . , Xn uniformly distributed over K, we have H(X1, . . . , Xn) =

log |K| and H(XSk
) ≤ log |KSk

|. Applying Shearer’s Lemma yields the inequality.

The converse follows from information-theoretic typicality arguments detailed in

Chapter 4.

The submodularity of differential entropy extends to a continuous analog of

Shearer’s Lemma through the Loomis–Whitney inequality:

Theorem 1.2.5 (Loomis–Whitney inequality). Let K ⊆ Rd be a measurable set.

For subsets S1, . . . , Sm of Ω := [1 : d] where each element i ∈ Ω appears in at least

r subsets, with projections KS1 , . . . , KSm onto their respective coordinate subspaces:

(vol(K))r ≤
m∏
k=1

(vol(KSk
)) ,

where vol(KSk
) is the volume of the projection KSk

in the respective space.

Shearer’s Lemma has numerous applications in combinatorics; for further ex-

ploration, see [Fri04, Gal14, Rad03a]. Balister and Bollobás [BB12] unified Shearer’s

Lemma [CGFS86, Rad03b], Han’s inequality [Han78], and the Madiman–Tetali in-

equality [MT10] through a partial ordering framework called “compression,” which

we examine in Section 2.1. Recent advances in submodularity-based information

inequalities are documented in [IKBA22, Sas22, Tia11].

1.2.2 Establishment of Gaussian optimality

In [GN14], Geng and Nair employed a subadditivity framework with a “rotation

trick” to establish Gaussian optimality of differential entropy functionals, sub-

sequently determining the capacity region for Gaussian broadcast channels with
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common messages. Previous approaches typically utilized heat flow methods in-

volving Fisher information inequalities, which required sophisticated analytical

techniques.

We now demonstrate how subadditivity principles establish Gaussian optimal-

ity under covariance constraints:

Theorem 1.2.6. Let X be a real-valued random variable satisfying the power

constraint E[XXT ] � K, where K is a symmetric positive semidefinite matrix.

The differential entropy h(X) is maximized by a Gaussian distribution.

Proof. Without going into the technical detail, we may assume the target opti-

mization problem has a maximizer X∗ and the corresponding maximum value of

V ∗ := supX:E[XXT ]⪯K h(X).

Observed that h(X) is subadditive, we can establish Gaussian optimality

through a structured approach. First, we take X∗
1 and X∗

2 as independent and

identical copies of the optimizer X∗.

Next, we apply a rotation to the vector (X∗
1 , X

∗
2 ), resulting in

(
X∗

1+X∗
2√

2
;
X∗

1−X∗
2√

2

)
.

Our strategy is to show that both X∗
1 ⊥ X∗

2 and X∗
1+X∗

2√
2

⊥ X∗
1−X∗

2√
2

. If we can

establish these independence relationships, the Darmois-Skitovich theorem (The-

orem 3.1.1) implies that X∗
1 and X∗

2 must be Gaussians with identical covariance

matrices.

This rotation preserves key properties: the differential entropy of h(X∗
1 , X

∗
2 )

and the power constraints. Since X∗
1 and X∗

2 are independent and satisfy the

power constraints, the rotated forms X∗
1+X∗

2√
2

and X∗
1−X∗

2√
2

will also satisfy the power

constraints.

Therefore, our goal is to establish the independence relationship of the rotated

form. In particular, we would like to show I
(

X∗
1+X∗

2√
2

;
X∗

1−X∗
2√

2

)
= 0.

2V ∗ = h(X∗
1 ) + h(X∗

2 )
(a)
= h(X∗

1 , X
∗
2 ) = h

(
X∗

1 +X∗
2√

2
,
X∗

1 −X∗
2√

2

)
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= h

(
X∗

1 +X∗
2√

2

)
+ h

(
X∗

1 −X∗
2√

2

)
− I

(
X∗

1 +X∗
2√

2
;
X∗

1 −X∗
2√

2

)
(b)

≤ 2V ∗ − I

(
X∗

1 +X∗
2√

2
;
X∗

1 −X∗
2√

2

)
,

where (a) follows because X∗
1 and X∗

2 are independent, (b) follows because
X∗

1+X∗
2√

2
and X∗

1−X∗
2√

2
satisfy the power constraint, so the value of their differential

entropy must be less than or equal to the maximum value.

By using the non-negativity of the mutual information, this forces I
(

X∗
1+X∗

2√
2

;
X∗

1−X∗
2√

2

)
=

0, and we have established the Gaussian optimality.

This framework extends generally to subadditive optimization functionals, es-

tablishing Gaussian optimality across various information-theoretic scenarios. For

interested readers, please refer to [GN14, AJN22, LCCV18, SG22].

1.2.3 Entropy power inequality

In this subsection, we will introduce the celebrated entropy power inequality (EPI),

a powerful tool that has found widespread applications in network information the-

ory. It has been widely used to establish the capacity region in various multi-user

information theory settings, such as broadcast channels with additive white Gaus-

sian noise [Ber73], Gaussian wire-tap channels [LYCH78], and Gaussian MIMO

broadcast channels with private messages [WSS06]. In Section 2.3.1, we will elab-

orate how to use a submodularity argument to obtain EPI and its generalization.

EPI was originally postulated by Shannon [Sha48] in the following formulation:

Theorem 1.2.7 (Entropy power inequality [Sha48, Sta59]). Suppose X and Y

are independent Rd-valued random variables. The entropy power of X is defined

as

N (X) =
1

2πe
exp

(
2

d
h(X)

)
,

where h(X) is the differential entropy of X.

Assume the differential entropy of X, Y , and X + Y exists. Then the Entropy
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Power Inequality states that

N (X) +N (Y ) ≤ N (X + Y ),

where equality holds if and only if X and Y are Gaussians with proportional

covariance matrices.

Stam [Sta59] showed that the EPI is a consequence of

1

J(X + Y )
≥ 1

J(X)
+

1

J(Y )
.

An equivalent dimension-independent form of the Entropy Power Inequality

was formulated by Lieb [Lie78].

Theorem 1.2.8. Suppose X and Y are independent Rn-valued random variables.

For any λ ∈ [0, 1], we have

inf
X,Y :X⊥Y

h(
√
λX +

√
1− λY )− λh(X)− (1− λ)h(Y ) ≥ 0,

sup
X,Y :X⊥Y

J(
√
λX +

√
1− λY )− λJ(X)− (1− λ)J(Y ) ≤ 0,

where the equality holds if and only if X and Y are Gaussians with identical

covariance matrices.

In other words, the functional

f(µX , µY ) : h(
√
λX +

√
1− λY )− λh(X)− (1− λ)h(Y ),

where X ∼ µX and Y ∼ µY are independent random variables and are minimized

by Gaussians with identical covariance matrices.

Several generalizations of the EPI have been proposed. Notably, Artstein, Ball,

Barthe and Naor [ABBN04] showed that the quantity h(X1+···+Xn

n
) is monotone in

n when X1, . . . , Xn are i.i.d. random variables. In [MB07], Madiman and Barron

extended Stam’s inequality for Fisher information [Sta59], which is applicable in
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giving a new proof of the Artstein–Ball–Barthe–Naor inequality. Later, Courtade

proposed an elementary proof of monotonicity of entropy power and Fisher infor-

mation. The details of these inequalities will be elaborated in Section 2.3.1, since

a new proof will be proposed in the following subsections.

Several other proofs for the EPI were discovered by Guo–Shamai–Verdu [GSV06]

(via MMSE), Rioul [Rio11], and Courtade [Cou16b]. For a comprehensive un-

derstanding of EPI, a survey of different versions of entropy power inequalities

(forward and reverse) for Shannon entropy and Rényi entropy is presented in

[MMX17].

1.3 Connections to functional inequalities

In this section, we would like to outline the connections between entropic inequali-

ties and functional analysis. By using Legendre duality of entropy, we will be able

to build a simple yet powerful connection between functional inequalities and en-

tropic inequalities. We start with a simple example of the Hölder inequality, then

we will extend the result to forward and backward Brascamp–Lieb inequalities.

1.3.1 Entropic proof of Hölder inequality

In this subsection, we present an elegant proof of the Hölder inequality using

Legendre duality of entropy. This approach not only simplifies the traditional

proof but also provides a framework that extends to the forward Brascamp–Lieb

inequality and its entropic form (Theorem 1.3.4).

We begin with the Legendre duality of entropy:

Lemma 1.3.1 (Legendre duality of entropy (cf. [CCE09])). For any function

f : X → R where X is a finite set:

log
(∑

x

exp f(x)
)

= sup
pX

{E[f(X)] +H(X)}.

9



Proof. Fix the function f . Define a distribution qX by

qX(x) =
exp f(x)∑
x′ exp f(x′) .

Since qX has full support on X , the Kullback–Leibler divergence D(pX‖qX) is

well-defined for any distribution pX . Expanding the divergence:

D(pX‖qX) = −HpX (X)−
∑
x

pX(x) log qX(x)

= −HpX (X)−
∑
x

pX(x)

(
f(x)− log

(∑
x′

exp f(x′)
))

= −HpX (X)− EpX [f(X)] + log
(∑

x

exp f(x)
)
.

By rearranging and using the non-negativity of KL divergence, we have

log
(∑

x

exp f(x)
)

≥ EpX [f(X)] +HpX (X).

Taking the supremum over all distributions pX on the right-hand side preserves the

inequality, and the equality is achieved when pX = qX , as this makes D(pX‖qX) =

0. Thus, the original equality holds.

We now present an alternative characterization of entropy through Legendre

duality that complements our previous result.

Lemma 1.3.2 (Alternate Legendre duality of entropy (cf. [CCE09])). Let pX be

a probability distribution of a random variable X with finite support X . Then the

entropy of X can be expressed as:

H(X) = inf
f

{
log
(∑

x

exp f(x)
)

− E[f(X)]

}
,

where the infimum is taken over all functions f defined on the support of X .

Proof. The argument follows a similar structure to the proof of Lemma 1.3.1. For
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a fixed distribution pX , we can establish

HpX (X) ≤ log
(∑

x

exp f(x)
)

− EpX [f(X)].

When we take the infimum over all functions f on the right-hand side, the

inequality is preserved. Equality is attained when f(x) = log pX(x). Therefore,

the original equality holds.

The Legendre duality allows us to directly derive the Hölder inequality without

resorting to Young’s inequality:

Theorem 1.3.3 (Hölder inequality). For p, q ∈ (1,∞) with 1/p + 1/q = 1 and

functions f, g : [1 : n] → R:

n∑
i=1

|f(i)g(i)| ≤

(
n∑

i=1

|f(i)|p
)1/p( n∑

i=1

|g(i)|q
)1/q

.

Proof. Let f̂(i) = log |f(i)| and ĝ(i) = log |g(i)|. We need to show:

log
(

n∑
i=1

exp(f̂(i) + ĝ(i))

)
≤ 1

p
log
(

n∑
i=1

exp(pf̂(i))
)

+
1

q
log
(

n∑
i=1

exp(qĝ(i))
)
.

Applying the Legendre duality, this inequality transforms into:

sup
rX

{E[(f̂ + ĝ)(X)] +H(X)}

≤ 1

p
sup
rX

{E[pf̂(X)] +H(X)}+ 1

q
sup
rX

{E[qĝ(X)] +H(X)}

= sup
rX

{
E[f̂(X)] +

1

p
H(X)

}
+ sup

rX

{
E[ĝ(X)] +

1

q
H(X)

}
,

This inequality holds because 1/p + 1/q = 1, completing an entropic proof of

the Hölder inequality.
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1.3.2 Forward Brascamp–Lieb inequality

Brascamp–Lieb inequalities represent a powerful class of functional inequalities

that unify and generalize many fundamental results in functional analysis. These

include Hölder’s inequality, the Loomis–Whitney inequality, the Prékopa–Leindler

inequality, and sharp forms of Young’s convolution inequalities [BCCT08]. Gard-

ner’s survey [Gar02] provides an excellent overview of the relationships between

these inequalities.

Let us begin by presenting the functional form of the Brascamp–Lieb inequal-

ities:

Theorem 1.3.4. For i ∈ [1 : m], let E and Ei be Euclidean spaces, Ai : E → Ei be

linear maps, ci be positive real numbers, and fi be non-negative integrable functions

on Ei. Define the function F as

F(f1, . . . , fm) :=

∫
E

∏m
i=1 f

ci
i (Aix)dx∏m

i=1

(∫
Ei
fi(xi)dxi

)ci .
The supremum of F over all non-negative and integrable functions fi equals

the supremum when restricted to centered Gaussian functions of the form fi(xi) ∝

exp(−xTi Bixi), where each Bi is a positive semi-definite matrix.

The entropic formulation of this inequality, established by Carlen and Cordero–

Erausquin [CCE09] using Legendre duality, provides an elegant information-theoretic

perspective:

Theorem 1.3.5 (Theorem 2.1 of [CCE09]). For i ∈ [1 : m], let E,Ei, Ai and ci be

as in Theorem 1.3.4. For a random variable X on E with well-defined differential

entropy and finite second moment, define:

f(X) := h(X)−
m∑
i=1

cih(AiX).

The supremum of f over all qualifying random variables equals the supremum

over Gaussian random variables.
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This entropic formulation’s proof relies on the superadditivity of Fisher in-

formation combined with heat-flow techniques, which is a sophisticated approach

that highlights the deep connection between information theory and functional

analysis.

A significant advancement came in [AJN22], where the authors unified the

Brascamp–Lieb inequalities with the Entropy Power Inequality:

Definition 1.3.6 (BL datum). For an integer m > 0, define an m-transformation

as a triple A := (n, {nj}j∈[1:m], {Aj}j∈[1:m]), where n > 0 is an integer, and for each

j ∈ [1 : m], Aj : Rn → Rnj is a surjective linear transformation with nj ≥ 0.

An m-exponent is defined as an m-tuple c = {cj}j∈[1:m], where cj ≥ 0 for all

j ∈ [1 : m].

A Brascamp-Lieb datum (BL datum) is defined as a pair (A, c) where A is an

m-transformation and c is an m-exponent.

Definition 1.3.7 (EPI datum). For an integer k > 0, define a k-partition of n as

r = {ri}i∈[1:k], where ri > 0 are integers satisfying
∑

i∈[1:k] ri = n.

A k-exponent is a tuple d = {di}i∈[1:k] such that di ≥ 0 for all i ∈ [1 : k].

An Entropy Power Inequality datum (EPI datum) is a pair (r, d) where r is a

k-partition and d is a k-exponent.

Definition 1.3.8 (BL-EPI datum). For an integer n > 0, a BL-EPI datum is

defined as (A, c, r, d) where (A, c) is a BL datum with some m > 0, and (r, d) is

an EPI datum with some k > 0.

Definition 1.3.9 (Sets of Random Vectors). Let (A, c, r, d) be a BL-EPI datum

where r is a k-partition of n. Define P(r) to be the set of all Rn-valued random

vectors X := (X1, X2, . . . , Xk) such that:

1. For each i ∈ [1 : k], the random vector Xi takes values in Rri and its den-

sity belongs to the convex set of probability densities {f :
∫
Rri

f(x) log(1 +

f(x)) dx < +∞};
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2. The random vectors X1, X2, . . . , Xk are mutually independent;

3. E[X] = 0 and E[‖X‖22] <∞.

Furthermore, define Pg(r) ⊆ P(r) as the subset consisting of random vectors

in P(r) where each component Xi follows a Gaussian distribution.

Theorem 1.3.10 (Unified EPI and BLI, [AJN22]). Let (A, c, r, d) be a BL-EPI

datum. Define:

Mg := sup
Z∈Pg(r)

k∑
i=1

dih(Zi)−
m∑
j=1

cjh(AjZ).

Then for any X ∈ P(r), the following inequality holds:

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX) ≤Mg.

The authors of [AJN22] demonstrate that with appropriate (A, c, r, d) datum,

Theorem 1.3.10 encompasses the standard EPI, BLI, and Zamir–Feder’s EPI, es-

tablishing Gaussian optimality through an elegant rotation technique. This unifi-

cation suggests rich possibilities for further exploration—particularly through dif-

ferent coupling structures between random variables, as the independent coupling

assumption currently limits the scope of entropy inequalities and their connections

to functional analysis.

1.4 Connections to additive combinatorics

In this section, we explore the rich interconnections between additive combina-

torics and analogous entropic inequalities. Our discussion unfolds in three parts:

First, we present a simple yet powerful observation highlighting the natural

parallelism between entropic inequalities and sumset inequalities. These parallels

suggest fundamental mathematical structures common to both fields.

Second, we trace the historical development of the relationship between ad-

ditive combinatorics and entropic inequalities. This overview provides essential
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context for understanding how these seemingly distinct mathematical areas have

converged over time.

Third, we introduce the Ruzsa equivalence theorem that formally bridges a

portion of sumset and entropic inequalities. This theorem reveals deeper insights

into the intrinsic relationship between these mathematical frameworks, demon-

strating how results in one domain can translate to meaningful discoveries in the

other.

1.4.1 Parallelism between sumset inequalities and entropic

inequalities

Several researchers have observed striking parallels between sumset inequalities in

additive combinatorics and certain entropic inequalities. To explore these connec-

tions, we begin with the fundamental concept of sumsets:

Definition 1.4.1 (Sumset). Let A and B be finite sets on a group (G,+). The

sumset is defined as A + B := {a + b : a ∈ A, b ∈ B}. Similarly, we have

A − B := {a − b : a ∈ A, b ∈ B} and k · A := {
∑k

i=1 ai : ai ∈ A}, where k is a

positive integer.

A compelling illustration of this parallelism appears in Ruzsa sum-difference

inequality, which provides a powerful bound for sumset cardinality:

Theorem 1.4.2 ([Ruz96]). Let A and B be finite subsets on an Abelian additive

group (G,+). We have |A||B||A+B| ≤ |A− B|3.

Tao later established an entropic counterpart that mirrors this inequality’s

structure:

Theorem 1.4.3 ([Tao10]). Let (G,+) be an Abelian group, and let X and Y be

independent random variables with finite support on G. We have H(X)+H(Y )+

H(X + Y ) ≤ 3H(X − Y ).
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These inequalities share clear structural similarities, prompting the question

of whether deeper connections exist between them. Interestingly, despite their

formal resemblance, no direct implication has been established.

The relationship becomes even more nuanced when considering submodular

properties. Consider the following entropic inequality:

Theorem 1.4.4 ([Mad08]). Let (G,+) be an Abelian group, and let X,Y and

Z be independent random variables with finite support on G. We have H(X) +

H(X + Y + Z) ≤ H(X + Y ) +H(X + Z).

Proof. Since X,Y, Z are independent random variables, we can apply the data-

processing inequality to get I(Z;X + Y + Z) ≤ I(Z;X + Z), which is equivalent

to

H(X) +H(X + Y + Z) ≤ H(X + Y ) +H(X + Z).

One might expect a direct sumset analogue of the form |A||A+B+C| ≤ |A+

B||A+C| for sets A,B,C in (G,+). However, counterexamples demonstrate this

is not true. Instead, the corresponding sumset inequality takes a more conditional

form:

Proposition 1.4.5 (Proposition 2.1 of [Pet12]). Let A and B be finite sets in a

group (G,+). For any subset S ⊆ A satisfying

|S +B|
|S|

≤ |T +B|
|B|

for all T ⊆ S,

and for all finite sets C ⊆ G,

|C + S +B| ≤ |C + S||S +B|
|S|

.

This discrepancy reveals that submodular properties manifest differently in
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sumset and entropic contexts. The relationship between these domains is more

subtle than simple translation of results from one to the other. These observations

motivate a deeper investigation into the connections between sumset and entropic

inequalities, particularly to identify which classes of inequalities in one domain

have meaningful correspondences in the other.

1.4.2 Historical remark

Ruzsa provided a useful categorization of sumset inequalities in relation to entropic

inequalities [Ruz09a], identifying three distinct scenarios:

a): There exists an equivalence form (see Theorem 1.4.7) and explicit implica-

tion between a combinatorial inequality and an associated entropic inequal-

ity.

b): A structural analog exists between combinatorial and entropic inequalities,

but no direct equivalence is known. Sometimes, one-directional implication

can be established.

c): There is a combinatorial/entropic inequality, but the correctness of the coun-

terpart (analogous) inequality is unknown.

Most subsequent research has focused on the second scenario, which is develop-

ing analogous entropic inequalities without establishing formal equivalence. Tao’s

work [Tao10] made significant progress by establishing entropic analogs of the

Plünnecke–Ruzsa–Frieman sumset and inverse sumset theory. In 2012, Madiman,

Marcus, and Tetali [MMT12] developed both entropic analogs and equivalence

theorems based on partition-determined functions of random variables.

Further expanding this connection, Kontoyiannis and Madiman explored the

relationship between sumsets and differential entropies [KM14]. For readers inter-

ested in deeper explorations of these connections, we refer readers to the following

works [Mad08], [LP08], and [MK10]. A comprehensive summary of the connec-

tions between combinatorial and entropic inequalities can also be found in [ED16].
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Additionally, [TV] established a systematic analogous relationship between nota-

tion in sumset theory and information theory.

1.4.3 Ruzsa equivalence theorem on sumset inequalities

In [Ruz09a], Ruzsa made the first significant attempt to establish an equivalence

relationship between sumset inequalities and entropic inequalities. Rather than

focusing on conventional sumset notation, his equivalence theorem addresses in-

equalities involving G-restricted sumsets, defined as follows:

Definition 1.4.6. (G-restricted sumset [Ruz09a]) Suppose G is a subset of A×B,

where A,B are finite subsets of (G,+). We denote the G-restricted sumset and

difference set of A and B as A
G
+B and A

G
− B.

A
G
+B = {a+ b : a ∈ A, b ∈ B, (a, b) ∈ G},

A
G
− B = {a− b : a ∈ A, b ∈ B, (a, b) ∈ G}.

Using a typicality-based argument, Ruzsa established the following equivalence

theorem:

Theorem 1.4.7 (Ruzsa equivalence theorem, Equivalence Theorem 2 of [Ruz09a]).

Let f, g1, . . . , gk be linear functions in two variables with integer coefficients, and

let α1, . . . , αk be positive real numbers. Let (T,+) be a finitely generated and

torsion-free group. The following statements are equivalent:

1. For every finite A ⊆ T× T we have

|f(A)| ≤
∏

|gi(A)|αi ,

where |f(A)| denotes the cardinality of the image f(A).

2. For every pair X,Y of (not necessarily independent) random variables with

values in (T,+) such that the entropy of each gi(X,Y ) is finite, the entropy

18



of f(X,Y ) is also finite and it satisfies

H(f(X,Y )) ≤
∑

αiH(gi(X,Y )).

This equivalence theorem immediately yields several non-trivial entropic in-

equalities, such as the entropic formulation of Katz-Tao sumset inequalities (The-

orem 4.2.14). However, the applicability of this theorem is limited because most

sumset inequalities in additive combinatorics don’t apply in the graph-restricted

form and don’t require the underlying group structure to be a finitely generated

torsion-free group. Consequently, to further extend the equivalence relationships

between entropic and sumset inequalities, new equivalence theorems are needed.

1.5 Structure of the thesis

In Chapter 2, we establish a family of supermodularity inequalities for mutual

information involving auxiliary random variables and independent random vari-

ables. These inequalities arise naturally from “compression” operations. This can

be viewed as a generalization of Shearer’s Lemma discussed in Section 1.2.1. By in-

troducing suitable auxiliary random variables and exploiting their structural prop-

erties, we extend these supermodularity results to various information measures,

including Fisher information, Kullback–Leibler divergence, strong data processing

inequality constants, and Hirschfeld–Gebelein–Rényi maximal correlation. A key

contribution is our submodularity-based proof of the generalized Stam’s inequal-

ity, which, through a convex duality framework, leads to the fractional Entropy

Power Inequality, which is the most general version of the EPI known to date.

In Chapter 3, we develop a framework for establishing the optimality of uni-

form distributions in discrete entropic functional optimization problems. Using a

discrete “rotation”-trick and superadditivity, we construct machinery directly in-

spired by the approach used to establish Gaussian optimality in differential entropy

optimization problems through continuous “rotation”-trick and subadditivity, as
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described in Section 1.2.2. With this framework, we propose a discrete analogue to

Theorem 1.3.10 applicable to any finite Abelian group, significantly generalizing

the Entropy Power Inequality for discrete-valued random variables. Furthermore,

we demonstrate how this technique proves the optimality of uniform distributions

in an optimization problem related to the polynomial Freiman-Ruzsa conjecture,

which is a longstanding open problem in additive combinatorics. This highlights

the potential breadth of our approach.

In Chapter 4, we establish a generalized equivalence theorem connecting sum-

set inequalities and entropic inequalities that extends beyond the G-sumset in-

equality framework of the Ruzsa equivalence theorem (Theorem 1.4.7). We in-

troduce a powerful information-theoretic result (Lemma 4.2.11), inspired by its

combinatorial counterpart (Lemma 4.2.9), which enables proofs of several non-

trivial entropic inequalities related to sumset theory. Additionally, we provide

an entropic formulation of the magnification ratio, which is a central concept in

Plünnecke-Ruzsa sumset theory, laying the groundwork for deeper connections

between sumset theory and information theory.
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Chapter 2

Supermodular Information

Inequalities and their

Applications

This chapter demonstrates how supermodularity inequalities enable both stream-

lined proofs of established results and novel generalizations in discrete convexity

analysis, particularly concerning strong data processing constants, maximal cor-

relation, and Kullback-Leibler divergence.

In Section 2.1, we systematically extend supermodularity principles from fun-

damental two-point inequalities to comprehensive informational inequality fami-

lies. Our approach originates from a straightforward supermodular relationship

involving auxiliary random variables and independent pairs, subsequently gener-

alized through iterative applications of the compression framework introduced in

[BB12].

Section 2.2 introduces two families of perturbative auxiliary variables crucial

for estimating conditional expectations and KL divergence. These constructs sig-

nificantly expand the operational scope of supermodular inequalities while en-

abling diverse corollary applications.

In Section 2.3.1, we combine these two ideas to present a novel proof of a
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generalized Stam’s inequality with fractional partitions, originally established in

[MG19] (Theorem 1). Unlike the two-variable case, the original proof linking this

inequality to the fractional EPI superadditivity required a substantial technical

effort. Through convex duality principles, we develop a streamlined argument

that not only provides a new demonstration of this relationship but also reveals

structural parallels with the simpler two-variable scenario.

Section 2.3.2 focuses on independent identically distributed systems to derive

discrete convexity properties, generalizing key results about information-theoretic

constants. Finally, Section 2.4 establishes foundational connections between sub-

modular sumset inequalities and their entropic counterparts.

2.1 Preliminaries

To quantify the supermodular behavior of information measures, we introduce a

partial ordering of fractional multisets through the concept of compression. These

fractional multisets govern the coefficients in mutual information linear combi-

nations, with the compression partial order inducing entropic inequalities that

capture supermodularity properties.

Definition 2.1.1 (Fractional multiset). Let n be a positive integer. An n-

fractional multiset {αT}T is a finite sequence of non-negative real numbers αT

indexed by T ⊆ [1 : n].

Remark 2.1.2. The notion of n-fractional multisets is not new and has been used

in [BB12] where the authors call n-fractional multisets to be “multisets of subsets

of [n]”. On the other hand, we view an n-fractional multiset as the finite sequence

of its, potentially fractional, multiplicities.

Definition 2.1.3 (Elementary compression & Compression). Let n be a positive

integer and let {αT}T , {βT}T be two n-fractional multisets. We call {βT}T an

elementary compression of {αT}T if there exist A,B ⊆ [1 : n] with A 6⊆ B and
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B 6⊆ A, and 0 < δ ≤ min{αA, αB} such that for all T ⊆ [1 : n] we have

βT =


αT − δ if T = A or T = B,

αT + δ if T = A ∪B or T = A ∩ B,

αT otherwise.

The result of a finite sequence of elementary compressions of {αT}T is called a

compression of {αT}T .

Remark 2.1.4. As studied in [BB12], the relation “is a compression of” defines a

partial order on the collection of n-fractional multisets. It is immediate that an

n-fractional multiset {βT}T is minimal under this partial order (i.e. cannot be

further compressed) if and only if the set {T ⊆ [1 : n] : βT 6= 0} is totally ordered

under set inclusion.

The following lemma establishes a family of supermodularity inequalities for

mutual information. The derivation originates from a fundamental two-point in-

equality corresponding to elementary compression, which we subsequently gener-

alize into a family of inequalities governed by partial ordering under compression.

Lemma 2.1.5. Let X1, . . . , Xn be random variables that are mutually independent

conditioned on a random variable S∅, and let U be any auxiliary random variable.

Then the following hold:

(i) I(U ;S∅, XA)+I(U ;S∅, XB) ≤ I(U ;S∅, XA∪B)+I(U ;S∅, XA∩B) for all A,B ⊆

[1 : n].

(ii)
∑

T⊆[1:n] αT I(U ;S∅, XT ) ≤
∑

T⊆[1:n] βT I(U ;S∅, XT ), for any n-fractional mul-

tisets {αT}, {βT} such that {βT} is a compression of {αT}.

(iii)
∑

T⊆[1:n] βT I(U ;S∅, XT ) ≤ I(U ;S∅, X[1:n]) + (c − 1)I(U ;S∅), where {βT} is

an n-fractional multiset satisfying
∑

T⊆[1:n]:T∋i βT ≤ 1 for all i = 1, . . . , n,

and c :=
∑

T⊆[1:n] βT .
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Proof. Suppose A,B ⊆ [1 : n]. Then

I(U ;S∅, XB)− I(U ;S∅, XA∩B)

= I(U ;XB\A|S∅, XA∩B)

≤ I(U,XA\B;XB\A|S∅, XA∩B)

(a)
= I(U,XA\B;XB\A|S∅, XA∩B)

− I(XA\B;XB\A|S∅, XA∩B)

= I(U ;XB\A|S∅, XA)

= I(U ;S∅, XA∪B)− I(U ;S∅, XA).

where (a) holds by the mutual independence of the Xi’s conditioned on S∅. Rear-

ranging gives

I(U ;S∅, XA) + I(U ;S∅, XB) ≤ I(U ;S∅, XA∪B) + I(U ;S∅, XA∩B).

which is (i).

If {βT} is an elementary compression of {αT}, then the inequality in (ii) follows

from (i) by canceling like terms on both sides. Since a compression is obtained as

a sequence of elementary compressions, (ii) follows.

We will show (iii) by induction on n. Indeed the base case n = 1 is trivial.

Note that (i) gives

I(U ;S∅, X[1:n−1]) + I(U ;S∅, XT∪{n}) ≤ I(U ;S∅, X[1:n]) + I(U ;S∅, XT )

for all T ⊆ [1 : n − 1]. Suppose βT (T ⊆ [1 : n]) are non-negative real numbers

satisfying
∑

T⊆[1:n]:T∋i βT ≤ 1 for all i = 1, . . . , n. Then

∑
T⊆[1:n]

βT I(U ;S∅, XT )

=
∑

T⊆[1:n−1]

(
βT I(U ;S∅, XT ) + βT∪{n}I(U ;S∅, XT∪{n})

)
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≤
∑

T⊆[1:n−1]

(
βT I(U ;S∅, XT ) + βT∪{n}(I(U ;S∅, X[1:n])

− I(U ;S∅, X[1:n−1]) + I(U ;S∅, XT ))
)

(a)

≤ I(U ;S∅, X[1:n])− I(U ;S∅, X[1:n−1]) +
∑

T⊆[1:n−1]

(βT + βT∪{n})I(U ;S∅, XT )

(b)

≤ I(U ;S∅, X[1:n])− I(U ;S∅, X[1:n−1]) + I(U ;S∅, X[1:n−1]) + (c− 1)I(U ;S∅)

= I(U ;S∅, X[1:n]) + (c− 1)I(U ;S∅).

where (a) holds since
∑

T⊆[1:n−1] βT∪{n} ≤ 1, and (b) follows by applying the in-

duction hypothesis to the non-negative real numbers
{
βT + βT∪{n}

}
T⊆[1:n−1]

.

We now introduce the notion of layered function family to extend the super-

modularity results from random vectors to functions of random vectors.

Definition 2.1.6. Let Xi (i = 1, . . . , n) and ST (T ⊆ [1 : n]) be random variables.

We call {ST}T a layered function family onX1, . . . , Xn if S∅ is independent ofX[1:n],

and for every non-empty T ⊆ [1 : n] and i ∈ T there is a function gT,i such that

ST = gT,i(ST\{i}, Xi).

Remark 2.1.7. Clearly a trivial example of a layered function family is given by

ST := (S∅, XT ). A canonical example of a layered function family is given by ST :=

S∅ +
∑

i∈T fi(Xi), where fi’s are functions taking values in some Abelian monoid

(i.e. a set with a binary operation, which we denote by +, that is associative and

commutative, and has an identity element). In particular,

(i) ST := S∅ +
∑

i∈T Xi, where S∅, Xi ∈ Rd;

(ii) ST := max({S∅} ∪ {Xi}i∈T ), where S∅, Xi ∈ R;

are examples of layered function families.

Remark 2.1.8. Layered function families play a similar role as that of partition-

determined functions in [MMT12] and it may be possible that they are intrinsically

trying to capture a similar behaviour and dependence structure. For our results, we
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prefer to stick with the definition of layered function families. Note that [MMT12]

deals with dependent random variables while here our main focus is on mutually

independent random variables.

The layered structure of function families guarantees consistent propagation

of Markov structures across subset hierarchies.

Lemma 2.1.9. Let {ST}T be a layered function family on mutually independent

random variables X1, . . . , Xn. Suppose U → S[1:n] → (S∅, X[1:n]) forms a Markov

chain. Then the following hold:

(i) U → ST → (S∅, XT ) forms a Markov chain for all T ⊆ [1 : n].

(ii) I(U ;ST ) = I(U ;S∅, XT ) for all T ⊆ [1 : n].

Proof. Suppose T ⊆ [1 : n]. Consider

0
(a)
= I(U ;S∅, X[1:n]|S[1:n])

= I(U ;S∅, XT , X[1:n]\T |S[1:n])

(b)
= I(U ;S∅, XT , X[1:n]\T , ST |S[1:n])

≥ I(U ;S∅, XT |S[1:n], X[1:n]\T , ST )

(c)
= I(U ;S∅, XT |X[1:n]\T , ST )

(d)
= I(U ;S∅, XT |X[1:n]\T , ST ) + I(X[1:n]\T ;S∅, XT |ST )

= I(U,X[1:n]\T ;S∅, XT |ST )

≥ I(U ;S∅, XT |ST )

≥ 0.

where (a) holds since U → S[1:n] → (S∅, X[1:n]) forms a Markov chain, (b) holds

since ST is a function of (S∅, XT ), (c) holds since S[1:n] is a function of (ST , X[1:n]\T ),

and (d) holds since X[1:n]\T and (S∅, XT , ST ) are independent. This shows (i).

Furthermore,

I(U ;ST )
(a)
= I(U ;ST , S∅, XT )

(b)
= I(U ;S∅, XT ).
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where (a) holds since U → ST → (S∅, XT ) forms a Markov chain, and (b) holds

since ST is a function of (S∅, XT ). This shows (ii).

We now state the main theorem in this chapter. The proof is an immediate

application of Lemma 2.1.9 to Lemma 2.1.5.

Theorem 2.1.10. Let {ST}T be a layered function family on mutually independent

random variables X1, . . . , Xn. Suppose U → S[1:n] → (S∅, X[1:n]) forms a Markov

chain. Then the following hold:

(i) I(U ;SA) + I(U ;SB) ≤ I(U ;SA∪B) + I(U ;SA∩B) for all A,B ⊆ [1 : n].

(ii)
∑

T⊆[1:n] αT I(U ;ST ) ≤
∑

T⊆[1:n] βT I(U ;ST ), for any n-fractional multisets

{αT}, {βT} such that {βT} is a compression of {αT}.

(iii)
∑

T⊆[1:n] βT I(U ;ST ) ≤ I(U ;S[1:n]) + (c − 1)I(U ;S∅), where {βT} is an n-

fractional multiset satisfying
∑

T⊆[1:n]:T∋i βT ≤ 1 for all i = 1, . . . , n, and

c :=
∑

T⊆[1:n] βT .

It turns out that the freedom in choosing the auxiliary random variable U

plays a rather important role in the development of the inequalities.

2.2 Two families of perturbative auxiliaries

In this section, we introduce two auxiliary families that prove instrumental for de-

riving corollaries to Theorem 2.1.10. These families of auxiliary random variables

interact with conditional expectations and KL divergence through perturbative

methods, enabling extension of supermodularity properties to these quantities be-

yond mutual information.

Lemma 2.2.1. Let {ST}T be a layered function family on mutually independent

random variables X1, . . . , Xn. Suppose f is an Rd-valued bounded measurable

function, defined on the set of values of S[1:n], such that E[f(S[1:n])] = 0. Then

27



there exists a family of random variables {U (ϵ)}ϵ, indexed by small enough ϵ > 0,

such that U (ϵ) → S[1:n] → (S∅, X[1:n]) forms a Markov chain and

I(U (ϵ);ST ) =
1

2
ϵ2 E[‖E[f(S[1:n])|ST ]‖2] +O(ϵ3)

for all T ⊆ [1 : n].

Proof. Let p̃(·) be the probability mass function of the uniform distribution on the

Boolean hypercube {±1}d. For small enough ϵ > 0, define the random variable U (ϵ)

taking values in {±1}d, satisfying the Markov chain U (ϵ) → S[1:n] → (S∅, X[1:n]),

according to

pU(ϵ)|S[1:n]
(u|s) := p̃(u)(1 + ϵ〈f(s), u〉).

Note that pU(ϵ)(u) = p̃(u) (which follows from E[f(S[1:n])] = 0), E[U (ϵ)] = 0, and

E[U (ϵ)U (ϵ)⊺] = I. For any T ⊆ [1 : n], since U (ϵ) → S[1:n] → ST forms a Markov

chain,

pU(ϵ)|ST
(u|ST ) = E[pU(ϵ)|S[1:n]

(u|S[1:n])|ST ] = p̃(u)(1 + ϵ〈E[f(S[1:n])|ST ], u〉).

Then we compute:

I(U (ϵ);ST ) = EU(ϵ),ST

[
log p(U

(ϵ)|ST )

p(U (ϵ))

]
= EU(ϵ),ST

[
log(1 + ϵ〈E[f(S[1:n])|ST ], U

(ϵ)〉)
]

= EST

[∑
u

p̃(u)(1 + ϵ〈E[f(S[1:n])|ST ], u〉) log(1 + ϵ〈E[f(S[1:n])|ST ], u〉)
]

(a)
= EST

[∑
u

p̃(u)
(
ϵ〈E[f(S[1:n])|ST ], u〉+

1

2
ϵ2〈E[f(S[1:n])|ST ], u〉2 +O(ϵ3)

)]
.

The equality (a) is justified by Remark 2.2.2.
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We now apply the linearity of expectation to obtain:

I(U (ϵ);ST ) =
1

2
ϵ2 tr

(
E[E[f(S[1:n])|ST ]E[f(S[1:n])|ST ]

⊺]
∑
u

p̃(u)uu⊺
)
+O(ϵ3)

=
1

2
ϵ2 E[‖E[f(S[1:n])|ST ]‖2] +O(ϵ3).

This completes the proof.

Remark 2.2.2. Note that one can show that

∣∣(1 + x) log(1 + x)− x− x2/2
∣∣ ≤ 1

3
|x|3, for x ∈

[
−1

2
,
1

2

]
.

Since f is a bounded, measurable function, 〈f, u〉 is also bounded for all unit

vectors u, say by B. For any 0 < ϵ < 1
2B

, we have

∣∣∣∣(1 + ϵ〈f, u〉) log(1 + ϵ〈f, u〉)− ϵ〈f, u〉 − 1

2
ϵ2〈f, u〉2

∣∣∣∣ ≤ 1

3
(ϵB)3.

Lemma 2.2.3. Let {ST}T be a layered function family on mutually independent

random variables X1, . . . , Xn. Suppose q(·) is a distribution that is absolutely

continuous and has a bounded Radon–Nikodym derivative with respect to the dis-

tribution of S[1:n]. Then there exists a family of random variables {U (ϵ)}ϵ, indexed

by small enough ϵ > 0, such that U (ϵ) → S[1:n] → (S∅, X[1:n]) forms a Markov chain

and

I(U (ϵ);ST ) = ϵDKL(pS̃T
‖pST

) +O(ϵ2)

for all T ⊆ [1 : n], where the random variable S̃T is defined by

pS̃T
(s̃) :=

∑
s

pST |S[1:n]
(s̃|s)q(s).

Proof. Let f(s) := q(s)/pS[1:n]
(s) be the Radon–Nikodym derivative. For small

enough ϵ > 0, define the random variable U (ϵ) taking values in {0, 1}, satisfying
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the Markov chain U (ϵ) → S[1:n] → (S∅, X[1:n]), according to

pU(ϵ)|S[1:n]
(u|s) :=


1− ϵf(s) if u = 0,

ϵf(s) if u = 1.

Note that E[f(S[1:n])] = 1 and

pU(ϵ)(u) =


1− ϵ if u = 0,

ϵ if u = 1.

For any T ⊆ [1 : n], since U (ϵ) → S[1:n] → ST forms a Markov chain,

pU(ϵ)|ST
(u|ST ) = E[pU(ϵ)|S[1:n]

(u|S[1:n])|ST ] =


1− ϵE[f(S[1:n])|ST ] if u = 0,

ϵE[f(S[1:n])|ST ] if u = 1.

Then we have

I(U (ϵ);ST ) = EU(ϵ),ST

[
log p(U

(ϵ)|ST )

p(U (ϵ))

]
= EST

[
ϵE[f(S[1:n])|ST ] log E[f(S[1:n])|ST ]

+ (1− ϵE[f(S[1:n])|ST ]) log
1− ϵE[f(S[1:n])|ST ]

1− ϵ

]
= ϵEST

[
pS̃T

(ST )

pST
(ST )

log
pS̃T

(ST )

pST
(ST )

]
+ EST

[
(1− ϵE[f(S[1:n])|ST ])(ϵ(1− E[f(S[1:n])|ST ]) + O(ϵ2))

]
= ϵDKL(pS̃T

‖pST
) +O(ϵ2).

Using an approach similar to that presented in Lemma 2.2.1, we can justify

the O(ϵ2) term.

Remark 2.2.4. These two families of perturbative auxiliaries are not new here and

have been used extensively in [AGKN13, AGKN14] and references therein.
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2.3 Some consequences of the supermodularity

inequalities

In this section we will outline some existing results, extensions of existing results,

as well as the new ones that we obtain as consequences of Theorem 2.1.10.

2.3.1 Entropy power inequalities and Fisher information

inequalities

Historical remark

Lieb’s form of the EPI (Theorem 1.2.8) implies that (by taking λ = 1/2)

h

(
X + Y√

2

)
≥ 1

2
(h(X) + h(Y )) .

Building on this result, Lieb [Lie78] conjectured that for any sequenceX1, . . . , Xn

of independent and identically distributed real-valued random variables, the en-

tropy functional h
(

X1+···+Xn√
n

)
exhibits monotonic non-decreasing behavior in n.

This conjecture was resolved by Artstein–Ball–Barthe–Naor [ABBN04] who

showed the following inequality: If a1, . . . , an+1 ≥ 0 satisfies
∑n+1

i=1 a
2
i = 1 then

h

(
n+1∑
i=1

aiXi

)
≥

n+1∑
i=1

1− a2i
n

h

 1√
1− a2i

n+1∑
j=1
j ̸=i

ajXj

 .

and in particular,

h

(
1√
n+ 1

n+1∑
i=1

Xi

)
≥ 1

n+ 1

n+1∑
i=1

h

 1√
n

n+1∑
j=1
j ̸=i

Xj

 .

Their proof was simplified and extended in a series of works, e.g. Madiman–Barron

[MB07] and Madiman–Ghassemi [MG19]. The best known version (see Theorem
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1 in [MG19]) is the fractional partition form of the EPI:

exp
(
2

d
h

(
n∑

i=1

Xi

))
≥
∑

T⊆[1:n]
T ̸=∅

βT exp
(
2

d
h

(∑
i∈T

Xi

))
.

for any mutually independent random variablesX1 . . . , Xn in Rd with differentiable

densities, and fractional partition {βT}T , i.e. a finite collection indexed by T ⊆

[1 : n], T 6= ∅, of non-negative real numbers satisfying
∑

T⊆[1:n]:T∋i βT = 1 for every

i ∈ [1 : n]. This was derived as a consequence of the following Fisher information

inequality, that we shall refer to as the generalized Stam’s inequality:

1

J(S[1:n])
≥
∑

T⊆[1:n]

βT
1

J(ST )
.

where ST :=
∑

i∈T Xi.

Remark 2.3.1. Unlike the n = 2 setting, the implication that the generalized

Stam’s inequality implies the fractional partition form of the EPI did not have

a straightforward proof. In this subsection, we use convex duality to show a

straightforward proof of this implication.

Alternate proof of generalized Stam’s inequality

In this subsection, we derive the generalized Stam’s inequality involving Fisher

information as an immediate consequence of our mutual information inequality.

While a similar proof technique that we employ has been used by Courtade in

[Cou16a] for the case of mutually independent and identically distributed random

variables, as noted in [Joh20] (future work, item 4), the extension of the ideas to

independent random variables is of independent interest.

Remark 2.3.2. To avoid technical issues, we will deal with random variables X

with density function fX that is smooth and rapidly decaying such that | log fX |

has at most polynomial growth at infinity.

Definition 2.3.3 (Score function). Let X be a random variable in Rd with dif-
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ferentiable density fX with respect to the Lebesgue measure. Assume that fX is

differentiable almost everywhere and that fX(x) > 0 for all x in the support of

X. The score function ρX of X is defined by

ρX :=
∇fX
fX

= ∇ log fX .

for all x in the support of X where fX is differentiable.

The Fisher information J(X) of X is defined by

J(X) := E[‖ρX(X)‖2].

Remark 2.3.4. Let X,Z be independent random variables in Rd such that Z ∼

N (0, I). We have the following basic properties of Fisher information:

(i) J(aX) = a−2J(X) for all a > 0.

(ii) If X has a finite second moment, then 1
2
J(X +

√
tZ) = ∂

∂t
h(X +

√
tZ) for

all t ≥ 0.

(iii) If X has a (finite) covariance matrix then

h(X) =
d

2
log 2πe− 1

2

∫ ∞

0

(
J(X +

√
tZ)− d

1 + t

)
dt.

Property (ii) is also called de Bruijn’s identity (e.g. [Sta59]). Property (iii) is a

consequence of (ii) and is originally shown by Barron [Bar86] (cf. Lemma 3 of

[MB07]).

Our proof employs the following theorem.

Theorem 2.3.5 (Stam [Sta59]). Suppose X1, . . . , Xn are mutually independent

random variables in Rd with differentiable densities and their score functions are

square-integrable, and write Sk := X1 + · · ·+Xk. Then

ρSn(Sn) = E[ρSk
(Sk)|Sn]
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for all k = 1, . . . , n.

Consequently we have

E[‖E[ρSk
(Sk)|Sn]‖2] = J(Sn).

We now use Cauchy–Schwarz inequality to obtain an upper bound on the

squared norm of the reversed conditional expectation.

Lemma 2.3.6. Let X1, . . . , Xn be mutually independent random variables in Rd

with differentiable densities and their score functions are square-integrable. For

k = 1, . . . , n we write Sk := X1 + · · ·+Xk. Then

E[‖E[ρSn(Sn)|Sk]‖2] ≥
J(Sn)

2

J(Sk)

for all k = 1, . . . , n.

Proof. Consider

J(Sn) = E[‖ρSn(Sn)‖2]

= E[〈ρSn(Sn),E[ρSk
(Sk)|Sn]〉]

= E[E[〈ρSn(Sn), ρSk
(Sk)〉|Sn]]

= E[〈ρSn(Sn), ρSk
(Sk)〉]

= E[E[〈ρSn(Sn), ρSk
(Sk)〉|Sk]]

= E[〈E[ρSn(Sn)|Sk], ρSk
(Sk)〉]

(a)

≤ E[‖E[ρSn(Sn)|Sk]‖2]1/2 E[‖ρSk
(Sk)‖2]1/2

= E[‖E[ρSn(Sn)|Sk]‖2]1/2J(Sk)
1/2.

where (a) follows from the Cauchy-Schwarz inequality. This gives the result.

Proposition 2.3.7 (Generalized Stam’s inequality, Theorem 2 of [MB07]). Let

X1, . . . , Xn be mutually independent random variables in Rd with differentiable
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densities. Suppose βT (T ⊆ [1 : n]) are non-negative real numbers satisfying∑
T⊆[1:n]:T∋i βT ≤ 1 for all i = 1, . . . , n. Then

1

J(S[1:n])
≥
∑

T⊆[1:n]

βT
1

J(ST )
.

where ST :=
∑

i∈T Xi.

Proof. Without loss of generality we can assume J(S[1:n]) < +∞, since otherwise

we also have J(ST ) = +∞ for all T ⊆ [1 : n]. Note that S∅ = 0. Let us first assume

that ρS[1:n]
is bounded. An application of Lemma 2.2.1 (with f = ρS[1:n]

) gives the

existence of a family of random variables {U (ϵ)}ϵ, indexed by small enough ϵ > 0,

such that U (ϵ) → S[1:n] → X[1:n] forms a Markov chain and

I(U (ϵ);ST ) =
1

2
ϵ2 E[‖E[ρS[1:n]

(S[1:n])|ST ]‖2] +O(ϵ3) (2.1)

for all T ⊆ [1 : n]. Then Theorem 2.1.10 (iii) implies

∑
T⊆[1:n]

βT I(U
(ϵ);ST ) ≤ I(U (ϵ);S[1:n]). (2.2)

Now consider

J(S[1:n]) = E[‖ρS[1:n]
(S[1:n])‖2]

(a)

≥
∑

T⊆[1:n]

βT E[‖E[ρS[1:n]
(S[1:n])|ST ]‖2]

(b)

≥
∑

T⊆[1:n]

βT
J(S[1:n])

2

J(ST )
.

where (a) is obtained by putting (2.1) into (2.2), dividing by 1
2
ϵ2 and then taking

ϵ→ 0, and (b) follows from Lemma 2.3.6. The result then follows from rearranging.

If ρS[1:n]
is not bounded, then we define fB := min

{
1, B

∥ρS[1:n]
∥

}
ρS[1:n]

and the

proof proceeds as before with ρS[1:n]
replaced by f̂B := fB − E[fB(S[1:n])] until

inequality (a). Now, via the dominated convergence theorem, we let B → +∞ to
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recover the form as above with the score functions.

From generalized Stam’s inequality to fractional entropy power inequal-

ity

In this section, we provide a new argument based on convex duality that shows

that the fractional super-addivity of the EPI follows from the generalized Stam’s

inequality. The first two lemmas that we present below are well-known (see [MG19]

and the references therein) and are the “Lieb-type-equivalent” forms of the frac-

tional EPI and the generalized Stam’s inequality. We present a proof of these here

for completeness. Lemma 2.3.10 is the crucial observation that leads to the new

argument. This lemma is used to show that by restricting our attention to optimal

fractional partitions, we can essentially extend the proof for n = 2 to larger values

of n.

Lemma 2.3.8. Let X1, . . . , Xn be mutually independent random variables in Rd.

Let ST :=
∑

i∈T Xi. Suppose βT (T ⊆ [1 : n], T 6= ∅) are non-negative real

numbers satisfying
∑

T⊆[1:n]:T∋i βT ≤ 1 for all i ∈ [1 : n]. Suppose that the

differential entropy of ST is well-defined for all non-empty subsets T ⊆ [1 : n].

Then the following are equivalent.

(i) It holds that

exp
(
2

d
h(S[1:n])

)
≥
∑

T⊆[1:n]
T ̸=∅

βT exp
(
2

d
h(ST )

)
.

(ii) For all non-negative real numbers wT (T ⊆ [1 : n], T 6= ∅) with
∑

T⊆[1:n]
T ̸=∅

wT =

1, it holds that

h(S[1:n]) ≥
∑

T⊆[1:n]
T ̸=∅

wTh

(√
βT
wT

ST

)
.

36



Proof. We first show (i) implies (ii). Indeed,

∑
T⊆[1:n]T ̸=∅

wTh

(√
βT
wT

ST

)
(a)

≤ d

2
log

 ∑
T⊆[1:n]
T ̸=∅

wT exp
(
2

d
h

(√
βT
wT

ST

))

=
d

2
log

 ∑
T⊆[1:n]
T ̸=∅

βT exp
(
2

d
h(ST )

)
(b)

≤ h(S[1:n]).

where (a) follows from concavity of log(·) and (b) follows from (i).

Now we show (ii) implies (i). Set wT := βT e
2
d
h(ST )

(∑
T̃⊆[1:n]

T̃ ̸=∅

βT̃ exp
(
2
d
h(ST̃ )

))−1

.

Note that

h

(√
βT
wT

ST

)
=
d

2
log

βT exp
(
2
d
h(ST )

)
wT

=
d

2
log

 ∑
T̃⊆[1:n]

T̃ ̸=∅

βT̃ exp
(
2

d
h(ST̃ )

)
is independent of the choice of T , and hence (i) follows immediately from (ii).

Lemma 2.3.9. Let X1, . . . , Xn be mutually independent random variables in Rd.

Let ST :=
∑

i∈T Xi. Suppose βT (T ⊆ [1 : n], T 6= ∅) are non-negative real

numbers satisfying
∑

T⊆[1:n]:T∋i βT ≤ 1 for all i ∈ [1 : n]. Suppose that the Fisher

information of ST is well-defined for all non-empty subsets T ⊆ [1 : n]. Then the

following are equivalent.

(i) It holds that

1

J(S[1:n])
≥
∑

T⊆[1:n]
T ̸=∅

βT
1

J(ST )
.

(ii) For all non-negative real numbers wT (T ⊆ [1 : n], T 6= ∅) with
∑

T⊆[1:n]
T ̸=∅

wT =
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1, it holds that

J(S[1:n]) ≤
∑

T⊆[1:n]
T ̸=∅

wTJ

(√
βT
wT

ST

)
.

Proof. We first show (i) implies (ii). Indeed,

∑
T⊆[1:n]
T ̸=∅

wTJ

(√
βT
wT

ST

)
(a)

≥

 ∑
T⊆[1:n]
T ̸=∅

wT
1

J
(√

βT

wT
ST

)


−1

=

 ∑
T⊆[1:n]
T ̸=∅

βT
1

J(ST )


−1

(b)

≥ J(S[1:n]).

where (a) follows from convexity of (·)−1 and (b) follows from (i).

Now we show (ii) implies (i). Set wT := βT
1

J(ST )

(∑
T̃⊆[1:n]

T̃ ̸=∅

βT̃
1

J(ST̃ )

)−1

. Note

that

J

(√
βT
wT

ST

)
=
wT

βT
J(ST ) =

 ∑
T̃⊆[1:n]

T̃ ̸=∅

βT̃
1

J(ST̃ )


−1

is independent of the choice of T , and hence (i) follows immediately from (ii).

We now present a simple but powerful observation that allows us to simplify the

proof that the generalized Stam’s inequality implies the fractional superadditivity

of EPI.

Lemma 2.3.10. Let wT (T ⊆ [1 : n], T 6= ∅) be non-negative real numbers. Then

the maximization

max
βT≥0∑
T∋i βT≤1

∑
T⊆[1:n]
T ̸=∅

wT log βT
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is attained at βT = wT∑
i∈T λi

, for some λi > 0 (i ∈ [1 : n]), with
∑

T⊆[1:n]:T∋i βT = 1

for all i ∈ [1 : n].

Proof. Consider

max
βT≥0∑
T∋i βT≤1

∑
T⊆[1:n]
T ̸=∅

wT log βT

(a)
= min

λi≥0
max
βT≥0

 ∑
T⊆[1:n]
T ̸=∅

wT log βT +
n∑

i=1

λi

(
1−

∑
T∋i

βT

)

= min
λi≥0

 n∑
i=1

λi + max
βT≥0

∑
T⊆[1:n]
T ̸=∅

(
wT log βT − βT

∑
i∈T

λi

)
(b)
= min

λi≥0

 n∑
i=1

λi +
∑

T⊆[1:n]
T ̸=∅

(
wT log wT∑

i∈T λi
− wT

) .

where (a) holds by strong duality since Slater’s condition (see Theorem 3.2.8 in

[BL05] for instance) is satisfied for the maximization on the left hand side, and (b)

holds since the maximum is attained at βT = wT∑
i∈T λi

. The minimization on the

last line is a convex problem and is attained at some λ∗i ’s satisfying the first-order

condition
∑

T∋i
wT∑
j∈T λ∗

j
= 1 (i ∈ [1 : n]). Let β∗

T := wT∑
i∈T λ∗

i
. Then

max
βT≥0∑
T∋i βT≤1

∑
T⊆[1:n]
T ̸=∅

wT log βT

≤
n∑

i=1

λ∗i +
∑

T⊆[1:n]
T ̸=∅

(
wT log β∗

T − β∗
T

∑
i∈T

λ∗i

)

=
∑

T⊆[1:n]
T ̸=∅

wT log β∗
T +

n∑
i=1

λ∗i −
n∑

i=1

(
λ∗i
∑
T∋i

β∗
T

)

=
∑

T⊆[1:n]
T ̸=∅

wT log β∗
T .

hence the maximization on the left hand side of the first line is attained at βT =
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β∗
T .

The following lemma shows that the dual variables λi in the proof of Lemma

2.3.10 represent the variances of the Gaussians while extending the proof from

n = 2 to larger n using an approach of calculus of variations.

Lemma 2.3.11. Let X1, . . . , Xn be mutually independent random variables in Rd.

Let ST :=
∑

i∈T Xi. Let wT (T ⊆ [1 : n], T 6= ∅) be non-negative real numbers

satisfying
∑

T⊆[1:n]
T ̸=∅

wT = 1. Let βT (T ⊆ [1 : n], T 6= ∅) be non-negative real

numbers satisfying
∑

T⊆[1:n]:T∋i βT ≤ 1 for all i ∈ [1 : n]. Suppose that the Fisher

information of ST is well-defined for all non-empty subsets T ⊆ [1 : n]. Then (i)

implies (ii).

(i) For all X1, . . . , Xn, {wT} and {βT} it holds that

J(S[1:n]) ≤
∑

T⊆[1:n]
T ̸=∅

wTJ

(√
βT
wT

ST

)
.

(ii) For all X1, . . . , Xn, {wT} and {βT} it holds that

h(S[1:n]) ≥
∑

T⊆[1:n]
T ̸=∅

wTh

(√
βT
wT

ST

)
.

Proof. It suffices to show that (ii) holds for the βT ’s that maximize the right-hand

side. In view of Lemma 2.3.10 we can write βT = wT∑
i∈T λi

for some λi > 0 (i ∈ [1 :

n]) such that
∑

T⊆[1:n]:T∋i βT = 1 is satisfied for all i ∈ [1 : n]. Consequently, we

have

n∑
i=1

λi =
n∑

i=1

(
λi
∑
T∋i

βT

)
=
∑

T⊆[1:n]
T ̸=∅

(
βT
∑
i∈T

λi

)
=
∑

T⊆[1:n]
T ̸=∅

wT = 1.
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Now for t ∈ [0, 1] define

f(t) := h
(√

1− tS[1:n] +
√
tZ
)
−
∑

T⊆[1:n]
T ̸=∅

wTh

(√
βT
wT

√
1− tST +

√
tZ

)
.

where Z ∼ N (0, 1). Note that f(1) = 0 and hence it suffices to show f ′(t) ≤ 0 for

all 0 ≤ t ≤ 1. Indeed

f ′(t) =
1

2

1

1− t

(
J
(√

1− tS[1:n] +
√
tZ
)

−
∑

T⊆[1:n]
T ̸=∅

wTJ

(√
βT
wT

√
1− tST +

√
tZ

))

=
1

2

1

1− t

(
J

√
1− tS[1:n] +

√√√√ n∑
i=1

λi
√
tZ


−
∑

T⊆[1:n]
T ̸=∅

wTJ

(√
βT
wT

√
1− tST +

√
βT
wT

∑
i∈T

λi
√
tZ

))

=
1

2

1

1− t

(
J

(
n∑

i=1

Xi,t

)
−
∑

T⊆[1:n]
T ̸=∅

wTJ

(√
βT
wT

∑
i∈T

Xi,t

))

(a)

≤ 0.

where we have set Xi,t :=
√
1− tXi+

√
λitZi, where Zi ∼ N (0, 1), and (a) follows

from (i).

2.3.2 Discrete convexity, strong data processing constant

and maximal correlation

In this subsection, we establish some discrete convexity results and consequently

some results about strong data processing constants and maximal correlations of

joint distributions, generalizing results in [KN15] and [DKS01].

The following is a subclass of layered function families that we will also be

considering in this section.

41



Definition 2.3.12 (Symmetric layered function family). Let {ST}T be a lay-

ered function family on mutually independent and identically distributed random

variables X1, . . . , Xn. We call the layered function family {ST}T symmetric if

for all permutations π of [1 : n] the distributions of (S[1:n], S∅, X1, . . . , Xn) and

(S[1:n], S∅, Xπ(1), . . . , Xπ(n)) are the same.

Remark 2.3.13. If X1, . . . , Xn are mutually independent and identically distributed

random variables, Remark 2.1.7 (i) and (ii) are examples of symmetric layered

function families.

Lemma 2.3.14 (Discrete convexity). Suppose φk (k = 0, 1, . . . , n) are real num-

bers satisfying

φk−1 + φk+1 ≥ 2φk (2.3)

for all k = 1, . . . , n− 1. Then

φk ≤
n− k

n− l
φl +

k − l

n− l
φn

for all l = 0, 1, . . . , n− 1, and k satisfying l ≤ k ≤ n.

Proof. Note that k = n and l = k are immediate, so we assume l < k < n.

Observe that φk − φk−1 is nondecreasing in k. Then

φn − φk = (φn − φn−1) + (φn−1 − φn−2) + · · ·+ (φk+1 − φk)

≥ (n− k)(φk+1 − φk)

≥ (n− k)(φk − φk−1)

≥ n− k

k − l
((φk − φk−1) + (φk−1 − φk−2) + · · ·+ (φl+1 − φl))

=
n− k

k − l
(φk − φl).

The result follows by rearranging.

By leveraging the permutation invariance of the given joint distribution, we
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demonstrate that the quantity I(U ;ST ) both depends exclusively on the cardinal-

ity of T and satisfies discrete convexity with respect to |T |.

Proposition 2.3.15. Let {ST}T be a symmetric layered function family on mutu-

ally independent and identically distributed random variables X1, . . . , Xn. Suppose

U is a random variable such that U → S[1:n] → (S∅, X[1:n]) forms a Markov chain.

Then I(U ;ST ) is a function of |T |, and we have

I(U ;ST ) + I(U ;ST∪{i,j}) ≥ I(U ;ST∪{i}) + I(U ;ST∪{j})

for all T ⊆ [1 : n] and distinct elements i, j in [1 : n] \ T . Furthermore,

I(U ;ST ) ≤
n− |T |
n

I(U ;S∅) +
|T |
n
I(U ;S[1:n])

for all T ⊆ [1 : n].

Proof. We first show that I(U ;ST ) is a function of |T |. It suffices to estab-

lish I(U ;ST ) = I(U ;S[1:|T |]) for all T ⊆ [1 : n]. Take a permutation π of

[1 : n], that is increasing on [1 : |T |], such that T = {π(i)}i=1,...,|T |. From

the definition of symmetric layered function family and the Markov chain U →

S[1:n] → (S∅, X1, . . . , Xn), we have that the distributions of (U, S∅, X1, . . . , Xn)

and
(
U, S∅, Xπ(1), . . . , Xπ(n)

)
are the same. In particular, the distributions of(

U, S∅, X[1:|T |]
)

and (U, S∅, XT ) are the same. Hence Lemma 2.1.9 (ii) gives

I(U ;ST ) = I(U ;S∅, XT ) = I(U ;S∅, X[1:|T |]) = I(U ;S[1:|T |]).

Now we show that φk := I(U ;ST ), where T is any subset of [1 : n] of cardinality

k, satisfies (2.3). For any k = 1, . . . , n − 1, take any T ⊆ [1 : n] with |T | = k − 1

and distinct elements i, j in [1 : n] \ T , and we have

φk−1 + φk+1 = I(U ;ST ) + I(U ;ST∪{i,j})

(a)

≥ I(U ;ST∪{i}) + I(U ;ST∪{j})
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= 2φk.

where (a) follows from (i) of Theorem 2.1.10. Hence (2.3) is satisfied. Then an

application of Lemma 2.3.14 (with l = 0) yields

φk ≤
n− k

n
φ0 +

k

n
φn.

or equivalently,

I(U ;ST ) ≤
n− |T |
n

I(U ;S∅) +
|T |
n
I(U ;S[1:n])

for all T ⊆ [1 : n].

Using the discrete convexity result above, we can establish the following esti-

mates for conditional expectations and divergences.

Corollary 2.3.16. Let {ST}T be a symmetric layered function family on mutually

independent and identically distributed random variables X1, . . . , Xn. Then the

following hold:

(i) Suppose f is an Rd-valued bounded measurable function, defined on the set

of values of S[1:n], such that E[f(S[1:n])] = 0. Then

E[‖E[f(S[1:n])|ST ]‖2] ≤
n− |T |
n

E[‖E[f(S[1:n])|S∅]‖2] +
|T |
n

E[‖f(S[1:n])‖2]

for all T ⊆ [1 : n].

(ii) Suppose q(·) is a distribution absolutely continuous and with bounded Radon–

Nikodym derivative with respect to the distribution of S[1:n]. For T ⊆ [1 : n]

let the random variable S̃T be defined by

pS̃T
(s̃) :=

∑
s

pST |S[1:n]
(s̃|s)q(s).
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Then

DKL(pS̃T
‖pST

) +DKL(pS̃T∪{i,j}
‖pST∪{i,j})

≥ DKL(pS̃T∪{i}
‖pST∪{i}) +DKL(pS̃T∪{j}

‖pST∪{j})

for all T ⊆ [1 : n] and distinct elements i, j in [1 : n] \ T . Furthermore,

DKL(pS̃T
‖pST

) ≤ n− |T |
n

DKL(pS̃∅
‖pS∅) +

|T |
n
DKL(pS̃[1:n]

‖pS[1:n]
)

for all T ⊆ [1 : n].

Proof. (i) and (ii) are direct applications of Lemma 2.2.1 and 2.2.3, respectively,

to Proposition 2.3.15.

A weakened version of the symmetric layer function family is the cyclically

symmetric layer function family, which only requires the joint distribution to re-

main invariant under cyclic shifts. This yields a weaker yet meaningful discrete

convexity result in Proposition 2.3.19.

Definition 2.3.17 (Cyclically symmetric layer function family). Let S be a func-

tion on mutually independent and identically distributed random variablesX1, . . . , Xn.

We call S cyclically symmetric if for all cyclic shifts π of [1 : n] the distributions

of (S,X1, . . . , Xn) and (S,Xπ(1), . . . , Xπ(n)) are the same.

Remark 2.3.18. The function S :=
∑n

i=1XiXi+1 (with Xn+1 := X1), where Xi’s

are mutually independent and identically distributed random variables in R, is an

example of cyclically symmetric function.

Proposition 2.3.19. Let S be a cyclically symmetric function on mutually inde-

pendent and identically distributed random variables X1, . . . , Xn. Suppose U is a

random variable such that U → S → X[1:n] forms a Markov chain. Then for all

k = 1, . . . , n− 1 we have

I(U ;X[1:k−1]) + I(U ;X[1:k+1]) ≥ 2I(U ;X[1:k]).
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Furthermore,

I(U ;X[1:k]) ≤
k

n
I(U ;S)

for all k = 0, 1, . . . , n.

Proof. Since U → S → X[1:n] forms a Markov chain and S is a function of

X[1:n], we have I(U ;S) = I(U ;X[1:n]). Further from the cyclic symmetry of

S and the Markov chain U → S → X[1:n], we have that the distributions of

(U, S,X1, X2, . . . , Xn) and (U, S,Xn, X1, . . . , Xn−1) are the same. Consequently,

for all k = 0, . . . , n − 1 we have I(U ;X[1:k+1]) = I(U ;X[1:k]∪{n}). Hence for

k = 1, . . . , n− 1,

I(U ;X[1:k+1])− I(U ;X[1:k])

= I(U ;X[1:k]∪{n})− I(U ;X[1:k])

= I(U ;Xn|X[1:k])

(a)
= I(U ;Xn|X[1:k]) + I(Xk;Xn|X[1:k−1])

= I(U,Xk;Xn|X[1:k−1])

≥ I(U ;Xn|X[1:k−1])

= I(U ;X[1:k−1]∪{n})− I(U ;X[1:k−1])

= I(U ;X[1:k])− I(U ;X[1:k−1]).

where (a) holds since Xk is independent of X[1:k−1]∪{n}. Now φk := I(U ;X[1:k])

satisfies (2.3) and hence by Lemma 2.3.14 (with l = 0) we have

I(U ;X[1:k]) ≤
k

n
I(U ;X[1:n]) =

k

n
I(U ;S)

as required.
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Strong data processing constant

We establish a clean upper bound for the strong data processing constant through

the construction of specific joint distributions over general symmetric layer func-

tion families, utilizing discrete convexity results.

Definition 2.3.20. The strong data processing constant s∗(X;Y ) of two random

variables X,Y is defined by

s∗(X;Y ) := sup
p(u|x)

I(U ;X) ̸=0

I(U ;Y )

I(U ;X)
.

Corollary 2.3.21. Let {ST}T be a symmetric layered function family on mutually

independent and identically distributed random variables X1, . . . , Xn. Then

s∗(S[1:n];ST ) ≤
n− |T |
n

s∗(S[1:n];S∅) +
|T |
n

for all T ⊆ [1 : n].

Proof. Fix any U satisfying the Markov chain U → S[1:n] → ST . Define a random

variable Ũ , satisfying the Markov chain Ũ → S[1:n] → (S∅, X[1:n]), according to

pŨ |S[1:n]
(u|s) := pU |S[1:n]

(u|s).

Indeed Ũ also satisfies the Markov chain Ũ → S[1:n] → ST since ST is a function

of (S∅, X[1:n]). Hence the distributions of (U, S[1:n], ST ) and (Ũ , S[1:n], ST ) are the

same. Therefore,

I(U ;ST )

I(U ;S[1:n])
=

I(Ũ ;ST )

I(Ũ ;S[1:n])

(a)

≤ n− |T |
n

I(Ũ ;S∅)

I(Ũ ;S[1:n])
+

|T |
n

≤ n− |T |
n

s∗(S[1:n];S∅) +
|T |
n
.

where (a) is an application of Proposition 2.3.15.
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Remark 2.3.22. Observe that this result generalizes the one in [KN15] from sums

of mutually independent and identically distributed random variables to the more

general symmetric layered function families. The proof technique used here is

clearly motivated by the arguments in [KN15].

Corollary 2.3.23. Let S be a cyclically symmetric function on mutually indepen-

dent and identically distributed random variables X1, . . . , Xn. Then s∗(S;X[1:k]) ≤
k
n

for all k = 1, . . . , n.

Proof. This is immediate from Proposition 2.3.19.

Maximal correlation

The Hirschfeld–Gebelein–Rényi maximal correlation quantifies dependence be-

tween two random variables within general probability spaces. First introduced

by Hirschfeld [Hir35] and Gebelein [Geb41], this measure was later studied by

Rényi [Rén59]. By employing an auxiliary random variable that encodes condi-

tional expectation structures, we derive analogous upper bounds for the strong

data processing inequality through discrete convexity methods.

Definition 2.3.24. The Hirschfeld–Gebelein–Rényi maximal correlation ρm(X;Y )

of two random variables X,Y is defined by

ρm(X;Y ) := sup
f, g real-valued measurable

E[f(X)]=E[g(Y )]=0
E[f(X)2]=E[g(X)2]=1

E[f(X)g(Y )].

An alternative expression for the quantity is formulated by Rényi [Rén59] as

follows.

Proposition 2.3.25 (Rényi [Rén59]). Let X,Y be random variables. Then

ρm(X;Y ) = sup
f real-valued measurable

E[f(X)]=0
E[f(X)2]=1

E[E[f(X)|Y ]2]1/2.
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Corollary 2.3.26. Let {ST}T be a symmetric layered function family on mutually

independent and identically distributed random variables X1, . . . , Xn. Then

ρm(S[1:n];ST )
2 ≤ n− |T |

n
ρm(S[1:n];S∅)

2 +
|T |
n

for all T ⊆ [1 : n].

Proof. By Corollary 2.3.16 (i), for any bounded real-valued measurable function

f such that E[f(S[1:n])] = 0 and E[f(S[1:n])
2] = 1 we have

E[E[f(S[1:n])|ST ]
2]

≤ n− |T |
n

E[E[f(S[1:n])|S∅]
2] +

|T |
n

E[f(S[1:n])
2]

≤ n− |T |
n

ρm(S[1:n];S∅)
2 +

|T |
n
.

Taking supremum over f yields the result.

KL divergence inequality

A direct consequence of Corollary 2.3.16(ii) establishes convexity properties for KL

divergence. Through selection of X1, . . . , Xn as following a fixed Poisson distribu-

tion, we demonstrate novel convexity characteristics in the KL divergence between

binomial and Poisson distributions by constructing an associated symmetric layer

function family over X1, . . . , Xn.

Our findings have a similar favour with Yu’s conjecture (Conjecture 1 of

[Yu09]), which posits complete monotonicity forN 7→ DKL
(
Binomial

(
N, λ

N

)∣∣Poisson (λ)
)
.

Notably, even proving basic convexity for this function remains an open problem.

The following lemma is well-known and we present a proof here for complete-

ness.

Lemma 2.3.27. Suppose X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) are indepen-
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dent and Y ∼ Binomial(N,µ). Then the random variable Ỹ defined by

pỸ (ỹ) :=
∑
y

pX1|X1+X2(ỹ|y)pY (y)

satisfies Ỹ ∼ Binomial
(
N, λ1

λ1+λ2
µ
)

.

Proof. We first compute

pX1|X1+X2(ỹ|y) =
pX1(ỹ)pX2(y − ỹ)

pX1+X2(y)
=

(
y

ỹ

)
λỹ1λ

y−ỹ
2

(λ1 + λ2)y
.

Then

pỸ (ỹ) =
∑
y

pX1|X1+X2(ỹ|y)pY (y)

=
N∑
y=ỹ

(
y

ỹ

)
λỹ1λ

y−ỹ
2

(λ1 + λ2)y

(
N

y

)
µy(1− µ)N−y

=

(
N

ỹ

)(
λ1

λ1 + λ2
µ

)ỹ N∑
y=ỹ

(
N − ỹ

y − ỹ

)(
λ2

λ1 + λ2
µ

)y−ỹ

(1− µ)N−y

=

(
N

ỹ

)(
λ1

λ1 + λ2
µ

)ỹ (
1− µ+

λ2
λ1 + λ2

µ

)N−ỹ

=

(
N

ỹ

)(
λ1

λ1 + λ2
µ

)ỹ (
1− λ1

λ1 + λ2
µ

)N−ỹ

as required.

Corollary 2.3.28. Let N ≥ 0, λ̃, λ ≥ 0 and 0 ≤ µ ≤ 1. For k = 0, 1, . . . , n let

φk := DKL

(
Binomial

(
N,

λ̃+ λk

λ̃+ λn
µ

)∥∥∥∥∥Poisson
(
λ̃+ λk

))
.

Then

φk−1 + φk+1 ≥ 2φk
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for all k = 1, . . . , n− 1, and

φk ≤
n− k

n
φ0 +

k

n
φn

for all k = 0, 1, . . . , n.

Proof. Let S∅ ∼ Poisson(λ̃) and X1, . . . , Xn ∼ Poisson(λ) be mutually indepen-

dent random variables. Let ST := S∅ +
∑

i∈T Xi for non-empty T ⊆ [1 : n]. Note

that {ST}T forms a symmetric layered function family on X1, . . . , Xn. Also note

that ST ∼ Poisson(λ̃ + λ|T |) and S[1:n] − ST ∼ Poisson(λ(n − |T |)) are indepen-

dent. Let S̃T be defined as in Corollary 2.3.16 (ii) (with q(·) ∼ Binomial(N,µ)).

Applying Lemma 2.3.27, we have S̃T ∼ Binomial
(
N, λ̃+λ|T |

λ̃+λn
µ
)

. The result then

follows from Corollary 2.3.16 (ii).

Corollary 2.3.29. For all N ≥ 0 and λ ≥ 0, the function

t 7→ DKL (Binomial (N, t)‖Poisson (λt))

is convex on [0, 1].

Proof. This is immediate from Corollary 2.3.28 (with λ̃ = 0 and µ = 1) and

continuity.

2.4 Connection with additive combinatorics

One potential application of our main result lies in revealing connections between

sumset inequalities in additive combinatorics and entropic inequalities in infor-

mation theory. To contextualize this relationship, we first recall a fundamental

submodularity (or submultiplicativity) property observed in Abelian semigroups:

Theorem 2.4.1 (Theorem 1.2 of [GMR10]). Let A1, . . . , An be finite, non-empty
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sets in an arbitrary Abelian semigroup. Define ST =
∑

i∈T Ai. Then

|S[1:n]|n−1 ≤
n∏

i=1

|S[1:n]\{i}|.

This combinatorial result finds an information-theoretic counterpart through

our framework. The following entropic analogue emerges naturally as a conse-

quence of Theorem 2.1.10:

Corollary 2.4.2. Let X1, . . . , Xn be mutually independent random variables taking

values in an arbitrary Abelian semigroup, with ST =
∑

i∈T Xi. Then

(n− 1)H(S[1:n]) ≤
n∑

i=1

H(S[1:n]\{i}).

While no direct implication exists between Theorem 2.4.1 and Corollary 2.4.2,

their structural similarity in establishing submodularity highlights a profound par-

allelism between combinatorial and entropic inequalities. We will further explore

this relationship by presenting an entropic equivalent of Theorem 2.4.1 in subse-

quent chapters.

The pursuit of generalized submodularity properties extends beyond Abelian

structures. Ruzsa conjectured the following non-Abelian generalization:

Conjecture 2.4.3 (Conjecture 3.13 of [MMT12]). For finite, non-empty sets

A1, . . . , An in an arbitrary group, we conjecture:

n∏
i=1

max
ai∈Ai

|A1 ◦ · · · ◦ Ai−1 ◦ ai ◦ Ai+1 ◦ · · · ◦ An| ≥ |A1 ◦ · · · ◦ An|n−1. (2.4)

where ◦ denotes the group operation, and A ◦ B := {a ◦ b : a ∈ A, b ∈ B} for any

subsets A,B of the group.

This conjecture is known to hold for Abelian groups (Theorem 9.3, Chapter

1 of [Ruz09a]). For non-Abelian groups, it has been verified for n ≤ 3 (Corollary

3.12 of [MMT12]), while general cases remain open (Problem 9.4, Chapter 1 of

[Ruz09a]).
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Our framework yields new insights into this longstanding problem. By applying

2.1.10 (iii) with U := X1◦· · ·◦Xn and ST := XT , we obtain a non-Abelian entropic

analogue:

Corollary 2.4.4. Let X1, . . . , Xn be mutually independent random variables with

finite support in an arbitrary group. Then

n∑
i=1

H(X1 ◦ · · · ◦Xn|Xi) ≥ (n− 1)H(X1 ◦ · · · ◦Xn).

This result suggests potential strategies for the proof of Conjecture 2.4.3. The

established entropic formulation not only parallels the combinatorial conjecture

but also opens avenues for cross-disciplinary proof techniques. Our subsequent

work will formalize this connection through an entropic equivalent of Conjec-

ture 2.4.3, potentially enabling new approaches to this fundamental problem in

additive combinatorics.
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Chapter 3

Rotation Trick in Discrete Spaces

and Its Applications

In this chapter, we develop a framework to establish uniform distribution opti-

mality for entropic optimization problems through superadditivity principles and

rotational tricks. This approach provides alternative insights into proving the

polynomial Freiman–Ruzsa (PFR) functional conjecture.

In Section 3.1, we first review various discrete analogues of EPI that are ap-

plicable to different specific families of random variables. We then introduce the

Darmois–Skitovich theorem, which plays a central role in proving Gaussian opti-

mality in the continuous EPI. Following this, we present the discrete counterpart

of the Darmois–Skitovich theorem, which serves as the motivation for our results.

In Section 3.2, we construct a discrete entropic analogue of Theorem 1.3.10.

Our methodology adapts continuous-case proofs with substantial modifications:

first identifying superadditive functionals for Theorem 3.2.1’s optimization target,

then establishing independence relations through perturbed variational problems.

The discrete rotation technique emerges via Lemma 3.2.3, which is a variant of

Feldman-type theorem, ultimately yielding uniform distribution optimality proofs.

In Section 3.3, we will apply this discrete rotation trick framework to show

the optimality of uniform distribution for an entropic functionals, which has been
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show as equivalent to the PFR conjecture for characteristics 2. This shows the

potential of this superadditivity framework in additive combinatorics.

3.1 Preliminaries

Since entropic power inequality plays an important role in network information

theory (Section 2.3.1), there are various versions to formulate the discrete analogue

of EPI. Shamai and Wyner, [SW90], established a discrete analog of EPI for the

binary random variables. Harremoës and Vignaet, [HV03], discovered a discrete

analog of EPI for a particular family of binomial random variables. Sharma, Das,

and Muthukrishnan, [SDM11] based on the work of [HV03], establish another

version of the discrete EPI. On the other hand, there have been generalizations of

Mrs. Gerber’s Lemma (Wyner and Ziv [WZ73]); for example, Jog and Anantharam

have shown a generalization of Mrs. Gerber’s Lemma for random variables on the

Abelian group with order 2n [JA14]. These formulations leverage the underlying

structure of the specific families of random variables considered.

In our attempt to find a discrete analogue of EPI for general Abelian groups,

one approach is to identify the corresponding Lieb’s formulation for discrete ran-

dom variables. This motivates us to investigate the inequality that unifies EPI

and BLI (Theorem 1.3.10). The key step in the original argument is establishing

Gaussian optimality by utilizing the Darmois-Skitovich theorem (Section 1.2.2).

Theorem 3.1.1 (Darmois-Skitovich theorem [Dar53, Ski53]). Let X1, . . . , Xn be

independent random variables. Let α1, . . . , αn, β1, . . . , βn be non-zero constants for

each coordinate. If the linear statistics L1 =
∑n

i=1 αiXi and L2 =
∑n

i=1 βiXi are

independent, then all random variables X1, . . . , Xn are Gaussians.

A finite Abelian group analog of this was discovered by Feldman [Fel99].

Theorem 3.1.2 (Feldman [Fel99]). Let G be a finite Abelian group, and X1, X2 be

independent random variables with values in G. Let α1, α2, β1, β2 be automorphisms

of the group G. Then if the linear statistics L1 = α1(X1) + α2(X2) and L2 =
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β1(X1)+β2(X2) are independent, then X1 and X2 are shifts of a Haar distribution

of some subgroup H of G, or equivalently, X1 and X2 are uniform distributions

on a coset of some subgroup H of the group G.

Remark 3.1.3. The uniform distribution on a coset of some subgroup H of a finite

Abelian group G has very similar properties to that of Gaussians in the respective

from the above theorem. By shifting the mean, we see that Haar distributions

(uniform distributions) on subgroups play an analogous role to Gaussian distribu-

tions.

Therefore, it is natural to guess that Gaussians can be replaced by uniform dis-

tributions on a coset (corresponding to a shift in the mean) of some subgroup when

working for the discrete analogue of the unified EPI and LBI under finite Abelian

groups. However, while this intuition is correct, we show a way to overcome some

technical hassles (different from the continuous case) in our proof. Furthermore,

just like the rotation trick in the continuous case, we believe this argument can

find several other applications to establish the optimality of uniform distributions.

3.2 Discrete analogue of Unified BLI and EPI

The main result of this section (Theorem 3.2.1) is a discrete analog (in finite

Abelian groups) of Theorem 1.3.10. Further, we demonstrate that the proof tech-

nique in [AJN22] can be essentially mimicked (modulo some differences in the

technical arguments) in this setting.

Theorem 3.2.1. Let X1, . . . , Xn be independent random variables taking values

in some subgroup H1, . . . ,Hn of a finite Abelian group G. Let a1, . . . , an, and

b1, . . . , bℓ be positive constants, and c(1)i,j , . . . , c
(mj)
i,j be integers. Then, the following

optimization problem

max∏n
i=1 pXi

n∑
i=1

aiH(Xi)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,jXi, . . . ,

n∑
i=1

c
(mj)
i,j Xi

)
,
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has an optimizer (X∗
1 , . . . , X

∗
n) of the form, each X∗

i has an uniform distribution

on a coset of a subgroup Ki ⊆ Hi.

Remark 3.2.2. The following points are worth noting:

1. One can relax the assumption on the sign of ai. Note that, if any ak ≤ 0, it

is immediate that an optimal choice is to set the corresponding Xk to be a

constant random variable. To see this one observes that

H

(
n∑

i=1

c
(1)
i,jXi, . . . ,

n∑
i=1

c
(mj)
i,j Xi,

)
≥ H

(
n∑

i=1

c
(1)
i,jXi, . . . ,

n∑
i=1

c
(mj)
i,j Xi|Xk

)

.

2. Unlike the continuous case, where Lieb’s formulation of EPI was known,

the extremality of the uniform distribution of a coset of some subgroup

for a1H(X1) + a2H(X2) − H(X1 + X2) was not known. There have been

conjectures (and some results), [JA14], of a similar flavor.

3. The optimization problem is the Lagrangian dual of the following:

f(x, y) = min
H(X)=x,H(Y )=y

H(X + Y )

In [JA14], f(x, y) is shown to be convex in x for fixed y, and convex in y for

fixed x when the underlying group has order 2n.

4. Since the underlying group is an Abelian group, we define the random

variable kX as Pr(kX = y) =
∑

x:kx=y Pr(X = x) for all y ∈ G, where

kx = x+ · · ·+ x︸ ︷︷ ︸
k times

when k is positive, kx = 0 when k = 0, and kx = −|k|x if

k is negative.

We establish the following lemma before providing proof of Theorem 3.2.1.

This is the analogous result of the Darmois-Skitovich theorem we need in our

proof.
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Lemma 3.2.3. Let XA and XB be two independent random variables taking values

in some finite Abelian group H. Let S denote the support of the probability distri-

bution of XB. Let D denote the subgroup generated by the pairwise differences of

the elements of supp(XB).

For XA + XB to be independent of XB, it is necessary and sufficient that

P(XA = h1) = P(XA = h2) whenever h1, h2 belong to the same coset of D (in

other words, pXA
is uniformly distributed conditioned on it taking values in a

given coset of D). Consequently |supp(XA)| = k|D| ≥ k|supp(XB)| for some

k ∈ N satisfying 1 ≤ k ≤ |H|
|D| , and k = 1 only if XA is uniformly distributed on a

coset of D.

Proof. First, assume that XA is uniform on the cosets of D. Let T be a set of

coset representatives, i.e., a transversal of the collection of cosets of D. Therefore,

any element h ∈ H can be uniquely represented as h = t+ d, for some t ∈ T and

d ∈ D. If XA is uniform on the cosets of D, then P(XA = h) = P(XA = t + d) =

1
|D|P(T = t) for some arbitrary distribution on the transversal. If XA and XB are

independent, note that P(XA +XB = h + b,XB = b) = P(XA = h)P(XB = b) =

1
|D|P(T = t)P(XB = b).

On the other hand P(XA+XB = h+ b) =
∑

b̂∈S P(XA = h+ b− b̂)P(XB = b̂).

Since b−b̂ ∈ D, h+b−b̂ belongs to the same coset as h. Therefore, for all b̂, we have

P(XA = h+ b− b̂) = 1
|D|P(T = t). Consequently, P(XA +XB = h+ b) = 1

|D|P(T =

t)
∑

b̂∈S P(XB = b̂) = 1
|D|P(T = t). Therefore P(XA + XB = h + b,XB = b) =

P(XA = h)P(XB = b) = 1
|D|P(T = t)P(XB = b) = P(XA+XB = h+b)P(XB = b).

This implies that XA +XB is also independent of XB.

Conversely, let us assume that XA and XB are independent, and additionally,

XA + XB is also independent of XB. Therefore P(XA + XB = h + b)P(XB =

b) = P(XA + XB = h + b,XB = b) = P(XA = h)P(XB = b). This implies that

for all b ∈ S, we have P(XA = h) = P(XA + XB = h + b) =
∑

b̂∈S P(XA =

h + b − b̂)P(XB = b̂). Rewriting h as h − b, we see that P(XA = h − b) =∑
b̂∈S P(XA = h− b̂)P(XB = b̂). Since the right-hand-side does not depend on b,
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we obtain that P(XA = h − b1) = P(XA = h − b2), for all b1, b2 ∈ S and h ∈ H.

Replacing h− b1 by h, we note that P(XA = h) = P(XA = h+ b1 − b2). Since the

pairwise differences bi − bj generate D, and from above pXA
is invariant under a

shift by a pairwise difference, it follows that pXA
is invariant under a shift by an

element in D. In other words, XA is uniform on the cosets of D.

Finally note that |supp(XA)| = |supp(T )||D|, and |supp(XA)| = |D| only if T

is a constant random variable, implying that XA is uniform on a coset of D. We

also have that |D| ≥ |supp(XB)|, since b 7→ b − b0 is an injection from supp(XB)

to D, where b0 is an arbitrary fixed element from supp(XB).

Remark 3.2.4. The proof is similar to that in [Tao10, Section 5]. In [Tao10], XA

and XB are assumed to be identically distributed.

3.2.1 Framework for establishing optimality of uniform dis-

tribution

Identifying a superadditive functional

The first step in proving the optimality of the uniform distribution of a coset of

some subgroup is to identify a superadditive functional. To this end, given an

n-tuple of distributions (pX1 , . . . , pXn), such that Xi has support on Hi, let us

define:

F (X1, . . . , Xn) :=

sup
pU|X1,...,Xn :

pX1,...,Xn|U=
∏n

i=1 pXi|U

n∑
i=1

aiH(Xi|U)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi|U

)
.

Observe that the maximum value of F (X1, . . . , Xn) is the same as the value of

the optimization problem in Theorem 3.2.1, as the average is always less than the

maximum (the other direction is immediate by taking X1, . . . , Xn to be mutually

independent and U to be a constant).

Remark 3.2.5. This is essentially the same function as the one employed in [AJN22].

59



Now consider an n-tuple of distributions (pX1,X̂1
, . . . , pXn,X̂n

), such that (Xi, X̂i)

has support on Hi × Ĥi, let us define (ignoring the abuse of notation):

F ((X1, X̂1), . . . , (Xn, X̂n)) := sup
pU|(X1,X̂1),...,(Xn,X̂n):

p(X1,X̂1),...,(Xn,X̂n)|U=
∏n

i=1 p(Xi,X̂i)|U

n∑
i=1

aiH(Xi, X̂i|U)

−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi,

n∑
i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i|U

)
.

Observe that

n∑
i=1

aiH(Xi, X̂i|U)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi,

n∑
i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i|U

)

=
n∑

i=1

aiH(Xi|U)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi|U

)

+
n∑

i=1

aiH(X̂i|U,Xi)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i|U,

n∑
i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi

)

(a)
=

n∑
i=1

aiH(Xi|U)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi|U

)

+
n∑

i=1

aiH(X̂i|U,X)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i|U,

n∑
i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi

)
(b)

≤
n∑

i=1

aiH(Xi|U)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi|U

)

+
n∑

i=1

aiH(X̂i|U,X)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i|U,X

)
(c)

≤ F (X1, . . . , Xn) + F (X̂1, . . . , X̂n).

In the above X = (X1, . . . , Xn). Equality (a) follows, as conditioned on U ,

{(Xi, X̂i)} are mutually independent and equality (b) follows from data-processing

inequality as (U,
∑n

i=1 c
(1)
i,jXi, . . . ,

∑n
i=1 c

(mj)
i,j Xi) → (U,X) → (U,

∑n
i=1 c

(1)
i,j X̂i, . . . ,∑n

i=1 c
(mj)
i,j X̂i) is Markov. Finally inequality (c) follows since conditioned on U ,

the random variables {Xi} are mutually independent, and conditioned on (U,X),

the random variables {X̂i} are mutually independent.

Remark 3.2.6. The next step in the proof (in the continuous case) is to argue that

rotated versions of two independent copies of the maximizers are independent. In
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the continuous case, this involves showing the existence of the maximizers and

then (sometimes) considering a perturbed function to deduce the independence of

the rotated versions. In the finite alphabet case, the existence of the maximizers

is immediate but one still needs to consider a perturbed function to deduce the

independence.

Establish discrete analogues for “rotation” trick

In the next part of the proof, we will argue that certain linear forms of the max-

imizer are independent. To this end, consider the two maximization problems

listed below:

max∏n
i=1 pXi

n∑
i=1

aiH(Xi)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,jXi, . . . ,

n∑
i=1

c
(mj)
i,j Xi

)
,

max∏n
i=1 pX̂i

n∑
i=1

aiH(X̂i)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i

)
−

n∑
i=1

ϵH(X̂i).

In the above two problems, the random variables Xi and X̂i are assumed to take

values in the subgroup Hi. Let (X∗
1 , . . . , X

∗
n) and (X̂∗

1,ϵ, . . . , X̂
∗
n,ϵ) be maximizers

of the two optimization problems respectively and V, Vϵ be the maximum value

attained by the two optimization problems. Further, let us assume that among

all possible maximizers of the first problem, (X∗
1 , . . . , X

∗
n) minimizes the function∏n

i=1(1 + |supp(Xi)|).

It is immediate that Vϵ → V and ϵ→ 0 (as the difference between the objective

functions at any point is bounded by ϵ (
∑n

i=1 log |Hi|) . Furthermore, by the com-

pactness of the probability simplex and continuity of the function, we know that

there is a sequence of maximizers (X̂∗
1,ϵm , . . . , X̂

∗
n,ϵm) that converge to a maximizer

of the first optimization problem.

Finally, we define

Fϵ(X1, . . . , Xn) := sup
pU|X1,...,Xn :

pX1,...,Xn|U=
∏n

i=1 pXi|U

n∑
i=1

aiH(Xi|U)
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−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,jXi, . . . ,

n∑
i=1

c
(mj)
i,j Xi|U

)
−

n∑
i=1

ϵH(Xi|U).

We have Fϵ(X1, . . . , Xn) ≤ Vϵ.

Observe that by taking independent copies of the maximizers (X∗
1 , . . . , X

∗
n)

and (X̂∗
1,ϵ, . . . , X̂

∗
n,ϵ), we obtain

V + Vϵ

=
n∑

i=1

aiH(X∗
i )−

ℓ∑
j=1

bjH

(
n∑

i=1

c
(1)
i,j X

∗
i , . . . ,

n∑
i=1

c
(mj)
i,j X∗

i

)

+

n∑
i=1

aiH(X̂∗
i,ϵ)−

ℓ∑
j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂

∗
i,ϵ, . . . ,

n∑
i=1

c
(mj)
i,j X̂∗

i,ϵ

)
−

n∑
i=1

ϵH(X̂∗
i,ϵ)

(a)
=

n∑
i=1

aiH(X∗
i , X̂

∗
i,ϵ)−

n∑
i=1

ϵH(X̂∗
i,ϵ)

−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X

∗
i , . . . ,

n∑
i=1

c
(mj)
i,j X∗

i ,
n∑

i=1

c
(1)
i,j X̂

∗
i,ϵ, . . . ,

n∑
i=1

c
(mj)
i,j X̂∗

i,ϵ

)
(b)
=

n∑
i=1

aiH(X∗
i + X̂∗

i,ϵ, X̂
∗
i,ϵ)−

n∑
i=1

ϵH(X̂∗
i,ϵ)

−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j (X

∗
i + X̂∗

i,ϵ), . . . ,
n∑

i=1

c
(mj)
i,j (X∗

i + X̂∗
i,ϵ),

n∑
i=1

c
(1)
i,j X̂

∗
i,ϵ, . . . ,

n∑
i=1

c
(mj)
i,j X̂∗

i,ϵ

)

=
n∑

i=1

aiH(X∗
i + X̂∗

i,ϵ)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j (X

∗
i + X̂∗

i,ϵ), . . . ,
n∑

i=1

c
(mj)
i,j (X∗

i + X̂∗
i,ϵ)

)

+
n∑

i=1

aiH(X̂∗
i,ϵ|X∗

i + X̂∗
i,ϵ)−

n∑
i=1

ϵH(X̂∗
i,ϵ|X∗

i + X̂∗
i,ϵ)−

n∑
i=1

ϵI(X̂∗
i,ϵ;X

∗
i + X̂∗

i,ϵ)

−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂

∗
i,ϵ, . . . ,

n∑
i=1

c
(mj)
i,j X̂∗

i,ϵ|
n∑

i=1

c
(1)
i,j (X

∗
i + X̂∗

i,ϵ), . . . ,
n∑

i=1

c
(mj)
i,j (X∗

i + X̂∗
i,ϵ)

)
(c)

≤
n∑

i=1

aiH(X∗
i + X̂∗

i,ϵ)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j (X

∗
i + X̂∗

i,ϵ), . . . ,
n∑

i=1

c
(mj)
i,j (X∗

i + X̂∗
i,ϵ)

)

+
n∑

i=1

aiH(X̂∗
i,ϵ|X∗ + X̂∗

ϵ )−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂

∗
i,ϵ, . . . ,

n∑
i=1

c
(mj)
i,j X̂∗

i,ϵ|X∗ + X̂∗
ϵ

)

−
n∑

i=1

ϵH(X̂∗
i,ϵ|X∗ + X̂∗

ϵ )−
n∑

i=1

ϵI(X̂∗
i,ϵ;X

∗
i + X̂∗

i,ϵ)

(d)

≤ F (X∗
1 + X̂∗

1,ϵ, . . . , X
∗
n + X̂∗

n,ϵ) + Fϵ(X̂
∗
1,ϵ, . . . , X̂

∗
n,ϵ)−

n∑
i=1

ϵI(X̂∗
i,ϵ;X

∗
i + X̂∗

i,ϵ)

(e)

≤ V + Vϵ −
n∑

i=1

ϵI(X̂∗
i,ϵ;X

∗
i + X̂∗

i,ϵ).
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Here X∗ + X̂∗
ϵ stands for the vector (X∗

1 + X̂∗
1,ϵ, . . . , X

∗
n + X̂∗

n,ϵ). In the above,

equality (a) follows from the independence of X∗ and X̂∗
ϵ and equality (b) follows

from H(X1, X2) = H(X1 + X2, X2). Equality (c) follows from data-processing

and the independence of the components of (X∗ + X̂∗
ϵ), and (d) follows from the

definition of F and Fϵ as elaborated next. Note that (X∗
1 + X̂∗

1,ϵ, . . . , X
∗
n + X̂∗

n,ϵ)

satisfies the support constraints and is a valid input for the function F (with U

taken to be a constant). Now take U = X∗ + X̂∗
ϵ and use independence of the

components of (X∗+ X̂∗
ϵ) to justify that this choice is a valid extensionpU |X̂∗

ϵ
in the

definition of Fϵ. Finally, we note that the maximum of F and Fϵ are V and Vϵ to

justify the inequality (e).

For ϵ > 0, note that the above manipulations imply that I(X̂∗
i,ϵ;X

∗
i + X̂

∗
i,ϵ) = 0

using the non-negativity of mutual information, or in other words, that X∗
i + X̂∗

i,ϵ

is independent of X̂∗
i,ϵ. Since X∗

i was independent of X̂∗
i,ϵ by construction, note

that we can apply Lemma 3.2.3 to deduce that the distribution of X∗
i is uniform

on the cosets of Di,ϵ. Here Di,ϵ is the subgroup of Hi generated by the pairwise

differences of the support of X̂∗
i,ϵ. Further |supp(X∗

i )| = ki,ϵ|Di,ϵ| for some ki,ϵ ∈ N

satisfying 1 ≤ ki,ϵ ≤ |Hi|
|Di,ϵ| .

As argued earlier, we have a sequence of optimizers X̂∗
ϵm such that as ϵm ↓ 0

and X̂∗
ϵm converges to a maximizer, say X̃∗, of the problem with ϵ = 0. Now, we

have for any ϵ > 0,

n∏
i=1

(1 + ki,ϵ|Di,ϵ|) =
n∏

i=1

(1 + |supp(X∗
i )|) ≤

n∏
i=1

(1 + |supp(X̃∗
i )|)

= lim
m→∞

n∏
i=1

(1 + |supp(X̂∗
i,ϵm)|) ≤ lim

m→∞

n∏
i=1

(1 + |Di,ϵm |).

The second assertion holds because we assumed that X∗ minimizes
∏n

i=1(1 +

|supp(Xi)|) among all the maximizers of the optimization problem. This forces,

for each 1 ≤ i ≤ n, the sequence ki,ϵm → 1 as m → ∞. Therefore for some large,

enough m, have ki,ϵm = 1 for all i, where 1 ≤ i ≤ m. Therefore, again invoking

Lemma 3.2.3, we see that X∗
i is uniformly distributed on some coset of a subgroup
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Di,ϵm ⊆ Hi. This completes the proof of Theorem 3.2.1.

Remark 3.2.7. Note that the above argument also establishes some properties of

the maximizers of the optimization problem. Suppose X∗
a is another maximizer

such that
∏n

i=1(1 + |supp(X∗
a,i)|) >

∏n
i=1(1 + |supp(X∗

i )|). Then, the above ar-

gument implies that one cannot have a sequence of maximizers of the perturbed

problem that converges to X∗
a.

3.3 Application in additive combinatorics

Recent work by Gowers, Green, Manners, and Tao [GGMT23] established uniform

distribution optimality for discrete information functionals - equivalent to resolv-

ing the Polynomial Freiman–Ruzsa (PFR) conjecture in characteristic 2 groups.

Our analysis progresses through three key stages:

In Section 3.3.1, we introduce the entropic functional τ(X,Y ;X0, Y 0), demon-

strating that we aim to prove uniform distributions (X∗, Y ∗) minimize τ when

fixing reference distributions (X0, Y 0). Section 3.3.2 develops preliminary super-

additivity properties for τ , though these prove insufficient for full optimality char-

acterization.

The conclusive Section 3.3.3 presents an advanced superadditivity argument

establishing uniform distribution optimality for PFR functionals, albeit with re-

laxed constant constraints.

3.3.1 Entropic formulation of PFR conjecture

Definition 3.3.1 (Independent entropic Ruzsa distance, [GGMT23]). Suppose

X,Y are G-valued random variables. The independent entropic Ruzsa distance

between X and Y is defined as

d(X,Y ) = H(X ′ + Y ′)− 1

2
H(X)− 1

2
H(Y ),

where X ′ and Y ′ are independent copies of X,Y .
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Remark 3.3.2. This is sometimes defined as H(X ′ − Y ′)− 1
2
H(X)− 1

2
H(Y ). For

groups with characteristic 2, these two definitions are equivalent. There is also

another “entropic Ruzsa distance” (defined in [KLN23]) where

dcoupling(X,Y ) = max
Π(px,py)

H(X ′ − Y ′)− 1

2
H(X)− 1

2
H(Y ),

where Π(px, py) denotes the set of couplings with fixed marginals. Note that

none of the above definitions is a distance. When px = py, it does not hold that

d(X,Y ) = 0.

Lemma 3.3.3. The independent entropic Ruzsa distance satisfies the triangle

inequality, i.e. d(X,Z) ≤ d(X,Y ) + d(Y, Z).

Proof. Let (X,Y, Z) be independent. What we need to show is equivalent to

H(X + Z) +H(Y ) ≤ H(X + Y ) +H(Y + Z).

This can be rewritten as

I(X;X + Y + Z) ≤ I(X;X + Y ) + I(Y ;X + Y + Z).

By data-processing inequality, as X → X + Y → X + Y + Z is Markov,

I(X;X + Y + Z) ≤ I(X;X + Y ) and the lemma follows.

Definition 3.3.4 (Conditionally-independent entropic Ruzsa distance). Suppose

X,Y are G-valued random variables. The conditionally-independent entropic

Ruzsa distance between X and Y is defined as

d(X,Y |U) = H(X ′ + Y ′|U)− 1

2
H(X|U)− 1

2
H(Y |U)

where (U,X ′) ∼ (U,X), (U, Y ′) ∼ (U, Y ), and X ′ → U → Y ′ is Markov.

Definition 3.3.5 (Polynomial Freiman–Ruzsa functional). [GGMT23, Equation

2.1] For any random variables X0, Y 0 with support contained inside G, a finite
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Abelian group with characteristic 2, define the functional

τ(X,Y ;X0, Y 0) :=

(
H(X + Y )− 1

2
H(X)− 1

2
H(Y )

)
+ η

(
H(X +X0)− 1

2
H(X)− 1

2
H(X0)

)
+ η

(
H(Y + Y 0)− 1

2
H(Y )− 1

2
H(Y 0)

)
,

where X,Y,X0, Y 0 are mutually independent. Here X,Y also take values in G.

It was shown in [GGMT23, Proposition 2.1] that all minimizers of τ(X,Y ) must

be uniform distributions on a coset of a subgroup for all X0, Y 0 with support in

G, when η ≤ 1
9
.

3.3.2 Elementary superadditive results for PFR functional

A natural question to ask is whether there is a related superadditive function and

whether one can use the machinery developed in the first part of the chapter to

deduce the optimality of the uniform distribution. The answer to the former part

is yes, while the latter part seems to be not as straightforward.

Let us consider a slight modification of the above functional.

Definition 3.3.6 (Conditional PFR functional). Let X0 and Y 0 be fixed G-

valued random variables. Suppose U,X, Y are G-valued random variables. We

require the triple (U,X, Y ), X0, Y 0 are independent. We define the conditional

PFR functional as below

τ(X,Y ;X0, Y 0|U)

:= d(X,Y |U) + ηd(X,X0|U) + ηd(Y, Y 0|U)

= H(X ′ + Y ′|U)− 1 + η

2
H(X|U)− 1 + η

2
H(Y |U)

+ ηH(X +X0|U) + ηH(Y + Y 0|U)− η

2
H(X0)− η

2
H(Y 0)

where (U,X ′) ∼ (U,X), (U, Y ′) ∼ (U, Y ), and X ′ → U → Y ′ is Markov.
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Define the two-letter form

T ((Xa, Xb), (Ya, Yb); (X
0
a , Y

0
a ), (X

0
b , Y

0
b ))

:= min
pU|Xa,Xb,Ya,Yb

:
pXa,Xb,Ya,Yb|U=pXa,Xb|UpYa,Yb|U

H(Xa + Ya, Xb + Yb|U)− 1

2
H(Xa, Xb|U)− 1

2
H(Ya, Yb|U)

+ η

(
H(Xa +X0

a , Xb +X0
b |U)− 1

2
H(Xa, Xb|U)− 1

2
H(X0

a , X
0
b |U)

)
+ η

(
H(Ya + Y 0

a , Yb + Y 0
b |U)− 1

2
H(Ya, Yb|U)− 1

2
H(Y 0

a , Y
0
b |U)

)
,

where the tuple (U, (Xa, Xb), (Ya, Yb)), X
0
a , X

0
b , Y

0
a , and Y 0

b are mutually indepen-

dent.

Lemma 3.3.7. For any η ≥ 0, following superadditivity inequality holds:

T ((Xa, Xb), (Ya, Yb); (X
0
a , Y

0
a ), (X

0
b , Y

0
b )) ≥ T (Xa, Ya;X

0
a , Y

0
a ) + T (Xb, Yb;X

0
b , Y

0
b )

Proof. Observe that the following holds:

H(Xa + Ya, Xb + Yb|U)−
1

2
H(Xa, Xb|U)−

1

2
H(Ya, Yb|U)

= H(Xa + Ya|U)−
1

2
H(Xa|U)−

1

2
H(Ya|U) +H(Xb + Yb|U,Xa − Ya)

− 1

2
H(Xb|U,Xa)−

1

2
H(Yb|U, Ya)

(a)
= H(Xa + Ya|U)−

1

2
H(Xa|U)−

1

2
H(Ya|U) +H(Xb + Yb|U,Xa + Ya)

− 1

2
H(Xb|U,Xa, Ya, X

0
a , Y

0
a )−

1

2
H(Yb|U,Xa, Ya, X

0
a , Y

0
a )

≥ H(Xa + Ya|U)−
1

2
H(Xa|U)−

1

2
H(Ya|U) +H(Xb + Yb|U,Xa, Ya, X

0
a , Y

0
a )

− 1

2
H(Xb|U,Xa, Ya, X

0
a , Y

0
a )−

1

2
H(Yb|U,Xa, Ya, X

0
a , Y

0
a ).

Here (a) follows from the independence and the Markov structure of the random

variables.

In an identical fashion, we can also show that

H(Xa +X0
a , Xb +X0

b |U)−
1

2
H(Xa, Xb|U)−

1

2
H(X0

a , X
0
b |U)
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≥ H(Xa +X0
a |U)−

1

2
H(Xa|U)−H(X0

a |U) +H(Xb +X0
b |U,Xa, Ya, X

0
a , Y

0
a )

− 1

2
H(Xb|U,Xa, Ya, X

0
a , Y

0
a )−

1

2
H(X0

b |U,Xa, Ya, X
0
a , Y

0
a ),

and

H(Ya + Y 0
a , Yb − Y 0

b |U)−
1

2
H(Ya, Yb|U)−

1

2
H(Y 0

a , Y
0
b |U)

≥ H(Ya + Y 0
a |U)−

1

2
H(Ya|U)−H(Y 0

a |U) +H(Yb + Y 0
b |U,Xa, Ya, X

0
a , Y

0
a )

− 1

2
H(Yb|U,Xa, Ya, X

0
a , Y

0
a )−

1

2
H(Y 0

b |U,Xa, Ya, X
0
a , Y

0
a ).

Denote Ua = U , and observe that pXaYa|Ua = pXa|UapYa|Ua and (Ua, Xa, Ya), X
0
a ,

and Y 0
a are mutually independent. Denote Ub = (U,Xa, Ya, X

0
a , Y

0
a ), and observe

that pXbYb|Ub
= pXb|Ub

pYb|Ub
and (Ub, Xb, Yb), X

0
a , and Y 0

a are mutually independent.

Putting the above inequalities together, the requisite superadditivity follows.

However, we cannot do the transformation (Xa+X0
a , Xb+X0

b ) 7→ (Xa+X0
a +

Xb+X
0
b , Xb+X

0
b ) as this would replace X0

a by X0
a +X

0
b . This is not permitted as

X0
a is a fixed distribution. Instead, one can place Xa, Xb, Ya, Yb at the minimizer

by alternate linear forms and use the minimality to force an independence of some

linear forms.

3.3.3 A superadditivity proof for the optimality of uniform

distribution in PFR functional

We believe that it will be illustrative to revisit the arguments in [GGMT23] in

light of superadditivity. For the purpose of illustration of the ideas, we will try to

keep our estimates rather elementary (the ideas are still borrowed, in many cases

verbatim, from [GGMT23]). We will establish the following (weaker) result.

Theorem 3.3.8. Let X0, Y 0 be any pair of independent random variables with
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support contained inside G, a finite Abelian group with characteristic 2. Let

τ(X,Y ) :=

(
H(X + Y )− 1

2
H(X)− 1

2
H(Y )

)
+ η

(
H(X +X0)− 1

2
H(X)− 1

2
H(X0)

)
+ η

(
H(Y + Y 0)− 1

2
H(Y )− 1

2
H(Y 0)

)
,

where X,Y,X0, Y 0 are mutually independent. Here X,Y also take values in G.

Then, all minimizers of τ(X,Y ) must be uniform distributions on a coset of a

subgroup of G, when η ≤ η0, where η0 =
√
1452−36

26
.

We will divide the proof of Theorem 3.3.8 into some components. Some of the

required inequalities will be established in the Appendix.

Superadditivity and rotation in PFR functional

Suppose (X∗, Y ∗) is a minimizer of τ(X,Y ;X0, Y 0). Without loss of generality,

we may assume X∗ and Y ∗ are independent. Let (XA, YA) and (XB, YB) are

independent copies of (X∗, Y ∗). The minimality of (X∗, Y ∗) implies that

τ(XA + UA, YA + VA;X
0
A, Y

0
A |WA) + τ(XB + UB, YB + VB;X

0
B, Y

0
B|WB)

≥ τ(XA, YA;X
0
A, Y

0
A) + τ(XB, YB;X

0
B, Y

0
B) (3.1)

for any valid choice that XA+UA → WA → YA+VA and XB +UB → WB → YB +

VB. Here, (UA, VA,WA, UB, VB,WB, XA, YA, XB, YB) is assumed to be independent

of (X0
A, Y

0
A , X

0
B, Y

0
B).

Set UA = XB, VA = YB,WB = (XA+XB, YA+YB),WA = UB = VB = ∅. Then

(3.1) reduces to

I(XA +XB;XB + YB|XA + YA +XB + YB)

≤ ηI(XB;XA +XB +X0
A) + ηI(YB;YA + YB + Y 0

A)

− ηI(XA +XB;XB +X0
B)− ηI(YA + YB;YB + Y 0

B)

69



≤ ηI(XB;XA +XB +X0
A) + ηI(YB;YA + YB + Y 0

A)

≤ ηI(XB;XA +XB) + ηI(YB;YA + YB). (3.2)

The last inequality is due to (X0
A, Y

0
A) ⊥ (XA, XB, YA, YB).

Similarly, by setting UA = YB, VA = XB,WB = (XA + YB, YA + XB),WA =

UB = VB = ∅, (3.1) yields

I(XA + YB;XB + YB|XA + YA +XB + YB) ≤ ηI(XB;YA +XB) + ηI(YB;XA + YB).

(3.3)

Finally, by setting, UA = XA, VA = YB,WB = (XA + XB, YA + YB),WA =

UB = VB = ∅, (3.1) yields

I(XA +XB;XA + YB|XA + YA +XB + YB) ≤ ηI(XA;XA +XB) + ηI(YB;YA + YB).

(3.4)

Remark 3.3.9. We have employed three different linear transformations on the

superadditive function and obtained three constraints (equations (3.2),(3.3),(3.4))

that has to be satisfied by the minimizer. Following the approach in the earlier

sections, we need to use these inequalities to deduce some independence of linear

forms, which would imply that minimizers need to be uniform. The choice of the

identifications (three inequalities) above is directly motivated from [[GGMT23],

Equations 3.1–3.4]. It may be possible that one could use other linear trans-

formations and obtain additional constraints that implies the independence for a

lower η but this is left for future work.

Lemma 3.3.10 ([GGMT23], Equation 5.9). Let S = (XA +XB) + (YA + YB).

H(S)− 1

2
H(X)− 1

2
H(Y ) ≤ (2 + η)d(X,Y ).

Proof. By optimality of (X,Y ), we have τ(XA, YA;X
0, Y 0|XA + YB, YA +XB) ≥
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τ(X,Y ;X0, Y 0), which is equivalent to

d(XA, YA|XA + YB, YA +XB) ≥ d(X,Y )− η(d(X0, XA|XA + YB)− d(X0, XA))

− η(d(Y 0, YA|YA +XB)− d(Y 0, YA)).

This implies

d(XA + YB, YA +XB)

(A.4)
= 2d(X,Y )− d(XA, YA|XA + YB, YA +XB)

− I(XA + YA;YA +XB|XA +XB + YA + YB)

≤ d(X,Y ) + η(d(X0, XA|XA + YB)− d(X0, XA))

+ η(d(Y 0, YA|YA +XB)− d(Y 0, YA))

− I(XA + YA;YA +XB|XA +XB + YA + YB)

(a)

≤ d(X,Y ) + η

(
1

2
H(XA + YB)−

1

2
H(YB) +

1

2
H(YA +XB)−

1

2
H(XB)

)
− I(XA + YA;YA +XB|XA +XB + YA + YB)

= (1 + η)d(X,Y )− I(XA + YA;YA +XB|XA +XB + YA + YB),

where (a) follows from Family 3 of Lemma A.1.4. Therefore,

d(XA + YB;YA +XB) ≤ (1 + η)d(X,Y ).

This implies that

H(S)− 1

2
H(XA)−

1

2
H(YA)

= d(XA + YB;YA +XB) +
1

2
I(YB;XA + YB) +

1

2
I(XB;YA +XB)

= d(XA + YB;YA +XB) + d(X,Y )

≤ (2 + η)d(X,Y ).
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Lemma 3.3.11 (Inspired by [GGMT23], Equation 7.2). Let S = (XA + XB) +

(YA + YB). Let T1 = XA +XB, T2 = XB + YB, T3 = XA + YB.

I(T1;T2|S) + I(T2;T3|S) + I(T1;T3|S)

≤ 2η

(
d(X∗, X∗) + d(Y ∗, Y ∗) + d(X∗, Y ∗)

)
≤ 10ηd(X∗, Y ∗).

Proof. From the superadditivity estimation, i.e. (3.2),(3.3),(3.4), we have

I(T1;T2|S) + I(T2;T3|S) + I(T1;T3|S)

≤ ηI(XB;XA +XB) + ηI(YB;YA + YB) + ηI(XB;YA +XB)

+ ηI(YB;XA + YB) + ηI(XA;XA +XB) + ηI(YB;YA + YB)

= η(2H(XA +XB) + 2H(YA + YB) +H(XA +XB) +H(XB + YA)− 3H(X∗)− 3H(Y ∗))

= 2η(d(X∗, X∗) + d(Y ∗, Y ∗) + d(X∗, Y ∗))

≤ 10ηd(X∗, Y ∗)

The last part of the inequality follows by the triangle inequality, Lemma 3.3.3,

of the independent entropic Ruzsa distance, i.e. d(X,X) ≤ d(X,Y ) + d(Y,X) =

2d(X,Y ).

Inducing independent relationships for minimizers

We have, if (X,Y ) is the minimizer for τ(X,Y ;X0, Y0), then

τ(X,Y ;X0, Y 0)

≤ 1

6

(
τ(T1, T2;X

0, Y 0|T3, S) + τ(T2, T3;X
0, Y 0|T1, S) + τ(T3, T1;X

0, Y 0|T2, S)

+ τ(T2, T1;X
0, Y 0|T3, S) + τ(T3, T2;X

0, Y 0|T1, S) + τ(T1, T3;X
0, Y 0|T2, S)

)
=

1

3

(
d(T1, T2|T3, S) + d(T2, T3|T1, S) + d(T3, T1|T2, S)

)
+
η

6

3∑
i=1

∑
j ̸=i

(
d(X0, Ti|Tj, S) + d(Y 0, Ti|Tj, S)

)
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(a)

≤ I(T1;T2|S) + I(T2;T3|S) + I(T1;T3|S) +
η

3

3∑
i=1

(
d(X0, Ti|S) + d(Y 0, Ti|S)

)
+
η

3

(
I(T1;T2|S) + I(T2;T3|S) + I(T1;T3|S)

)
(b)

≤
(
1 +

η

3

)(
I(T1;T2|S) + I(T2;T3|S) + I(T1;T3|S)

)
+ η

(
d(X,X0) + d(Y, Y 0) +H(S)− 1

2
H(X)− 1

2
H(Y )

)
,

where (a) follows by Corollary A.1.3 and Lemma A.1.1, (b) follows by Families 1

and 2 of Lemma A.1.4.

By the definition of the PFR functional, we have

d(X∗, Y ∗) ≤
(
1 +

η

3

)(
I(T1;T2|S) + I(T2;T3|S) + I(T1;T3|S)

)
+ η

(
H(S)− 1

2
H(X)− 1

2
H(Y )

)
≤
(
1 +

η

3

)
10ηd(X∗, Y ∗) + η(2 + η)d(X∗, Y ∗),

where the last inequality is a consequence of Lemma 3.3.10 and Lemma 3.3.11.

Therefore, if 1 >
(
1 + η

3

)
10η+η(2+η), for some η > 0, then d(X∗, Y ∗) = 0. Note

that η0 =
√
1452−36

26
, is the positive root of 1 =

(
1 + η

3

)
10η+η(2+η). Therefore, for

η < η0, d(X∗, Y ∗) = 0, or in other words, 0 = H(X∗+Y ∗)− 1
2
H(X∗)− 1

2
H(Y ∗) =

1
2
I(X∗;X∗+Y ∗)+ 1

2
I(Y ∗;X∗+Y ∗). This implies that X∗ is independent of X∗+Y ∗

and Y ∗ is independent of X∗ + Y ∗.

Establishing optimality of uniform distributions for PFR functional

From Lemma 3.2.3 and that X∗ is independent of X∗+Y ∗, we have |supp(X∗)| ≥

k|supp(Y ∗)| for some k ∈ N, and from Y ∗ is independent of X∗ + Y ∗, we have

|supp(Y ∗)| ≥ k|supp(X∗)|, k ∈ N. This implies that |supp(X∗)| = |supp(Y ∗)|.

Further, from Lemma 3.2.3, we can also conclude that |D| = |supp(Y ∗)|, where D

denote the subgroup generated by pairwise differences of the elements of supp(Y ∗).

This implies that Y ∗ is supported on a coset of D. Further, from Lemma 3.2.3, and
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|supp(X∗)| = |D|, we can also infer that X∗ is uniform on a coset of D. Reversing

the roles of X∗ and Y ∗, we can also infer the Y ∗ is uniform over its support.

Therefore, X∗ and Y ∗ are uniformly distributed on cosets of the same subgroup.

3.4 Discussion

As referenced in Section 2.3.1, numerous extensions of the Entropy Power In-

equality (EPI) exist in contemporary literature. One notable extension concerns

monotonicity properties of h
(

X1+···+Xn√
n

)
, raising natural questions about discrete

analogs. Following this direction, Tao’s conjecture [Tao10] proposes a discrete EPI

analogue for torsion-free groups:

Conjecture 3.4.1. Suppose X1, . . . , Xn+1 are identically distributed and indepen-

dent random variables on some torsion-free group T. Then, for any ϵ > 0, as long

as H(X) is sufficiently large (depending on n, ϵ), we have

H(X1 + · · ·+Xn+1) ≥ H(X1 + · · ·+Xn) +
1

2
log n+ 1

n
− ϵ.

While validated for n = 1, the general case remains open. Gavalakis’ recent

work [Gav23] proves this conjecture under log-concave distribution assumptions.

Our superadditivity framework proves inapplicable here due to Lemma 3.2.3’s lim-

itations in infinite Abelian groups, exacerbated by torsion-free groups containing

only trivial finite subgroups. This challenges us to develop Lemma 3.2.3 adapta-

tions for torsion-free settings.

On the other hand, the discrete rotation technique suggests promising appli-

cations in characterizing capacity regions for network information theory prob-

lems. Consider the Z-interference Gaussian channel capacity problem, featuring

an information-theoretic functional analogous to our discrete entropy analysis.

Current conjectures propose Gaussian distribution optimality under specific pa-

rameter constraints - mirroring uniform distribution optimality in discrete settings

with small η thresholds.
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Notably, the methodological framework developed for the PFR conjecture

proof (Section 3.3.3) might extend to this context, potentially resolving long-

standing multiuser information theory challenges. This cross-domain adaptation

could bridge discrete and continuous entropy optimization paradigms.
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Chapter 4

Inequalities and Links to Additive

Combinatorics

In this chapter, we aim to establish formal equivalence relationships between en-

tropic inequalities in information theory and sumset inequalities in additive com-

binatorics. Unlike previous chapters, which focused on building analogies and

parallelism between two communities, this chapter will reveal deeper insights into

why such parallelism holds and provide a systematic perspective on these connec-

tions.

We begin by establishing a formal equivalence theorem (Theorem 4.1.1) be-

tween combinatorial and entropic inequalities in Section 4.1. This equivalence

theorem relies heavily on an entropic quantity—the maximal entropic coupling—

which is central to building equivalence relationships with sumset theory. The

entropic inequalities involving maximal entropic coupling differ slightly in form

from analogous entropic inequalities studied by earlier researchers. In some cases,

the analogous entropic inequalities are stronger (Remark 4.2.6); in others, even

analogous ones fail to imply their equivalent counterparts (Remark 4.2.29), and

vice versa.

In Section 4.2, we use Theorem 4.1.1 to establish various inequalities involving

maximal entropic coupling, demonstrating its similarity to independent coupling
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between random variables. We also provide purely information-theoretic argu-

ments to derive properties of maximal entropic couplings. An entropic equality

(Lemma 4.2.11), motivated by an analogous combinatorial lemma, has proven re-

peatedly useful in our arguments. This lemma shares similarities with the copy

lemma and aids in establishing non-trivial relationships between maximal entropic

couplings.

Finally, in Section 4.3, we prove an information-theoretic characterization of

the magnification ratio (Theorem 4.3.3). This result, which serves as a founda-

tional primitive for broader families of sumset inequalities (as evidenced in Ruzsa’

s lecture notes [Ruz09b]), lays the groundwork for future efforts to establish com-

prehensive equivalence theorems between deeper results in sumset theory and

information theory.

4.1 Generalized Ruzsa-type equivalence theorem

We state a simple fact below. There exists a trivial equivalence between cardinality

inequalities and entropy inequalities through the observation that log |A + B| =

maxpXY
H(X + Y ), where X takes values in A and Y takes values in B. This

equality is achieved by taking a uniform distribution over the support of �A+B�.

However, our focus lies on non-trivial versions of equivalence theorems.

In this section, we state the main theorem, which establishes an equivalence

between families of entropic inequalities and sumset inequalities using the notion of

maximal entropic coupling. This framework yields a broad family of new entropic

inequalities, as detailed in the following subsections.

Theorem 4.1.1. (Generalized Ruzsa-type equivalence theorem)

Let (T,+) be a finitely generated torsion-free Abelian group. Let f1, . . . , fk and

g1, . . . , gℓ be linear functions on Tn with integer coefficients, and let α1, . . . , αk,

β1, . . . , βℓ be positive real numbers. For the linear function fi, let Si ⊆ [1 : n] denote

the index set of non-zero coefficients. Similarly, for gi let Ti ⊆ [1 : n] denote the

77



corresponding index set of non-zero coefficients. For any subset S ⊆ [1 : n], define

TS as the projection of Tn onto the coordinates indexed by S. (So, effectively, fi

and gi are linear functions on TSi
and TTi

respectively). Further, let us assume

that {Si} is a pairwise disjoint collection of sets. The following statements are

equivalent:

a) For any A1, A2, . . . , An that are finite subsets of T, we have

k∏
i=1

|fi(ASi
)|αi ≤

ℓ∏
i=1

|gi(ATi
)|βi ,

where AS = ⊗i∈SAi.

b) For any m ∈ N, and for any Â1, Â2, . . . , Ân that are finite subsets of Tm, we

have

k∏
i=1

|f̂i(ÂSi
)|αi ≤

ℓ∏
i=1

|ĝi(ÂTi
)|βi ,

where ÂS = ⊗i∈SÂi, and f̂i (and ĝi) are the natural coordinate-wise exten-

sions of fi (and gi) respectively, mapping points in

Tm × Tm × · · · × Tm︸ ︷︷ ︸
n times

7→ Tm.

c) For every sequence of random variables (X1, . . . , Xn), with fixed marginals

pXi
and having finite support in T, we have

k∑
i=1

αi max
Π(XSi

)
H(fi(XSi

)) ≤
ℓ∑

i=1

βi max
Π(XTi

)
H(gi(XTi

)),

where Π(XS) is collection of joint distributions pXS
that are consistent with

the marginals pXi
, i ∈ S.

Remark 4.1.2. It may be worthwhile mentioning a key difference between Theorem

4.1.1 and Theorem 1.4.7. The equivalence in Theorem 1.4.7 follows when the
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sumset inequalities hold for every G-restricted sumset. On the other hand, most

of the inequalities in literature are established for the Minkowski sum of sets, and

Theorem 4.1.1 holds under such a situation.

Proof. We will show that a) =⇒ b), b) =⇒ c), and c) =⇒ a). We make

a brief remark on the three implications. That a) =⇒ b) Ruzsa has essentially

established in [Ruz09a], and this is where the requirements that the functions be

linear and that the ambient group is finitely generated and torsion-free play a

crucial role. Now b) =⇒ c) is a rather standard argument in the information

theory literature using the method of types (see Chapter 2 of [CK11]) and Sanov’s

theorem (we provide an outline in the Appendix for completeness). Finally, c) =⇒

a) is immediate by taking specific marginal distributions that induce uniform

distributions on the support of fi(XSi
) and is where the requirement that Si be

pairwise disjoint plays a role.

a) =⇒ b): We outline the method used by Ruzsa in [Ruz09a]. By the

classification theorem of finitely generated Abelian groups, we know that a torsion-

free finitely generated Abelian group is isomorphic to Zd, for a finite d. We denote

t to be a generic element in T, (or equivalently Zd). Let a linear function with

integer coefficients f : Tn 7→ T, be defined by f(t1, . . . , tn) =
∑n

i=1 aiti. (In the

context of our discussion, the locations of the non-zero values of ai determine the

support of f). Similarly we denote t = (t1, . . . , tm) to be a generic element in Tm.

Therefore, we have f̂(t1, . . . , tn) =
∑n

i=1 aiti. Let ψq be a linear mapping from Tm

to T defined as

ψq(t) := t1 + t2q + · · ·+ tmq
m−1.

Observe that, by linearity,

ψq(f̂(t1, .., tn)) = ψq

(
n∑

i=1

aiti

)
= f(ψq(t1), ..., ψq(tn)). (4.1)
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Given the finite subsets Â1, . . . , Ân of Tm, and the linear functions f1, . . . , fk and

g1, . . . , gℓ, we can choose a q large enough that ψq(f̂i(ÂSi
)) and ψq(ĝi(ÂTi

)) are

injections. Now set Ai = ψq(Âi). Therefore we have

|f̂i(ÂSi
)| = |ψq(f̂i(ÂSi

))| (a)
= |fi({ψq(Âk)}k∈Si

)| = |fi(ASi
)|,

where (a) follows from (4.1). A similar equality holds for g’s as well. With these

equalities, we have that a) =⇒ b).

b) =⇒ c): We are given a set of marginal distributions pX1 , . . . , pXn whose

supports are finite subsets of T, say X1, . . . ,Xn. Consider a non-negative sequence

{δm}, where δm → 0 and
√
m · δm → ∞ as m → ∞. For every m, we construct

the strongly typical sets T(m,pXi
,δm), for 1 ≤ i ≤ n, where

T(m,pXi
,δm) :=

{
x ∈ Xm

i :

∣∣∣∣ 1mN(a|x)− pXi
(a)

∣∣∣∣ ≤ δm · pXi
(a) for any a ∈ Xi

}
.

Here N(a|x) =
∑m

i=1 1{xi=a}, the number of occurrences of the symbol a in x.

Suppressing dependence on other variables, let Âi = T(m,pXi
,δm) for 1 ≤ i ≤ n.

Now consider a linear function f : TS → T and let f̂ be the coordinate-wise

extension of it to (Tm)S. Define Y = f(XS), S ⊆ [1 : n], and let MY denote

the set of probability distributions of Y induced by all couplings Π(XS) that are

consistent with the marginals pXi
for i ∈ S. Let qY be the uniform distribution

on Y , and by a routine application1 of Sanov’s theorem we obtain that

lim
m→∞

1

m
log |f̂(ÂS)|

|Y|m
= max

PY ∈MY

H(Y )− log |Y| = max
Π(XS)

H(f(XS))− log |Y|.

Therefore, we have

lim
m→∞

1

m
log |f̂(ÂS)| = max

Π(XS)
H(f(XS)).

1This is standard in certain information theory circles. For completeness, we outline a proof
of the maximum coupling by the discrete Sanov theorem in Appendix B.1 and Appendix B.2.
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Thus, the implication b) =⇒ c) is established.

c) =⇒ a): This is rather immediate. Since Si’s are pairwise disjoint, let pXSi

induce a uniform distribution on f(ASi
) and let pXi

be the induced marginals.

Then it is clear that maxΠ(XSi
)H(fi(XSi

)) = log |f(ASi
)| and maxΠ(XTi

)H(gi(XTi
)) ≤

log |g(ATi
)| and this completes the proof.

4.2 Application of generalized Ruzsa-type equiv-

alence theorem

The following corollaries to Theorem 4.1.1 lead to some entropic inequalities. Some

of the sumset inequalities in literature are stated using Ruzsa-distance, and the

equivalent entropic inequalities can be stated using a similar distance between

distributions.

4.2.1 Fundamental maximal entropic coupling inequalities

In this subsection, we introduce the entropic Ruzsa distance, an analogue of the

Ruzsa distance between finite sets, which is a fundamental quantity in additive

combinatorics. We then establish several inequalities related to maximal entropic

coupling via the application of Theorem 4.1.1 to sumset inequalities. Of particular

note is Corollary 4.2.7, a novel fundamental entropic inequality for which no stand-

alone information-theoretic proof is currently known; this remains a significant

open problem.

Definition 4.2.1 (Ruzsa distance between finite sets, [Ruz96]). The Ruzsa dis-

tance between two finite subsets A,B on an Abelian group (G,+) is defined as

dR(A,B) := log |A− B|
|A|1/2|B|1/2

.

Remark 4.2.2. It is clear that dR(A,B) = dR(B,A) and that dR(A,A) ≥ 0.
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Definition 4.2.3 (Entropic Ruzsa distance). The entropic Ruzsa “distance” be-

tween two distributions pX , pY taking values in (G,+) is defined as

dHR(X,Y ) := max
pXY ∈Π(pX ,pY )

H(X − Y )− 1

2
H(X)− 1

2
H(Y ),

where Π(pX , pY ) is the set of all couplings with the given marginals.

Remark 4.2.4. The following remarks are worth noting with regard to the entropic

Ruzsa distance:

1. As with the abuse of notation in information theory dHR(X,Y ) is a function

of pX , pY and not of X and Y .

2. Just like the original Ruzsa distance between two sets, we have dHR(X,Y ) ≥

0 (this follows by observing that when pXY = pXpY , we have H(X − Y ) ≥

max{H(X), H(Y )} as 0 ≤ I(X;X − Y ) = H(X − Y ) −H(Y )). Further it

is immediate that dHR(X,Y ) = dHR(Y,X).

3. There is no ordering between dHR(X,Y ) and dR(A,B) where A is the sup-

port of pX and B is the support of pY .

• Consider PX and PY such that they are uniform on sets A and B

respectively. Thus for any PXY ∈ Π(PX , PY ) we have H(X − Y ) ≤

log |A−B| and consequently dHR(X,Y ) ≤ dR(A,B) (and the inequality

can be strict).

• Consider a joint distribution pXY that is uniform on A − B and let

pX and pY be its induced marginal distributions on sets A and B re-

spectively. Then as H(X) ≤ log |A| and H(Y ) ≤ log |B|, we have

dHR(X,Y ) ≥ dR(A,B) (and the inequality can be strict).

4. This definition is different from that of Tao [Tao10], where he defines the

similar quantity using independent coupling of pX and pY . An advantage

of our definition is that we have a formal equivalence between the two in-

equalities (one in sumset and one in entropy). Independent of this work, in
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[GMT23, Equation 1.4] the authors also defined the same notion of distance

and called it the maximal entropic Ruzsa distance.

Theorem 4.1.1 immediately implies the following entropic inequalities from the

corresponding sumset inequalities.

Corollary 4.2.5. For any distributions pX , pY , pZ with finite support on a finitely

generated torsion-free Abelian group (T,+), we have

dHR(X,Z) ≤ dHR(X,Y ) + dHR(Y, Z),

or equivalently : H(Y ) + max
Π(X,Z)

H(X − Z) ≤ max
Π(X,Y )

H(X − Y ) + max
Π(Y,Z)

H(Y − Z).

(4.2)

Proof. In [Ruz96], Ruzsa showed that for any finite A,B,C on a finitely generated

torsion-free Abelian group (T,+), we have dR(A,C) ≤ dR(A,B) + dR(B,C), or

equivalently |B||A− C| ≤ |A− B||B − C|. We will obtain the desired inequality

by applying Theorem 4.1.1.

Remark 4.2.6. The entropic inequality in (4.2) can also be obtained as a direct

consequence of a stronger entropic inequality that was established in [MMT12].

There, it was established that if Y and (X,Z) are independent and taking values

in an ambient Abelian group (G,+), then one has H(Y ) +H(X − Z) ≤ H(X −

Y ) + H(Y − Z). To see this, observe that H(Y,X − Z) = H(X − Y, Y − Z) −

I(X;Y − Z|X − Z), and the requisite inequality is immediate.

The following corollary presents a novel entropic inequality derived from a

direct application of the Plünnecke–Ruzsa inequality.

Corollary 4.2.7. For distributions pX , pY , pZ with finite support on a finitely

generated torsion-free Abelian group (T,+), we have

H(X) + max
Π(Y,Z)

H(Y + Z) ≤ max
Π(X,Y )

H(X + Y ) + max
Π(X,Z)

H(X + Z). (4.3)
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Proof. In [Ruz96], Ruzsa showed that for any finite A,B,C on a finitely generated

torsion-free Abelian group (T,+), we have

|A||B + C| ≤ |A+B||A+ C|. (4.4)

We obtain the desired entropic inequality by applying Theorem 4.1.1.

Remark 4.2.8. The authors are unaware of a stand-alone information-theoretic

proof of the above inequality. Our results in Section 4.3 are a step toward building

an information-theoretic counterpart to the sumset arguments used to establish

this. When X,Y, and Z are mutually independent, an entropic analog has been

established in [Mad08, MMT12]. Note that in this case, by the data-processing

inequality, we have I(Z;X + Y + Z) ≤ I(Z;X + Z) implying

H(X) +H(Y + Z) ≤ H(X) +H(X + Y + Z) ≤ H(X + Y ) +H(X + Z).

A relaxation of this proof to the case, when X is independent of (Y, Z), would

have yielded (4.3); however, this relaxation does not seem immediate.

4.2.2 Sum-difference inequality

In the following subsection, we will demonstrate the entropic proofs of the Katz-

Tao sum-difference inequality and the Ruzsa sum-difference inequality. The key

is to construct various copies of random variables and establish a desirable joint

distribution with Markovian structures, as formalized in Lemma 4.2.11. This

reveals the potential to discover new entropic inequalities by constructing desirable

algebraic relationships through suitable copies of random variables.

Katz-Tao sum-difference inequality

The proof of the Katz-Tao sum-difference inequality begins with the combinatorial

lemma below, which provides an estimate for the number of tuples satisfying
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specific algebraic constraints.

Lemma 4.2.9 (Lemma 2.1 of [KT99]). Let A and B1, . . . , Bn−1 be finite sets for

some positive n. Let fi : A→ Bi be a function for all i ∈ [1 : n− 1]. Then

|{(a1, . . . , an) ∈ An : fi(ai) = fi(ai+1) for all i ∈ [1 : n− 1]}| ≥ |A|n∏n−1
i=1 |Bi|

.

Motivated by this lemma, we will prove an information-theoretic version (which

would imply the combinatorial version) and will turn out to be useful in several

of our arguments. We will first present a lemma in a more general form.

Lemma 4.2.10. Suppose the following Markov chain holds:

X1 → U1 → X2 → U2 → · · · → Xn−1 → Un−1 → Xn.

Then,

H(X1, . . . , Xn, U1, . . . , Un−1) +
n−1∑
i=1

I(Xi;Ui)

+
n−1∑
i=1

I(Ui;Xi+1) =
n∑

i=1

H(Xi) +
n−1∑
i=1

H(Ui).

Proof. This lemma is an immediate consequence of the Chain Rule for entropy as

follows. Note that the chain rule and the Markov Chain assumption yield

H(X1, . . . , Xn, U1, . . . , Un−1)

= H(X1) +
n−1∑
i=1

H(Ui|Xi) +
n−1∑
i=1

H(Xi+1|Ui)

= H(X1) +
n−1∑
i=1

(
H(Ui)− I(Ui;Xi)

)
+

n−1∑
i=1

(
H(Xi+1)− I(Ui;Xi+1)

)
.

Now, rearranging yields the desired equality.

As a special case of Lemma 4.2.10 we obtain the following version that is useful

in this subsection.
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Lemma 4.2.11. Let (Xi)
n
i=1 be a sequence of finite-valued random variables (de-

fined on some common probability space) and (fi, gi)
n−1
i=1 be a sequence of functions

that take a finite set of values in some space S such that: fi(Xi) = gi(Xi+1)(=: Ui)

and the following Markov chain holds,

X1 → U1 → X2 → U2 → · · · → Xn−1 → Un−1 → Xn.

Then,

H(X1, . . . , Xn) +
n−1∑
i=1

H(Ui) =
n∑

i=1

H(Xi).

Proof. Note that H(X1, . . . , Xn) = H(X1, . . . , Xn, U1, . . . , Un−1) since Ui is deter-

mined by Xi (and also by Xi+1). Further we also have I(Ui;Xi) = I(Ui;Xi+1) =

H(Ui) for 1 ≤ i ≤ n − 1. Hence, the desired consequence follows from Lemma

4.2.10.

Remark 4.2.12. The following remarks are worth noting:

• Lemma 4.2.11 seems to play a similar role as the copy lemma [ZY98] used

in deriving several non-Shannon type inequalities.

• Note that Lemma 4.2.11 will imply Lemma 4.2.9 directly. It suffices to

construct random variablesX1, . . . , Xn with eachXi uniform on A, satisfying

fi(Xi) = fi(Xi+1) for all i ∈ [1 : n − 1], such that the joint distribution of

(X1, . . . , Xn) is supported on the set

C = {(a1, . . . , an) ∈ An : fi(ai) = fi(ai+1) for all i ∈ [1 : n− 1]}.

Define X1 to be uniformly distributed on A. Proceeding inductively, for each

k ∈ [1 : n − 1], assume Xk is defined and uniform on A. Set Uk := fk(Xk)
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and define the conditional distribution of Xk+1 given the history via

Pr(Xk+1 = xk+1|X1 = x1, . . . , Xk = xk, U1 = u1, . . . , Uk = uk)

:= Pr(Xk = xk+1|Uk = uk).

This construction ensures three properties:

– The joint distribution of (Xk+1, Uk) matches that of (Xk, Uk), preserv-

ing uniformity so Xk+1 is uniform on A;

– The sequence forms a Markov chain X1 → U1 → X2 → · · · → Un−1 →

Xn;

– The equality fk(Xk) = Uk = fk(Xk+1) holds almost surely for each k,

confirming (X1, . . . , Xn) ∈ C with probability 1.

From Lemma 4.2.11, that

n log |A| =
n∑

i=1

H(Xi) = H(X1, . . . , Xn) +
n−1∑
i=1

H(Ui) ≤ log |C|+
n−1∑
i=1

log |Bi|.

The main intent of the remainder of the section is to demonstrate the role of

Lemma 4.2.11 to establish various entropic sum-difference inequalities.

Theorem 4.2.13. (Katz-Tao sum-difference inequality [KT99])

For any finite subsets A,B ⊆ T and G ⊆ A× B,

|A
G
− B| ≤ |A|2/3|B|2/3|A

G
+B|1/2.

Ruzsa obtained the following entropy version of Katz-Tao sum-difference in-

equality by applying Theorem 1.4.7 to Theorem 4.2.13 [Ruz09a].

Theorem 4.2.14. [Ruz09a] Suppose X and Y are random variables with finite

support on (T,+), we have

H(X − Y ) ≤ 2

3
H(X) +

2

3
H(Y ) +

1

2
H(X + Y ). (4.5)
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The theorem derived from Theorem 1.4.7 imposes the requirement that the

underlying group be a finitely generated torsion-free Abelian group. This restric-

tion, however, is unnecessary. In the following theorem, we demonstrate through

a purely entropic argument that the condition can be relaxed to apply to any

Abelian group.

Theorem 4.2.15 (Entropic Katz-Tao inequality, Proposition 3.6 of [TV]). Sup-

pose X and Y are random variables with finite support on an ambient Abelian

group G, we have

1

2
I(X;X − Y ) +

1

2
I(Y ;X − Y ) ≤ 3

2
I(X;X + Y ) +

3

2
I(Y ;X + Y ) + 3I(X;Y ).

The proof of this theorem will be presented in the Appendix for the sake of

completeness. The only minor difference between the arguments is using Lemma

4.2.10 instead of the submodularity argument used in [TV].

Remark 4.2.16. The following remarks and acknowledgments may be of interest

to the careful reader.

• Initially, the authors were unaware of an entropic argument by Tao and Vu

(see [TV]) for the result in Theorem 4.2.15. This connection was brought to

our attention by Prof. Ben Green shortly after we uploaded a preliminary

version of this work to arXiv.

• The formulation in Theorem 4.2.15 employs mutual information rather than

entropies. Consequently, the inequality extends immediately to continuous

random variables or those with non-finite support, requiring no additional

adjustments.

• An earlier version of this result, framed as in Corollary 4.2.17, was presented

at ISIT in July 2023. Following discussions with Lampros Gavalakis and

Ioannis Kontoyannis regarding potential continuous-variable generalizations,

we adapted our original proof to establish Theorem 4.2.15. It was only
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afterward that we recognized the overlap with Tao and Vu’s unpublished

result in [TV].

Corollary 4.2.17. Suppose X and Y are random variables with finite support on

an ambient Abelian group G. We have

H(X − Y ) ≤ 2

3
H(X) +

2

3
H(Y ) +

1

2
H(X + Y ). (4.6)

Proof. Following the equivalent form of the result in (C.4), we have

0 ≥ 5H(X,Y )− 4H(X)− 4H(Y )− 3H(X + Y ) +H(X − Y )

≥ 6H(X − Y )− 4H(X)− 4H(Y )− 3H(X + Y ).

The second inequality holds if and only if (X,Y ) is a function of X − Y .

Ruzsa sum-difference inequality

We can regard the Ruzsa sum-difference inequality as correlated with the Katz-

Tao sum-difference inequality. We first recall the Ruzsa sum-difference inequality

as follows:

Theorem 4.2.18 (Ruzsa sum-difference inequality, Theorem 5.3 of [Ruz96]). The

Ruzsa distance between two finite subsets A,B on an Abelian group (G,+) satisfies

dR(A,−B) ≤ 3dR(A,B),

or equivalently |A+B||A||B| ≤ |A− B|3.
(4.7)

An entropic analogue of the Ruzsa sum-difference inequality, which requires

X and Y to be independent, can be immediately derived as a corollary of Theo-

rem 4.2.15.
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Corollary 4.2.19. [Tao10, Theorem 1.10] If X and Y are independent discrete-

valued random variables

H(X − Y ) ≤ 3H(X + Y )−H(X)−H(Y ).

[KM14, Theorem 3.7] If X and Y are independent continuous-valued random

variables with well-defined differential entropies

h(X − Y ) ≤ 3h(X + Y )− h(X)− h(Y ).

Proof. The independence between X and Y reduces the inequality established in

Theorem 4.2.15 to

1

2
I(X;X − Y ) +

1

2
I(Y ;X − Y ) ≤ 3

2
I(X;X + Y ) +

3

2
I(Y ;X + Y ),

which is equivalent to

H(X − Y ) ≤ 3H(X + Y )− 3

2
H(X + Y |X)− 3

2
H(X + Y |Y )

+
1

2
H(X − Y |X) +

1

2
H(X − Y |Y )

= 3H(X + Y )−H(X)−H(Y ).

The proof for the continuous case is identical.

In the following, we first present the proof of the entropic version of the Ruzsa

sum-difference inequality. We then establish a generalized Ruzsa sum-difference

inequality in sumset theory, along with its corresponding entropic formulation.

Proposition 4.2.20 (Entropic Ruzsa sum-difference inequality). Let X1, Y1, X2, Y2, X3, Y3

be random variables (on a common probability space) with finite support on an

Abelian group (G,+) such that X1 − Y1 = X2 − Y2 (=: U) and also satisfies that

(X1, Y1) → U → (X2, Y2) forms a Markov chain. Further, suppose (X1, Y1, X2, Y2)
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and (X3, Y3) are independent. Then the following inequality holds:

H(X1, Y1) +H(X2, Y2) +H(X3 + Y3)

≤ H(X1 − Y1) +H(X1, Y2, X2 − Y3, X3 − Y1).

(4.8)

Remark 4.2.21. This proposition and the proof below are essentially identical to

that of Proposition 2.4 in [TV]. The only (minor) difference is that we do not

assume that X and Y are independent.

Proof. Since U = X1−Y1 = X2−Y2 and (X1, Y1) → U → (X2, Y2) forms a Markov

chain, from Lemma 4.2.11 we have

H(X1, Y1, X2, Y2) +H(U) = H(X1, Y1) +H(X2, Y2) (4.9)

We now decompose H(X1, Y1, X2, Y2, X3, Y3|X3+Y3) in two ways. Firstly, since

(X1, Y1, X2, Y2) and (X3, Y3) are independent, we have

H(X1, Y1, X2, Y2, X3, Y3|X3 + Y3)

= H(X1, Y1, X2, Y2) +H(X3, Y3|X3 + Y3)

(a)
= H(X1, Y1) +H(X2, Y2)−H(U) +H(X3, Y3|X3 + Y3),

where (a) follows by (4.9).

On the other hand, we have

H(X1, Y1, X2, Y2, X3, Y3|X3 + Y3)

= H(X1, Y2, X2 − Y3, X3 − Y1, X3, Y3|X3 + Y3)

≤ H(X1, Y2, X2 − Y3, X3 − Y1|X3 + Y3) +H(X3, Y3|X3 + Y3)

= H(X1, Y2, X2 − Y3, X3 − Y1, X3 + Y3)−H(X3 + Y3) +H(X3, Y3|X3 + Y3)

= H(X1, Y2, X2 − Y3, X3 − Y1)−H(X3 + Y3) +H(X3, Y3|X3 + Y3).

The last equality is a consequence of the observation that (X1, Y2, X2−Y3, X3−Y1)
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implies (X1, Y2, X2+Y1−(X3+Y3)). However as X1+Y2 = X2+Y1 by assumption,

we observe that H(X3 + Y3|X1, Y2, X2 − Y3, X3 − Y1) = 0 and thus justifying the

equality.

By combining these two decompositions, we obtain

H(X1, Y1) +H(X2, Y2) +H(X3 + Y3) ≤ H(U) +H(X1, Y2, X2 − Y3, X3 − Y1).

Remark 4.2.22. The arguments here are also motivated by similar arguments in

the sumset literature [Gre09] and in Tao’s work on a similar inequality in [Tao10].

Corollary 4.2.23. In addition to the assumptions on X1, Y1, X2, Y2, X3, Y3 im-

posed in Proposition 4.2.20, let us assume that X1 is independent of Y1 and X2

independent of Y2. Then we have

H(X2) +H(Y1) +H(X3 + Y3) ≤ H(X1 − Y1) +H(X3 − Y1) +H(X2 − Y3).

Proof. The proof is immediate from Proposition 4.2.20 along with the observation

that the assumptions imply H(X1, Y1) = H(X1) +H(Y1), H(X2, Y2) = H(X2) +

H(Y2), and using the subadditivity of entropy applied to H(X1, Y2, X2 − Y3, X3 −

Y1).

Remark 4.2.24. Suppose X and Y are independent random variables having finite

support on G, and random variables X3, Y3 also have finite support on G, then

observe that we can always construct a coupling (X1, Y1, X2, Y2, X3, Y3) satisfying

the assumptions of Corollary 4.2.23, so that (X1, Y1) and (X2, Y2) are distributed

as (X,Y ).

Corollary 4.2.25 (Generalized Ruzsa sum-difference inequality). Let A,B,C,D

be finite subsets of an Abelian group (G,+). Then the following sumset inequality

holds:

|A||B||C +D| ≤ |A− B||C − B||A−D|,
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or equivalently

dR(C,−D) ≤ dR(C,B) + dR(B,A) + dR(A,D).

Proof. Suppose X is a uniform distribution on A and Y is a uniform distribution

on B. Further let X3, Y3 be taking values on C,D (respectively) such that X3+Y3

is uniform on C + D. Let (X1, Y2, X2, Y2, X3, Y3) be the coupling according to

Remark 4.2.24 and observe that Corollary 4.2.23 implies that

log |A|+ log |B|+ log |C +D|

≤ H(U) +H(X3 − Y1) +H(X2 − Y3)

≤ log |A− B|+ log |C − B|+ log |A−D|.

Here, the second inequality used the fact that the entropy of a finite valued

random variable is upper bounded by the logarithm of its support size.

Remark 4.2.26. Setting C = A and D = B, we can see that the above is a

generalization of Theorem 4.2.18.

Corollary 4.2.27. For any distributions pU , pV , pX , pY with finite support on a

finitely generated torsion-free group (T,+), we have

H(X) +H(Y ) + max
Π(U,V )

H(U + V )

≤ max
Π(X,Y )

H(X − Y ) + max
Π(X,U)

H(X − U) + max
Π(V,Y )

H(V − Y ).

Proof. From Corollary 4.2.23, for any finite A,B,C,D on a finitely generated

torsion-free Abelian group (T,+), we have

|A||B||C +D| ≤ |A− B||A−D||C − B|.

We will obtain the desired inequality by applying Theorem 4.1.1.
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Remark 4.2.28. Setting U = Y and V = X from the above result. We will obtain

an entropic analog of sum-difference inequality

dHR(X,−Y ) ≤ 3dHR(X,Y ),

or equivalently

H(X) +H(Y ) + max
Π(X,Y )

H(X + Y ) ≤ 3 max
Π(X,Y )

H(X − Y ).

Remark 4.2.29. There seems to be no direct implication between these two state-

ments:

• Suppose X and Y are independent, we have H(X) +H(Y ) +H(X + Y ) ≤

3H(X−Y ). This was the previously considered analogous form of the sum-

difference inequality (4.7), established in [Tao10].

• For any pX , pY , we have

H(X) +H(Y ) + max
Π(X,Y )

H(X + Y ) ≤ 3 max
Π(X,Y )

H(X − Y ).

This entropic inequality can be derived from the combinatorial inequality

(4.7).

4.2.3 Connection to the covering lemma

In this subsection, we establish a non-trivial entropic inequality rooted in the con-

ceptual framework of covering lemmas from additive combinatorics. We present

an information-theoretic proof inspired by the combinatorial construction via the

Green–Ruzsa covering lemma.

First, we recall the Green–Ruzsa covering lemma and a non-trivial sumset

inequality derived from it.

Lemma 4.2.30 (Green–Ruzsa covering lemma, [GR06]). Let A and B be additive

sets with common ambient group. Then there exists an additive set X ⊆ B with

|X| ≤ 2 |A+B|
|A| − 1 such that for every y ∈ B there are at least |A|/2 triplets
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(x, a, a) ∈ X × A × A with x + a−a = y. More informally, A−A + X covers B

with multiplicity at least |A|/2. Furthermore, we have

B − B ⊆ A− A+X −X.

Similar claims hold if |A+B|
|A| is replaced by |A−B|

|A| .

Theorem 4.2.31 ([Ruz96]). Let A, B be additive sets in an ambient group. Then

|(B +B)− (B +B)| ≤ |A+B|4|A− A|
|A|4

.

In [TV], an entropic analogue has been presented using a submodularity argu-

ment; however, this formulation has no direct relationship with the corresponding

sumset theorem.

Theorem 4.2.32 ([TV]). Let X,Y be independent discrete random variables tak-

ing values in an additive groups (G,+), let Y1, Y2, Y3, Y4 be independent trials of

Y , and let X5, X6 be independent trials of X. We have

H(Y1 − Y2 − Y3 + Y4) ≤ 4H(X + Y ) +H(X5 −X6)− 4H(X).

In the following section, we establish an entropic formulation of the sumset in-

equality that directly follows from its combinatorial counterpart. Furthermore, we

develop an entropic proof requiring sophisticated joint distribution constructions.

Theorem 4.2.33. Let X,Y be discrete random variables taking values in an

additive group (G,+). We have

max
Π(Y,Y,Y,Y )

H(Y1 − Y2 − Y3 + Y4) ≤ 4 max
Π(X,Y )

H(X + Y ) + max
Π(X,X)

H(X5 −X6)− 4H(X).

Remark 4.2.34. By applying Theorem 4.1.1, we immediately establish this inequal-

ity for any torsion-free finitely generated Abelian group. However, the subsequent

analysis presents a purely information-theoretic proof that offers deeper insight
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into translating combinatorial constructions into joint distributional frameworks

for entropic arguments. Notably, this approach simultaneously extends the in-

equality’s validity to arbitrary Abelian groups.

Entropic proof. We establish a strengthened version of the above statement. For

any joint distribution p(y1, y2, y3, y4, x5, x6) satisfying:

• pY1 = pY2 = pY3 = pY4 = pY

• pX5 = pX6 = pX

there exists an extended joint distribution q(y1, . . . , y6, x3, . . . , x6) with:

• qYi
= pY for i = 1, . . . , 6

• qXj
= pX for j = 3, . . . , 6

• qY1−Y2−Y3+Y4 = pY1−Y2−Y3+Y4

and the following inequality holds:

H(Y1 − Y2 − Y3 + Y4) ≤ 4 max
Π(X,Y )

H(X + Y ) + max
Π(X,X)

H(X5 −X6)− 4H(X).

We develop the joint distribution q through sequential construction. First,

define the marginal distribution q(y1, y2, y3, y4) satisfying:

qY1−Y2−Y3+Y4 = pY1−Y2−Y3+Y4 ,

q(y1, y2, y3, y4) = q(y1 − y2, y3 − y4) · q(y1, y2|y1 − y2) · q(y3, y4|y3 − y4),

inducing the Markov chain structure (Y1, Y2) → Y1 − Y2 → Y3 − Y4 → (Y3, Y4).

We then extend this to the complete joint distribution through the factoriza-

tion:

q(y1, . . . , y6, x3, . . . , x6) =p(x5, y5|x3 + y2)p(x3)p(y1, y2, y3, y4)

· p(x4)p(x6, y6|x4 + y4),
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with conditional distributions defined by:

p(x5, y5|x3 + y2) = p(x3, y2|x3 + y2),

p(x6, y6|x4 + y4) = p(x4, y4|x4 + y4).

From the algebraic relationships X3 + Y2 = X5 + Y5 and X4 + Y4 = X6 + Y6,

we derive the entropy upper bound through the following chain of inequalities:

H(X3 + Y1, X5, Y5, X4 + Y3, X6, Y6|Y1 − Y2, Y3 − Y4)

(a)
= H(X3 + Y1, X5 −X6, Y5, X4 + Y3, Y6|Y1 − Y2, Y3 − Y4)

≤ H(X3 + Y1, X5 −X6, Y5, X4 + Y3, Y6|Y1 − Y2 − Y3 + Y4)

(b)
= H(X3 + Y1, X5 −X6, Y5, X4 + Y3, Y6)−H(Y1 − Y2 − Y3 + Y4)

≤ H(X3 + Y1) +H(X5 −X6) +H(Y5) +H(X4 + Y3) +H(Y6)

−H(Y1 − Y2 − Y3 + Y4).

The equality (a) follows from the substitutions X5 = (X3+Y1)−(Y1−Y2)−Y5 and

X6 = (X4+Y3)−(Y3−Y4)−Y6, while (b) emerges from the identity Y1−Y2−Y3+Y4 =

(X3+Y1)−Y5−(X5−X6)−(X4+Y3)+Y6 combined with the chain rule of entropy.

Utilizing the Markovian structure (X3 + Y1, X5, Y5) → Y1 − Y2 → Y3 − Y4 →

(X4 + Y3, X6, Y6), we decompose the conditional entropy as:

H(X3 + Y1, X5, Y5, X4 + Y3, X6, Y6|Y1 − Y2, Y3 − Y4)

= H(X3 + Y1, X5, Y5|Y1 − Y2) +H(X4 + Y3, X6, Y6|Y3 − Y4).

To establish a lower bound, we analyze the first component:

H(X3 + Y1, X5, Y5|Y1 − Y2)

≥ H(X3 + Y1, X5, Y5|Y1, Y2) = H(X3, X5, Y5|Y1, Y2)
(a)
= H(X3, X5, Y5|Y2) = H(X3, Y2, X5, Y5)−H(Y2)
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(b)
= H(X3, Y2) +H(X5, Y5)−H(X3 + Y2)−H(Y2)

(c)
= H(X3) +H(Y2) +H(X5) +H(Y5)−H(X3 + Y2)−H(Y2)

= 2H(X) +H(Y )−H(X3 + Y2),

where (a) follows from the Markov relation Y1 → Y2 → (X3, X5, Y5), (b) applies

Lemma 4.2.11 to the coupling (X3, Y2) → X3 + Y2 → (X5, Y5), (c) uses indepen-

dence X3 ⊥ Y2 and X5 ⊥ Y5.

A parallel argument for the second component yields H(X4 + Y3, X6, Y6|Y3 −

Y4) ≥ 2H(X) +H(Y )−H(X4 + Y4).

Combining all estimates, we derive the target inequality:

H(Y1 − Y2 − Y3 + Y4)

≤ H(X3 + Y1) +H(X5 −X6) +H(X4 + Y3)

+H(X3 + Y4) +H(X4 + Y4)− 4H(X)

≤ 4 max
Π(X,Y )

H(X + Y ) + max
Π(X,X)

H(X5 −X6)− 4H(X).

4.3 Entropic formulation of magnification ratio

Even though several equivalence theorems have been established between entropic

inequalities and sumset inequalities (e.g., Theorem 1.4.7 and Theorem 4.1.1), there

are still a large number of sumset inequalities that do not yet have entropic equiv-

alents, such as the Plünnecke–Ruzsa inequality (though some entropic analogs

have been established in [Tao10, KM14]). A combinatorial primitive that fre-

quently occurs in combinatorial proofs is the notion of a magnification ratio (see

the lecture notes: [Ruz09b]).

In this section, we introduce an entropic characterization of the magnification

ratio through a min-max optimization framework. Subsequent subsections first
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outline the proof strategy, then analyze properties of the optimal channel in the

inner maximization problem, and finally examine the optimal input distribution

in the outer minimization problem by leveraging channel properties.

Beyond its potential for deriving new entropic equivalences, this framework

may hold independent significance to the combinatorics community.

In the following section, we let G ⊆ A×B be a finite bipartite graph with no

isolated vertices in A or B. For every S ⊆ A, let N (S) ⊆ B denote the set of

neighbors of S.

4.3.1 Overview of the proof framework

Definition 4.3.1 (Magnification ratio). The magnification ratio of G from A to

B is defined as

µA→B(G) = min
S⊆A,S ̸=∅

|N (S)|
|S|

.

Definition 4.3.2. (Channel consistent with a bipartite graph) Let W be the set

of all possible channels (or probability transition matrices) from A to B. Given a

bipartite graph G ⊆ A× B, we define

W(G) := {W ∈ W : W (Y = b|X = a) = 0 if (a, b) /∈ G},

to be the set of all channels consistent with the bipartite graph G. Note that

W(G) is a closed and compact set.

In the above, we think of X (taking values in A) as the input and Y (taking

values in B) as the output of a channel WY |X . Given an input distribution pX , we

define

λA→B(G; pX) := max
W∈W(G)

(H(Y )−H(X)).

Given a fixed pX , it is rather immediate that H(Y ) is concave in WY |X . Let
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W ∗(G; pX) ∈ W(G) denote a corresponding optimizer, i.e.

W ∗(G; pX) := arg max
W∈W(G)

(H(Y )−H(X)).

If the optimizer is a convex set, we define it to be an arbitrary element of this set.

Finally, we define the quantity

λA→B(G) := min
pX

λA→B(G; pX) = min
pX

max
W∈W(G)

(H(Y )−H(X)). (4.10)

The main result of this section is the following result.

Theorem 4.3.3 (Entropic characterization of the magnification ratio).

logµA→B(G) = λA→B(G), or equivalently,

logµA→B(G) = min
pX

max
W∈W(G)

(H(Y )−H(X)).

Proof. We first establish that λA→B(G) ≤ logµA→B(G). This direction is rather

immediate. Let

A∗ := arg min
S⊆A,S ̸=∅

|N (S)|
|S|

.

So we have µA→B(G) =
|N (A∗)|
|A∗| . Let pX be the uniform distribution on A∗. Then

note that

λA→B(G) ≤ λA→B(G; pX)

= max
W∈W(G)

(H(Y )−H(X))

= max
W∈W(G)

(H(Y )− log |A∗|)

≤ log |N (A∗)| − log |A∗| = logµA→B(G).

This completes this direction.

We next establish that µA→B(G) ≤ logλA→B(G). This direction is compara-
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tively rather involved whose main ingredient is the following lemma:

Lemma 4.3.4. There exists a p∗X , an optimizer of the outer minimization problem

in

min
pX

max
W∈W(G)

(H(Y )−H(X)),

such that the inner optimizer W ∗(G; p∗X) induces a uniform output distribution on

N (S∗).

Now, let S∗ be the support of p∗X . If so, one would have

λA→B(G) = H(Y )−H(X) = log |N (S∗)| −H(X)

≥ log |N (S∗)|
|S∗|

≥ min
S⊆A,S ̸=∅

|N (S)|
|S|

= µA→B(G),

and the proof is complete.

4.3.2 Properties of the optimal channel for the magnifica-

tion ratio

In this subsection, we use an optimization framework to characterize key properties

of the optimal channel in the inner maximization of Equation (4.10). These results

are essential for proving Lemma 4.3.4.

Definition 4.3.5. Given an input distribution pX and a bipartite graph G, we

define an edge (a, b) ∈ G to be active under W ∗(G; pX) if W ∗(b|a) > 0. Otherwise,

it is said to be inactive.

Lemma 4.3.6. Let S be the support of pX .

1. Any maximizer W ∗(G; pX) induces an output distribution, pY , such that the

support of pY is N (S).

2. Let a1 ∈ S and (a1, b1), (a1, b2) be edges in G.

(a) If the edges (a1, b1) and (a1, b2) are active under W ∗(G; pX), then

pY (b1) = pY (b2).
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(b) If (a1, b1) is active and (a1, b2) is inactive under W ∗(G; pX), then

pY (b1) ≤ pY (b2).

Proof. The proof of part 1) proceeds by contradiction. Assume that there exists

b1 ∈ N (S) such that pY (b1) = 0. This implies that there exists a1 ∈ S, such

that (a1, b1) ∈ G and W ∗
Y |X(b1|a1) = 0 as pY (b1) = 0. Further since pX(a1) > 0,

there exists b2 ∈ N (S) with (a1, b2) ∈ G and W ∗
Y |X(b2|a1) > 0. For α ≥ 0 and

sufficiently small, define Wα as follows:

WY |X,α(b|a) =


W ∗

Y |X(b|a) + α = α, (a, b) = (a1, b1)

W ∗
Y |X(b|a)− α, (a, b) = (a1, b2)

W ∗
Y |X(b|a), otherwise

.

Define f(α) := H(Yα) −H(X), where pYα is the output distribution of pX under

Wα. Note that

f ′(α) = pX(a1) log
(
pY (b2)− αpX(a1)

αpX(a1)

)
.

By assumption, W0 = W ∗ is a maximizer of f(α). However, f ′(α) → +∞ as

α → 0+, yielding the requisite contradiction.

We now establish part 2). Note that H(Y ) is concave in W(G) and all con-

straints in W(G) are linear under W . Therefore, Karush–Kuhn–Tucker(KKT)

conditions are the necessary and sufficient conditions for optimality for WY |X . We

rewrite the optimization problem as follows,

max
W∈W(G)

H(Y )

subject to W (b|a) ≥ 0, a ∈ S, (a, b) ∈ G∑
bW (b|a) = 1, a ∈ S

.
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Define the Lagrangian as follows,

L(W ) := H(Y ) + µa,bW (b|a) +
∑
a

λa

(∑
b

W (b|a)− 1

)
.

The KKT conditions for optimality implies that for W ∈ W , a ∈ S, and (a, b) ∈ G,

we have

∂L
∂W (b|a)

= −pX(a)(log pY (b) + 1) + µa,b + λa = 0,

µa,bW (b|a) = 0,

µa,b ≥ 0.

By solving the above conditions, we have

pY (b) = exp
(
−(λ̃a − µa,b)

pX(a)

)
,

where λ̃a = pX(a)− λa.

a) Suppose (a1, b1) and (a1, b2) are active. This implies that µa1,b1 = µa1,b2 = 0,

and forces pY (b1) = pY (b2).

b) Suppose (a1, b1) is active and (a1, b2) is inactive. We have µa1,b1 = 0 and

µa1,b2 ≥ 0, this implies pY (b1) ≤ pY (b2).

This establishes part 2) of the lemma.

4.3.3 Properties of the minimal input distribution for the

magnification ratio

In this subsection, we first introduce an equivalence relation on the support of the

output distribution pY induced by the optimal channel in Equation (4.10), where

elements within the same equivalence class are assigned identical probabilities.

We then demonstrate via an inductive argument that the minimal input distribu-
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tion pX in the outer minimization problem of Equation (4.10) possesses only one

equivalence class. Consequently, the output distribution of pX must be uniform,

which completes the proof of Lemma 4.3.4.

Equivalence relationship among output distribution elements

Based on pX (with support S) and the properties of the maximizer W ∗(G; pX), we

induce equivalence relationships between the elements in N (S), and another one

between the elements in S. Let pY be the distribution on N (S) induced by PX

and W ∗(G; pX). For b1, b2 ∈ N (S), we say that b1 ∼ b2 if pY (b1) = pY (b2). We use

the above to induce an equivalence relationship on S as follows: For a1, a2 ∈ S,

we say that a1 ∼ a2 if there exists b1, b2 ∈ N (S) such that the edges (a1, b1) and

(a2, b2) are active (see Definition 4.3.5) and b1 ∼ b2.

Remark 4.3.7. The main observation is that the active edges in W ∗(G; pX) parti-

tion the graph into disconnected components and further there is a one-to-one

correspondence between the equivalence classes in N (S) and the equivalence

classes in S. To see this: consider an equivalence class T ⊂ N (S) and let

Ŝ = {a ∈ S : (a, b) is active for some b ∈ T}. From Lemma 4.3.6, we see that

all elements in Ŝ are equivalent to each other and there is no active edge (a, b)

where a ∈ Ŝ and b /∈ T . Further if a1 ∈ S \ Ŝ, then observe that a1 is not

equivalent to any element in Ŝ.

Total order on equivalence classes

Let T1, . . . , Tk be the partition of N (S) into equivalence classes and let S1, . . . , Sk

be the corresponding partition of S into equivalence classes. We can define a

total order on the equivalence classes of N (S) as follows: we say Ti1 ≥ Ti2 if

pY (bi1) ≥ pY (bi2). This also induces a total order on the equivalence classes

on S. Further, without loss of generality, let us assume that T1, . . . , Tk (and

correspondingly S1, . . . , Sk) be monotonically decreasing according to the order

defined above.
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Proof of Lemma 4.3.4. Let p∗X be a minimizer of the outer minimization problem

in (4.10) and let S∗ be its support. Further, let S1, . . . , Sk be the equivalence

classes (that form a partition of S) induced by W ∗(G; p∗X). If k = 1, i.e. there

is only one equivalence class, then Lemma 4.3.6 implies that p∗X and W ∗(G; p∗X)

induces a uniform output distribution on N (S∗). Therefore, our goal is to show

the existence of an optimizer p∗X that induces exactly one equivalence class.

Let S1 and S2 be the largest and second largest elements under the total

ordering mentioned previously. Let mℓ = |Sℓ|, nℓ = |Tℓ|, and for 1 ≤ i ≤ k, let

si,j, 1 ≤ j ≤ mi be an enumeration of the elements of Si and ti,j, 1 ≤ j ≤ ni be an

enumeration of the elements of Ti. Further let pi,j = p∗X(si,j) and pi =
∑mi

j=1 pi,j.

Since the induced output probabilities on the elements of Ti are uniform (by the

definition of equivalence class), observe that qi,j := p∗Y (ti,j) =
pi
ni

for all 1 ≤ j ≤ ni.

By construction of the equivalence class, pi
ni

, is strictly decreasing in i, i ∈ [1 : k].

By the grouping property of entropy, we have

H(X) = H(p1,1, . . . , p1,m1 , p2,1, . . . , p2,m2 , p3,1, . . . , pk,mk
)

= p1H

(
p1,1
p1
, . . . ,

p1,m1

p1

)
+ p2H

(
p2,1
p2
, . . . ,

p2,m2

p2

)
+ (p1 + p2)H

(
p1

p1 + p2
,

p2
p1 + p2

)
+H(p1 + p2, p3,1, . . . , pk,mk

).

Similarly,

H(Y ) = p1H

(
1

n1

, . . . ,
1

n1

)
+ p2H

(
1

n2

, . . . ,
1

n2

)
+ (p1 + p2)H

(
p1

p1 + p2
,

p2
p1 + p2

)
+H(p1 + p2, q3,1, . . . , qk,nk

).
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Define a parameterized family of input distributions p̃X(α) as follows:

p̃X(α)(si,j) =



(
1− α

p1

)
pi,j, i = 1(

1 + α
p2

)
pi,j, i = 2

pi,j, otherwise.

By Lemma 4.3.9 (presented after this proof) we know that for α ∈ [αmin, αmax],

where

αmax :=
p1n2 − p2n1

n1 + n2

> 0 > n2

(
p3
n3

− p2
n2

)
=: αmin,

W ∗(G; p∗X) remain the optimal channel. Observe that the induced output distri-

bution is

p̃Y (α)(ti,j) =



(
1− α

p1

)
qi,j =

pi
ni

− α
ni
, i = 1(

1 + α
p2

)
qi,j =

pi
ni

+ α
ni
, i = 2

qi,j, otherwise.

This implies λA→B(G; P̃X(α)) = H(Ỹ (α))−H(X̃(α)). Note that

λA→B(G; P̃X(α)) := H(Ỹ (α))−H(X̃(α))

= (p1 − α)

(
H

(
1

n1

, . . . ,
1

n1

)
−H

(
p1,1
p1
, . . . ,

p1,m1

p1

))
+ (p2 + α)

(
H

(
1

n2

, . . . ,
1

n2

)
−H

(
p2,1
p2
, . . . ,

p2,m2

p2

))
+H(p1 + p2, q3,1, . . . , qk,nk

)

−H(p1 + p2, p3,1, . . . , pk,mk
)

= (p1 − α)f1 + (p2 + α)f2 +H(p1 + p2, q3,1, . . . , qk,nk
)

−H(p1 + p2, p3,1, . . . , pk,mk
),
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where

f1 = H

(
1

n1

, . . . ,
1

n1

)
−H

(
p1,1
p1
, . . . ,

p1,m1

p1

)
,

f2 = H

(
1

n2

, . . . ,
1

n2

)
−H

(
p2,1
p2
, . . . ,

p2,m2

p2

)
.

Thus, λA→B(G; p̃X(α)) is linear in α. At α = 0, note that p̃X(α) = P ∗
X , and hence is

a minimizer of λA→B(G; p̃X(α)). Therefore, this necessitates that f1 = f2, and for

α ∈ [αmin, αmax] we have that λA→B(G; p̃X(α)) is a constant. Consequently, both

p̃X(αmin) and p̃X(αmax) are also minimizers of the outer minimization problem.

If we consider p̃X(αmax) observe that we have p̃Y (αmax)(t1,j) = p̃Y (αmax)(t2,j).

Therefore t1,j ∼ t2,j and this causes T1 and T2 to merge into a new equivalence

class. Therefore, we have a minimizer of the outer minimization problem with k−1

equivalence classes. We can proceed by induction till we get a single equivalence

class. Note that the output elements in an equivalence class have the same prob-

ability, and the support of the induced output distribution is the neighborhood of

the support of p∗X (see Lemma 4.3.6). Therefore, establishing that p∗X induces a

single equivalence class establishes Lemma 4.3.4.

Alternately, if we consider p̃X(αmin) observe that we have p̃Y (αmax)(t2,j) = p̃Y (αmax)(t3,j).

Therefore t2,j ∼ t3,j and this causes T2 and T3 to merge into a new equivalence

class. Therefore, again, we have a minimizer of the outer minimization problem

with k − 1 equivalence classes. Proceeding as above, we can reduce to a single

equivalence class and establish Lemma 4.3.4.

Remark 4.3.8. The argument above can be used to infer (with minimal modi-

fications) that any minimizer p∗X of the outer minimization problem must have

fi = fj, where

fi = H

(
1

ni

, . . . ,
1

ni

)
−H

(
pi,1
pi
, . . . ,

pi,mi

pi

)
,

fj = H

(
1

nj

, . . . ,
1

nj

)
−H

(
pj,1
pj
, . . . ,

pj,mj

pj

)
.
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Further λA→B(G; p̃X∗) =
∑k

i=1 pifi. Since all fi’s are identical, we have λA→B(G) =

f1. Therefore, the restriction of p̃X∗ to the first equivalence class is also a mini-

mizer of the outer minimization problem, and observe that the induced output is

uniform in T1.

Lemma 4.3.9 (Reweighting input equivalence class probabilities preserves the

optimality of the channel). Let the partition S1 ≥ S2 ≥ · · · ≥ Sk (of S, the

support of pX) be the monotonically decreasing order of equivalence classes induced

by W ∗(G; pX). Define a parameterized family of input distributions p̃X(α) as follows

p̃X(α)(si,j) =



(
1− α

p1

)
pi,j, i = 1(

1 + α
p2

)
pi,j, i = 2

pi,j, otherwise.

Then W ∗(G; pX) continues to be an optimal channel under p̃X(α) for α ∈ [αmin, αmax],

where

αmax :=
p1n2 − p2n1

n1 + n2

≥ 0 ≥ n2

(
p3
n3

− p2
n2

)
=: αmin.

Proof. We recall the KKT conditions (from the proof of Lemma 4.3.6), which are

necessary and sufficient for the inner optimization problem to verify the optimality

of W ∗(G; pX). The KKT conditions for optimality states that for a ∈ S and

(a, b) ∈ G, the optimizers must satisfy

−pX(a)(log pY (b) + 1) + µa,b + λa = 0,

µa,bW (b|a) = 0,

µa,b ≥ 0,

for some dual parameters {λa} and {µa,b}.

For a ∈ S and (a, b) ∈ G, let λa, µa,b denote the dual parameters that certify
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the optimality of W ∗(G; pX) for p∗X . Now define

λa(α) =



(
1− α

p1

)(
λa + p∗X(a) log

(
1− α

p1

))
a ∈ S1(

1 + α
p2

)(
λa + p∗X(a) log

(
1 + α

p2

))
a ∈ S2

λa, otherwise.

Using the channel W ∗(G; pX), the induced output distribution of p̃X(α), is given

by

p̃Y (α)(ti,j) =



(
1− α

p1

)
qi,j =

pi
ni

− α
ni
, i = 1(

1 + α
p2

)
qi,j =

pi
ni

+ α
ni
, i = 2

qi,j =
pi
ni
, otherwise.

Observe that if (a, ba) is an active edge under W ∗(G; pX), then note that pY (α)(ba)

only depends on a, or rather only on the equivalence class that a (or equivalently

ba) belongs to. Define

µa,b(α) = pX(α)(a)(log pY (α)(b)− log pY (α)(ba)).

Note that µa,b(α) ≥ 0 as long as

1 ≥ p1
n1

− α

n1

≥ p2
n2

+
α

n2

≥ p3
n3

,

or the ordering of equivalence classes remains unchanged. (Note that if k = 2,

i.e. there are only two partitions, then we set p3 = 0.) This is equivalent to

α ≥ max{n2

(
p3
n3

− p2
n2

)
, p1 − n1} and α ≤ p1n2−p2n1

n1+n2
. Since n1 ≥ 1, and by our

ordering of equivalence classes, we have p1
n1

≥ p2
n2

≥ p3
n3

; a moments reflection implies

the following:

p1n2 − p2n1

n1 + n2

≥ 0 ≥ n2

(
p3
n3

− p2
n2

)
≥ p1 − n1.
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Therefore α ∈ [αmin, αmax] preserves the ordering of equivalence classes. A simple

substitution shows that the dual variables λa(α) and µa,b(α) defined above serve

as witnesses for the optimality of W ∗(G; pX) for pX(α). This completes the proof

of the lemma.

Remark 4.3.10. The idea of the above proof is the following. The reweighting

of the input classes preserves the uniformity of the output probabilities within

each equivalence class and the ordering between the output probabilities between

equivalence classes. This happens to be the KKT conditions for the maximality of

the channel. The limits are achieved with the output probability in an equivalence

class equals the value in its adjacent class. At this point, there are potentially

multiple optimizers for the inner problem, and the active and inactive edges could

be rearranged as you change α further.

4.4 Discussion

In this chapter, we introduce a framework for bridging concepts in information

theory and additive combinatorics through formal equivalence relationships (Theo-

rem 4.1.1). Key contributions include new information-theoretic tools (Lemma 4.2.11),

motivated by a combinatorial lemma (Lemma 4.2.9), and an entropic character-

ization of the magnification ratio. These advances aim to foster interdisciplinary

dialogue between the two fields.

Despite progress, numerous combinatorial results still lack entropic counter-

parts. A notable example arises in [Pet12], where the following elegant lemma

necessitates an entropic equivalence in Proposition 1.4.5. By choosing S to at-

tain the magnification ratio in the bipartite graph between A and A + B, the

Plünnecke–Ruzsa inequality emerges naturally through induction:

Theorem 4.4.1. Let A and B be finite sets in an Abelian group (G,+). If
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|A+B| ≤ α|A|, there exists S ⊆ A such that

|S + kB| ≤ αk|S| for all positive k,

and consequently,

|kB − ℓB| ≤ αk+ℓ|A| for all positive k + ℓ > 1.

The primary challenge lies in extending Sanov’s theorem to address subset

existence problems. While partitioning strong typical sets into conditional typical

sets offers a potential pathway, substantial technical hurdles must be overcome to

fully connect combinatorial insights with information-theoretic methods.
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Appendix A

Preliminary inequalities for

Section 3.3.3

A.1 Estimates related to PFR conjecture

In this appendix, we present some preliminary inequalities that were (essentially)

established in [GGMT23].

Lemma A.1.1 (Adapted from [GGMT23], Lemma 5.2). Suppose X is indepen-

dent of Y, Z, we have

d(X,Y |Z) ≤ d(X,Y ) +
1

2
I(Y ;Z).

Proof. We have

d(X,Y |Z) = H(X + Y |Z)− 1

2
H(X)− 1

2
H(Y |Z)

= d(X,Y ) +
1

2
I(Y ;Z)− I(X + Y ;Z).

Lemma A.1.2 ([GGMT23], Lemma A.2). Let A,B, S be jointly distributed on G.

d(A,B|Z, S) ≤ 3I(A;B|S) + 2H(A− B|S)−H(A|S)−H(B|S).
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Proof. Let Z = A − B. Given S, construct two “copies” of (A,B), labeled as

(A1, B1) and (A2, B2) such that A1 − B1 = Z = A2 − B2 and their joint law

satisfies pSpZ|SpA1,B1|Z,SpA2,B2|Z,S.

We have (from sub-modularity)

H(A1 +B2, A1, B1|S) +H(A1 +B2|S)

≤ H(A1 +B2, A1|S) +H(A1 +B2, B1|S)

= H(A1, B2|S) +H(A2 +B1, B1|S)

= H(A1, B2|S) +H(A2, B1|S) (A.1)

Copy lemma, Lemma 4.2.11, yields

H(A1, A2, B1, B2|S) +H(A1 − B1|S) = H(A1, B1|S) +H(A2, B2|S)

However we also have that (A1 + B2, A1, B1) determines and is determined by

A1, B1, A2, B2. Therefore

H(A1, B1|S) +H(A2, B2|S)

= H(A1, B1, A2, B2|S) +H(A1 − B1|S)

= H(A1 +B2, A1, B1|S) +H(A1 − B1|S)
(A.1)
≤ H(A1, B2|S) +H(A2, B1|S)−H(A1 +B2|S) +H(A1 − B1|S)

Rearranging yields,

H(A1+B2|S) ≤ H(A1, B2|S)+H(A2, B1|S)−H(A1, B1|S)−H(A2, B2|S)+H(A1−B1|S).

(A.2)

We also have H(A|A − B, S) = H(B|A − B, S) = H(A,B|S) − H(A − B|S).

Therefore,

H(A1 +B2|S)−
1

2
H(A1|A1 −B1, S)−

1

2
H(B2|A2 −B2, S)
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= H(A1 +B2|S)−
1

2
H(A1, B1|S)−

1

2
H(A2, B2|S) +H(A−B|S)

(A.2)
≤ H(A1, B2|S) +H(A2, B1|S)−

3

2
H(A1, B1|S)−

3

2
H(A2, B2|S) + 2H(A−B|S)

≤ 3I(A;B|S) + 2H(A−B|S)−H(A|S)−H(B|S). (A.3)

From definition

d(A,B|Z, S) = H(A1 +B2|Z, S)−
1

2
H(A1|Z, S)−

1

2
H(B2|Z, S)

≤ H(A1 +B2|S)−
1

2
H(A1|Z, S)−

1

2
H(B2|Z, S).

Equation (A.3) completes the proof.

Corollary A.1.3 (From the arguments in [GGMT23], Lemma 7.2). Let (S, T1, T2, T3)

be jointly distributed on a group of characteristic two such that T1 + T2 + T3 = 0.

Then, we have

d(T2, T3|T1, S) + d(T3, T1|T2, S) + d(T1, T2|T3, S)

≤ 3I(T1;T2|S) + 3I(T2;T3|S) + 3I(T1;T3|S)

Proof. Under the characteristic two assumption, Lemma A.1.2 yields

d(T2, T3|T1, S) ≤ 3I(T1;T2|S) + 2H(T2 − T3|S)−H(T2|S)−H(T3|S)

= 3I(T1;T2|S) + 2H(T2 + T3|S)−H(T2|S)−H(T3|S)

= 3I(T1;T2|S) + 2H(T1|S)−H(T2|S)−H(T3|S).

The corollary follows by adding the cyclic shifts of this inequality.

Lemma A.1.4 (Adapted from [GGMT23], Lemma 7.1 and Section 7). Let X and

Y be two independent random variables defined on a field of characteristic two.

Let (XA, YA) and (XB, YB) be independent copies of (X,Y ). Let S = (XA+XB)+

(YA + YB). Let T1 = (XA +XB), T2 = (XB + YB), T3 = XA + YB. Let (X0, Y 0)

be independent of the other random variables.
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1. Family 1: The following inequalities hold

d(X0, T2|S)− d(X0, X) ≤ 1

2
H(S)− 1

2
H(X),

d(X0, T3|S)− d(X0, X) ≤ 1

2
H(S)− 1

2
H(X),

d(Y 0, T2|S)− d(Y 0, Y ) ≤ 1

2
H(S)− 1

2
H(Y ),

d(Y 0, T3|S)− d(Y 0, Y ) ≤ 1

2
H(S)− 1

2
H(Y ),

2. Family 2: The following inequalities hold

d(X0, T1|S)− d(X0, X) ≤ 1

2
H(S) +

1

2
H(XA +XB)−

1

2
H(YA + YB)−

1

2
H(X)

d(Y 0, T1|S)− d(Y 0, Y ) ≤ 1

2
H(S) +

1

2
H(YA + YB)−

1

2
H(XA +XB)−

1

2
H(Y ).

3. Family 3: The following inequalities hold

d(X0, XA|XA + YB)− d(X0, XA) ≤
1

2
H(XA + YB)−

1

2
H(YB),

d(Y 0, YA|YA +XB)− d(Y 0, YA) ≤
1

2
H(YA +XB)−

1

2
H(XB).

4. The following equality holds:

d(XA + YB, YA +XB) + d(XA, YA|XA + YB, YA +XB)

+ I(XA + YA;YA +XB|XA +XB + YA + YB)

= 2d(X,Y ). (A.4)

Proof. Family 1: The proofs of the inequalities in the first family are similar. We

provide the details of the first. It suffices to show that

H(XB+YB+X
0|S)− 1

2
H(XB+YB|S)−H(X+X0)+

1

2
H(X) ≤ 1

2
H(S)− 1

2
H(X).
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This is equivalent to showing that

H(XB + YB +X0|S)− 1

2
H(XB + YB, S) ≤ I(X0;X +X0).

Observe that

H(XB + YB, S) = H(XA + YA) +H(XB + YB) = 2H(XB + YB).

Therefore, it suffices to show that

H(XB + YB +X0|S)−H(XB + YB) ≤ I(X0;X +X0)

Note that

H(XB + YB +X0|S)−H(XB + YB) ≤ H(XB + YB +X0)−H(XB + YB)

= I(X0;XB + YB +X0) ≤ I(X0;X +X0).

The last inequality is a consequence of the data-processing inequality as YB is

independent of (X0, XB). This establishes the first inequality.

Family 2: The proofs of the inequalities in the second family are similar. We

only prove the first one. We wish to show that

H(T1 +X0|S)− 1

2
H(T1|S)−H(X +X0) +

1

2
H(X)

≤ 1

2
H(S) +

1

2
H(XA +XB)−

1

2
H(YA + YB)−

1

2
H(X),

or equivalently

H(T1+X
0|S) ≤ 1

2
H(T1, S)+

1

2
H(XA+XB)−

1

2
H(YA+YB)+H(X+X0)−H(X),

Since H(T1, S) + H(S) = H(XA + XB, YA + YB) = H(XA + XB) + H(YA + YB)
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(the random variables are independent),we wish to show that

H(T1 +X0|S) ≤ H(XA +XB) +H(X +X0)−H(X).

Therefore, it suffices to prove the stronger inequality that

H(T1 +X0) ≤ H(XA +XB) +H(X +X0)−H(X),

or equivalently

I(X0;XA +XB +X0) ≤ I(X0;XA +X0) = I(X0;X +X0).

This inequality is a consequence of the data-processing inequality as XB is inde-

pendent of (X0, XA). This establishes the desired inequality.

Family 3: The proofs of the inequalities in the third family are similar. We

only prove the first one. We wish to show that

H(X0 +XA|XA + YB)−
1

2
H(XA|XA + YB)−H(X0 +XA) +

1

2
H(XA)

≤ 1

2
H(XA + YB)−

1

2
H(YB).

This is equivalent to showing that

H(X0 +XA|XA + YB)−H(X0 +XA)

≤ 1

2
H(XA|XA + YB) +

1

2
H(XA + YB)−

1

2
H(XA)−

1

2
H(YB).

Note that H(XA|XA + YB) + H(XA + YB) = H(XA, YB) = H(XA) + H(YB).

Therefore, the right-hand-side of the desired inequality is zero. On the other

hand, H(X0+XA|XA+YB) ≤ H(X0+XA) is immediate, establishing the desired

inequality.
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Final Equality: Observe that

d(XA + YB, YA +XB) + d(XA, YA|XA + YB, YA +XB)

+ I(XA + YA;YA +XB|XA +XB + YA + YB)

= H(XA + YB + YA +XB)−
1

2
H(XA + YB)−

1

2
H(YA +XB)

+H(XA +XB|XA + YB, YA +XB)−
1

2
H(XA|XA + YB)−

1

2
H(YA|YA +XB)

+ I(XA + YA;YA +XB|XA +XB + YA + YB)

= H(XA + YB + YA +XB) +H(XA +XB|XA + YB, YA +XB)

− 1

2
H(XA, XA + YB)−

1

2
H(YA, YA +XB)

+H(XA + YA|XA +XB + YA + YB)−H(XA + YA|XA + YB, YA +XB)

= H(XA + YA, XB + YB)−
1

2
H(XA, YB)−

1

2
H(YA, XB) = 2d(X,Y ).
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Appendix B

Type counting argument

B.1 Discrete Sanov Theorem

For completeness, we will prove the finite alphabet version of Sanov’s theorem

with most of the arguments borrowed from Chapter 2 of [DZ98].

Let Σ be a finite space. For the purposes of this section, let Σ = {1, 2, . . . ,M},

or equivalently Σ = [1 :M ]. Denote M(Σ) as the set of probability mass functions

on Σ. For a given probability mass function µ, let us denote Σµ = {i : µ(i) > 0}

to be the support of µ. Thus Σµ ⊆ Σ.

Given a sequence yn ∈ Σn, we define the type of yn, Tyn ∈ M(Σ), as the

probability mass function given by

Tyn(i) :=
1

n

n∑
k=1

1{yk=i}, 1 ≤ i ≤M.

It is, equivalently, the empirical measure induced by the sequence yn. Let Tn ⊂

M(Σ) denote the collection of all types, i.e.

Tn := {µ : µ = Tyn for some yn ∈ Σn}.

Lemma B.1.1. The following statements hold:

(i) |Tn| =
(
n+M−1
M−1

)
≤ (n+ 1)M−1.
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(ii) For any µ ∈ M(Σ), there exists ν ∈ Tn such that |µ(i) − ν(i)| ≤ 1
n
. Con-

sequently, dTV (µ,Tn) ≤ M
2n
, where dTV (µ,Tn) := minν∈Tn dTV (µ, ν) and

dTV (µ, ν) =
1
2

∑M
i=1 |µ(i)− ν(i)|. Further Σν ⊆ Σµ.

Proof. Note that every µ ∈ Tn is in one-to-one correspondence with non-negative

integer sequences {a1, . . . , aM} such that
∑M

i=1 ai = n. The count of the latter is

a problem in elementary combinatorics, and the count is essentially a bijection to

choosing the identities of M − 1 dividers from n +M − 1 locations. Note that(
n+M−1
M−1

)
≤ (n+ 1)M−1 is an equality for M = 1 and for M > 1, we have

(
n+M − 1

M − 1

)
=

M−1∏
k=1

n+ k

k
≤

M−1∏
k=1

(n+ 1) = (n+ 1)M−1,

as n+k
k

≤ n+ 1, ∀k ≥ 1.

Given a µ ∈ M(Σ), let us define two non-negative integer sequences according

to

kl(i) = bnµ(i)c, ku(i) = dnµ(i)e, 1 ≤ i ≤M.

The following estimates are clear:

nµ(i)− 1 ≤ kl(i) ≤ nµ(i) ≤ ku(i) ≤ nµ(i) + 1.

Summing up over i, we obtain

n−M ≤
M∑
i=1

kl(i) ≤ n ≤
M∑
i=1

ku(i) ≤ n+M.

Therefore, we can find a sequence of non-negative integers, kint(i) such that

kl(i) ≤ kint(i) ≤ ku(i) such that
∑M

i=1 kint(i) = n. This is essentially like a dis-

crete intermediate-value-theorem, which a greedy algorithm (starting from kl and

increasing value at each coordinate by one while obeying the bounds) can easily
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establish. Now define ν(i) = kint(i)
n

. Note that ν ∈ Tn. We know that

nµ(i)− 1 ≤ kl(i) ≤ kint(i) ≤ ku(i) ≤ nµ(i) + 1.

Therefore |ν(i) − µ(i)| ≤ 1
n

and dTV (µ, ν) ≤ M
2n
. If µ(i) = 0, then observe that

ku(i) = 0 implying kint(i) = 0 and hence ν(i) = 0. This establishes the relationship

between the supports.

For ν ∈ Tn, we define the type-class by Yn(ν) = {yn ∈ Σn : Tyn = ν}. Note

that Yn(ν) is the collection of permutations of a generic string yn whose empirical

measure is ν, and the cardinality of Yn(ν) is the multinomial co-efficient associated

with the empirical counts, i.e. |Yn(ν)| =
(

n
nν(1),nν(2),··· ,nν(M)

)
.

Let Pµ be the probability law associated with an infinite sequence of i.i.d.

random variables Y1, Y2, . . . , distributed according to µ ∈ M(Σ).

In the following:

H(ν) =
N∑
i=1

−ν(i) log2 ν(i),

D(ν‖µ) =
N∑
i=1

ν(i) log2

ν(i)

µ(i)
,

with the convention: 0 log2 0 = 0, and if ν 6� µ, then D(ν‖µ) = ∞.

Lemma B.1.2.

Pµ[(Y1, Y2, . . . , Yn) = yn] = 2−n(H(Tyn )+D(Tyn∥µ)).

Proof. Note that

Pµ[(Y1, Y2, . . . , Yn) = yn] =
M∏
i=1

(µ(i))nTyn (i)

= 2
−n

(
−

∑M
i=1 Tyn (i) log2 Tyn (i)+

∑M
i=1 Tyn (i) log2

Tyn (i)

µ(i)

)

= 2−n(H(Tyn )+D(Tyn∥µ)).
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Lemma B.1.3. Let m, l ∈ N. Then m!
l!
≤ lm−l.

Proof. If m > l, then m!
l!

=
∏m

k=l+1 k ≥ lm−l. If m < l, then m!
l!

=
∏l

k=m+1
1
k
≥

1
l

l−m
= lm−l. Finally, equality holds for m = l.

Corollary B.1.4. For γ, ν ∈ Tn,

|Yn(ν)|
|Yn(γ)|

≥ 2n(H(ν)−D(γ∥ν)−H(γ)).

Proof. Note that

|Yn(ν)|
|Yn(γ)|

=

(
n

nν(1),nν(2),··· ,nν(M)

)(
n

nγ(1),nγ(2),··· ,nγ(M)

) =
M∏
i=1

(nγ(i))!

(nν(i))!

≥
M∏
i=1

(nν(i))n(γ(i)−ν(i)) =
M∏
i=1

(ν(i))n(γ(i)−ν(i)).

It is immediate that,

M∏
i=1

(ν(i))n(γ(i)−ν(i)) = 2n(H(ν)−D(γ∥ν)−H(γ)).

Lemma B.1.5. For every ν ∈ Tn,

1

|Tn|
2nH(ν) ≤ |Yn(ν)| ≤ 2nH(ν)

Proof. Pν be the probability law associated with an infinite sequence of i.i.d. ran-

dom variables Y1, Y2, . . . , distributed according to ν.

∑
yn∈Yn(ν)

Pν [(Y1, Y2, . . . , Yn) = yn] ≤ 1,

implying (from Lemma B.1.2) that

|Yn(ν)|2−nH(ν) ≤ 1.
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Now, we also have

1 =
∑
γ∈Tn

∑
yn∈Yn(γ)

Pν [(Y1, Y2, . . . , Yn) = yn]

=
∑
γ∈Tn

|Yn(γ)|2−n(H(γ)+D(γ∥ν))

(a)

≤
∑
γ∈Tn

|Yn(ν)|2−n(H(ν)−D(γ∥ν)−H(γ))2−n(H(γ)+D(γ∥ν))

=
∑
γ∈Tn

|Yn(ν)|2−nH(ν)

= |Tn||Yn(ν)|2−nH(ν).

Here, (a) follows from Corollary B.1.4.

Lemma B.1.6. For any ν, µ ∈ Tn,

1

|Tn|
2−nD(ν∥µ) ≤ Pµ(TY n = ν) ≤ 2−nD(ν∥µ).

Proof. From Lemma B.1.2, we see that

Pµ(Tyn = ν) = |Yn(ν)|2−n(H(ν)+D(ν∥µ)).

The proof is completed by applying Lemma B.1.5.

Lemma B.1.7. Let Σνn ,Σν ⊆ Σµ and νn → ν. Then D(νn‖µ) → D(ν‖µ).

Proof. This follows as, for i = 1, . . . ,M , νn(i) → ν(i) and hence νn(i) log νn(i)
µ(i)

→

ν(i) log ν(i)
µ(i)

.

Theorem B.1.8 (Sanov). For every Γ ⊆ M(Σµ),

− inf
ν∈Γr

D(ν‖µ) ≤ lim inf
n

1

n
logPµ(TY n ∈ Γ)

≤ lim sup
n

1

n
logPµ(TY n ∈ Γ) ≤ − inf

ν∈Γ
D(ν‖µ).

Here, Γr = {ν ∈ Γ : ∃νn ∈ Tn ∩ Γ, νn → ν}.
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Proof. From Lemma B.1.6, we have

Pµ(TY n ∈ Γ) =
∑

γ∈Tn∩Γ

Pµ(TY n = γ)

≤
∑

γ∈Tn∩Γ

2−nD(γ∥µ)

≤
∑

γ∈Tn∩Γ

2−n infν∈Γ D(ν∥µ)

= |Γ ∩ Tn|2−n infν∈Γ D(ν∥µ)

≤ (n+ 1)(M−1)2−n infν∈Γ D(ν∥µ).

Therefore,

1

n
logPµ(TY n ∈ Γ) ≤ M − 1

n
log(n+ 1)− inf

ν∈Γ
D(ν‖µ).

Taking lim supn on both sides yields the upper bound.

Given ν ∈ Γr. Let ν̂n ∈ Tn ∩ Γ, such that ν̂n → ν. Then

Pµ(TY n ∈ Γ) =
∑

γ∈Tn∩Γ

Pµ(TY n = γ)

≥ Pµ(TY n = ν̂n)

≥ 1

|Tn|
2−nD(ν̂n∥µ),

where the last inequality follows from Lemma B.1.6.

Therefore

1

n
logPµ(TY n ∈ Γ) ≥ − 1

n
log |Tn| −D(ν̂n‖µ)

≥ −M − 1

n
log(n+ 1)−D(ν̂n‖µ).

Taking lim inf and using Lemma B.1.7, we obtain

lim inf
n

1

n
logPµ(TY n ∈ Γ) ≥ −D(ν‖µ).
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Since, this holds for all ν ∈ Γr, we get

lim inf
n

1

n
logPµ(TY n ∈ Γ) ≥ − inf

ν∈Γr
D(ν‖µ).

Given two sets A and B, the Hausdorff distance is defined as

dH(A,B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)}.

In the space of probability distributions, let us consider the underlying metric to

be the total variation distance.

Lemma B.1.9. Let {Γn}n≥1,Γ ⊆ M(Σµ), and dH(Γn,Γ) → 0. Then

lim
n

inf
ν∈Γn

D(ν‖µ) = inf
ν∈Γ

D(ν‖µ).

Proof. Let ν∗ ∈ Γ be such thatD(ν∗||µ) ≤ infν∈ΓD(ν||µ)+ϵ.Note that dH(Γn,Γ) ≥

infν̂∈Γn dTV (ν̂, ν
∗). Since dH(Γn,Γ) → 0, there exists a sequence ν̂n ∈ Γn such that

ν̂n → ν∗. Hence from Lemma B.1.7, limnD(ν̂n||µ) → D(ν∗||µ). Now

lim sup
n

inf
ν∈Γn

D(ν||µ) ≤ lim sup
n

D(ν̂n||µ)

= D(ν∗||µ) ≤ inf
ν∈Γ

D(ν||µ) + ϵ,

implying lim supn infν∈Γn D(ν||µ) ≤ infν∈ΓD(ν||µ).

Let nk be a subsequence such that infν∈Γnk
D(ν‖µ) k→∞→ lim infn infν∈Γn D(ν‖µ).

Consider νk ∈ Γnk
such that D(νk‖µ) ≤ infν∈Γnk

D(ν‖µ) + ϵ
k
. Since M(Σµ) is

compact, there exists a convergent subsequence {kl}, i.e. νkl → ν∗, for some

ν∗ ∈ M(Σµ). By construction,

lim sup
l

D(νkl‖µ) = lim sup
l

D(νkl‖µ)−
ϵ

kl
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≤ lim sup
k

D(νk‖µ)−
ϵ

k
≤ lim sup

k
inf

ν∈Γnk

D(ν‖µ)

= lim inf
n

inf
ν∈Γn

D(ν‖µ).

Since νkl → ν∗, Lemma B.1.7 yields D(νkl‖µ) → D(ν∗‖µ). Therefore

D(ν∗‖µ) ≤ lim inf
n

inf
ν∈Γn

D(ν‖µ).

As dH(Γnk
,Γ) ≥ infν̂∈Γ dTV (ν̂, νk), let ν†k ∈ Γ, satisfy dTV (ν

†
k, νk) ≤ dH(Γnk

,Γ)+

ϵ
k
. Note that

dTV (ν
†
kl
, ν∗) ≤ dTV (ν

†
kl
, νkl) + dTV (νkl , ν

∗)

≤ dH(Γnkl
,Γ) +

ϵ

kl
+ dTV (νkl , ν

∗).

Therefore, taking l → ∞, we see that ν†kl → ν∗. Finally as ν†kl ∈ Γ,

inf
ν∈Γ

D(ν‖µ) ≤ lim inf
l

D(ν†kl‖µ) = D(ν∗‖µ).

Putting all this together, we obtain

inf
ν∈Γ

D(ν‖µ) ≤ D(ν∗‖µ) ≤ lim inf
n

inf
ν∈Γn

D(ν‖µ)

≤ lim sup
n

inf
ν∈Γn

D(ν‖µ) ≤ inf
ν∈Γ

D(ν‖µ),

establishing the lemma.

The following lemma can be considered as a limiting version of the discrete

Sanov’s theorem.

Theorem B.1.10 (Limiting Sanov). Let {Γn}n≥1,Γ ⊆ M(Σµ), and dH(Γn,Γ) →

0. Then,

− inf
ν∈Γr

D(ν‖µ) ≤ lim inf
n

1

n
logPµ(TY n ∈ Γn)
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≤ lim sup
n

1

n
logPµ(TY n ∈ Γn) ≤ − inf

ν∈Γ
D(ν‖µ). (B.1)

Here, Γr = {ν ∈ Γ : ∃νn ∈ Tn ∩ Γn, νn → ν}. Clearly Γr ⊇ Γo, where Γo is

the interior of Γ considered as a subset of M(Σµ). In particular, if Γn ⊆ Tn, then

Γr = Γ, and

lim
n

1

n
logPµ(TY n ∈ Γn) = − inf

ν∈Γ
D(ν‖µ).

Proof. Note that

Pµ(TY n ∈ Γn) =
∑

γ∈Tn∩Γn

Pµ(TY n = γ)

(a)

≤
∑

γ∈Tn∩Γn

2−nD(γ∥µ)

≤
∑

γ∈Tn∩Γn

2−n infν∈Γn D(ν∥µ)

= |Γn ∩ Tn|2−n infν∈Γn D(νn∥µ)

≤ (n+ 1)(M−1)2−n infν∈Γn D(ν∥µ).

Here (a) follows from Lemma B.1.6. Therefore,

1

n
logPµ(TY n ∈ Γn) ≤

M − 1

n
log(n+ 1)− inf

ν∈Γn

D(ν‖µ).

Taking lim supn on both sides and using Lemma B.1.9 yields the upper bound.

Given ν ∈ Γr, let ν̂n ∈ Tn ∩ Γ, ν̂n → ν. Then

Pµ(TY n ∈ Γn) =
∑

γ∈Tn∩Γn

Pµ(TY n = γ)

≥ Pµ(TY n = ν̂n)

(a)

≥ 1

|Tn|
2−nD(ν̂n∥µ).

127



Here, again, (a) follows from Lemma B.1.6. Therefore

1

n
logPµ(TY n ∈ Γn) ≥ − 1

n
log |Tn| −D(ν̂n‖µ).

Taking lim inf and using Lemma B.1.7, we obtain

lim inf
n

1

n
logPµ(TY n ∈ Γn) ≥ −D(ν‖µ).

Since, this holds for all ν ∈ Γr, we get

lim inf
n

1

n
logPµ(TY n ∈ Γn) ≥ − inf

ν∈Γr
D(ν‖µ).

This proves (B.1).

If Γn ⊆ Tn, then as dH(Γn,Γ) → 0 it is immediate that for every ν ∈ Γ, ∃νn ∈

Γn = Γn ∩ Tn such that dTV (νn, ν) → 0. This implies that Γr = Γ.

B.2 Maximal couplings

In this section, we will show the derivation of maximal coupling from the discrete

Sanov theorem. Let pX , pY be two distributions supported on a finite alphabet Σ.

Let {ωn} be a non-negative sequence such that ωn → 0 as n→ ∞ and ωn

√
n→ ∞

as n→ ∞. Define An ⊆ Σn as

An = {gn ∈ Σn : |Tgn(a)− pX(a)| ≤ ωnpX(a), ∀a ∈ Σ}.

Remark B.2.1. The set An is usually called the typical sequences (or strongly-

typical sequences) corresponding to distribution pX . These sets play an important

role in network information theory, particularly in the proofs of the channel coding

theorems.
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Similarly, let

Bn = {gn ∈ Σn : |Tgn(a)− pY (a)| ≤ ωnpY (a), ∀a ∈ Σ}.

Define Γ̂n = {ν ∈ M(Σ × Σ) : ν = T(gn1 ,g
n
2 )

for some (gn1 , g
n
2 ) ∈ An × Bn} and

Γ̂ = Π(pX , pY ), the set of all couplings with the given marginals.

Lemma B.2.2. Let Γ̂n and Γ̂ be as described above. Then

dH(Γ̂n, Γ̂) → 0.

Proof. Let ν ∈ Γ̂. Then we know, from Lemma B.1.1 that there exists ν̂n ∈ Tn

such that |ν̂n(a, b)− ν(a, b)| ≤ 1
n

for all (a, b) ∈ ΣA × ΣB, and if ν(a, b) = 0, then

ν̂n(a, b) = 0. Now

∣∣∣∣∣∑
b∈ΣB

(ν̂n(a, b)− ν(a, b))

∣∣∣∣∣ ≤ ∑
b∈ΣB

|ν̂n(a, b)− ν(a, b)| ≤ |ΣB|
n

.

Note that
√
nωnν(a, b) → ∞, for all (a, b) : ν(a, b) > 0. Therefore, for large n,

ΣB

n
≤ ωnpX(a) = ωn

∑
b ν(a, b). Similarly, for large n,

∣∣∣∣∣∑
a∈ΣA

(ν̂n(a, b)− ν(a, b))

∣∣∣∣∣ ≤ ∑
a∈ΣA

|ν̂n(a, b)− ν(a, b)| ≤ |ΣA|
n

≤ ωnpY (b) = ωn,
∑
a

ν(a, b).

Therefore, for large n, any (gn1 , g
n
2 ), such that Tgn1 ,g

n
2
= ν̂n(a, b), is an element

of An × Bn, or that ν̂n ∈ Γ̂n. Further, note that, dTV (ν̂n, ν) ≤ |ΣA||ΣB |
2n

. Since this

holds for any ν ∈ Γ̂, we obtain that supν∈Γ̂ infνn∈Γ̂n
dTV (ν, νn) → 0 as n→ ∞.

Now suppose supνn∈Γ̂n
infν∈Γ̂ dTV (ν, νn) 6→ 0. There, there is a subsequence nk

and ϵ > 0 such that

sup
νk∈Γ̂nk

inf
ν∈Γ̂

dTV (ν, νk) > ϵ.

Therefore, there is a sequence νk ∈ Γ̂nk
such that infν∈Γ̂ dTV (νk, ν) > ϵ

2
. As
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M(ΣA × ΣB) is a compact set, and Γ̂nk
⊂ M(ΣA × ΣB), we have a convergent

subsequence νkl → ν†. By definition of Γ̂nkl
we have

∣∣∣∣∣
(∑

b

νkl(a, b)

)
− pX(a)

∣∣∣∣∣ ≤ ωnkl
pX(a).

As ωnkl
→ 0,

∑
b ν

†(a, b) = pX(a). Similarly,
∑

a ν
†(a, b) = pY (b). Therefore

ν† ∈ Γ̂. Therefore dTV (νk, ν
†) → 0, contradicting infν∈Γ̂ dTV (νk, ν) >

ϵ
2
. This

shows that supνn∈Γ̂n
infν∈Γ̂ dTV (ν, νn) → 0 as desired.

Lemma B.2.3 (Data processing). Let WY |X be a stochastic mapping (channel).

Let pX , qX be two distributions on X and pY =
∑

xWY |XpX and qY =
∑

X WY |XqX

be the two induced distributions on Y. Then dTV (pX , qX) ≥ dTV (pY , qY ).

Proof. Observe the following:

∑
y

|pY (y)− qY (y)| =
∑
y

∣∣∣∣∣∑
x

WY |X(y|x)(pX(x)− qX(x))

∣∣∣∣∣
≤
∑
x,y

WY |X(y|x)|pX(x)− qX(x)|

=
∑
x

|pX(x)− qX(x)|

Theorem B.2.4. Let pX and pY be two distributions having finite support on an

Abelian group G. Let {ωn} be a non-negative sequence such that ωn → 0 as n→ ∞

and ωn

√
n→ ∞ as n→ ∞. Define An ⊆ Gn, as

An = {gn ∈ Gn : |kgn(a)− npX(a)| ≤ npX(a)ωn, ∀a ∈ G}.

Here kgn(a) := |{i : gi = a, 1 ≤ i ≤ n}|. Similarly, let

Bn = {gn ∈ Gn : |kgn(a)− npY (a)| ≤ npY (a)ωn, ∀a ∈ G}.

lim
n

1

n
log |An +Bn| = max

q∈Π(pX ,pY )
Hq(X + Y ).
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Here Π(pX , pY ) is the set of joint distributions (couplings) such that the marginals

are pX and pY , respectively.

Proof. Let S be a finite subset of G such that S contains support of pX , pY and

pX+Y . Let µ be the uniform distribution on S. Let Cn = An+Bn, and Γn = {ν ∈

M(S) : ν = Tgn for some gn ∈ Cn}. Let Γ = {ν ∈ M(G) : ν = qX+Y , qX,Y ∈

Π(pX , pY )}.Define Γ̂n = {ν ∈ M(S×S) : ν = T(gn1 ,g
n
2 )

for some (gn1 , gn2 ) ∈ An×Bn}

and Γ̂ = Π(pX , pY ), the set of all couplings with the given marginals.

For ν ∈ Tn, we had defined the type-class by Yn(ν) = {yn ∈ Sn : Tyn = ν}.

Hence, ν ∈ Γn if and only if Yn(ν) ⊆ Cn. Note that, by definition, the sets An,

Bn, and Cn are permutation invariant. Therefore

Pµ(TY n ∈ Γn) = Pµ(Y
n ∈ Cn) =

|Cn|
|S|n

.

From Lemma B.2.2, dH(Γ̂n, Γ̂) → 0, and since Γ̂n ⊆ Tn, Γ̂ = Γ̂r. Considering

(X,Y ) 7→ X + Y , by Lemma B.2.3, we obtain dH(Γn,Γ) → 0 and similarly as

Γn ⊆ Tn, Γ = Γr. Therefore, we apply Theorem B.1.10 to obtain

lim
n

1

n
logPµ(TY n ∈ Γn) = − inf

ν∈Γ
D(ν‖µ)

or equivalently

lim
n

1

n
log |Cn|

|S|n
= − inf

ν∈Γ
(log |S| −Hν(X + Y ))

= sup
ν∈Γ

Hν(X + Y )− log |S|.

Since Γ and Γ̂ are compact, and supν∈ΓHν(X + Y ) = maxq∈Π(pX ,pY )Hq(X + Y ),

we are done.
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Appendix C

Proof of Theorem 4.2.15

Proof. The arguments here are directly motivated by those for establishing the

sumset inequality in [KT99] and are essentially identical to the one employed in

[TV]. We still present it here to highlight the role played by Lemma 4.2.11. Con-

sider a joint distribution (X,Y, Y †) such that Y → X → Y † forms a Markov chain

and (X,Y ) shares the same marginal as (X,Y †). From Lemma 4.2.11 (considering

(X,Y )−X − (X,Y †)) we have

H(X,Y, Y †) = H(X,Y ) +H(X,Y †)−H(X)

= 2H(X,Y )−H(X). (C.1)

Here, the last equality comes from the assumption that (X,Y )
(d)
= (X,Y †).

Define three functions: f1(x, y, y†) = (x+y, x+y†), f2(x, y, y
†) = (y, y†), f3(x, y, y

†) =

(x+y, y†). Consider a joint distribution of (X1, Y1, Y
†
1 , X2, Y2, Y

†
2 , X3, Y3, Y

†
3 , X4, Y4, Y

†
4 )

such that the following three conditions are satisfied:

1. (Xi, Yi, Y
†
i ) shares the same marginal as (X,Y, Y †) for 1 ≤ i ≤ 4.

2. fi(Xi, Yi, Y
†
i ) = fi(Xi+1, Yi+1, Y

†
i+1) for 1 ≤ i ≤ 3.

3. (X1, Y1, Y
†
1 ) → f1(X1, Y1, Y

†
1 ) → (X2, Y2, Y

†
2 ) → f2(X2, Y2, Y

†
2 ) → (X3, Y3, Y

†
3 ) →

f3(X3, Y3, Y
†
3 ) → (X4, Y4, Y

†
4 ) forms a Markov chain.
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Now by Lemma 4.2.11, we have

H(X1, Y1, Y
†
1 , X2, Y2, Y

†
2 , X3, Y3, Y

†
3 , X4, Y4, Y

†
4 )

= 4H(X,Y, Y †)−H(X + Y,X + Y †)−H(Y, Y †)−H(X + Y, Y †). (C.2)

From condition 2) above and the definition of f1, f2, f3, we have the following

equalities:

X1 + Y1 = X2 + Y2, X1 + Y †
1 = X2 + Y †

2 ,

Y2 = Y3, Y †
2 = Y †

3 ,

X3 + Y3 = X4 + Y4, Y †
3 = Y †

4 .

From this, we obtain the following:

Y1 − Y †
1 = Y2 − Y †

2 = Y3 − Y †
3 .

Consequently, we have

X4 − Y †
4 = (X4 + Y4)− Y4 − Y †

4 = (X3 + Y3)− Y †
4 − Y4

= X3 + (Y3 − Y †
3 )− Y4 = X3 + Y1 − Y †

1 − Y4.

Therefore X4 − Y †
4 is a function of (X1, Y1, Y

†
1 , X3, Y4). Therefore,

H(X1, Y1, Y
†
1 , X2, Y2, Y

†
2 , X3, Y3, Y

†
3 , X4, Y4, Y

†
4

|X1, Y1, Y
†
1 , X3, Y4)

= H(X1, Y1, Y
†
1 , X2, Y2, Y

†
2 , X3, Y3, Y

†
3 , X4, Y4, Y

†
4

|X1, Y1, Y
†
1 , X3, Y4, X4 − Y †

4 )

= H(X4|X1, Y1, Y
†
1 , X3, Y4, X4 − Y †

4 )

+H(X1, Y1, Y
†
1 , X2, Y2, Y

†
2 , X3, Y3, Y

†
3 , X4, Y4, Y

†
4
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|X1, Y1, Y
†
1 , X3, X4, Y4, Y

†
4 )

≤ H(X1, Y1, Y
†
1 , X2, Y2, Y

†
2 , X3, Y3, Y

†
3 , X4, Y4, Y

†
4

|X1, Y1, Y
†
1 , X3, X4, Y4, Y

†
4 ) +H(X4|X4 − Y †

4 )

= H(X2, Y2, Y
†
2 , Y3, Y

†
3

|X1, Y1, Y
†
1 , X3, X4, Y4, Y

†
4 ) +H(X4|X4 − Y †

4 ).

To complete the argument, observe that Y2 = Y3 = X4 + Y4 − X3, Y †
2 =

Y †
3 = Y †

4 , and X2 = X1 + Y1 − Y2 = X1 + Y1 +X3 −X4 − Y4. This implies that

(X2, Y2, Y
†
2 , Y3, Y

†
3 ) is a function of (X1, Y1, Y

†
1 , X3, X4, Y4, Y

†
4 ). Therefore

H(X2, Y2, Y
†
2 , Y3, Y

†
3 |X1, Y1, Y

†
1 , X3, X4, Y4, Y

†
4 ) = 0,

implying that

H(X1, Y1, Y
†
1 , X2, Y2, Y

†
2 , X3, Y3, Y

†
3 , X4, Y4, Y

†
4 |X1, Y1, Y

†
1 , X3, Y4) ≤ H(X4|X4 − Y †

4 ).

Thus, we have

H(X1, Y1, Y
†
1 , X2, Y2, Y

†
2 , X3, Y3, Y

†
3 , X4, Y4, Y

†
4 )

≤ H(X1, Y1, Y
†
1 , X3, Y4) +H(X4|X4 − Y †

4 ). (C.3)

By using (C.2) and (C.3), we have

0 ≥ 4H(X,Y, Y †)−H(X + Y,X + Y †)−H(Y, Y †)

−H(X + Y, Y †)−H(X1, Y1, Y
†
1 , X3, Y4)−H(X4|X4 − Y †

4 )

= 3H(X,Y, Y †)−H(X + Y,X + Y †)−H(Y, Y †)

−H(X + Y, Y †)−H(X3, Y4|X1, Y1, Y
†
1 )−H(X4|X4 − Y †

4 ).
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Now using (C.1) to replace H(X,Y, Y †) we have

0 ≥ 6H(X,Y )− 3H(X)−H(X + Y,X + Y †)−H(Y, Y †)

−H(X + Y, Y †)−H(X3, Y4|X1, Y1, Y
†
1 )−H(X4|X4 − Y †

4 )

≥ 6H(X,Y )− 3H(X)− 3H(Y )− 3H(X + Y )−H(X3)

−H(Y4)−H(X4, Y
†
4 ) +H(X4 − Y †

4 )

= 5H(X,Y )− 4H(X)− 4H(Y )− 3H(X + Y ) +H(X − Y ) (C.4)

=
1

2
I(X;X − Y ) +

1

2
I(Y ;X − Y )− 3

2
I(X;X + Y )− 3

2
I(Y ;X + Y )− 3I(X;Y ).

This completes the proof of the theorem.
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