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Several popular achievable regions of two classic communication scenarios,

discrete memoryless broadcast channel (DMBC) and discrete memoryless inter-

ference channel (DMIC), in network information theory are discussed in this

thesis.

We show that superposition-coding achievable region is sub-optimal for gen-

eral three-receiver more capable DMBCs whilst remains optimal for certain sub-

classes.

We define very weak interference for DMIC and we show that Han–Kobayashi

(HK) achievable region is sum-rate optimal for some DMICs with very weak

interference. The sum-capacity, for some channels with very weak interference,

is established by developing a genie-based outer bound which turns out to be

tight in some parameter instances. Of independent interest is the analysis of the

genie based outer-bound where: (i) we develop novel techniques for establishing

cardinality bounds on the genie variables; (ii) we show that there exist no genies

for certain parameters that would reduce the outer bound to treating interference

as noise.

We also show with a discrete memoryless Z-interference channel counter-

example that HK achievable region is sub-optimal for general DMIC, solving

a long standing open problem in network information theory.



中中中文文文摘摘摘要要要

本論文主要討論網絡信息論中數字廣播系統(DMBC) 和數字幹擾系

統(DMIC) 的可傳輸速率範圍。數字廣播系統和數字幹擾系統是網絡信息

論中最重要且基本的信息傳輸模型，而且兩個系統的最優化可傳輸速率範圍都

是未知的。

作者證明對於一個有三個接收器的可排序廣播系統，疊加編碼可傳輸速率

範圍只是特定信道的最優化可傳輸速率範圍。

另外，通過定義微弱信道幹擾的概念和提出速率外界精靈計算法，作者證

明了漢-小林(Han–Kobayashi)編碼在某些有微弱信道幹擾的數字幹擾系統中的

整體可傳輸速率最優性。在速率外界精靈計算法的推導過程中，作者還提出了

精靈基數計算法以及證明了通過漢-小林編碼取得的內界和同於通過精靈計算法

得到的外界在特定數字幹擾系統中的不等性。

最後，作者通過對Z型數字幹擾系統的研究證明了漢-小林編碼可傳輸速率

範圍和數字幹擾系統最優化可傳輸速率範圍的不等性，解決了網絡信息論中的

一個長久公開問題。
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Notations

We list the notation and terminology used throughout the thesis. It is only a

general guideline. Cases where this guideline is not followed are pointed out on

an ad hoc basis inside the thesis.

We use lowercase letters x, y, . . . to denote constants and values of random

variables. We use xji = (xi, xi+1, . . . , xj) to denote an (j− i+1)-sequence/column

vector for 1 ≤ i ≤ j. When i = 1, we always drop the subscript, i.e., xj =

(x1, x2, . . . , xj), unless there are multiple subscripts. Sometimes we write x, y,

. . . for vectors with specified dimensions and xj for the j-th component of x.

Let α, β ∈ [0, 1]. Then ᾱ = 1− α and α ∗ β = αβ̄ + βᾱ.

Let xn, yn ∈ {0, 1}n be binary n-vectors. Then xn ⊕ yn is the componentwise

modulo-2 sum of the two vectors.

R is the real line and Rd is the d-dimensional real Euclidean space.

Z = {. . . ,−2,−1, 0, 1, 2, . . . } is the set of integers.

N = {0, 1, 2, 3, . . . } is the set of non-negative integers.

Calligraphic letters X , Y , . . . are used exclusively for finite sets and |X |
denotes the cardinality of the set X .

Script letters C , R, H , . . . are used for subsets of Rd.

For a pair of integers i ≤ j, we define the discrete interval [i : j] = {i, i +

1, . . . , j}. More generally, for a ≥ 0 and integer i ≤ 2a, we define

• [i : 2a) = {i, i+ 1, . . . , 2bac}, where bac is the integer part of a, and

• [i : 2a] = {i, i+1, . . . , 2dae}, where dae is the smallest integer larger or equal

to a.

The probability of an event A is denoted by P (A) and the conditional prob-

ability of A given B is denoted by P (A|B). We use uppercase letters X, Y , . . .

to denote random variables. The random variables may take values from finite

sets X , Y , . . . or from the real line R. By convention, X = φ means that X is a

degenerate random variable (unspecified constant) regardless of its support. The

probability of the event {X ∈ A} is denoted by P{X ∈ A}.
In accordance with the notation for constant vectors, we useXj

i = (Xi, . . . , Xj)

to denote a (j − i + 1)-sequence of random variables for 1 ≤ i ≤ j. When
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i = 1, we always drop the subscript and use Xj = (X1, . . . , Xj) unless there

are multiple subscripts. For example, we do not drop the subscripts of Xj
2,1 =

(X2,1, X2,2, . . . , X2,j) because Xj
2 = (X2, X3, . . . , Xj) means something different.

The following notations are used to specify random variables and random

vectors.

Xn ∼ p(xn) means that p(xn) is the probability mass function (pmf) of the

discrete random vector Xn. The function pXn(x̃n) denotes the probability mass

of argument x̃n, i.e., pXn(x̃n) = P{Xn = x̃n} for all x̃n ∈ X n. The functions

p(xn) without subscript is understood to be the pmf of the random vector Xn

over X1 × · · · × Xn.

(Xn, Y n) ∼ p(xn, yn) means that p(xn, yn) is the joint pmf of Xn and Y n.

p(yn|xn) is a collection of conditional pmfs on Yn, one for every xn ∈ X n.

Given a random variableX, the expected value of its functions g(X) is denoted

by EX(g(X)), or E(g(X)) in short. The conditional expectation of X given Y is

denoted by E(X|Y ). We use Var(X) = E[(X −E(X))2] to denote the variance of

X and Var(X|Y ) = E[(X − E(X))2|Y ] to denote the conditional variance of X

given Y .

We use the following notations for standard random variables and random

vectors.

X ∼ Unif(A): X is a discrete uniform random variable over a finite set A.

X ∼ Unif [i : j] for integers j > i: X is a discrete uniform random variable

over [i : j].

X ∼ Unif [1 : 2nR] for n ∈ Z and R ∈ R+ is a discrete uniform random

variable over [1 : 2nR].

We say thatX → Y → Z forms a Markov chain if p(x, y, z) = p(x)p(y|x)p(z|y).

More generally, we say that X1 → X2 → X3 → . . . forms a Markov chain if

p(xi|xi−1) = p(xi|xi−1) for i ≥ 2.

The logarithm function log is assumed to be base 2 unless specified otherwise.

Binary entropy function: Hb(p) = −p log p− p̄ log p̄ for p ∈ [0, 1].

We use uppercase A,B, . . . to denote matrices. The entry in the i-th row and

the j-th column of a matrix A is denoted by A(i, j) or Aij. A transpose of a

matrix A is denoted by AT . For a square matrix A, |A| = det(A) denotes the

determinant of A and tr(A) denotes its trace.

The upper concave envelope of a function f(x) over domain D is defined as

C[f(x)](x0) := inf{g(x0) : g(x) is concave in x ∈ D, g(x) ≥ f(x) ∀x ∈ D}.

Please refer to Appendix A for preliminary definitions and properties used

throughout the thesis.
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Chapter 1

Introduction

The field of network information theory as taught in [7] extends Shannon’s in-

formation theory on point-to-point communication systems to multi-user settings

with shared resources. It aims to solve for fundamental limits on information flow

similar to those studied in point-to-point communication systems.

The purpose of this chapter is to review the communication models used in

information theory and in particular, network information theory to establish the

language used throughout this thesis.

The communication model which inspired this thesis makes several assump-

tions about the scenario.

It is assumed that the communication goes only one-way with no feedback.

We assume that the channel takes in symbols from a finite alphabet X and each

input symbol is transformed by the channel to an output symbol from another

finite alphabet Y at the receiving end. For each input x ∈ X , the output Y

follows a fixed (conditional) distribution denoted by q(y|x). The channel is also

assumed to be memoryless, i.e., p(yi|xi, yi−1) = q(yi|xi) ∀i. The resulting channel,

q∗(y
n|xn), is called an n-product channel and in the absence of feedback implies

that q∗(y
n|xn) =

∏n
i=1 q(yi|xi) := qn(yn|xn). We call a point-to-point channel

modeled thus as a (X , q(y|x),Y) channel, or sometimes q(y|x) in short.

In the general point-to-point communication scenario depicted in Figure 1,

the sender wishes to maximize the rate at which messages can be transmitted to

the receiver, so that they can be decoded with a small probability of error.

M Encoder
Xn ∏n

i=1 q(yi|xi)
Y n

Decoder M̂

Figure 1.1: Discrete memoryless point-to-point channel

A (2nR, n) code (or a coding strategy) of size 2nR that uses the channel n

times consists of:
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(i) an encoder that maps a message, M , from the set [1 : 2nR] to X n,

(ii) a decoder that maps the received sequence in Yn to an estimated message,

M̂ , in [1 : 2nR].

The performance metric for a codebook is the average probability of error, i.e.,

P
(n)
e = P (M 6= M̂) when M is uniformly distributed in the set [1 : 2nR].

A rate R bits per channel use is said to be achievable if there is a sequence

of (2nR, n) codes such that P
(n)
e → 0 as n tends to infinity. The supremum of all

achievable rates for a given channel is called channel capacity, denoted by C . The

celebrated result of Shannon [23] established that C is given by maxp(x) I(X;Y )

for a DMC.

The model extends easily to multi-user communication systems with similar

discrete and memoryless assumptions. The study of such models constitutes the

field of network information theory and the basic models and results can be found

in [7]. However the capacity region, the maximal set of achievable rate tuples,

is established only for very few settings. In this thesis we look at two of the

most basic settings where capacity region is open, the broadcast channel and the

interference channel; and we establish new results concerning the capacity region

in various special settings. The results in this thesis completely resolves open

Question 6.4 (a very well-known one) and partially resolves open Question 5.2 in

[7].

1.1 Broadcast channel

Broadcast channel model extends the point-to-point channel model by adding

more receivers. It models the communication of one sender and multiple receivers

with a shared medium for transmission [4]. This models, for instance, the com-

munication system from a base station to the receivers within its cellular range,

commonly referred to as the downlink transmission. The capacity region for such

a channel is largely unknown and the characterization of the capacity region is a

classical and fundamental open problem in network information theory.

A general k-receiver discrete memoryless broadcast channel (DMBC) model

(X , q(y1, y2, . . . , yk|x), Y1 × Y2 × · · · × Yk) consists of a finite alphabet X for

input/transmitter, finite alphabets Y1, Y1, . . . , Yk, one for each output/receiver

and a collection of channel transition pmfs q(y1, y2, . . . , yk|x).

This thesis focuses on broadcast channel with private message sets. A general

k-receiver DMBC with private message sets is depicted in Figure 1.2, the sender

wishes to communicate an independent, private message Mr to each receiver r,

r = 1, 2, . . . , k. The sender wishes to maximize the rate at which messages can be
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transmitted to the receivers, so that they can be decoded with a small probability

of error.

(M1,M2, . . . ,Mk) Encoder 1
Xn ∏n

i=1 q(y1,i, y2,i, . . . , yk,i|xi)

Y n
1,1

Y n
2,1

Y n
k,1

Decoder 1

Decoder 2

. . . . . .

Decoder k

M̂1

M̂2

M̂k

Figure 1.2: Discrete memoryless broadcast channel with private message sets

A (2nR1 , 2nR2 , . . . , 2nRk , n) code of size (2nR1 , 2nR2 , . . . , 2nRk) that uses the

channel n times consists of:

(i) an encoder that maps the messages M1, M2,. . . , Mk from the set [1, 2nR1 ]×
[1, 2nR2 ]× · · · × [1, 2nRk ] to X n,

(ii) k decoders, one for each receiver, that map the received sequence in Yn to

an estimated message M̂r in [1 : 2nRr ], r = 1, 2, . . . , k.

The performance metric for a codebook is the average probability of error, i.e.,

P
(n)
e = P ((M1,M2, . . . ,Mk) 6= (M̂1, M̂2, . . . , M̂k)) when (M1,M2, . . . ,Mk) ∼

Unif([1, 2nR1 ]× [1, 2nR2 ]× · · · × [1, 2nRk ]).

A rate tuple (R1, R2, . . . , Rk) is said to be achievable if there is a sequence

of (2nR1 , 2nR2 , . . . , 2nRk , n) codes such that P
(n)
e → 0 as n tends to infinity. The

closure of all achievable rate tuples for a given DMBC constitutes its capacity

region, denoted by C , which corresponds to the channel capacity concept of the

DMC counter part. Although, unlike its counter part in DMC, the capacity region

C of a DMBC is not known in general.

Remark 1. The marginal transition probabilities qr(yr|x), r = 1, 2, . . . , k uniquely

determines the channel capacity region of the DMBC and are referred to as the

(marginal) channel from X to Yr.

Since the capacity region depends only on the marginal channels, it is natural

to consider a partial order among the channels that capture the noise induced

by a channel. Three prominent such partial orders between any two receivers are

degraded [4], less-noisy and more-capable [13].

Definition 1 (Degraded). For a DMBC with one sender X and two receivers

Y1, Y2 with corresponding channels q1 and q2, we say that the channel to Y2 is

5



degraded with respect to the channel to Y1, denoted as q1

s.d.

� q2, if there is q′

such that q2(y2|x) = q1(y1|x)q′(y2|y1).

Definition 2 (Less-noisy). For a DMBC with one sender X and two receivers

Y1, Y2 with corresponding channels q1 and q2, we say that q1

l.n.

� q2 if I(U ;Y1) ≥
I(U ;Y2) for all distributions of (U,X) where U is an auxiliary random variable

and U → X → (Y1, Y2) forms a Markov chain.

Definition 3 (More-capable). For a DMBC with one sender X and two receivers

Y1, Y2 with corresponding channels q1 and q2, q1

m.c.

� q2 if and only if I(X;Y1) ≥
I(X;Y2) for every distribution p(x) of X.

It is a simple exercise to see that q1

m.c.

� q2 implies that q1

l.n.

� q2, and q1

l.n.

� q2

implies that q1

s.d.

� q2. We say that a 2-receiver broadcast channel is degraded, less-

noisy, more-capable if the corresponding marginal channels satisfy the degraded,

less-noisy, more-capable partial orders respectively.

Consider a two-receiver DMBC model with private message sets depicted in

Figure 1.3.

(M1,M2) Encoder 1
Xn ∏n

i=1 q(y1,i, y2,i|xi)

Y n
1,1

Y n
2,1

Decoder 1

Decoder 2

M̂1

M̂2

Figure 1.3: Two-receiver DMBC with private message sets

A simple achievable strategy for a broadcast channel, and one that is widely

used in practice, is to employ time division; communicate to one receiver for a

fraction of the slots and to the other receiver for the remaining fraction. A better

strategy, in many cases, is the superposition-coding strategy introduced by Cover

[4] to communicate over a degraded broadcast channel. This strategy was proven

to be optimal for 2-receiver degraded broadcast channels (in the Gaussian case

by Bergmans [2] and in the discrete memoryless setting by Gallager [8]), for 2-

receiver less-noisy broadcast channels [13], and for the two-receiver more-capable

broadcast channel [6].

Theorem 1 (Superposition-coding inner bound). A rate pair (R1, R2) is achiev-

able for the DMBC depicted in Figure 1.3 if

R1 ≤ I(X;Y1|U)

R2 ≤ I(U ;Y2)

6



R1 +R2 ≤ I(X;Y1)

for some pmf p(u, x) where U ∈ U is an auxiliary random variable and |U| ≤
|X |+ 1.

In the above region we assume that Y1 is the ”stronger” receiver.

While Gallager’s proof of the optimality of superposition-coding region ex-

tends to a broadcast channel where the marginal channels follow the degraded

partial order; the proofs for the less-noisy and more-capable do not extend. The

optimality of superposition-coding region for a 3-receiver broadcast channel where

the marginal channels follow the less-noisy partial order was recently established

in [17]; and remains open (open problem 5.1 in [7]) for 4 or more receivers un-

der a less-noisy ordering. Prior to the work included this thesis the optimality of

superposition-coding region for a 3-receiver broadcast channel where the marginal

channels follow the more-capable partial order was not known (open problem 5.2

in [7]). In this thesis we show that the capacity region for a 3-receiver broadcast

channel can be strictly larger than the one given by the superposition-coding

strategy. This results are first published in [20].

It is known that superposition-coding is not optimal for a general two-receiver

DMBC. The best known achievable region is the Marton’s inner bound [15]. It

is not yet known whether the rate region given by the achievable region below

differs from the true capacity region or not.

Theorem 2 (Marton’s inner bound). A rate pair (R1, R2) is achievable for the

DMBC depicted in Figure 1.3 if

R1 ≤ I(W,U1;Y1)

R2 ≤ I(W,U2;Y2)

R1 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(U1;Y1|W ) + I(U2;Y2|W )− I(U1;U2|W )

for some pmf p(w, u1, u2, x), where W , U1, U2 are auxiliary random variables and

(W,U1, U2)→ X → (Y1, Y2) forms a Markov chain.

Remark 2. A recent result by Gohari and Anantharam [10] showed that Marton’s

region can be evaluated by restricting to auxiliary variable satisfying cardinality

bounds |W| ≤ |X |+ 3, |U1| ≤ |X |, and |U2| ≤ |X |.

1.2 Interference channel

Interference channel models the communication of two (or more) sender/receiver

pairs with a shared medium for transmission. Like broadcast channel, charac-
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terization of the capacity region is a classical and fundamental open problem

in network information theory. With the vast interests in wireless communica-

tions nowadays and the prominent presence of interference under such settings,

characterization of the capacity region is becoming more urgent than ever.

A general discrete memoryless interference channel (DMIC) model ((X1 ×
X2), q(y1, y2|x1, x2),Y1 × Y2) with two sender/receiver pairs consists of finite al-

phabets X1, X2, one for each input/transmitter; finite alphabets Y1, Y2, one for

each output/receiver and a collection of channel transition pmfs q(y1, y2|x1, x2).

The interference channel shown in Figure 1.4 depicts the primary model used

in this thesis. Each sender wishes to communicate an independent, private mes-

sage Mr to its corresponding receiver r, r = 1, 2. The senders wish to maximize

the rate at which messages can be transmitted to their corresponding receivers

with a small probability of error.

M1

M2

Encoder 1

Encoder 2

Xn
1,1

Xn
2,1

∏n
i=1 q(y1,i, y2,i|x1,i, x2,i)

Y n
1,1

Y n
2,1

Decoder 1

Decoder 2

M̂1

M̂2

Figure 1.4: Discrete memoryless interference channel

A (2nR1 , 2nR2 , n) code of size (2nR1 , 2nR2) that uses the channel n times consists

of:

(i) two encoders, one for each sender. Encoder r maps the messages Mr from

the set [1, 2nRr ] to X n
r,1, r = 1, 2,

(ii) two decoders, one for each receiver. Decoder r maps the received sequence

in Ynr,1 to an estimated message M̂r in [1 : 2nRr ], r = 1, 2.

The performance metric for a code is the average probability of error, i.e., P
(n)
e =

Pr((M1,M2) 6= (M̂1, M̂2)) when (M1,M2) ∼ Unif([1, 2nR1 ]× [1, 2nR2 ]).

A rate tuple (R1, R2) is said to be achievable if there is a sequence of (2nR1 , 2nR2 , n)

codes such that P
(n)
e → 0 as n tends to infinity. Similar to that of DMC and

DMBC, the capacity region C of the DMIC is the closure of the set of all achiev-

able rate pairs (R1, R2). C is not known for a general DMIC.

Remark 3. The marginal transition probabilities q1(y1|x1, x2) and q2(y2|x1, x2)

uniquely determines the channel capacity region of the DMIC for similar reasons

as that of a DMBC.

The best known achievable region is described by Han–Kobayashi inner bound

[11].
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Theorem 3 (Han–Kobayashi (HK) inner bound). A rate-pair (R1, R2) is achiev-

able for the channel described in Figure 1.4 if

R1 < I(X1;Y1|U2, Q), (1.1)

R2 < I(X2;Y2|U1, Q), (1.2)

R1 +R2 < I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q), (1.3)

R1 +R2 < I(X2, U1;Y2|Q) + I(X1;Y1|U1, U2, Q), (1.4)

R1 +R2 < I(X1, U2;Y1|U1, Q)

+ I(X2, U1;Y2|U2, Q), (1.5)

2R1 +R2 < I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q)

+ I(X2, U1;Y2|U2, Q), (1.6)

R1 + 2R2 < I(X2, U1;Y2|Q) + I(X2;Y2‘|U1, U2, Q)

+ I(X1, U2;Y1|U1, Q) (1.7)

for some pmf p(q)p(u1, x1|q)p(u2, x2|q), where U1, U2 and Q are auxiliary random

variables. U1 ∈ U1, U2 ∈ U2 and Q ∈ Q. |U1| ≤ |X1| + 4, |U2| ≤ |X2| + 4, and

|Q| ≤ 7.

The set of achievable rate pairs form the Han–Kobayashi achievable region,

or HK region by short, and is denoted by H . This region becomes the HK inner

bound on capacity.

HK inner bound subsumes all other known inner bounds but the two auxiliary

random variables U1, U2 and the presence of the various constraints makes the

(numerical) evaluation of the bound impractical under most circumstances. The

capacity region is known when the interference is strong [21, 3].

In this thesis we investigate the capacity region under the opposite end of the

spectrum, i.e., when the interference is very weak. A naive strategy (as well as

HK strategy) for maximizing the sum-rate under this setting would be to treat

interference as noise and we show that for some subset of channels in this class, the

above strategy is indeed optimal (see Chapter 3). The results are first published

in [14].

Further restricting to an even smaller subset, where computation of the entire

HK region becomes numerically tractable, we show in Chapter 4 that by consid-

ering multi-letter extensions, there are channels where the HK strategy is strictly

sub-optimal. The results are first published in [18].
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Chapter 2

More-capable three-receiver

discrete memoryless broadcast

channel with private message sets

A three-receiver more-capable DMBC (X , q(y1, y2, y3|x),Y1 × Y2 × Y3) has one

sender X, three receivers Y1, Y2, Y3 with the corresponding marginal channels

q1(y1|x), q2(y2|x) and q3(y3|x) satisfy q1

m.c.

� q2

m.c.

� q3.

In this chapter we show that superposition-coding is sum-rate optimal for

general k-receiver DMBCs. However, we show by example that superposition-

coding is sub-optimal when we consider the whole capacity region of the three-

receiver more-capable DMBC. We further establish the true capacity region of

the counter-example. Finally, we investigate superposition-coding’s optimality

when we impose stronger partial orders between some pairs of receivers.

2.1 Superposition-coding inner bound for three-

receiver DMBC

The following theorem presents the superposition-coding inner bound for a three-

receiver DMBC; where receiver Y1 decodes the messages for Y2 and Y3, and re-

ceiver Y2 decodes the message for receiver Y3; implying an implicit order in their

decoding capabilities.

Theorem 4 (Superposition-coding inner bound for three-receiver DMBC). For a

three-receiver DMBC (X , q(y1, y2, y3|x),Y1×Y2×Y3) with one sender X, three re-

ceivers Y1, Y2, Y3 and private message sets (M1,M2,M3), a rate tuple (R1, R2, R3)

is achievable if

R3 ≤ I(U3;Y3) (2.1)
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R2 +R3 ≤ I(U2;Y2|U3) + I(U3;Y3) (2.2)

R2 +R3 ≤ I(U2, U3;Y2) (2.3)

R1 +R2 +R3 ≤ I(X;Y1|U2, U3) + I(U2;Y2|U3) + I(U3;Y3) (2.4)

R1 +R2 +R3 ≤ I(X;Y1|U2, U3) + I(U2, U3;Y2) (2.5)

R1 +R2 +R3 ≤ I(X;Y1|U3) + I(U3;Y3) (2.6)

R1 +R2 +R3 ≤ I(X;Y1) (2.7)

for some auxiliary random variables U2, U3 over U2, U3, respectively, where |U2| ≤
|X |+ 1, |U3| ≤ |X |+ 4 and (U3, U2)→ X → (Y1, Y2, Y3) forms a Markov chain.

Remark 4. The cardinality bounds on the auxiliary random variables are obtained

from standard cardinality bounding techniques in Appendix B.

We show in the following sub-section that, if we restrict ourselves to sum-rate

R1 +R2 +R3, superposition-coding achieves the sum-rate capacity Cs.

2.1.1 Optimality of superposition-coding for sum-rate

It has been shown in [9] that the more-capable ordering is a much weaker ordering

than less-noisy ordering. In particular, it was shown that if one substitutes a

receiver (in a two-receiver broadcast channel) with a more-capable receiver then

the capacity region could strictly decrease (!). Further it was also shown that such

a phenomenon would not occur for less-noisy ordering. Hence sub-optimality of

superposition-coding for three-receiver more-capable DMBC, once proven, should

not come as very surprising. However, based on the work in [9], a natural instinct

for beating superposition-coding’s achievable region would be to show that the

maximum sum-rate achieved by superposition-coding is strictly smaller than the

sum-rate capacity. This fails, however, as we show below that the sum-rate

capacity of any k-receiver DMBC can be achieved by transmitting solely to the

best receiver.

Theorem 5. Any achievable rate tuple (R1, . . . , Rk) for a k-receiver more-capable

DMBC with private message sets (M1,M2, . . . ,Mk) must satisfy

R1 +R2 + · · ·+Rk ≤ max
p(x)

I(X;Y1). (2.8)

Proof. We will prove the theorem for three-receiver more-capable channels, the

proof for more receivers shall follow with similar steps. Note that

n(R1 +R2 +R3)− nεn
(a)

≤ I(M1;Y n
1,1) + I(M2;Y n

2,1|M1) + I(M3;Y n
3,1|M2,M1)

11



≤ I(M1;Y n
1,1) + I(M2;Y n

2,1|M1) +
n∑
i=1

I(Xi;Y3,i|M2,M1, Y
i−1

3,1 ) (2.9)

= I(M1;Y n
1,1) +

n∑
i=1

(
I(Xi;Y3,i|M2,M1, Y

n
2,i+1, Y

i−1
3,1 ) + I(Y n

2,i+1;Y3,i|M2,M1, Y
i−1

3,1 )

+ I(M2;Y2,i|M1, Y
n

2,i+1)
)

(b)
= I(M1;Y n

1,1) +
n∑
i=1

(
I(Xi;Y3,i|M2,M1, Y

n
2,i+1, Y

i−1
3,1 ) + I(Y i−1

3,1 ;Y2,i|M2,M1, Y
n

2,i+1)

+ I(M2;Y2,i|M1, Y
n

2,i+1)
)

= I(M1;Y n
1,1) +

n∑
i=1

(
I(Xi;Y3,i|M2,M1, Y

n
2,i+1, Y

i−1
3,1 ) + I(M2, Y

i−1
3,1 ;Y2,i|M1, Y

n
2,i+1)

)
(c)

≤ I(M1;Y n
1,1) +

n∑
i=1

(
I(Xi;Y2,i|M2,M1, Y

n
2,i+1, Y

i−1
3,1 ) + I(M2, Y

i−1
3,1 ;Y2,i|M1, Y

n
2,i+1)

)
= I(M1;Y n

1,1) +
n∑
i=1

I(Xi;Y2,i|M1, Y
n

2,i+1) (2.10)

(d)
=

n∑
i=1

(
I(Xi;Y2,i|M1, Y

n
2,i+1, Y

i−1
1,1 ) + I(M1, Y

n
2,i+1;Y1,i|Y i−1

1,1 )
)

(e)

≤
n∑
i=1

(
I(Xi;Y1,i|M1, Y

n
2,i+1, Y

i−1
1,1 ) + I(M1, Y

n
2,i+1;Y1,i|Y i−1

1,1 )
)

=
n∑
i=1

I(Xi;Y1,i|Y i−1
1,1 )

≤ nmax
p(x)

I(X;Y1)

As n→∞ we have εn → 0 and

R1 +R2 +R3 ≤ max
p(x)

I(X;Y1),

which, as we mentioned before, is achieved by transmitting solely to the best

receiver with superposition-coding.

In the above chain of inequalities we have used Fano’s inequality (inequality

(a)), chain-rule for mutual information, data-processing inequality, Csiszár’s sum

lemma (equalities (b),(d)) and the more-capable ordering (inequalities (c),(e)).

The data-processing inequalities used above come from the following Markov

chain

(Y i−1
1,1 , Y n

2,i+1, Y
i−1

3,1 ,M1,M2,M3)→ Xi → (Y1,i, Y2,i, Y3,i).

Further, we can see from the similarities between step (2.9) and step (2.10)

that the proof extends to the general k-receiver case by eliminating one receiver

at a time.
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Remark 5. This is the first converse proof presented in this thesis. A converse

proof proves that no higher rates can be achieved above a particular rate while

a coding strategy gives achievable rates. All traditional converse proofs resemble

this one in the sense that they invokes the same set of lemmas and inequalities

(Fano’s inequality, chain rule for mutual information, data processing inequality

and Csiszár’s sum lemma etc.). This thesis is about going beyond the traditional

techniques used in converse proofs.

2.2 Sub-optimality of superposition-coding for

three-receiver more-capable DMBC

Theorem 5 implies that it is not possible to beat the sum-rate. We prove the

sub-optimality of superposition-coding by constructing a particular channel and

beating the superposition-coding region along hyperplanes other than the sum-

rate.

2.2.1 Channel construction

The particular channel we use is a three-receiver DMBC with X ∈ {0, 1}, Y1 ∈
{0, 1, e}, Y2 ∈ {0, 1, e} and Y3 ∈ {0, 1}, where the channel from X to Y1, Y2 and Y3

are BEC(ε1), BEC(ε2) and BSC(p), respectively (see Figure 2.1). Let p ∈ [0, 1
2
],

ε1 = 2p and ε2 = H(p), then from [16] we know that this is a three-receiver

more-capable DMBC.

X
0

1

ε2
0
e

1
Y2

ε1

0
e

1
Y1

p 0

1
Y3

Figure 2.1: Three-receiver more-capable channel with ε1 = 2p and ε2 = H(p)

2.2.2 Beating the superposition-coding region

Let C denote the true (as yet unknown) capacity region and S denote the

superposition-coding region. Suppose the private message rates are R1, R2 and
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R3 for receivers Y1, Y2 and Y3, respectively. We try to evaluate the following:

T = max
(R1,R2,R3)∈C

R1

1− ε1
+
R2 +R3

1− ε2
.

Lemma 1. For any (R∗1, R
∗
2, R

∗
3) ∈ S , we have

R∗1
1− ε1

+
R∗2 +R∗3
1− ε2

≤ 1.

Proof. Suppose (R∗1, R
∗
2, R

∗
3) ∈ S , plugging (R∗1, R

∗
2 + R∗3, 0) into the region in

Theorem 4, we see that (R∗1, R
∗
2 +R∗3, 0) ∈ S .

The channel X → (Y1, Y2) is a degraded DMBC and its capacity region is

known to be the union of all non-negative rate pairs (R1, R2) satisfying

R1 ≤ I(X;Y1|U),

R2 ≤ I(U ;Y2),

where U is an auxiliary random variable and U → X → (Y1, Y2) forms a Markov

chain.

Therefore, we have

R∗1
1− ε1

+
R∗2 +R∗3
1− ε2

≤ I(X;Y1|U)

1− ε1
+
I(U ;Y2)

1− ε2
. (2.11)

Also, note that X → (Y1, Y2) consists of two BECs. Thus, for any U →
X → (Y1, Y2), we have I(U ;Y2) = I(U ;X) − I(U ;X|Y2) = (1 − ε2)I(U ;X) and

I(X;Y1|U) = H(X|U)−H(X|Y1, U) = (1− ε1)H(X|U). Putting them back into

(2.11), we get

R∗1
1− ε1

+
R∗2 +R∗3
1− ε2

≤ H(X|U) + I(U ;X) = H(X) ≤ 1.

Lemma 1 implies that if superposition-coding were optimal, we would have

T ≤ 1.

Next, we show that one can actually achieve T > 1. Instead of treating Y2

as the second best receiver, we ignore Y2 completely; i.e., it does not need to

decode any message. This way the channel is transformed into a two-receiver

degraded DMBC with receivers Y1 and Y3. Using superposition-coding on this

two-receiver channel, we can achieve R1 = I(X;Y1|U), R3 = I(U ;Y3) for any

14



U → X → (Y1, Y3). Hence

T ≥ max
U→X→(Y1,Y2,Y3)

I(X;Y1|U)

(1− ε1)
+
I(U ;Y3)

1− ε2
= max

U→X→(Y1,Y2,Y3)

I(X;Y1|U)

(1− ε1)
+

I(U ;Y3)

1−H(p)
.

Let U → X be a BSC with crossover probability s, 0 < s < 1
2
. Further, let

P (U = 0) = 1
2
. We have,

T ≥ I(X;Y1|U)

1− ε1
+

I(U ;Y3)

1−H(p)
=

(1− ε1)H(s)

1− ε1
+

1−H(s ∗ p)
1−H(p)

= H(s) +
1−H(s ∗ p)

1−H(p)
.

(2.12)

By setting p and s to 1
10

, we see that

T ≥ H(s) +
1−H(s ∗ p)

1−H(p)
= H(0.1) +

1−H(0.18)

1−H(0.1)
≥ 1.07.

Therefore, superposition-coding cannot be optimal.

2.2.3 Alternative achievable region for three-receiver more-

capable DMBC

Since the sum-rate capacity is bounded by what we could transmit to receiver

Y1, as shown in Theorem 5, a natural guess would be to allow Y1 to decode all

the messages. On top of that, deploying Marton’s binning scheme to transmit

non-nested messages to receivers Y2 and Y3, we get an alternative achievable

region.

Theorem 6. Consider a three receiver more-capable broadcast channel with Y1 be-

ing the most capable receiver and Y3 the least, a non-negative rate tuple (R1, R2, R3)

is achievable if

R2 ≤ I(U2,W ;Y2)

R3 ≤ I(U3,W ;Y3)

R2 +R3 ≤ min
{
I(W ;Y2), I(W ;Y3)

}
+ I(U2;Y2|W ) + I(U3;Y3|W )

− I(U2;U3|W )

R1 +R2 +R3 ≤ I(X;Y1)

R1 +R2 +R3 ≤ I(U2,W ;Y2) + I(X;Y1|U2,W )

R1 +R2 +R3 ≤ I(U3,W ;Y3) + I(X;Y1|U3,W )

R1 +R2 +R3 ≤ min
{
I(W ;Y2), I(W ;Y3)

}
+ I(U2;Y2|W ) + I(U3;Y3|W )

+ I(X;Y1|U2, U3,W )− I(U2;U3|W )
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R1 + 2R2 + 2R3 ≤ I(U2,W ;Y2) + I(U3,W ;Y3) + I(X;Y1|W )− I(U2;U3|W )

2R1 + 2R2 + 2R3 ≤ I(U2,W ;Y2) + I(U3,W ;Y3) + I(X;Y1|U2, U3,W )

+ I(X;Y1|W )− I(U2;U3|W )

where W , U2, U3 are auxiliary random variables and (W,U2, U3)→ X → (Y1, Y2, Y3)

forms a Markov chain.

Proof. The proof follows standard techniques of random binning, superposition-

coding, and jointly typical decoding. Receiver Y2 decodes (Un
2,1,W

n), receiver Y3

decodes (Un
3,1,W

n), and receiver Y1 decodes (W n, Un
2,1, U

n
3,1, X

n). The analysis is

routine and straightforward (but messy) and hence is omitted.

Remark 6. Fourier-Motzkin elimination gives 0 ≤ I(U2;Y2|W ) + I(U3;Y3|W ) −
I(U2;U3|W ) as one of the final conditions but it is easy to see that this is redun-

dant to the computation of the region.

2.2.4 Capacity region of the particular channel construc-

tion

In the event where both Y2 and Y3 are stochastically degraded versions of Y1(as

in the counter example), the achievable region in Theorem 6 reduces to

R1 +R2 +R3 ≤ min
{
I(W ;Y2), I(W ;Y3)

}
+ I(U2;Y2|W ) + I(U3;Y3|W )

+ I(X;Y1|U2, U3,W )− I(U2;U3|W )

R2 +R3 ≤ min
{
I(W ;Y2), I(W ;Y3)

}
+ I(U2;Y2|W ) + I(U3;Y3|W )

− I(U2;U3|W ) (2.13)

R2 ≤ I(U2,W ;Y2)

R3 ≤ I(U3,W ;Y3) (2.14)

Further since Y3 is essentially less-noisy [16] than Y2 in the counter exam-

ple, by symmetrization argument1 we can assume P(X = 0) = 1
2
, and hence

I(U2,W ;Y3) ≥ I(U2,W ;Y2). Therefore we can set W̃ = (U2,W ), Ũ2 = ∅ and

Ũ3 = U3 to obtain the following achievable region:

Theorem 7. For the channel depicted in 2.1, the union of rate triples (R1, R2, R3)

satisfying

R1 +R2 +R3 ≤ I(W̃ ;Y2) + I(Ũ3;Y3|W̃ ) + I(X;Y1|Ũ3, W̃ )

1Symmetrization argument can be found in [16, 19, 9] or in Chapter 5 of [7]. The main
purpose of this argument is to show that points on the boundary for a binary input symmetric
output channels can be computed using distributions that satisfy P(X = 0) = 1

2 .
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R2 +R3 ≤ I(W̃ ;Y2) + I(Ũ3;Y3|W̃ )

R2 ≤ I(W̃ ;Y2)

over all (W̃ , Ũ3)→ X → (Y1, Y2, Y3) is achievable.

This is just superposition-coding treating Y3 as the second best receiver. We

will prove that this is indeed the capacity region for the particular channel con-

struction.

Note that it suffices to just show a converse to Theorem 7 to establish the

capacity region.

The arguments are reasonably routine once the identifications of the auxiliaries

have been made: Ũ3,i = (M3, Y
i−1

1,1 ) and W̃i = (M2, Y
n

3,i+1, Y
i−1

2,1 ).

Observe that

n(R1 +R2 +R3)− nεn
≤ I(M2;Y n

2,1) + I(M3;Y n
3,1|M2) + I(M1;Y n

1,1|M2,M3)

=
n∑
i=1

I(M1;Y1,i|M2,M3, Y
i−1

1,1 ) + I(M3;Y n
3,1|M2) + I(M2;Y n

2,1)

≤ I(M2;Y n
2,1) +

n∑
i=1

(
I(M1;Y1,i|M2,M3, Y

n
3,i+1, Y

i−1
1,1 ) + I(Y n

3,i+1;Y1,i|M2,M3, Y
i−1

1,1 )

+ I(M3;Y3,i|Y n
3,i+1,M2)

)
(a)
= I(M2;Y n

2,1) +
n∑
i=1

(
I(M1;Y1,i|M2,M3, Y

n
3,i+1, Y

i−1
1,1 ) + I(M3, Y

i−1
1,1 ;Y3,i|Y n

3,i+1,M2)
)

≤
n∑
i=1

I(M2;Y2,i|Y i−1
2,1 ) + I(M3, Y

i−1
1,1 ;Y3,i|Y n

3,i+1,M2, Y
i−1

2,1 ) + I(Y i−1
2,1 ;Y3,i|Y n

3,i+1,M2)

+ I(M1;Y1,i|M2,M3, Y
n

3,i+1, Y
i−1

1,1 )

(b)
=

n∑
i=1

I(Y n
3,i+1,M2;Y2,i|Y i−1

2,1 ) + I(M1;Y1,i|M2,M3, Y
n

3,i+1, Y
i−1

1,1 )

+ I(M3, Y
i−1

1,1 ;Y3,i|Y n
3,i+1,M2, Y

i−1
2,1 )

≤
n∑
i=1

I(Y n
3,i+1, Y

i−1
2,1 ,M2;Y2,i) + I(Xi;Y1,i|M2,M3, Y

n
3,i+1, Y

i−1
1,1 )

+ I(M3, Y
i−1

1,1 ;Y3,i|Y n
3,i+1,M2, Y

i−1
2,1 )

(c)
=

n∑
i=1

I(Y n
3,i+1, Y

i−1
2,1 ,M2;Y2,i) + I(M3, Y

i−1
1,1 ;Y3,i|Y n

3,i+1,M2, Y
i−1

2,1 )

+ I(Xi;Y1,i|M2,M3, Y
n

3,i+1, Y
i−1

1,1 , Y i−1
2,1 )

=
n∑
i=1

I(Xi;Y1,i|Ũ3,i, W̃i) + I(Ũ3,i;Y3,i|W̃i) + I(W̃i;Y2,i).
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We used Fano’s inequality, Csiszar sum-lemma (equalities (a), (b)), data-processing

inequality, and chain rule of mutual information in the above analysis. All the

data processing inequalities come from the following Markov chain:

(M1,M2,M3, Y
n

3,i+1, Y
i−1

1,1 , Y i−1
2,1 )→ Xi → (Y1,i, Y2,i, Y3,i).

Equality (c) comes from the fact that Y2 is a degraded version2 of Y1 and hence

Y i−1
2,1 → Y i−1

1,1 → (M1,M2,M3, Y
n

3,i+1, Xi, Y1,i, Y2,i, Y3,i)

forms a Markov chain.

Finally, let Q be an independent random variable distributed uniformly in

[1 : n] and set W̃ = (W̃Q, Q), Ũ3 = Ũ3Q, X = XQ.

The other inequalities follow a similar (but simpler) line of reasoning. Observe

that

n(R2 +R3)− nεn
≤ I(M2;Y n

2,1) + I(M3;Y n
3,1|M2)

=
n∑
i=1

I(M2;Y2,i|Y i−1
2,1 ) + I(M3;Y3,i|M2, Y

n
3,i+1)

≤
n∑
i=1

I(M2;Y2,i|Y i−1
2,1 ) + I(Y i−1

2,1 ;Y3,i|M2, Y
n

3,i+1)

+ I(M3;Y3,i|M2, Y
n

3,i+1, Y
i−1

2,1 )

=
n∑
i=1

I(M2, Y
n

3,i+1;Y2,i|Y i−1
2,1 ) + I(M3;Y3,i|M2, Y

n
3,i+1, Y

i−1
2,1 )

≤
n∑
i=1

I(M2, Y
n

3,i+1, Y
i−1

2,1 ;Y2,i) + I(M3, Y
i−1

1,1 ;Y3,i|M2, Y
n

3,i+1, Y
i−1

2,1 )

=
n∑
i=1

I(W̃i;Y2,i) + I(Ũ3,i;Y3,i|W̃i).

The last inequality (on R2) is very straightforward with this identification and

is omitted. This completes the proof for the capacity region of the channel in

Figure 2.1.

Remark 7. It may appear a bit strange to see that even though superposition-

coding in the natural more-capable ordering (i.e., Y1 better than Y2 better than

Y3) is sub-optimal, a re-ordering of the receivers, i.e., Y1 better than Y3 better

than Y2, could make superposition-coding optimal again. But of course, this

2Since capacity region just depends on the marginals q1(y1|x), q2(y2|x), q3(y3|x) we can with-
out loss of generality assume that in the example in Figure 2.1 Y2 is a physically degraded version
of Y1.
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is a carefully chosen channel construction and hence the peculiar situation. It

is natural to ask whether there exists a three-receiver more-capable broadcast

channel where superposition-coding is not optimal with either ordering. We will

show such an example (a minor perturbation of the example in Figure 2.1) in the

next section.

2.2.5 A modified channel construction

Consider the same channel as in Figure 2.1. Set ε1 = 2 ∗ 0.1 = 0.2, ε2 = H(0.1).

Slightly change the value of p from 0.1 to 0.11. Clearly since the new receiver Y3

is a degraded version of the old receiver Y3 (which was BSC(0.1)), this setting is

still a three-receiver more-capable channel. As before, we try to maximize

T = max
(R1,R2,R3)∈C

R1

1− ε1
+
R2 +R3

1− ε2
.

If superposition-coding in the more-capable ordering were optimal, then again

the same arguments would imply that T ≤ 1. However if we again ignore Y2

and use superposition-coding between receivers Y1 and Y3 we can obtain, taking

U → Xto be BSC(0.1) with uniform distribution,

T ≥ I(X;Y1|U)

1− ε1
+
I(U ;Y3)

1− ε2

= H(0.1) +
1−H(0.11 ∗ 0.1)

1−H(0.1)

≥ 1.039.

Hence, superposition-coding in the more-capable ordering is not optimal.

To show that superposition-coding in the Y1, Y3, Y2 ordering is not optimal

either, we maximize

T = max
(R1,R2,R3)∈C

R2 +R3.

If superposition-coding in Y1, Y3, Y2 ordering were optimal, this would be the same

as maximizing R3, whose maximum is 1−H(0.11) ≈ 0.501. On the other hand, by

just transmitting to receiver Y2 we can obtain R2 = 1− ε2 = 1−H(0.1) ≥ 0.531.

Thus, superposition-coding in the Y1, Y3, Y2 order is also not optimal for this

modified counter example.

Remark 8. The converse in the last section continues to hold for this modified

setting. However since Y3 is no longer an essentially less-noisy receiver than Y2,

the achievability of the region depicted by Theorem 7 fails to be true.

Remark 9. A natural conjecture for the capacity region in this modified coun-

terexample would be given by the constraints in Equations (2.13) though a proof
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yet to be formulated.

2.3 Optimality of superposition-coding for three-

receiver DMBC with enhanced partial or-

ders

We used the more mathematically clean version of the definition for more-capable

in previous parts. We revisit the original definition made by Körner and Marton,

for both more-capable and less-noisy, here for drawing intuition regarding the

optimality of superposition-coding with enhanced partial orders.

Definition 4 (Equivalent definition of more-capable). For a DMBC with one

sender X and two receivers Y1, Y2 with corresponding marginal channels q1 and

q2, we say that q1 is more-capable than q2 and is denoted as q1

m.c.

� q2 if for every

ε-error channel codebook3 of size 2nR from sender X to Y2, there exists an ε′-error

channel codebook of size 2n(R−δ) from sender X to Y1 where δ, ε′ → 0 as ε→ 0.

In words, this definition implies that any good codebook for receiver Y2 has a

sub-codebook of essentially the same rate that can be decoded by receiver Y1.

Consider a set A ⊆ X n and let 0 < η < 1. Let q be a channel that transforms

X to Y , where Y is a random variable over alphabet Y . Given a distribution

P (x), let Q(y) be the induced distribution on Y by the channel q. Let Qn denote

the product distribution on Yn. We denote the size of the image of cluster A
under (independent uses of) q, corresponding to input distribution P as

Gq,P (A, η) = min{Qn(B) : B ⊆ Yn, qn(Y n ∈ B|xn) ≥ η, ∀xn ∈ A}.

Definition 5 (Equivalent definition of less-noisy). For a DMBC with one sender

X and two receivers Y1, Y2 with corresponding channels q1 and q2, we say that

Y1 is less-noisy than Y2 and is denoted as q1

l.n.

� q2 if

lim inf
n→∞

min
B⊆Xn

1

n

(
logGq1,p(x)(B, η)− logGq2,p(x)(B, η)

)
≥ 0

for every distribution p(x) on X and every 0 < η < 1.

One can, using a bit of work, interpret this as the following: consider a set

comprised of different clusters; if receiver Y2 can distinguish between the clusters,

then receiver Y1 can also essentially distinguish between these clusters.

3An ε-error codebook of size 2nR for Y2 consists of a set of codewords xn(m), m ∈ [1 : 2nR]
and disjoint decoding regions B(m) ∈ Yn

2,1 such that qn2,1(Y n
2,1 /∈ B(m)|xn(m) is transmitted) <

ε, ∀m.
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Remark 10. Using the above definitions one can reconcile the reason for the sub-

optimality of the superposition-coding strategy for three receiver more-capable

broadcast channel. We claim that it may not be possible for receiver Y2 to

decode the message for receiver Y3. Upon decoding M2 = m2, receiver Y2 has a

list consisting of codewords of the type xn(∗,m2, ∗) as the potential transmitted

codewords. Receiver Y3 is only guaranteed to distinguish between clusters (within

this list) of the form xn(∗,m2, k) and xn(∗,m2, j) for k 6= j. However a more-

capable ordering is too weak to guarantee that Y2 can also distinguish between the

clusters, while a less noisy ordering guarantees this. Using a cut-set bound like

argument, one can see that receiver Y1 should be able to decode all the messages.

To understand the ordering requirements among the three channels such that

superposition-coding region remains optimal, we divide the collection of channels

into various sub-classes defined by their pairwise ordering.

q1

m.c.

� q2, q2

m.c.

� q3, q1

m.c.

� q3

q1

l.n.

� q2, q2

m.c.

� q3, q1

m.c.

� q3 q1

m.c.

� q2, q2

m.c.

� q3, q1

l.n.

� q3 q1

m.c.

� q2, q2

l.n.

� q3, q1

m.c.

� q3

q1

s.d.

� q2, q2

m.c.

� q3, q1

m.c.

� q3 q1

l.n.

� q2, q2

m.c.

� q3, q1

l.n.

� q3 q1

m.c.

� q2, q2

s.d.

� q3, q1

m.c.

� q3q1

m.c.

� q2, q2

l.n.

� q3, q1

l.n.

� q3

q1

s.d.

� q2, q2

m.c.

� q3, q1

l.n.

� q3 q1

l.n.

� q2, q2

m.c.

� q3, q1

s.d.

� q3 q1

l.n.

� q2, q2

l.n.

� q3, q1

l.n.

� q3 q1

m.c.

� q2, q2

l.n.

� q3, q1

s.d.

� q3 q1

m.c.

� q2, q2

s.d.

� q3, q1

l.n.

� q3

q1

s.d.

� q2, q2

m.c.

� q3, q1

s.d.

� q3 q1

s.d.

� q2, q2

l.n.

� q3, q1

l.n.

� q3 q1

l.n.

� q2, q2

s.d.

� q3, q1

l.n.

� q3q1

l.n.

� q2, q2

l.n.

� q3, q1

s.d.

� q3 q1

m.c.

� q2, q2

s.d.

� q3, q1

s.d.

� q3

q1

s.d.

� q2, q2

l.n.

� q3, q1

s.d.

� q3 q1

l.n.

� q2, q2

s.d.

� q3, q1

s.d.
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� q2, q2

s.d.

� q3, q1

s.d.

� q3

Figure 2.2: Relationship diagram of non-empty sub-classes of three-receiver more-
capable DMBC and sub-optimality/optimality of superposition coding

Figure 2.2 depicts the relationship of all non-empty sub-classes of 3-receiver

DMBCs as a tree diagram. Each node indicates a non-empty sub-class. Any

parent node would be a larger sub-class and includes all its child nodes. For

example, q1

s.d.

� q2, q2

l.n.

� q3, q1

l.n.

� q3 is a larger sub-class than its child q1

s.d.

�
q2, q2

l.n.

� q3, q1

s.d.

� q3 because the former one only requires less-noisy ordering

between q1 and q3 while the latter one requires the more restrictive degraded

ordering. On top of this figure we have the most general 3-receiver more-capable

DMBC while at the bottom we have the most restrictive 3-receiver degraded

DMBC. We have shown using an example from sub-class q1

s.d.

� q2, q2

m.c.

� q3, q1

s.d.

�
q3 that superposition-coding region is strictly sub-optimal, therefore it remains

strictly sub-optimal for all its ancestor nodes, indicated in purple. On the other

hand, it is previously known that superposition-coding is optimal for 3-receiver
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less-noisy DMBC indicated as node q1

l.n.

� q2, q2

l.n.

� q3, q1

l.n.

� q3, therefore we

know superposition-coding remains optimal for all its descendants.

The intuition in Remark 10 suggests that superposition-coding should be opti-

mal for all remaining sub-classes because they all satisfied q2

l.n.

� q3. However, we

have been unable to show it for all of them. In the rest of this chapter we show the

optimality of superposition-coding region for node q1

m.c.

� q2, q2

l.n.

� q3, q1

s.d.

� q3

and node q1

m.c.

� q2, q2

s.d.

� q3, q1

l.n.

� q3, which then implies the optimality result

for node q1

m.c.

� q2, q2

s.d.

� q3, q1

s.d.

� q3. All nodes where superposition-coding

region is proven to be optimal are colored in gold.

Both sub-classes q1

m.c.

� q2, q2

l.n.

� q3, q1

s.d.

� q3 and q1

m.c.

� q2, q2

s.d.

� q3, q1

l.n.

�
q3 satisfy q2

l.n.

� q3 and q1

l.n.

� q3, therefore we have I(U2;Y2|U3) + I(U3;Y3) ≤
I(U2;Y2|U3) + I(U3;Y2) = I(U2, U3;Y2) and I(X;Y1|U3) + I(U3;Y3) ≤ I(X;Y1).

Thus, the superposition-coding inner bound constraints stated in Theorem 4 could

be simplified.

Lemma 2 (Superposition-coding inner bound for a subset of three-receiver DMBC).

For a three-receiver DMBC (X , q(y1, y2, y3|x),Y1 × Y2 × Y3) with one sender X,

three receivers Y1, Y2, Y3 and private message sets (M1,M2,M3), if q1

l.n.

� q3 and

q2

l.n.

� q3, then a rate tuple (R1, R2, R3) is achievable if

R3 ≤ I(U3;Y3)

R2 +R3 ≤ I(U2;Y2|U3) + I(U3;Y3)

R1 +R2 +R3 ≤ I(X;Y1|U2, U3) + I(U2;Y2|U3) + I(U3;Y3)

R1 +R2 +R3 ≤ I(X;Y1|U3) + I(U3;Y3)

for some auxiliary random variables U2, U3 over U2, U3, respectively, where |U2| ≤
|X |+ 1, |U3| ≤ |X |+ 4 and (U3, U2)→ X → (Y1, Y2, Y3) forms a Markov chain.

We omit the proof here because it is standard and straightforward. We also

need the following Lemma before proceeding to proving the optimality results.

Lemma 3. For a two-receiver broadcast channel X → (Z1, Z2), suppose M →

Xn → (Zn
1,1, Z

n
2,1) forms a Markov chain and Z1

l.n.

� Z2, then we have for any

positive integer i ≤ n

I(Zi−1
1,1 ;Z1,i|M) ≥ I(Zi−1

2,1 ;Z1,i|M)

Proof.

I(Zi−1
1,1 ;Z1,i|M)
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= I(Zi−2
1,1 , Z1,i−1;Z1,i|M)

= I(Zi−2
1,1 ;Z1,i|M) + I(Z1,i−1;Z1,i|M,Zi−2

1,1 )

(a)

≥ I(Zi−2
1,1 ;Z1,i|M) + I(Z2,i−1;Z1,i|M,Zi−2

1,1 )

= I(Z2,i−1, Z
i−2
1,1 ;Z1,i|M)

= I(Z2,i−1, Z
i−3
1,1 , Z1,i−2;Z1,i|M)

= I(Z2,i−1, Z
i−3
1,1 ;Z1,i|M) + I(Z1,i−2;Z1,i|M,Z2,i−1, Z

i−3
1,1 )

(b)

≥ I(Z2,i−1, Z
i−3
1,1 ;Z1,i|M) + I(Z2,i−2;Z1,i|M,Z2,i−1, Z

i−3
1,1 )

= I(Zi−1
2,i−2, Z

i−3
1,1 ;Z1,i|M)

≥ · · ·

≥ I(Zi−1
2,1 ;Z1,i|M),

where (a) comes from the Markov chain (M,Zi−2
1,1 , Z1,i)→ X1,i−1 → (Z1,i−1, Z2,i−1)

and the less-noisy condition, (b) comes from the Markov chain (M,Z2,i−1, Z
i−3
1,1 , Z1,i)

→ X1,i−1 → (Z1,i−2, Z2,i−2) and the less-noisy condition. The chain of inequalities

follow from similar arguments.

We first prove the optimality of superposition-coding region for the sub-class

where q1

m.c.

� q2, q2

s.d.

� q3, q1

l.n.

� q3.

Theorem 8. For a three-receiver DMBC (X , q(y1, y2, y3|x),Y1 × Y2 × Y3) with

one sender X, three receivers Y1, Y2, Y3 and private message sets (M1,M2,M3),

if q1

m.c.

� q2, q2

s.d.

� q3 and q1

l.n.

� q3, then superposition-coding inner bound as

stated in Lemma 2 is capacity region.

Proof. Setting U3,i = (M3, Y
n

3,,i+1) and U2,i = (M2, Y
n

2,,i+1, Y
i−1

1,1 ), we will prove the

following

nR3 ≤
n∑
i=1

I(U3,i;Y3,i) + nεn, (2.15)

nR2 ≤
n∑
i=1

I(U2,1;Y2,i|U3,i) + nεn, (2.16)

n(R1 +R2) ≤
n∑
i=1

I(Xi;Y1,i|U3,i) + nεn, (2.17)

n(R1 +R2) ≤
n∑
i=1

(I(Xi;Y1,i|U2,i, U3,i) + I(U2,i;Y2,i|U3,i)) + nεn, (2.18)

where εn → 0 as n→∞.
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Proof for (2.15):

nR3 − nεn ≤ I(M3;Y n
3,1) {Fano’s inequality}

=
n∑
i=1

I(M3;Y3,i|Y n
3,,i+1)

=
n∑
i=1

(
I(M3, Y

n
3,,i+1;Y3,i)− I(Y n

3,,i+1;Y3,i)
)

≤
n∑
i=1

I(M3, Y
n

3,,i+1;Y3,i)

=
n∑
i=1

I(U3,i;Y3,i)

Proof for (2.16):

nR2 − nεn ≤ I(M2;Y n
2,1|M3) {Fano’s inequality}

=
n∑
i=1

I(M2;Y2,i|M3, Y
n

2,,i+1)

≤
n∑
i=1

I(M2, Y
n

3,,i+1;Y2,i|M3, Y
n

2,,i+1)

=
n∑
i=1

(
I(M2, Y

n
3,,i+1, Y

n
2,,i+1;Y2,i|M3)− I(Y n

2,,i+1;Y2,i|M3)
)

=
n∑
i=1

(
I(M2, Y

n
2,,i+1;Y2,i|M3, Y

n
3,,i+1) + I(Y n

3,,i+1;Y2,i|M3)− I(Y n
2,,i+1;Y2,i|M3)

)
≤

n∑
i=1

I(M2, Y
n

2,,i+1;Y2,i|M3, Y
n

3,,i+1)

{less-noisy condition and Lemma 3}

≤
n∑
i=1

I(M2, Y
n

2,,i+1, Y
i−1

1,1 ;Y2,i|M3, Y
n

3,,i+1)

=
n∑
i=1

I(U2,i;Y2,i|U3,i)

Proof for (2.17):

n(R1 +R2)− nεn
≤ I(M1;Y n

1,1|M3) + I(M2;Y n
2,1|M1,M3) {Fano’s inequality}

≤ I(M1;Y n
1,1|M3) + I(Xn;Y n

2,1|M1,M3)

≤ I(M1;Y n
1,1|M3) + I(Xn;Y n

1,1|M1,M3) {more-capable condition}

= I(Xn;Y n
1,1|M3)
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=
n∑
i=1

I(Xi;Y1,i|M3, Y
n

1,,i+1)

=
n∑
i=1

(
I(Xi, Y

n
1,,i+1;Y1,i|M3)− I(Y n

1,,i+1;Y1,i|M3)
)

≤
n∑
i=1

(
I(Xi, Y

n
1,,i+1;Y1,i|M3)− I(Y n

3,,i+1;Y1,i|M3)
)

{less-noisy condition and Lemma 3}

=
n∑
i=1

(
I(Xi;Y1,i|M3)− I(Y n

3,,i+1;Y1,i|M3)
)

=
n∑
i=1

(
I(Xi, Y

n
3,,i+1;Y1,i|M3)− I(Y n

3,,i+1;Y1,i|M3)
)

=
n∑
i=1

I(Xi;Y1,i|M3, Y
n

3,,i+1)

=
n∑
i=1

I(Xi;Y1,i|U3,i)

Proof for (2.18):

n(R1 +R2)− nεn
≤ I(M1;Y n

1,1|M2,M3) + I(M2;Y n
2,1|M3) {Fano’s inequality}

=
n∑
i=1

(
I(M1;Y1,i|M2,M3, Y

i−1
1,1 ) + I(M2;Y2,i|M3, Y

n
2,,i+1)

)
=

n∑
i=1

(
I(M1;Y1,i|M2,M3, Y

i−1
1,1 , Y n

2,,i+1) + I(Y n
2,,i+1;Y1,i|M2,M3, Y

i−1
1,1 )

− I(Y n
2,,i+1;Y1,i|M1,M2,M3, Y

i−1
1,1 ) + I(M2;Y2,i|M3, Y

n
2,,i+1)

)
=

n∑
i=1

(
I(M1;Y1,i|M2,M3, Y

i−1
1,1 , Y n

2,,i+1) + I(Y i−1
,1 ;Y2,i|M2,M3, Y

n
2,,i+1)

− I(Y n
2,,i+1;Y1,i|M1,M2,M3, Y

i−1
1,1 ) + I(M2;Y2,i|M3, Y

n
2,,i+1)

)
{Csiszar’s Sum Lemma}

=
n∑
i=1

(
I(M1;Y1,i|M2,M3, Y

i−1
1,1 , Y n

2,,i+1) + I(M2, Y
i−1
,1 ;Y2,i|M3, Y

n
2,,i+1)

− I(Y n
2,,i+1;Y1,i|M1,M2,M3, Y

i−1
1,1 )

)
≤

n∑
i=1

(
I(Xi;Y1,i|M2,M3, Y

i−1
1,1 , Y n

2,,i+1, Y
n

3,,i+1) + I(Y n
3,,i+1;Y1,i|M2,M3, Y

i−1
1,1 , Y n

2,,i+1)

+ I(M2, Y
i−1
,1 ;Y2,i|M3, Y

n
2,,i+1)− I(Y n

2,,i+1;Y1,i|M1,M2,M3, Y
i−1

1,1 )
)

=
n∑
i=1

(
I(Xi;Y1,i|M2,M3, Y

i−1
1,1 , Y n

2,,i+1, Y
n

3,,i+1) + I(Y n
3,,i+1;Y1,i|M2,M3, Y

i−1
1,1 , Y n

2,,i+1)
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+ I(M2, Y
i−1
,1 , Y n

2,,i+1;Y2,i|M3, Y
n

3,,i+1)− I(Y n
3,,i+1;Y2,i|M2,M3, Y

i−1
1,1 , Y n

2,,i+1)

+ I(Y n
3,,i+1;Y2,i|M3)− I(Y n

2,,i+1;Y2,i|M3)− I(Y n
2,,i+1;Y1,i|M1,M2,M3, Y

i−1
1,1 )

)
≤

n∑
i=1

(
I(Xi;Y1,i|U2,i, U3,i) + I(U2,i;Y2,i|U3,i)

)
,

where the last inequality goes through because q2

s.d.

� q3.

Therefore, all constraints in the superposition-coding inner bound as stated in

Lemma 2 get a converse proof. Superposition-coding achievable region is capacity

region.

Next, we prove the optimality of superposition-coding for the sub-class where

q1

m.c.

� q2, q2

l.n.

� q3, q1

s.d.

� q3.

Theorem 9. For a three-receiver DMBC (X , q(y1, y2, y3|x),Y1 × Y2 × Y3) with

one sender X, three receivers Y1, Y2, Y3 and private message sets (M1,M2,M3),

if q1

m.c.

� q2, q2

l.n.

� q3 and q1

s.d.

� q3, then superposition-coding inner bound as

stated in Lemma 2 is capacity region.

We have seen from the proof of Theorem 8 the traditional way of proving

converse. In the following proof, we use another technique which shows two-letter

tensorization. The simplest form of this technique could be applied in the proof

of the capacity of a point-to-point discrete memoryless channel. We know that

maxp(x) I(X;Y ) is achievable. We also know that 1
n

maxp(xn) I(Xn;Y n) is an outer

bound. By showing

max
p(x1,x2)

I(X1, X2;Y1, Y2) = max
p(x1,x2)

H(Y1, Y2)−H(Y1, Y2|X1, X2)

= max
p(x1,x2)

H(Y1, Y2)−H(Y1|X1)−H(Y2|X2)

≤ max
p(x1,x2)

H(Y1) +H(Y2)−H(Y1|X1)−H(Y2|X2)

= max
p(x1,x2)

I(X1;Y1) + I(X2;Y2)

≤ max
p(x1)

I(X1;Y1) + max
p(x2)

I(X2;Y2),

we prove that the normalized two-letter rate does not exceed single letter rate,

we say that the two-letter expression tensorizes. As a consequence, we have

max
p(xn)

I(Xn;Y n) ≤ max
p(x1)

I(X1;Y1) + max
p(xn2,1)

I(Xn
2 ;Y n

2 ) ≤ . . .

≤ nmax
p(x)

I(X;Y ),
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and therefore showing that n-letter tensorizes as well, thus establishing the con-

verse.

Proof. In our particular setting, we know that superposition-coding region is

achievable. We also know that the normalized n-letter form of the region is

an outer bound. Therefore, if superposition-coding does not achieve a higher

normalized rate for a product channel of any two three-receiver DMBCs both

satisfying the partial orders listed in sub-class 12, superposition-coding inner

bound is capacity region.

To show two-letter tensorization, we first get the λ sum-rate (λ1R1 + λ2R2 +

λ3R3) of superposition-coding region where λ1, λ2, λ3 ≥ 0. Suppose that max(

λ1R1 +λ2R2 +λ3R3) is achieved by (R∗1, R
∗
2, R

∗
3) and max(λ1R1 +λ2R2 +λ3R3) =

λ1R
∗
1 +λ2R

∗
2 +λ3R

∗
3. From the characterization of superposition-coding, (R∗1, R

∗
2 +

R∗3, 0) is also achievable and R∗1 + λ2R
∗
2 + λ3R

∗
3 = max(R1 + λ2R2 + λ3R3) ≥

R1 +λ2R2 +λ2R3 = R∗1 +λ2(R∗2 +R∗3), implying that λ3R
∗
3 ≥ λ2R

∗
3. This further

implies that either λ2 ≤ λ3 or R∗3 = 0. R∗3 = 0 changes the DMBC to a 2-receiver

more-capable channel which we already know the capacity of. Therefore, the non-

trivial case is when λ2 ≤ λ3. Similarly, we can assume λ1 ≤ λ2. Also, without

loss of generality, we can set λ1 = 1.

Thus, we have, for 1 ≤ λ2 ≤ λ3 and β ∈ [0, 1], the λ sum-rate of region stated

in Lemma 2 satisfies

max(R1 + λ2R2 + λ3R3)

≤ max
p(u2,u3,x)

min
β

β
(
I(X;Y1|U2, U3) + I(U2;Y2|U3) + I(U3;Y3)

)
+ (1− β)

(
I(X;Y1|U3) + I(U3;Y3)

)
+ (λ2 − 1)

(
I(U2;Y2|U3) + I(U3;Y3)

)
+ (λ3 − λ2)I(U3;Y3)

= max
p(u2,u3,x)

min
β

β
(
I(X;Y1|U2, U3) + I(U2;Y2|U3) + I(U3;Y3)

)
+ (1− β)

(
I(X;Y1|U3) + I(U3;Y3)

)
+ (λ2 − 1)I(U2;Y2|U3) + (λ3 − 1)I(U3;Y3)

= min
β

max
p(x)

λ3I(X;Y3) + C
p(x)

(
β̄I(X;Y1) + (λ2 − β̄)I(X;Y2)− λ3I(X;Y3)

+ C
p(x)

(
βI(X;Y1)− (λ2 − β̄)I(X;Y2)

))
,

(2.19)

where C
p(x)

(∗) is the concave envelop function of ∗ over valid input distributions

p(x).

We show in the following that the two-letter expression of (2.19) tensorizes.
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First, consider the inner concave envelop:

C
p(x1,x2)

(
βI(X1, X2;Y1,1, Y1,2)− (λ2 − β̄)I(X1, X2;Y2,1, Y2,2)

)
= C

p(x1,x2)

(
βI(X1;Y1,1) + βI(X2;Y1,2|Y1,1)− (λ2 − β̄)I(X2;Y2,2)

− (λ2 − β̄)I(X1;Y2,1|Y2,2)
)

= C
p(x1,x2)

(
βI(X1;Y1,1|Y2,2) + βI(X2;Y1,2|Y1,1)− (λ2 − β̄)I(X2;Y2,2|Y1,1)

− (λ2 − β̄)I(X1;Y2,1|Y2,2) + (1− λ2)I(Y1,1;Y2,2)
)

≤ C
p(x1,x2)

(
βI(X1;Y1,1|Y2,2)− (λ2 − β̄)I(X1;Y2,1|Y2,2) + βI(X2;Y1,2|Y1,1)

− (λ2 − β̄)I(X2;Y2,2|Y1,1)
)

≤ C
p(x1,x2)

(
βI(X1;Y1,1|Y2,2)− (λ2 − β̄)I(X1;Y2,1|Y2,2)

)
+ C

p(x1,x2)

(
βI(X2;Y1,2|Y1,1)− (λ2 − β̄)I(X2;Y2,2|Y1,1)

)
Next, for the first part of the outer concave envelop, note that

β̄I(X1, X2;Y1,1, Y1,2) + (λ2 − β̄)I(X1, X2;Y2,1, Y2,2)− λ3I(X1, X2;Y3,1, Y3,2)

≤ β̄I(X1;Y1,1) + (λ2 − β̄)I(X1;Y2,1)− λ3I(X1;Y3,1)

+ β̄I(X2;Y1,2|Y3,1) + (λ2 − β̄)I(X2;Y2,2|Y3,1)− λ3I(X2;Y3,2|Y3,1). (2.20)

This is because (2.20) is equivalent to

β̄
(
I(Y1,2;Y3,1)− I(Y1,2;Y1,1)

)
≤ (λ2 − β̄)

(
I(Y2,2;Y2,1)− I(Y2,2;Y3,1)

)
,

which always holds as left hand side is less than or equal to 0 whilst right hand

side is greater than or equal to 0.

Therefore, we have for the two-letter form of the expression inside the outer

concave envelop:

β̄I(X1, X2;Y1,1, Y1,2) + (λ2 − β̄)I(X1, X2;Y2,1, Y2,2)− λ3I(X1, X2;Y3,1, Y3,2)

+ C
p(x1,x2)

(
βI(X1, X2;Y1,1, Y1,2)− (λ2 − β̄)I(X1, X2;Y2,1, Y2,2)

)
≤ β̄I(X1;Y1,1) + (λ2 − β̄)I(X1;Y2,1)− λ3I(X1;Y3,1)

+ C
p(x1,x2)

(
βI(X1;Y1,1|Y2,2)− (λ2 − β̄)I(X1;Y2,1|Y2,2)

)
+ β̄I(X2;Y1,2|Y3,1) + (λ2 − β̄)I(X2;Y2,2|Y3,1)− λ3I(X2;Y3,2|Y3,1)

+ C
p(x1,x2)

(
βI(X2;Y1,2|Y1,1)− (λ2 − β̄)I(X2;Y2,2|Y1,1)

)
= β̄I(X1;Y1,1) + (λ2 − β̄)I(X1;Y2,1)− λ3I(X1;Y3,1)
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+ C
p(x1,x2)

( ∑
y2∈Y2

P (Y2,2 = y2)
(
βI(X1;Y1,1|Y2,2 = y2)

− (λ2 − β̄)I(X1;Y2,1|Y2,2 = y2)
))

+ β̄I(X2;Y1,2|Y3,1) + (λ2 − β̄)I(X2;Y2,2|Y3,1)− λ3I(X2;Y3,2|Y3,1)

+ C
p(x1,x2)

( ∑
y1∈Y1

P (Y1,1 = y1)
(
βI(X2;Y1,2|Y1,1 = y1)

− (λ2 − β̄)I(X2;Y2,2|Y1,1 = y1)
))

(a)

≤ β̄I(X1;Y1,1) + (λ2 − β̄)I(X1;Y2,1)− λ3I(X1;Y3,1)

+
∑
y2∈Y2

P (Y2,2 = y2) C
p(x1,x2)

(
βI(X1;Y1,1|Y2,2 = y2)

− (λ2 − β̄)I(X1;Y2,1|Y2,2 = y2)
)

+ β̄I(X2;Y1,2|Y3,1) + (λ2 − β̄)I(X2;Y2,2|Y3,1)− λ3I(X2;Y3,2|Y3,1)

+
∑
y1∈Y1

P (Y1,1 = y1) C
p(x1,x2)

(
βI(X2;Y1,2|Y1,1 = y1)

− (λ2 − β̄)I(X2;Y2,2|Y1,1 = y1)
)

(b)
= β̄I(X1;Y1,1) + (λ2 − β̄)I(X1;Y2,1)− λ3I(X1;Y3,1)

+
∑
y2∈Y2

P (Y2,2 = y2) C
p(x1,x2)

(
βI(X1;Y1,1|Y2,2 = y2)

− (λ2 − β̄)I(X1;Y2,1|Y2,2 = y2)
)

+ β̄I(X2;Y1,2|Y3,1) + (λ2 − β̄)I(X2;Y2,2|Y3,1)− λ3I(X2;Y3,2|Y3,1)

+
∑
y3∈Y3

P (Y3,1 = y3)
∑
y1∈Y1

P (Y1,1 = y1|Y3,1 = y3)

C
p(x1,x2)

(
βI(X2;Y1,2|Y1,1 = y1, Y3,1 = y3)

− (λ2 − β̄)I(X2;Y2,2|Y1,1 = y1, Y3,1 = y3)
)

(c)

≤ β̄I(X1;Y1,1) + (λ2 − β̄)I(X1;Y2,1)− λ3I(X1;Y3,1)

+ C
p(x1,x2)

(
βI(X1;Y1,1)− (λ2 − β̄)I(X1;Y2,1)

)
+ β̄I(X2;Y1,2|Y3,1) + (λ2 − β̄)I(X2;Y2,2|Y3,1)− λ3I(X2;Y3,2|Y3,1)

+
∑
y3∈Y3

P (Y3,1 = y3) C
p(x1,x2)

(
βI(X2;Y1,2|Y3,1 = y3)

− (λ2 − β̄)I(X2;Y2,2|Y3,1 = y3)
)

(d)

≤ C
p(x1)

(
β̄I(X1;Y1,1) + (λ2 − β̄)I(X1;Y2,1)− λ3I(X1;Y3,1)

+ C
p(x1,x2)

(
βI(X1;Y1,1)− (λ2 − β̄)I(X1;Y2,1)

))
+ C

p(x2)

(
β̄I(X2;Y1,2) + (λ2 − β̄)I(X2;Y2,2)− λ3I(X2;Y3,2)
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+ C
p(x1,x2)

(
βI(X2;Y1,2)− (λ2 − β̄)I(X2;Y2,2)

))
(e)
= C

p(x1)

(
β̄I(X1;Y1,1) + (λ2 − β̄)I(X1;Y2,1)− λ3I(X1;Y3,1)

+ C
p(x1)

(
βI(X1;Y1,1)− (λ2 − β̄)I(X1;Y2,1)

))
+ C

p(x2)

(
β̄I(X2;Y1,2) + (λ2 − β̄)I(X2;Y2,2)− λ3I(X2;Y3,2)

+ C
p(x2)

(
βI(X2;Y1,2)− (λ2 − β̄)I(X2;Y2,2)

))
,

where (a) holds because C
x

(∑
i aigi(x)

)
≤
∑

i aiCx

(
gi(x)

)
, (b) holds because Y1,1

s.d.

�
Y3,1, (c) holds from Jensen’s inequality, (d) holds because the outer concave en-

velop makes the function value larger and (e) holds because the two parts are

only functions of p(x1) and p(x2), respectively.

We have on the right hand side of the last equation a concave function in

p(x1, x2). Therefore, by definition of concave envelop, we have

C
p(x1,x2)

(
β̄I(X1, X2;Y1,1, Y1,2) + (λ2 − β̄)I(X1, X2;Y2,1, Y2,2)− λ3I(X1, X2;Y3,1, Y3,2)

+ C
p(x1,x2)

(
βI(X1, X2;Y1,1, Y1,2)− (λ2 − β̄)I(X1, X2;Y2,1, Y2,2)

))
≤ C

p(x1)

(
β̄I(X1;Y1,1) + (λ2 − β̄)I(X1;Y2,1)− λ3I(X1;Y3,1)

+ C
p(x1)

(
βI(X1;Y1,1)− (λ2 − β̄)I(X1;Y2,1)

))
+ C

p(x2)

(
β̄I(X2;Y1,2) + (λ2 − β̄)I(X2;Y2,2)− λ3I(X2;Y3,2)

+ C
p(x2)

(
βI(X2;Y1,2)− (λ2 − β̄)I(X2;Y2,2)

))
.

Finally, because I(X;Y3) tensorizes by itself the same way point-to-point

channel tensorizes, the whole expression in (2.19) tensorizes which concludes the

proof.

Remark 11. This proof of tensorization uses the concavity of concave envelopes as

a new technique instead of the traditional way of looking for particular candidates

for the auxiliary random variables. It should be noted though that the traditional

way of proving still goes through.

As mentioned before, both Theorem 8 and Theorem 9 would imply the op-

timality of superposition-coding region for the sub-class where q1

m.c.

� q2, q2

s.d.

�
q3, q1

s.d.

� q3.

At this point, we are left with three sub-classes in Figure 2.2 colored in black

where the optimality/sub-optimality of superposition-coding region remains un-

known. We make the following conjecture which would imply optimality result
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for all three of them.

Conjecture 1. For a three-receiver DMBC (X , q(y1, y2, y3|x),Y1×Y2×Y3) with

one sender X, three receivers Y1, Y2, Y3 and private message sets (M1,M2,M3),

if q1

m.c.

� q2, q2

l.n.

� q3 and q1

m.c.

� q3, then superposition-coding inner bound as

stated in Theorem 4 is capacity region.

2.4 Conclusion

The optimality/sub-optimality of superposition-coding region for three-receiver

DMBC with ordered receivers is a rather delicate topic and it was studied in

extensive detail.

Revisiting the sub-classes listed in Figure 2.2, we showed in this chapter that

superposition-coding is sub-optimal for 8 of the sub-classes. Also, we showed that

superposition-coding is optimal for 3 of the sub-classes.

Based on the intuition in Remark 10, we suspect that superposition-coding

region remains optimal for the three unsolved sub-classes. However standard

converse techniques seem to run into issues; thus these classes are perhaps some

of the easier cases based on which new converse techniques may be developed.
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Chapter 3

Very weak interference channel

Interference channel models the communication of two(or more) sender/receiver

pairs with a shared medium for transmission. The characterization of the capac-

ity region for interference channel is a classical and fundamental open problem in

multi-terminal information theory. With the vast interests in wireless communi-

cations nowadays and the prominent presence of interference under such settings,

characterization of the capacity region is becoming more pressing than ever.

In this chapter, we define the notion of very weak interference for the DMIC

model described in 1.2. We restrict ourselves to the analysis of the sum-rate

capacity Cs = maxR1,R2∈C (R1 +R2), where C denotes the capacity of the DMIC

in Figure 1.4. We use Han-Kobayashi(HK) inner bound to calculate the best

known achievable sum-rate which reduces to treating interference as noise under

very weak interference. We develop a genie based sum-rate outer bound. With

the help of HK sum-rate inner bound and genie based sum-rate outer bound,

we identify the sum-rate capacity under certain conditions for a new class of

channels that we call binary skewed Z interference channel(BSZIC) with very

weak interference.

3.1 Very weak interference

Capacity region of a general interference channel is unknown. Before we go into

details of very weak interference, consider the following case when capacity is

known.

Definition 6 (Very strong interference). An interference channel as described in

Figure 1.4 is said to have very strong interference if

I(X1;Y1|X2) ≤ I(X1;Y2),

I(X2;Y2|X1) ≤ I(X2;Y1),
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for all p1(x1)p2(x2).

In layman’s terms, a phrasing of the definition is the following: If the unin-

tended receiver could decode the interfering signal treating its own as noise at a

higher rate than the intended receiver, being (magically) given the interference,

could, then the channel is said to have very strong interference.

Under very strong interference, HK inner bound reduces to an inner bound

without auxiliary random variables and it turns out to be capacity. The optimal

strategy turns out to be decoding the entire interfering signal before its intended

signal.

We want to find a regime in contrast to very strong interference such that HK

inner bound on the sum-rate reduces to treating interference as noise. Motivated

by this intuition, we make the following definition.

Definition 7 (Very weak interference). An interference channel q(y1, y2|x1, x2)

is said to have very weak interference if

I(U1;Y1) ≥ I(U1;Y2|X2),

I(U2;Y2) ≥ I(U2;Y1|X1).
(3.1)

for all auxiliaries (U1, U2) such that the joint probability distribution satisfies

p(u1, u2, x1, x2, y1, y2) = p1(u1, x1)p2(u2, x2)q(y1, y2|x1, x2).

The following observation captures some intuitions: I(U1;Y1) captures the

rate of information from U1 (a part of X1 or a cloud center among Xn
1,1 sequences)

to Y1 while Y1 treats the rest (including interference) as noise. For Y2 to decode the

same U1, the rate is at most I(U1;Y2|X2), which is achieved in the best situation

where Y2 is fully aware of its intended message X2. The first inequality indicates

that the rate at which Y2 decodes any part of X1 is less than the rate at which Y1

could. Thus, to maximize (R1 + R2), Y2 should not attempt to decode any part

of X1 (i.e., U1) at all. The second inequality gives similar conclusion. Therefore,

it intuitively suggests that treating interference as noise would optimize the HK

inner bound. The following proposition helps in proving this.

Proposition 1. The conditions given in (3.1) are equivalent to the following:

I(X1;Y1)−I(X1;Y2|X2) is concave in p1(x1) for a fixed p2(x2) , and I(X2;Y2)−
I(X2;Y1|X1) is concave in p2(x2) for a fixed p1(x1).

Proof. Since U1 → X1 → (X2, Y1, Y2) forms a Markov chain, observe that

I(U1;Y1) ≥ I(U1;Y2|X2)

⇐⇒ I(X1;Y1)− I(X1;Y2|X2) ≥ I(X1;Y1|U1)− I(X1;Y2|U1, X2),
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which is equivalent to concavity w.r.t. p1(x1). Similar holds for the second

equation w.r.t. p2(x2).

Below we state the HK sum-rate inner bound. This could be obtained by

performing Fourier-Motzkin elimination on the original region stated in Theorem

3.

Theorem 10 (Han-Kobayashi sum-rate inner bound). Any non-negative R1 +R2

satisfying

R1 +R2 ≤ I(X1;Y1|U2, Q) + I(X2;Y2|U1, Q), (3.2)

R1 +R2 ≤ I(U2, X1;Y1|Q) + I(X2;Y2|U2, U1, Q), (3.3)

R1 +R2 ≤ I(U1, X2;Y2|Q) + I(X1;Y1|U2, U1, Q), (3.4)

R1 +R2 ≤ I(U2, X1;Y1|U1, Q) + I(U1X2;Y2|U2, Q), (3.5)

for some p(q)p(u1, x1|q)p(u2, x2|q) is achievable.

Now we are ready to prove that HK sum-rate inner bound reduces to treating

interference as noise under very weak interference.

Proposition 2. The maximum achievable sum-rate of Han-Kobayashi inner bound,

denoted as Hs, reduces to

Hs = max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;Y2)

under very weak interference as defined in (3.1).

Proof. Treating interference as noise, or in particular, setting Q = U1 = U2 = 0

(i.e., the trivial random variable) gives that maxp1(x1)p2(x2) I(X1;Y1) + I(X2;Y2)

is achievable. This indicates that

Hs ≥ max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;Y2). (3.6)

Next, note that equation (3.5) satisfies:

I(U2, X1;Y1|U1, Q) + I(U1, X2;Y2|U2, Q)

(a)
= I(U2, X1;Y1|Q)− I(U1;Y1|Q) + I(U1, X2;Y2|Q)− I(U2;Y2|Q)

= I(X1;Y1|Q) + I(U2;Y1|X1, Q)− I(U2;Y2|Q) + I(X2;Y2|Q) + I(U1;Y2|X2, Q)

− I(U1;Y1|Q)

(b)

≤ I(X1;Y1|Q) + I(X2;Y2|Q),

34



where (a) holds because U1 → X1 → (U2, X2, Y1, Y2), U2 → X2 → (U1, X1, Y1, Y2)

form Markov chains conditioning on Q = q. (b) is immediate consequence of

very weak interference. Since Hs has to be smaller than the maximum of any of

the four expressions, and that the average over Q is dominated by the maximum

value, we have Hs ≤ maxp1(x1)p2(x2) I(X1;Y1) + I(X2;Y2). Combining this with

(3.6), the proposition is established.

Remark 12. To characterize the entire HK region, one needs to maximize λR1 +

R2. Treating interference as noise, or in this case, maxp1(x1)p2(x2) λI(X1;Y1) +

I(X2;Y2), might not be optimal under very weak interference. Thus the definition

of very weak interference is tailored for sum-rate (i.e., λ = 1).

Two classes of channels with very weak interference are provided as examples.

3.1.1 Gaussian Z interference channel

We show that our definition for very weak interference on DMIC could be ex-

tended to Gaussian interference channel.

Consider a Gaussian Z interference channel,

Y1 = X1 + Z1

Y2 = X2 + aX1 + Z2

where X1, X2 are independent continues random variables with E[X2
1 ] ≤ P1 and

E[X2
2 ] ≤ P2. Z1, Z2 are independent Gaussian noise N (0, 1). 0 ≤ a ≤ 1.

X1

X2

Z1

Y1

Z2

Y2

0 ≤ a ≤ 1

Figure 3.1: Gaussian Z interference channel

Proposition 3. A Gaussian Z interference channel as described in Figure 3.1

with a ≤ 1 has very weak interference.

Proof. Let U1 → X1 → (Y1, Y2), U2 → X2 → (Y1, Y2). Then

I(U2;Y1|X1) = I(U2;X1 + Z1|X1) = I(U2;Z1) = 0
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Hence I(U2;Y1|X1) ≤ I(U2;Y2).

The second inequality is established as follow.

I(U1;Y2|X2) = I(U1;X2 + aX1 + Z2|X2) = I(U1; aX1 + Z2) = I(U1;X1 +
1

a
Z2)

≤ I(U1;X1 + Z1) = I(U1;Y1)

where the inequality holds because U1 → X1 + Z1 → X1 + 1
a
Z2 is stochastically-

degraded when a ≤ 1.

3.1.2 Binary skewed-Z interference channel (BSZIC)

Going back to the discrete memoryless case, we introduce a class of binary inter-

ference channels that satisfy the very weak interference conditions.
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X1 = 0

X2 = 1

X1 = 1

X1

0

1

Y1

0

1

X1

0

1
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Y2
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1
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Figure 3.2: Binary skewed-Z interference channel (BSZIC)

Figure 3.2 depicts the transition probabilities q1(y1|x1, x2), q2(y2|x1, x2) of an

interference channel where p, q ∈ [0, 1] are constants. q1 and q2 or in this case in

particular, p, q uniquely determines the capacity region of this channel. We call

it a (p, q) binary skewed-Z interference channel (BSZIC), or BSZIC(p, q).

Proposition 4. The BSZIC(p, q) shown in Figure 3.2 has very weak interference

if and only if 0 ≤ p+ q ≤ 1.

Proof. From Proposition 1, we know that in order for the channel to have very

weak interference, I(X1;Y1) − I(X1;Y2|X2) has to be concave in p1(x1) and

I(X2;Y2)− I(X2;Y1|X1) has to be concave in p2(x2).

Let H(x) = −x log2 x− (1−x) log2(1−x) denote the binary entropy function.

Let P(X2 = 0) = a and P(X1 = 0) = x. We first determine the set of values of

p, q ∈ [0, 1] within which I(X1;Y1)− I(X1;Y2|X2) is concave in x for all a ∈ [0, 1].

I(X1;Y1)− I(X1;Y2|X2) = H(x(1− āp))− xH(1− āp)− āH(xq) + āxH(q),
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where ā = 1− a.
Concavity is equivalent to second derivative with respect to x being non-

positive. Note that the second and the last terms are linear in x so they do not

effect the second derivative. Concavity is equivalent to the following,

1− āp
1− x(1− āp)

≥ āq

1− xq
,

i .e., (1− āp)(1− xq) ≥ āq(1− x(1− āp)).

The above condition must hold for all x ∈ [0, 1]. Since both sides of the

inequality are linear in x, it suffices to verify at just x = 0 and x = 1. Substituting

them in, we obtain the following two conditions. 1− āp ≥ āq,

(1− āp)(1− q) ≥ pqā2.

Both conditions have to be satisfied for all a ∈ [0, 1]. Keeping in mind that

p, q ∈ [0, 1], it is easy to check that this is equivalent to 0 ≤ p+ q ≤ 1.

Similarly, I(X2;Y2)−I(X2;Y1|X1) becomes concave in p2(x2) when 0 ≤ p+q ≤
1. Therefore, the binary skewed-Z interference channel shown in Figure 3.2 has

very weak interference if and only if 0 ≤ p+ q ≤ 1.

3.2 Genie-based sum-rate outer bound

Binary input/output simplifies expressions and gives intuition for more general

DMIC. Our goal is to find sum-rate capacity but before we continue with BSZIC,

we develop a genie based outer bound which helps us with our converse proof

later and could be of independent interest, too.

We strongly believe that existing outer bounds are not tight beyond where

capacity is known. Hence we try to develop a new outer bound on sum-rate for

general interference channels.

The sum-rate capacity of a subset of scalar Gaussian interference channels was

established in [22], [1] where optimality (or converse) was shown using “genie-

aided” receivers. Inspired by this technique, we develop the following sum-rate

outer bound for general interference channels.

Theorem 11. Let T1, T2 be any pair of random variables such that p(y1, t1|x1, x2) =

p(t1|x1)p(y1|t1, x1, x2), p(y2, t2|x1, x2) = p(t2|x2)p(y2|t2, x1, x2), and the marginals

are consistent with the given channel transition probabilities, i.e., p(y1|x1, x2) =

q1(y1|x1, x2) and p(y2|x1, x2) = q2(y2|x1, x2). The achievable sum-rate of the
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discrete memoryless interference channel characterized by q(y1, y2|x1, x2) can be

upper bounded as follows:

R1 +R2 ≤ max
p1(x1)p2(x2)

I(X1;T1, Y1) + I(X2;T2, Y2)

+ C
(
I(X2;T2|X1, T1)− I(X2;Y1|T1, X1)

)
− I(X2;T2|X1, T1) + I(X2;Y1|T1, X1)

+ C
(
I(X1;T1|X2, T2)− I(X1;Y2|T2, X2)

)
− I(X1;T1|X2, T2) + I(X1;Y2|T2, X2), (3.7)

where C[I(X2;T2|X1, T1)−I(X2;Y1|T1, X1)] denotes the upper concave envelope of

the function I(X2;T2|X1, T1)−I(X2;Y1|T1, X1) evaluated with respect to the space

of product distributions p1(x1)p2(x2). Similarly, C[I(X1;T1|X2, T2)−I(X1;Y2|T2, X2)]

denotes the upper concave envelope of the function I(X1;T1|X2, T2)−I(X1;Y2|T2, X2)

evaluated with respect to the same space of product distribution p1(x1)p2(x2).

Proof. See section 3.5.

This genie-based sum-rate outer bound provides an upper bound on sum-

capacity for every valid pair (T1, T2). One could minimize over all feasible choice

of genies to get a tighter upper bound. In particular, if there exists a pair

of (T1, T2) such that I(X2;T2|X1, T1) − I(X2;Y1|T1, X1) and I(X1;T1|X2, T2) −
I(X1;Y2|T2, X2) become concave in p2(x2) and p1(x1), respectively, the outer

bound reduces to

R1 +R2 ≤ max
p1(x1)p2(x2)

I(X1;T1, Y1) + I(X2;T2, Y2).

Moreover, for X∗1 , X
∗
2 maximizing I(X1;Y1, T1)+I(X2;Y2, T2), if the genie pair

(T1, T2) satisfies X∗r → Y ∗r → Tr, r = 1, 2, the outer bound becomes

R1 +R2 ≤ I(X∗1 ;Y ∗1 ) + I(X∗2 ;Y ∗2 ),

which can be achieved exactly by treating interference as noise with X∗1 , X
∗
2 .

Hence sum-capacity would be established.

Optimality result in Gaussian interference channel can be derived from genie-

aided outer bound. In [1], the “useful” genies are choices that make I(X2;T2|X1, T1)−
I(X2;Y1|T1, X1) and I(X1;T1|X2, T2)−I(X1;Y2|T2, X2) concave. The “smart” ge-

nies are those satisfying Xr → Yr → Tr, r = 1, 2. We will use similar intuitions to

show sum-capacity for binary skewed Z interference channel in the next chapter.
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3.3 Sum-rate capacity analysis for BSZIC

Consider a BSZIC(p, q), Proposition 4 states that the channel has very weak

interference when p+ q ≤ 1. In this range, HK sum-rate inner bound is achieved

by treating interference as noise. The following theorem shows that this is actually

sum-rate capacity for a wide range of parameters.

Theorem 12. Treating interference as noise is sum-rate optimal for BSZIC when

channel parameters (p, q) satisfy

p+ q + 3pq ≤ 1.

The regime of parameters (as a subset of the very weak interference regime)

is shown in Figure 3.3.

p

q

1
3

1
3

0

1

1

Figure 3.3: Regime of parameters where sum-rate capacity is established for very
weak BSZIC(p,q)

The following proposition aids in our proof of the theorem.

Proposition 5. Let C[f ](x, y) denote the upper concave envelope of f(x, y) over

the space of product distributions where P(X1 = 0) = x and P(X2 = 1) = y.

Suppose f(x, y) is linear in x. Let g0(y) = f(0, y) and g1(y) = f(1, y), then

f(x, y) = (1− x)g0(y) + xg1(y) and

C[f ](x, y) = (1− x)C[g0](y) + xC[g1](y),

where C[g0](y), C[g1](y) denotes the upper concave envelope of g0(y), g1(y), re-

spectively, w.r.t. y ∈ [0, 1].
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Proof. For a generic random variable x ∈ [0, 1], let x̄ = 1−x. Now consider a max-

imizing convex combination at (xȳ, xy, x̄ȳ, x̄y), i.e., a probability vector {αi} and

product distributions (xiȳi, xiyi, x̄iȳi, x̄iyi) such that
∑

i αi(xiȳi, xiyi, x̄iȳi, x̄iyi) =

(xȳ, xy, x̄ȳ, x̄y) and
∑

i αif(xi, yi) = C[f ](x, y). Note that
∑

i αix̄i =
∑

i αix̄i(ȳi+

yi) = x̄ȳ + x̄y = x̄,
∑

i αixi = x,
∑

i αix̄iyi = x̄y and
∑

i αixiyi = xy. Therefore,

C[f ](x, y) =
∑
i

αif(xi, yi)

=
∑
i

(αix̄if(0, yi) + αixif(1, yi))

= x̄

(∑
i

αix̄i
x̄
f(0, yi)

)
+ x

(∑
i

αixi
x
f(1, yi)

)
≤ x̄C[g0](

∑
i

αix̄i
x̄
yi) + xC[g1](

∑
i

αixi
x
yi)

= x̄C[g0](y) + xC[g1](y).

The other direction is immediate as one can always mix the convex combina-

tion that achieves C[g0](y) and the convex combination that achieves C[g1](y) to

obtain (1− x)C[g0](y) + xC[g1](y).

Proof of Theorem 12. Let p∗1(x1)p∗2(x2) be the maximizing input for equation

(3.7) and Pr(X1 = 0) = x∗, Pr(X2 = 1) = y∗ at p∗1(x1)p∗2(x2). We will show the

existence of a valid pair of genies (T1, T2) corresponds to any point of the green

region of Figure 3.3 such that the following two conditions hold:

1. Xr → Yr → Tr, at p∗1(x1)p∗2(x2), r = 1, 2.

2. I(X2;T2|X1, T1) − I(X2;Y1|T1, X1) and I(X1;T1|X2, T2) − I(X1;Y2|T2, X2)

are concave w.r.t. product distributions p1(x1)p2(x2).

The above conditions immediately imply that (3.7) reduces to

R1 +R2 ≤ I(X∗1 ;Y1) + I(X∗2 ;Y2)

≤ max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;Y2),

which is achievable by treating interference as noise. Hence establishing sum-rate

capacity.

One should note that the above conditions, though sufficient, are not necessary

for genie-based sum-rate outer bound to match HK sum-rate inner bound. The

second condition could be relaxed to that the functions match their correspond-

ing concave envelopes at p∗1(x1)p∗2(x2). Requiring the functions to be concave

everywhere simplifies the calculations.
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For the first condition to hold, given that the valid genies should also sat-

isfy T2 → X2 → X1 → T1 and channel transition probabilities q(y1|x1, x2),

q(y2|x1, x2), one could verify that distributions p1(x1, x2, y1, t1) and p2(x1, x2, y2, t2)

must be of the form given in Table 3.1, where {ai}, {bi} are two generic proba-

bility vectors of size |T1| and {ci}, {di} are two generic probability vectors of size

|T2|. Pr(X1 = 0) = x, Pr(X2 = 1) = y.

Table 3.1: Generic probability distribution for genies that satisfy the Markov
conditions

X1 X2 Y1 T1 Probability

0 0 0 i x(1− y)((1− p)ai + pbi))

1 0 1 i (1− x)(1− y)bi

0 1 0 i xy(1− p)ai
0 1 1 i xypbi

1 1 1 i (1− x)ybi,

X1 X2 Y2 T2 Probability

1 1 1 i (1− x)y((1− q)ci + qdi))

0 1 0 i xyqdi

1 0 0 i (1− x)(1− y)di

0 1 1 i xy(1− q)ci
0 0 0 i x(1− y)di,

Remark 13. Suppose the Markov chains hold for Pr(X1 = 0) = x∗, Pr(X2 =

1) = y∗, note that our final joint distributions are independent of (x∗, y∗). This is

because if the Markov chains hold for some (x∗, y∗), they continue to hold for any

other product distribution. This is a chance observation (peculiar to the Binary

skewed-Z interference channel) that greatly simplified our analysis.

Next, we will discuss the concavity condition for genies. Define f(x, y), f̃(x, y)

as

f(x, y) := (I(X2;T2|X1, T1)− I(X2;Y1|X1, T1))|P(X1=0)=x,P(X2=1)=y ,

f̃(x, y) := (I(X1;T1|X2, T2)− I(X1;Y2|X2, T2))|P(X1=0)=x,P(X2=1)=y .

For a generic variable x ∈ [0, 1], let x̄ = 1− x and L(x) = −x log2 x. Then

f(x, y) =
∑
i

(
L(ȳdi + y(q̄ci + qdi))− ȳL(di)− yL(q̄ci + qdi)

− (xpbi + xp̄ai)L

(
ypbi

pbi + p̄ai

)
− x(pbi + p̄ai)L

(
ȳpbi + p̄ai
pbi + p̄ai

)

41



+ xy(pbi + p̄ai)L

(
pbi

pbi + p̄ai

)
+ xy(pbi + p̄ai)L

(
p̄ai

pbi + p̄ai

))
.

Note that f(x, y) is linear in x. Therefore we could write it as the linear com-

bination of two functions g0(y) = f(0, y) and g1(y) = f(1, y) as in Proposition

5.

g0(y) :=
∑
i

(L(ȳdi + y(q̄ci + qdi))− ȳL(di)− yL(q̄ci + qdi)) ,

g1(y) :=
∑
i

(
L(ȳdi + y(q̄ci + qdi))− ȳL(di)− yL(q̄ci + qdi)

− (pbi + p̄ai)L

(
ypbi

pbi + p̄ai

)
− (pbi + p̄ai)L

(
ȳpbi + p̄ai
pbi + p̄ai

)
+ y(pbi + p̄ai)L

(
pbi

pbi + p̄ai

)
+ y(pbi + p̄ai)L

(
p̄ai

pbi + p̄ai

))
.

Similar for f̃(x, y), define g̃0(x), g̃1(x) such that f̃(x, y) = (1− y)g̃0(x) + yg̃1(x).

Based on Lemma 4 from Appendix 3.5, it is safe to consider only binary genies.

i.e., T1, T2 ∈ {0, 1}.
Then, by Proposition 5, the concavity condition is equivalent to that g0(y),

g1(y) be concave for all y ∈ (0, 1) and g̃0(x), g̃1(x) be concave for all x ∈ (0, 1).

Since g0(y), g̃0(x) are already concave w.r.t. y, x, respectively. The condition is

further reduced to g1(y) and g̃1(x) be concave. i.e., their second derivatives be

non-positive:

1∑
i=0

− q̄2(ci − di)2

ȳdi + y(q̄ci + pdi)
+
pbi
y

+
p2b2

i

ȳpbi + p̄ai
≤ 0 (3.8)

1∑
i=0

− p̄2(ai − bi)2

x̄bi + y(p̄ai + pbi)
+
qdi
x

+
q2d2

i

x̄qdi + q̄ci
≤ 0 (3.9)

Note that in (3.8), either d0 or d1 has to be 0 in order to cancel pbi
y

while

y → 0+. Similarly, either b0 or b1 has to be zero because of (3.9). Without loss

of generality, we assume that d0 = d = 0 and b0 = b = 0. Setting a0 = a, a1 = ā,

c0 = c and c1 = c̄, (3.8) becomes equivalent to, for all y ∈ (0, 1),

− q̄c

y
+
p

y
− q̄2(c̄− 1)2

ȳ + y(q̄c̄+ q)
+

p2

ȳp+ p̄ā
≤ 0

⇔ p− p̄c
y
− p̄2c2

1− yp̄c
+

p2

ȳp+ p̄ā
≤ 0

⇔ p

y
+

p2

ȳp+ p̄ā
≤ p̄c

y
+

p̄2c2

1− yp̄c
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⇔ p2 + pp̄ā

ȳp+ p̄ā
≤ p̄c

1− yp̄c
⇔ (p2 + pp̄ā)(1− yp̄c) ≤ (p̄c)(ȳp+ p̄ā),∀y ∈ (0, 1) (3.10)

As the expression is linear in y on both sides, it suffices to check the validity

of (3.10) for when y = 0 and y = 1, i.e., (3.10) is equivalent to
p ≤ q̄c,

p+
p2

p̄ā
≤ q̄c

1− q̄c
.

Rearranging the first inequality we get
p

p̄
≤ q̄c

1− q̄c
,

p+
p2

p̄ā
≤ q̄c

1− q̄c
.

Note that p + p2

p̄ā
= p(1 + p/ā

p̄
) ≥ p(1 + p

p̄
) = p

p̄
. Therefore, the first inequality

is redundant and we are left with a single constraint

p+
p2

p̄ā
≤ q̄c

1− q̄c
.

Similarly, inequality (3.9) is equivalent to the following,

q +
q2

q̄c̄
≤ p̄a

1− p̄a
.

Further, without loss of generality, we assume p ≤ q. Putting all the conditions

together, we get

0 ≤ a ≤ 1 (3.11)

0 ≤ c ≤ 1 (3.12)

0 ≤ p ≤ q ≤ 1 (3.13)

0 ≤ p+ q ≤ 1 (3.14)

p+
p2

p̄ā
≤ q̄c

1− q̄c
(3.15)

q +
q2

q̄c̄
≤ p̄a

1− p̄a
(3.16)

Rearranging (3.15), we have

p̄a ≤ p̄q̄c− pp̄
q̄c− p2q̄c− pp̄
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p̄a

1− p̄a
≤ q̄c− p

pq̄c

Note
q̄c− p
pq̄c

=
1− p/q̄c

p
≤ p̄

1− p̄

This means (3.11) is redundant.

Combining with (3.16) we have the condition

qq̄c̄+ q2

c̄
≤ q̄c− p

pc

(1− pq)q̄c2 − (1 + p)q̄c+ p ≤ 0 (3.17)

This inequality must holds for some c ∈ [0, 1].

When c = 1+p
2(1−pq) . 0 ≤ c ≤ 1 is given by the following

0 ≤ 1 + p

2(1− pq)
=

1 + p

1 + (1− 2pq)
≤ 1 + p

1 + (1− q)
≤ 1 + p

1 + (1− p̄)
= 1

where first inequality is due to p ≤ 1
2

and the second one is due to q ≤ p̄. So we

can let c = 1+p
2(1−pq) .

Then inequality (3.17) gives

p− (1 + p)2q̄

4(1− pq)
≤ 0

q ≤ 1− p
1 + 3p

To satisfy (3.13), we need p ≤ 1−p
1+3p

. That is 0 ≤ p ≤ 1
3
.

Same analysis can be applied to the case q ≤ p.

Hence we derive the conditions for the existence of smart and useful genie,

0 ≤ p ≤ 1

3
,

p ≤ q ≤ 1− p
1 + 3p

,
or

0 ≤ q ≤ 1

3
,

q ≤ p ≤ 1− q
1 + 3q

.

It is easy to verify that this region is equivalent to requiring p + q + 3pq ≤ 1

and p, q ≥ 0.

In Theorem 12, we obtain sum-rate capacity for a certain range of (p, q) for

BSZIC by imposing a Markov condition and a concavity condition. No point out-

side this region would satisfy both conditions simultaneously. But as mentioned

in the proof, these two conditions are not necessary for the genie-based sum-rate

outer bound to match the HK sum-rate inner bound. The necessary and sufficient
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version is stated as below.

For a valid pair of genies (T1, T2), let p∗1(x1)p∗2(x2) be the maximizing input for

equation (3.7) and Pr(X1 = 0) = x∗, Pr(X2 = 1) = y∗ at p∗1(x1)p∗2(x2). For the

genie-based sum-rate outer bound (3.7) to reduce to I(X1;Y1)+I(X2;Y2)|p∗1(x1)p∗2(x2)

is equivalent to saying:

1. Xr → Yr → Tr, at p∗1(x1)p∗2(x2), r = 1, 2.

2. C[I(X2;T2|X1, T1)− I(X2;Y1|T1, X1)] = I(X2;T2|X1, T1) + I(X2;Y1|T1, X1)

and C[I(X1;T1|X2, T2)−I(X1;Y2|T2, X2)] = I(X1;T1|X2, T2)+I(X1;Y2|T2, X2)

at p∗1(x1)p∗2(x2)

We could parameterize the joint distribution in exactly the same way as before

because the Markov condition remains the same. Among the class of genies that

satisfy the Markov chains, one is further interested in a subclass such that the two

upper concave envelopes coincide with the two functions at p∗1(x1)p∗2(x2). Define

f(x, y) as before,

f(x, y) := (I(X2;T2|X1, T1)− I(X2;Y1|X1, T1))|P(X1=0)=x,P(X2=1)=y .

Expending the expression, we have the same linearity in x and f(x, y) = (1 −
x)g0(y) + xg1(y), where g0(y) = f(0, y) and g1(y) = f(1, y). By Proposition 5,

we have C[f ](x, y) = (1 − x)C[g0](y) + xC[g1](y). g0(y) is concave as before and

g1(y) could be either convex or concave in y ∈ (0, 1) when p + q + 3pq ≥ 1 and

p+ q ≤ 1. Therefore, C[f ](x, y) = (1− x)g0(y) + xC[g1](y).

For the genie based outer bound to reduce to treating interference as noise,

it is necessary that we find, among the pairs of genies that satisfy the Markov

chains, one such that C[g1(y)] = g1(y) at y∗ and C[g̃1(x)] = g̃1(x) at x∗, the

maximizing point.

We shall see that this is not always possible, which indicates either our genie

based sum-rate outer bound is not always tight or treating interference as noise is

not always sum-rate optimal for interference channels with very weak interference.

Proposition 6. For the binary skewed-Z interference channel when p = q = 1
2
,

the genie based outer bound is strictly greater than treating-interference-as-noise

inner bound.

Proof. Define f(x, y), g0(y) and g1(y) in the same way as before. The joint

distribution is the same as defined in Table 3.1.

Setting p = q = 1
2

and taking second derivative of g1(y), we get

d2g1(y)

dy2
=
∑
i

(
− (ci − di)2

2y(ci − di) + 4di
+
bi
2y

+
b2
i

2ȳbi + 2ai

)
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= −
∑
i

(ci − di)2

2y(ci − di) + 4di
+
∑
i

bi
2y

+
∑
i

yb2
i

2y(ȳbi + ai)

≥ −
∑
i

c2
i + d2

i

2y(ci − di) + 4di
+
∑
i

bi
2y

+
∑
i

yb2
i

2y(ȳbi + ai)

= −
∑
i

c2
i

2yci − 2ydi + 4di
−
∑
i

d2
i

2yci − 2ydi + 4di
+

1

2y
+
∑
i

yb2
i

2y(ȳbi + ai)

≥ −
∑
i

c2
i

2yci
−
∑
i

d2
i

−2ydi + 4di
+

1

2y
+
∑
i

yb2
i

2y(ȳbi + ai)

= − 1

2y
− 1

−2y + 4
+

1

2y
+
ȳ + 1

2

(∑
i

ȳbi + ai
ȳ + 1

b2
i

(ȳbi + ai)2

)
(a)

≥ − 1

−2y + 4
+
ȳ + 1

2

(∑
i

ȳbi + ai
ȳ + 1

bi
ȳbi + ai

)2

= − 1

−2y + 4
+

1

2(ȳ + 1)

= 0,

where (a) holds because E(X2) ≥ E(X)2. Thus g1(y) is convex in general. The

only hope for the outer bound to work would be if g1(y) were a straight line.

Next we analyze if this is possible.

Note d2g1(y)
dy2

= 0 would imply that cidi = 0 (for the first inequality to be

equality) and ai = bi (for the inequality labeled (a) to be an equality).

For the symmetric condition to hold, define f̃(x, y) as

I(X1;T1|X2T2)− I(X1;Y2|T2X2)|P(X1=0)=x,P(X2=1)=y

Split f̃(x, y) in same way as for f(x, y),

f̃(x, y) = (1− y)g̃0(x) + yg̃1(x)

Computing derivative of g̃1(x), we have

d2g̃1(x)

dx2
≥ 0

with equality holding only iff aibi = 0 and ci = di.

Clearly, both equalities cannot hold at the same time. At least one of g1 and

g̃1 is strictly convex. Therefore, for any (x, y) ∈ (0, 1)2,

C[f ](x, y) + C[f̃ ](x, y)

= xC[g0](y) + (1− x)C[g1](y) + yC[g̃0](x) + (1− y)C[g̃1](x)

> xg0(y) + (1− x)g1(y) + yg̃0(x) + (1− y)g̃1(x)
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= f(x, y) + fci,di,ai,bi(y, x)

If we restrict our attention to the symmetric case where p = q. We have

shown already that there are genies for g1(y) to be concave throughout y ∈ [0, 1]

as long as 0 ≤ p = q ≤ 1
3
.

Now we consider the range 1
3
≤ p = q ≤ 1

2
. Consider genies with binary

alphabets, g1(y) displays an interesting behaviour. The function is concave in

some interval [0, ŷ] and convex in the remainder. Hence the concave envelope of

g1(y) matches the function in the interval [0, y†] (y† ≤ ŷ) and follows the tangent

to the curve g1(y) (at y†) in the interval [y†, 1]. Here y† is the unique point in

[0, 1] such the tangent to the curve g1(y) at y† passes through g1(1) when y = 1.

See Figure 3.4.
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Figure 3.4: Graph of g1(x) for different values (p, q) of BSZIC(p,q).1

Numerical simulations indicate that there are such genies when 0 ≤ p = q ≤
0.39. The updated graph is drawn below.

3.4 Generalized genie-based sum-rate outer bound

In genie-based sum-rate outer bound, genie random variable T1 is a distorted

version of X1. It carries some information of X1 which helps in decoding Y1.

Note that Y1 also contains interference from X2, it is a natural generalization to

1Set p = q, a = 1+q
2(1−pq) and c = p(1+p)

1+p2−(1+2p−p2)q ∧ 1 in function g1(y). When p = 0.35, the

convexity occurs slightly to the left of y = 1.
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create another genie S2 carrying some information from X2 to help counteract

such interference. Similar for Y2, a natural generalization is to create a genie S1

carrying some information from X1. Theorem 13 provides a generalized genie-

based sum-rate outer bound in which (T1, S2) helps in decoding Y1 and (T2, S1)

helps in decoding Y2.

Theorem 13. Let T1, S1, T2, S2 be any random variables satisfying:

• p(y1, t1, s2|x1, x2) = p(t1|x1)p(s2|x2)p(y1|t1, s2, x1, x2),

p(y2, t2, s1|x1, x2) = p(t2|x2)p(s1|x1)p(y2|t2, s1, x1, x2).

• The marginals are consistent with the given channel transition probabilities,

that is,

p(y1|x1, x2) = q(y1|x1, x2) and p(y2|x1, x2) = q(y2|x1, x2).

• For each r = 1, 2, Tr, Sr has degraded order, i.e., either Xr → Tr → Sr or

Xr → Sr → Tir must form a Markov chain.

The achievable sum-rate of the discrete memoryless interference channel charac-

terized by q(y1, y2|x1, x2) can be upper bounded as follows:

R1 +R2 ≤ max
p1(x1)p2(x2)

I(X1;T1, Y1|S2) + I(X2;T2, Y2|S1)

+ C
(
I(X1;T1|X2, T2, S1)− I(X1;Y2|X2, T2, S1)

)
− I(X1;T1|X2, T2, S1) + I(X1;Y2|X2, T2, S1)

+ C
(
I(X2;T2|X1, T1, S2)− I(X2;Y1|X1, T1, S2)

)
− I(X2;T2|X1, T1, S2) + I(X2;Y1|X1, T1, S2),

(3.18)

where C[·] denotes the upper concave envelope of a function as before.

Proof. See appendix 3.5.

Note that when S1 = S2 = ∅, generalized genie-based sum-rate outer bound

reduces to the bound in (3.7) as it should. The additional genies provide more

freedom in searching for good genies but computation becomes more complicated.

Another thing to note is that the two genies originated from each sender need

to form a degraded order. This degradation condition is easy to establish in

Gaussian interference channels. And the generalized genie-based sum-rate outer

bound, as it turns out, is actually tight for where sum-rate capacity is previously

known.
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3.5 Conclusion

This paper defines very weak interference for interference channels and also pro-

poses a genie-based sum-rate outer bound for general interference channels. More

importantly, we also discover particular continuous and discrete channels which

have very weak interference. For the discrete example, we find a non-trivial set of

parameters for which sum-rate capacity can be established because of the genie-

based sum-rate outer bound. A generalized version of the genie-based sum-rate

outer bound is then proposed. We prove that for continues channels with in-

dependent Gaussian noises, the generalized genie-based sum-rate outer bound

is tight for all cases where sum-rate capacity is previously known. Additional

advantages of genie-based outer bounds will be explored in the future.

Appendices

Proof of Theorem 11

Proof of Theorem 11. Consider a sequence of codebooks with growing block length

n such that their decoding error probabilities tend to zero as n goes to infinity.

The distribution on the n-tuples is given by

p(m1,m2, x
n
1,1, x

n
2,1, y

n
1,1, t

n
1,1, y

n
2,1, t

n
2,1)

= p(m1, x
n
1,1)p(m2, x

n
2,1)

n∏
i=1

p(t1,i|x1,i)p(y1,i|x1,i, x2,i, t1,i)p(t2,i|x2,i)p(y2,i|x1,i, x2,i, t2,i).

Keep in mind that the channel capacity of an interference channel depends

only on the marginals q(y1|x1, x2) and q(y2|x1, x2) and that the distribution above

is consistent with the marginal distributions by assumption. One can get an upper

bound on the sum-rate by following manipulations. The initial part mimics the

manipulations in the Gaussian argument as presented in the Appendix of Chapter

6 in [7].

n(R1 +R2)− nεn
= H(M1) +H(M2)

≤ I(M1;Y n
1,1) + I(M2;Y n

2,1) {by Fano’s inequality}

≤ I(Xn
1,1;Y n

1,1) + I(Xn
2,1;Y n

2,1)

≤ I(Xn
1,1;Y n

1,1, T
n
1,1) + I(Xn

2,1;Y n
2,1, T

n
2,1)

= I(Xn
1,1;T n1,1) + I(Xn

1,1;Y n
1,1|T n1,1)

49



+ I(Xn
2,1;T n2,1) + I(Xn

2,1;Y n
2,1|T n2,1)

= H(T n1,1)−H(T n1,1|Xn
1,1) +H(Y n

1,1|T n1,1)−H(Y n
1,1|T n1,1, Xn

1,1)

+H(T n2,1)−H(T n2,1|Xn
2,1) +H(Y n

2,1|T n2,1)−H(Y n
2,1|T n2,1, Xn

2,1).

Firstly, consider the term H(T n1,1)−H(Y n
2,1|Xn

2,1, T
n
2,1), note that

H(T n1,1)−H(Y n
2,1|Xn

2,1, T
n
2,1)

= H(T n1,1|T n2,1, Xn
2,1)−H(Y n

2,1|Xn
2,1, T

n
2,1)

{since T n1,1 is independent of (T n2,1, X
n
2,1)}

=
∑
i

H(T1,i|T i−1
1,1 , T

n
2,1, X

n
2,1)−H(Y2,i|Y n

2,i+1, X
n
2,1, T

n
2,1)

=
∑
i

H(T1,i|Y n
2,i+1, T

i−1
1,1 , T

n
2,1, X

n
2,1)−H(Y2,i|T i−1

1,1 , Y
n

2,i+1, X
n
2,1, T

n
2,1)

{Csiszar-sum lemma}

=
∑
i

H(T1,i|Ui, X2,i, T2,i)−H(Y2,i|Ui, X2,i, T2,i).

{Ui := (Y n
2,i+1, T

i−1
1,1 , T

n\i
2,1 , X

n\i
2,1 )}

Consider a Bayesian network representation in Figure 3.5 of the variables.

It is clear that any path from X1,i to X2,i is d-separated. Indeed the variable

X1,i X2,i

X i−1
1,1

X n
1,i+1

X i−1
2,1

X n
2,i+1

T n
2,i+1Y n

2,i+1

T i−1
1,1 T i−1

2,1

Figure 3.5: Bayesian network of dependence

X n
2,i+1 d-separates the variables into two sets. Hence we have Markov chain

X1,i → Ui → X2,i.

Similarly

H(T n2,1)−H(Y n
1,1|Xn

1,1, T
n
1,1)

=
∑
i

H(T2,i|Vi, X1,i, T1,i)−H(Y1,i|Vi, X1,i, T1,i)

where Vi = (Y n
1,i+1, T

i−1
2,1 , T

n\i
1,1 , X

n\i
1,1 ) and X1,i → Vi → X2,i.
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Secondly, from the n-tuple distribution we get that

H(T n1,1|Xn
1,1) =

n∑
i=1

H(T1,i|X1,i, X
n\i
1,1 , T

i−1
1,1 ) =

n∑
i=1

H(T1,i|X1,i),

H(T n2,1|Xn
2,1) =

n∑
i=1

H(T2,i|X2,i, X
n\i
2,1 , T

i−1
2,1 ) =

n∑
i=1

H(T2,i|X2,i).

Following chain rule and that conditioning reduces entropy,

H(Y n
1,1|T n1,1) ≤

n∑
i=1

H(Y1,i|T1,i),

H(Y n
2,1|T n2,1) ≤

n∑
i=1

H(Y2,i|T2,i).

Combining the above arguments, using routine manipulations, we obtain that

n(R1 +R2)− nεn
≤ H(T n1,1)−H(T n1,1|Xn

1,1) +H(Y n
1,1|T n1,1)−H(Y n

1,1|T n1,1, Xn
1,1)

+H(T n2,1)−H(T n2,1|Xn
2,1) +H(Y n

2,1|T n2,1)−H(Y n
2,1|T n2,1, Xn

2,1)

≤
∑
i

H(T2,i|Vi, X1,i, T1,i)−H(Y1,i|Vi, X1,i, T1,i)

−H(T1,i|X1,i) +H(Y1,i|T1,i)

+H(T1,i|Ui, X2,i, T2,i)−H(Y2,i|Ui, X2,i, T2,i)

−H(T2,i|X2,i) +H(Y2,i|T2,i)

=
∑
i

I(X2,i;T2,i|Vi, X1,i, T1,i) + I(Vi, X1,i;Y1,i|T1,i)

+ I(X1,i;T1,i|Ui, X2,i, T2,i) + I(Ui, X2,i;Y2,i|T2,i)

=
∑
i

I(X2,i;T2,i|X1,i, T1,i)− I(Vi;T2,i|X1,i, T1,i)

{since I(Vi, X2,i;T2,i|X1,i, T1,i) = I(X2,i;T2,i|X1,i, T1,i) }

+ I(X1,i;Y1,i|T1,i) + I(Vi;Y1,i|T1,i, X1,i)

+ I(X1,i;T1,i|X2,i, T2,i)− I(Ui;T1,i|X2,i, T2,i)

{since I(Ui, X1,i;T1,i|X2,i, T2,i) = I(X1,i;T1,i|X2,i, T2,i) }

+ I(X2,i;Y2,i|T2,i) + I(Ui;Y2,i|T2,i, X2,i)

=
∑
i

I(X2,i;T2,i)− I(Vi;T2,i|X1,i, T1,i)

+ I(X1,i;Y1,i|T1,i) + I(Vi;Y1,i|T1,i, X1,i)

+ I(X1,i;T1,i)− I(Ui;T1,i|X2,i, T2,i)
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+ I(X2,i;Y2,i|T2,i) + I(Ui;Y2,i|T2,i, X2,i)

{since (X1, T1) and (X2, T2) are independent}

=
∑
i

I(X1,i;T1,i, Y1,i) + I(X2,i;T2,i, Y2,i)

− I(Vi;T2,i|X1,i, T1,i) + I(Vi;Y1,i|T1,i, X1,i)

− I(Ui;T1,i|X2,i, T2,i) + I(Ui;Y2,i|T2,i, X2,i)

Now since Vi → (X1,i, T1,i, X2,i) → (Y1,i, T2,i) and Ui → (X1,i, X2,i, T2,i) →
(Y2,i, T1,i), one can rewrite the above as

n(R1 +R2)− nεn
≤
∑
i

I(X1,i;T1,i, Y1,i) + I(X2,i;T2,i, Y2,i)

− I(X2,i;T2,i|X1,i, T1,i) + I(X2,i;Y1,i|T1,i, X1,i)

+ I(X2,i;T2,i|Vi, X1,i, T1,i)− I(X2,i;Y1,i|Vi, T1,i, X1,i)

− I(X1,i;T1,i|X2,i, T2,i) + I(X1,i;Y2,i|T2,i, X2,i)

+ I(X1,i;T1,i|Ui, X2,i, T2,i)− I(X1,i;Y2,i|Ui, T2,i, X2,i)

≤
∑
i

I(X1,i;T1,iY1,i) + I(X2,i;T2,iY2,i)

− I(X2,i;T2,i|X1,i, T1,i) + I(X2,i;Y1,i|T1,i, X1,i)

+ C
(
I(X2,i;T2,i|X1,i, T1,i)− I(X2,i;Y1,i|T1,i, X1,i)

)
− I(X1,i;T1,i|X2,i, T2,i) + I(X1,i;Y2,i|T2,i, X2,i)

+ C
(
I(X1,i;T1,i|X2,i, T2,i)− I(X1,i;Y2,i|T2,i, X2,i)

)
,

where C[I(X2,i;T2,i|X1,i, T1,i)−I(X2,i;Y1,i|T1,i, X1,i)] is the upper concave envelope

of the function I(X2,i;T2,i|X1,i, T1,i) − I(X2,i;Y1,i|T1,i, X1,i) defined on the space

of distributions p1(x1)p2(x2). It is easy to see from the definition of the upper

concave envelope that

C[I(X2,i;T2,i|X1,i, T1,i)− I(X2,i;Y1,i|T1,i, X1,i)]

= sup
U :X1,i→U→X2,i

U→(X1,i,X2,i)→(Y1,i,T2,i,T1,i)

I(X1,i;T1,i|U,X2,i, T2,i)− I(X1,i;Y2,i|U, T2,i, X2,i).

By Fenchel-Bunt’s extension [12] of the Caratheodory’s theorem, it suffices to

consider U with cardinality |U| ≤ |X1||X2| in computing the upper concave enve-

lope.

Thus for any valid choice of genies T1, T2, we obtain an outer bound to the
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sum-rate given by

R1 +R2

≤ max
p1(x1)p2(x2)

I(X1;T1, Y1) + I(X2;T2, Y2)

+ C
(
I(X2;T2|X1, T1)− I(X2;Y1|T1, X1)

)
− I(X2;T2|X1, T1) + I(X2;Y1|T1, X1)

+ C
(
I(X1;T1|X2, T2)− I(X1;Y2|T2, X2)

)
− I(X1;T1|X2, T2) + I(X1;Y2|T2, X2)

(3.19)

Cardinality bound on genies

For an outer bound with auxiliaries, we need to find some cardinality bounds

for the auxiliaries because the outer bound is obtained by taking union of every

possible joint distribution. Without cardinality, the union is over infinite dimen-

sional space and thus is non-evaluable. However for the genie case, any valid

genie pair yields a valid outer bound. Cardinality bound on genie is not neces-

sary. Nevertheless, to find the best genie which can yield tight upper bound, we

need a cardinality bound beyond which there are no benefit to tighten genie-aided

outer bound. Unfortunately, traditional methods of bounding cardinalities using

Caratheodory theorem does not go through as the cardinality bounds for T1 and

T2 would end up depending on each other’s. We will deploy a tailored method

for our case.

By Proposition 5, g1(y) is concave for y ∈ [0, 1] if genies satisfy concavity

condition. Taking second derivative of g1(y) with respect to y,

d2g1(y)

dy2
=
∑
i

(
− q̄2(ci − di)2

yq̄(ci − di) + di
+
pbi
y

+
p2b2

i

ȳpbi + p̄ai

)

T2 is characterized by {ci} and {di}. The following lemma provides cardinality

bound for T2.

Lemma 4. Let n ≥ 3 and T2n be the set of all genies with cardinality n. If

T2n(c,d) is a genie defined by c = (c1, c2, . . . , cn) and d = (d1, d2, . . . , dn) such

that d2g1(y)
dy2

≤ 0, then there is always another set of coefficients ĉ, d̂ with (n− 1)

coordinates each such that T2(n−1)(ĉ, d̂) defines a genie such that d2g1(y)
dy2

≤ 0.

Proof. For 1 ≤ i ≤ n, let ε ≥ 0 and c′i = ci(1+εli), d
′
i = di(1+εli). c′ = (c′1, . . . , c

′
n)

and d′ = (d′1, . . . , d
′
n) form a valid T2n(c′,d′) with some l = (l1, l2, . . . , ln) if∑

i cili = 0,
∑

i dili = 0 and ε small enough. Note that as long as there exists of a
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non-zero l independent of ε such that T2n(c′,d′) forcing d2g1(y)
dy2

≤ 0 for 0 ≤ ε ≤ ε0,

we could increase ε from 0 gradually until for some i, 1+ εli becomes 0. Dropping

the 0 coefficients, we get an equivalent genie in T2(n−1). Therefore, it suffices to

show the existence of one such l for n ≥ 3.

Note that one of the di’s has to be 0 and the corresponding ci has to satisfy

q̄ci ≥ p in order for d2g1(y)
dy2

to be non-positive when y → 0. In cases where more

than one of the di’s are 0, we could sum over the corresponding ci’s and form a

new smart and useful genie with smaller cardinality. Therefore, without loss of

generality, we assume that d1 = 0, q̄c1 ≥ p and di > 0,∀i ≥ 2. All assumptions

about c and d are as below.

c ≥ 0,
n∑
i=1

ci = 1,

p̄c1 ≥ p,

d1 = 0,

(d2, d3, . . . , dn) > 0,
n∑
i=2

di = 1,

− q̄c1

y
+
pb1

y
+

p2b2
1

ȳpb1 + p̄a1

+
n∑
i=2

(
− q̄2(ci − di)2

yq̄(ci − di) + di
+
pbi
y

+
p2b2

i

ȳpbi + p̄ai

)
≤ 0,∀y ∈ [0, 1].

We need to find l such that

l 6= 0,

c1l1 +
n∑
i=2

lici = 0,

n∑
i=2

lidi = 0,

− q̄c1(1 + εl1)

y
+
pb1

y
+

p2b2
1

ȳpb1 + p̄a1

+
n∑
i=2

(
− q̄

2(ci − di)2(1 + εli)

yq̄(ci − di) + di
+
pbi
y

+
p2b2

i

ȳpbi + p̄ai

)
≤ 0, ∀y ∈ [0, 1], ε ∈ [0, ε0]
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Combining above two sets of conditions, and given ε ≥ 0

l 6= 0,

c1l1 +
n∑
i=2

lici = 0,

n∑
i=2

lidi = 0,

− q̄c1l1
y
−

n∑
i=2

q̄2(ci − di)2li
yq̄(ci − di) + di

≤ 0,∀y ∈ [0, 1].

Since c1 > 0, set l1 = −
∑n

i=2 lici
c1

. We get the new set of conditions for l2, . . . , ln.



n∑
i=2

lidi = 0,

n∑
i=2

lidi(yq̄(ci − di) + ci)

y(yq̄(ci − di) + di)
≤ 0, ∀y ∈ [0, 1].

Setting li = 0,∀i ≥ 4, we get
l2d2 + l3d3 = 0,

l2d2(yq̄(c2 − d2) + c2)

yq̄(c2 − d2) + d2

+
l3d3(yq̄(c3 − d3) + c3)

yq̄(c3 − d3) + d3

≤ 0,∀y ∈ [0, 1].

Let l3 = − l2d2
d3

. It reduces to show the existence of (c2, c3), (d2, d3) and l2 such

that

l2d2

(
yq̄(c2 − d2) + c2

yq̄(c2 − d2) + d2

− yq̄(c3 − d3) + c3

yq̄(c3 − d3) + d3

)
≤ 0,∀y ∈ [0, 1].

This is equivalent to

l2d2(c2d3 − c3d2)

(yq̄c2 + (1− yq̄)d2)(yq̄c3 + (1− yq̄)d3)
≤ 0,∀y ∈ [0, 1].

Therefore, by setting l2 = 1
d2

when c2d3 ≤ c3d2 and setting l2 = − 1
d2

when

c2d3 > c3d2, we get a particular non-zero l.

l =


(
−c2d3 + d2c3

c1d2d3

,
1

d2

,− 1

d3

, 0, . . . , 0

)
, if c2d3 ≤ c3d2(

c2d3 − d2c3

c1d2d3

,− 1

d2

,
1

d3

, 0, . . . , 0

)
, if c2d3 > c3d2

The above lemma means that for a particular (p, q), the existence of a smart
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and useful genie with cardinality greater or equal to 3 implies the existence of

such a genie within smaller cardinalities. In other words, we could stop searching

if we do not find any smart and useful genie within binary choices.

Similar argument can be applied to T1 .

Proof of Theorem 13

Proof of Theorem 13. The proof is basically following Csiszar sum lemma and

manipulation of mutual information to reduce n-letter expression to 1-letter ex-

pression.

n(R1 +R2)− nεn
≤ H(M1) +H(M2)

≤ I(Xn
1,1;Y n

1,1) + I(Xn
1,1;Y n

1,1)

≤ I(Xn
1,1;Y n

1,1, T
n
1,1, S

n
2,1) + I(Xn

2,1;Y n
2,1, T

n
2,1, S

n
1,1)

= I(Xn
1,1;T n1,1) + I(Xn

1,1;Y n
1,1|T n1,1, Sn2,1) + I(Xn

2,1;T n2,1) + I(Xn
2,1;Y n

2,1|T n2,1, Sn1,1)

= H(T n1,1)−H(T n1,1|Xn
1,1) +H(Y n

1,1|T n1,1, Sn2,1)−H(Y n
1,1|T n1,1, Sn2,1, Xn

1,1)

+H(T n2,1)−H(T n2,1|Xn
2,1) +H(Y n

2,1|T n2,1, Sn1,1)−H(Y n
2,1|T n2,1, Sn1,1, Xn

2,1)

Note that for underlined expressions, we have

H(T n1,1)−H(Y n
2,1|T n2,1, Sn1,1Xn

2,1)

= H(T n1,1|Sn1,1) + I(T n1,1;Sn1,1)−H(Y n
2,1|T n2,1, Sn1,1, Xn

2,1)

= H(T n1,1|T n2,1, Sn1,1, Xn
2,1) + I(T n1,1;Sn1,1)−H(Y n

2,1|T n2,1, Sn1,1, Xn
2,1)

=
∑
i

(
H(T1,i|T i−1

1,1 , Y
n

2,i+1, T
n
2,1, S

n
1,1, X

n
2,1)

−H(Y2,i|T i−1
1,1 , Y

n
2,i+1, T

n
2,1, S

n
1,1, X

n
2,1)
)

+ I(T n1,1;Sn1,1)

The last equality is due to Csiszar sum identity. We have

n(R1 +R2)− nεn

≤
∑
i

(
H(T1,i|T i−1

1,1 , Y
n

2,i+1, T
n
2,1, S

n
1,1, X

n
2,1)−H(Y2,i|T i−1

1,1 , Y
n

2,i+1, T
n
2,1, S

n
1,1, X

n
2,1)

−H(T1,i|X1,i) +H(Y1,i|T1,i, S2,i)

+H(T2,i|T i−1
2,1 , Y

n
1,i+1, T

n
1,1, S

n
2,1, X

n
1,1)−H(Y1,i|T i−1

2,1 , Y
n

1,i+1, T
n
1,1, S

n
2,1, X

n
1,1)

−H(T2,i|X2,i) +H(Y2,i|T2,i, S1,i)
)

+ I(T n1,1;Sn1,1) + I(T n2,1;Sn2,1)
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Use substitution U1,i = (T i−1
1,1 , S

n\i
1,1 ), V1,i = (X

n\i
2,1 , T

n\i
2,1 , Y

n
2,i+1),U2,i = (T i−1

2,1 , S
n\i
2,1 ),

V2,i = (X
n\i
1,1 , T

n\i
1,1 , Y

n
1,i+1),

n(R1 +R2)− nεn

=
∑
i

(
H(T1,i|U1,i, V1,i, T2,i, S1,i, X2,i)−H(Y2,i|U1,i, V1,i, T2,i, S1,i, X2,i)

−H(T1,i|X1,i, S1,i)− I(T1,i;S1,i|X1,i) +H(Y1,i|T1,i, S2,i)

+H(T2,i|U2,i, V2,i, T1,i, S2,i, X1,i)−H(Y1,i|U2,i, V2,i, T1,i, S2,i, X1,i)

−H(T2,i|X2,i, S2,i)− I(T2,i;S2,i|X2,i) +H(Y2,i|T2,i, S1,i)
)

+ I(T n1,1;Sn1,1) + I(T n2,1;Sn2,1)

≤
∑
i

(
H(T1,i|U1,i, V1,i, T2,i, S1,i, X2,i)−H(Y2,i|U1,i, V1,i, T2,i, S1,i, X2,i)

−H(T1,i|X1,i, U1,i, V1,i, T2,i, S1,i, X2,i) +H(Y1,i|T1,i, S2,i)

+H(T2,i|U2,i, V2,i, T1,i, S2,i, X1,i)−H(Y1,i|U2,i, V2,i, T1,i, S2,i, X1,i)

−H(T2,i|X2,i, U2,i, V2,i, T1,i, S2,i, X1,i) +H(Y2,i|T2,i, S1,i)

− I(T1,i;S1,i|X1,i)− I(T2,i;S2,i|X2,i)
)

+ I(T n1,1;Sn1,1) + I(T n2,1;Sn2,1)

=
∑
i

(
I(X1,i;T1,i|U1,i, V1,i, T2,i, S1,i, X2,i)− I(X1,i;Y2,i|U1,i, V1,i, T2,i, S1,i, X2,i)

−H(Y2,i|U1,i, V1,i, T2,i, S1,i, X2,i, X1,i) +H(Y1,i|T1,i, S2,i)

+ I(X2,i;T2,i|U2,i, V2,i, T1,i, S2,i, X1,i)− I(X2,i;Y1,i|U2,i, V2,i, T1,i, S2,i, X1,i)

−H(Y1,i|U2,i, V2,i, T1,i, S2,i, X1,i, X2,i) +H(Y2,i|T2,i, S1,i)

− I(T1,i;S1,i|X1,i)− I(T2,i;S2,i|X2,i)
)

+ I(T n1,1;Sn1,1) + I(T n2,1;Sn2,1)

Memoryless property indicates that (U1,i, V1,i)→ (X2,i, X1,i)→ (T2,i, S1,i) and

(U2,i, V2,i)→ (X1,i, X2,i)→ (T1,i, S2,i), then

n(R1 +R2)− nεn

=
∑
i

(
I(X1,i;T1,i|U1,i, V1,i, T2,i, S1,i, X2,i)− I(X1,i;Y2,i|U1,i, V1,i, T2,i, S1,i, X2,i)

−H(Y2,i|T2,i, S1,i, X2,i, X1,i) +H(Y1,i|X1,i, T1,i, S2,i)

+ I(X2,i;T2,i|U2,i, V2,i, T1,i, S2,i, X1,i)− I(X2,i;Y1,i|U2,i, V2,i, T1,i, S2,i, X1,i)

−H(Y1,i|T1,i, S2,i, X1,i, X2,i) +H(Y2,i|X2,i, T2,i, S1,i)

+ I(X1,i;Y1,i|T1,i, S2,i) + I(X2,i;Y2,i|T2,i, S1,i)

− I(T1,i;S1,i|X1,i)− I(T2,i;S2,i|X2,i)
)

+ I(T n1,1;Sn1,1) + I(T n2,1;Sn2,1)

=
∑
i

(
I(X1,i;T1,i|U1,i, V1,i, T2,i, S1,i, X2,i)− I(X1,i;Y2,i|U1,i, V1,i, T2,i, S1,i, X2,i)
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+ I(X2,i;Y1,i|X1,i, T1,i, S2,i) + I(X2,i;T2,i|U2,i, V2,i, T1,i, S2,i, X1,i)

− I(X2,i;Y1,i|U2,i, V2,i, T1,i, S2,i, X1,i) + I(X1,i;Y2,i|X2,i, T2,i, S1,i)

+ I(X1,i;Y1,i|T1,i, S2,i) + I(X2,i;Y2,i|T2,i, S1,i)

− I(T1,i;S1,i|X1,i)− I(T2,i;S2,i|X2,i)
)

+ I(T n1,1;Sn1,1) + I(T n2,1;Sn2,1)

=
∑
i

(
I(X1,i;T1,i|U1,i, V1,i, T2,i, S1,i, X2,i)− I(X1,i;Y2,i|U1,i, V1,i, T2,i, S1,i, X2,i)

− I(X1,i;T1,i|T2,i, S1,i, X2,i) + I(X1,i;Y2,i|X2,i, T2,i, S1,i)

+ I(X2,i;T2,i|U2,i, V2,i, T1,i, S2,i, X1,i)− I(X2,i;Y1,i|U2,i, V2,i, T1,i, S2,i, X1,i)

− I(X2,i;T2,i|T1,i, S2,i, X1,i) + I(X2,i;Y1,i|X1,i, T1,i, S2,i)

+ I(X1,i;T1,i|T2,i, S1,i, X2,i) + I(X2,i;T2,i|T1,i, S2,i, X1,i)

+ I(X1,i;Y1,i|T1,i, S2,i) + I(X2,i;Y2,i|T2,i, S1,i)

− I(T1,i;S1,i|X1,i)− I(T2,i;S2,i|X2,i)
)

+ I(T n1,1;Sn1,1) + I(T n2,1;Sn2,1)

=
∑
i

(
I(X1,i;T1,i|U1,i, V1,i, T2,i, S1,i, X2,i)− I(X1,i;Y2,i|U1,i, V1,i, T2,i, S1,i, X2,i)

− I(X1,i;T1,i|T2,i, S1,i, X2,i) + I(X1,i;Y2,i|X2,i, T2,i, S1,i)

+ I(X2,i;T2,i|U2,i, V2,i, T1,i, S2,i, X1,i)− I(X2,i;Y1,i|U2,i, V2,i, T1,i, S2,i, X1,i)

− I(X2,i;T2,i|T1,i, S2,i, X1,i) + I(X2,i;Y1,i|X1,i, T1,i, S2,i)

+ I(X1,i;T1,i|S1,i) + I(X2,i;T2,i|S2,i) + I(X1,i;Y1,iT1,i|S2,i)

− I(X1,i;T1,i|S2,i) + I(X2,i;Y2,i, T2,i|S1,i)− I(X2,i;T2,i|S1,i)

− I(T1,i;S1,i|X1,i)− I(T2,i;S2,i|X2,i)
)

+ I(T n1,1;Sn1,1) + I(T n2,1;Sn2,1)

=
∑
i

(
I(X1,i;T1,i|U1,i, V1,i, T2,i, S1,i, X2,i)− I(X1,i;Y2,i|U1,i, V1,i, T2,i, S1,i, X2,i)

− I(X1,i;T1,i|T2,i, S1,i, X2,i) + I(X1,i;Y2,i|X2,i, T2,i, S1,i)

+ I(X2,i;T2,i|U2,i, V2,i, T1,i, S2,i, X1,i)− I(X2,i;Y1,i|U2,i, V2,i, T1,i, S2,i, X1,i)

− I(X2,i;T2,i|T1,i, S2,i, X1,i) + I(X2,i;Y1,i|X1,i, T1,i, S2,i) + I(X1,i;T1,i|S1,i)

+ I(X2,i;T2,i|S2,i) + I(X1,i;Y1,i, T1,i|S2,i) + I(X2,i;Y2,i, T2,i|S1,i)

− I(T1,i;S1,i, X1,i)− I(T2,i;S2,i, X2,i)
)

+ I(T n1,1;Sn1,1) + I(T n2,1;Sn2,1)

When genies has degraded order, say X1 → T1 → S1, we have

I(T n1,1;Sn1,1) = H(Sn1,1)−H(Sn1,1|T n1,1)

≤
∑
i

H(S1,i)−H(S1,i|Si−1
1,1 , T

n
1,1)

=
∑
i

H(S1,i)−H(S1,i|T1,i)
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=
∑
i

I(T1,i;S1,i)

since (Si−1
1,1 , T

n\i
1,1 )→ X1,i → T1,i → S1,i.

n(R1 +R2)− nεn
≤
∑
i

I(X1,i;T1,i|U1,i, V1,i, T2,i, S1,i, X2,i)− I(X1,i;Y2,i|U1,i, V1,i, T2,i, S1,i, X2,i)

− I(X1,i;T1,i|T2,i, S1,i, X2,i) + I(X1,i;Y2,i|X2,i, T2,i, S1,i)

+ I(X2,i;T2,i|U2,i, V2,i, T1,i, S2,i, X1,i)− I(X2,i;Y1,i|U2,i, V2,i, T1,i, S2,i, X1,i)

− I(X2,i;T2,i|T1,i, S2,i, X1,i) + I(X2,i;Y1,i|X1,i, T1,i, S2,i)

+ I(X1,i;T1,i|S1,i) + I(X2,i;T2,i|S2,i) + I(X1,i;Y1,i, T1,i|S2,i)

+ I(X2,i;Y2,i, T2,i|S1,i)− I(T1,i;S1,i, X1,i)− I(T2,i;S2,i, X2,i)

+ I(T1,i;S1,i) + I(T2,i;S2,i)

=
∑
i

I(X1,i;T1,i|U1,i, V1,i, T2,i, S1,i, X2,i)− I(X1,i;Y2,i|U1,i, V1,i, T2,i, S1,i, X2,i)

− I(X1,i;T1,i|T2,i, S1,i, X2,i) + I(X1,i;Y2,i|X2,i, T2,i, S1,i)

+ I(X2,i;T2,i|U2,i, V2,i, T1,i, S2,i, X1,i)− I(X2,i;Y1,i|U2,i, V2,i, T1,i, S2,i, X1,i)

− I(X2,i;T2,i|T1,i, S2,i, X1,i) + I(X2,i;Y1,i|X1,i, T1,i, S2,i)

+ I(X1,i;Y1,i, T1,i|S2,i) + I(X2,i;Y2,i, T2,i|S1,i)

=
∑
i

I(X1,i;T1,i|U1,i, S1,i)− I(X1,i;Y2,i|U1,i, T2,i, S1,i, X2,i)

− I(X1,i;T1,i|S1,i) + I(X1,i;Y2,i|X2,i, T2,i, S1,i)

+ I(X2,i;T2,i|U2,i, S2,i)− I(X2,i;Y1,i|U2,i, T1,i, S2,i, X1,i)

− I(X2,i;T2,i|S2,i) + I(X2,i;Y1,i|X1,i, T1,i, S2,i)

+ I(X1,i;Y1,i, T1,i|S2,i) + I(X2,i;Y2,i, T2,i|S1,i)

The last equality is due to the fact that (X1, T1, S1, U1, V2) is independent of

(X2, T2, S2, U2, V1). More over, memoryless property suggests that channel struc-

ture remains the same when conditioned on U = u. Hence we have

Cs ≤ max
p1(x1)p2(x2)

I(X1;Y1, T1|S2) + I(X2;Y2, T2|S1)

+ C (I(X1;T1|T2, S1, X2)− I(X1;Y2|T2, S1, X2))

− I(X1;T1|T2, S1, X2) + I(X1;Y2|X2, T2, S1)

+ C (I(X2;T2|T1, S2, X1)− I(X2;Y1|T1, S2, X1))

− I(X2;T2|T1, S2, X1) + I(X2;Y1|X1, T1, S2)
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Chapter 4

Sub-optimality of the

Han–Kobayashi inner bound for

the capacity region of the

interference channel

We show with a counterexample that Han–Kobayashi (HK) inner bound is sub-

optimal for interference channel.

The capacity region is known under a small set of interference instantiations

such as strong interference and injective deterministic interference. The sum ca-

pacity is established for a larger class of channels such as Gaussian interference

channel with mixed or very weak interference. In all the cases mentioned above

the capacity region (or the sum-capacity) matches the one given by H . Fur-

thermore, it was not known whether H is the capacity region C or not. In this

thesis, we show that there are channel instances where H ( C ; thus showing

the sub-optimality of the HK region.

The main innovation of our work lies in the choice of the channel realizations

because the computation of the HK region is not particularly straightforward. We

study a class of interference channels, defined as CZI channels in the next section,

where the evaluation of H becomes significantly simplified1. We take particu-

lar channels inside this class and compute a (normalized) two-letter achievable

region of the corresponding two-letter product channel. We show that there are

many examples where the (normalized) two-letter achievable region considered is

strictly larger than H , which indicates H ( C .

1The analysis in Chapter 3 is along very similar lines but we were unable to identify examples
where the (normalized) two-letter achievable region of a two-letter product channel becomes
larger than the original H .
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4.1 CZI Channel

We say that an interference channel has clean Z interference (CZI) if one of the

sub channels is a clean channel. We choose the channel from X2 to Y2 to be clean

as depicted in Figure 4.1 and study its HK region.

M1

M2

Encoder 1

Encoder 2

Xn
1,1

Xn
2,1

∏n
i=1 q(y1,i|x1,i, x2,i)

Y n
1,1

Y n
2,1 = Xn

2,1

Decoder 1

Decoder 2

M̂1

M̂2

Figure 4.1: Discrete memoryless CZI channel

The following proposition reveals an equivalent characterization of the HK

region for CZI channels which simplifies its evaluation.

Proposition 7. The HK region of a CZI channel is identical to the union of rate

pairs (R1, R2) that satisfy

R1 < I(X1;Y1|U2, Q), (4.1)

R2 < H(X2|Q), (4.2)

R1 +R2 < I(X1, U2;Y1|Q) +H(X2|U2, Q) (4.3)

for some pmf p(q)p(u2|q)p(x2|u2)p(x1|q), where |U2| ≤ |X2| and |Q| ≤ 2.

Proof. First of all, it is a simple exercise to note that the HK region of a CZI

channel reduces to the three constraints above by setting U1 = φ. Hence, the

above region is a subset of the HK region.

Conversely, (4.1) is identical to (1.1) of the HK region. (4.2) and (4.3) are

respectively looser constraints than (1.2) and (1.3) of the HK region, which makes

the above region larger than the original HK region. Thus proving equivalence.

Note that the changes in cardinality of U2 and Q follow from standard applica-

tions of cardinality reduction techniques all while the underlying region remains

the same. Therefore, we do not have to take these changes into account when

talking about the two regions’ equivalence.

The first result that we present below is a result that shows the optimality of

the HK region along certain directions.

Proposition 8. For a CZI channel,

max
H

(λR1 +R2) = max
C

(λR1 +R2), ∀λ ≤ 1.
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Proof. A standard converse/outer-bound argument proves that treating interfer-

ence as noise is optimal.

n(λR1 +R2)− nεn
(a)

≤ H(Xn
2,1|Xn

1,1) + λI(Xn
1,1;Y n

1,1)

=
n∑
i=1

H(X2,i|X1,i)− I(X2,i;X
nri
1,1 , X

i−1
2,1 |X1,i)

+ λI(Xn
1,1;Y1,i|Y n

1,i+1)

≤
n∑
i=1

H(X2,i|X1,i)− I(X2,i;X
nri
1,1 , X

i−1
2,1 |X1,i)

+ λI(Xn
1,1, Y

n
1,i+1;Y1,i)

=
n∑
i=1

H(X2,i|X1,i)− I(X2,i;X
nri
1,1 , X

i−1
2,1 |X1,i)

+ λ
(
I(Xn

1,1, Y
n

1,i+1, X
i−1
2,1 ;Y1,i)− I(X i−1

2,1 ;Y1,i|Xn
1,1, Y

n
1,i+1)

)
(b)
=

n∑
i=1

H(X2,i|X1,i)− I(X2,i;X
nri
1,1 , X

i−1
2,1 |X1,i)

+ λ
(
I(Xn

1,1, Y
n

1,i+1, X
i−1
2,1 ;Y1,i)− I(Y n

1i+1;X2,i|Xn
1,1, X

i−1
2,1 )

)
=

n∑
i=1

H(X2,i|X1,i)− (1− λ)I(X2,i;X
nri
1,1 , X

i−1
2,1 |X1,i)

− λ
(
I(X2,i;X

nri
1,1 , X

i−1
2,1 , Y

n
1i+1|X1,i)

− I(Xn
1,1, Y

n
1,i+1, X

i−1
2,1 ;Y1,i)

)
=

n∑
i=1

H(X2,i|X1,i)− (1− λ)I(X2,i;X
nri
1,1 , X

i−1
2,1 |X1,i)

+ λI(X1,i;Y1,i)− λ
(
I(X2,i;X

nri
1,1 , X

i−1
2,1 , Y

n
1,i+1|X1,i)

− I(Xnri
1,1 , X

i−1
2,1 , Y

n
1,i+1;Y1,i|X1,i)

)
(c)
=

n∑
i=1

H(X2,i|X1,i) + λI(X1,i;Y1,i)

− (1− λ)I(X2,i;X
nri
1,1 , X

i−1
2,1 |X1,i)

− λI(X2,i;X
nri
1,1 , X

i−1
2,1 , Y

n
1,i+1|Y1,i, X1,i)

≤ n (max(H(X2) + λI(X1;Y1)) ,

where (a) follows from Fano’s inequality, (b) Csiszar sum identity and (c) prop-

erties of the Markov chain formed by Y1,i → (X1,i, X2,i)→
(
X i−1

2,1 , X
nri
1,1 , Y

n
1,i+1

)
.

62



Since ε > 0 is arbitrary, we see that any achievable rate pair must satisfy

λR1 +R2 ≤ max
p1(x1)p2(x2)

H(X2) + λI(X1;Y1),

which is achievable by treating interference as noise, or more precisely, setting

U2 = φ in the HK region. Hence, the proposition is established.

On the contrary, we will see that, for some channels,

max
H

(λR1 +R2) < max
C

(λR1 +R2)

when λ becomes larger than 1. The following lemma helps us evaluate the quan-

tity max
H

(λR1 +R2).

Lemma 5. For a CZI channel, for all λ > 1

max
H

(λR1 +R2)

= max
p1(x1)p2(x2)

{
I(X1, X2;Y1) + C

p2(x2)

(
H(X2)− I(X2;Y1|X1) + (λ− 1)I(X1;Y1)

)}
,

(4.4)

where C
x
[f(x)] of f(x) is the upper concave envelope of f(x) over x.

Proof. For any (R1, R2) ∈H , there must exist a distribution p(q)p2(u2, x2|q)p1(x1|q)
such that

λR1 +R2 ≤ (λ− 1)I(X1;Y1|U2, Q)

+ I(X1, U2;Y1|Q) +H(X2|U2, Q)

= I(X1, X2;Y1|Q) +H(X2|U2, Q)

− I(X2;Y1|U2, X1, Q) + (λ− 1)I(X1;Y1|U2, Q)

(d)
= I(X1, X2;Y1|Q) + C

p2(x2|q)

(
H(X2|Q)

− I(X2;Y1|X1, Q) + (λ− 1)I(X1;Y1|Q)
)
,

where (d) follows directly from the definition of the upper concave envelope.

Since Q computes an average, and since the average is less than the maximum,

we obtain that

max
H

(λR1 +R2)

≤ max
p1(x1)p2(x2)

{
I(X1, X2;Y1) + C

p2(x2)

(
H(X2)− I(X2;Y1|X1) + (λ− 1)I(X1;Y1)

)}
.
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On the other hand, for any p2(u2, x2)p1(x1), the following rate pair

(R1, R2) = (I(X1;Y1|U2), H(X2|U2) + I(U2;Y1))

belongs to H as it satisfies the constraints.

Thus,

max
H

(λR1 +R2)

≥ max
p2(u2,x2)p1(x1)

λI(X1;Y1|U2) +H(X2|U2) + I(U2;Y1)

= max
p2(u2,x2)p1(x1)

I(X1, U2;Y1) +H(X2|U2) + (λ− 1)I(X1;Y1|U2)

= max
p2(u2,x2)p1(x1)

I(X1, X2;Y1) +H(X2|U2)

− I(X2;Y1|U2, X1) + (λ− 1)I(X1;Y1|U2)

(e)
= max

p2(x2)p1(x1)
I(X1, X2;Y1)

+ C
p2(x2)

(
H(X2)− I(X2;Y1|X1) + (λ− 1)I(X1;Y1)

)
,

where (e) follows directly from the definition of the upper concave envelope. This

establishes the converse and completes the proof of the lemma.

By viewing the channel use across two consecutive time-slots as the channel

use of a single time-slot of the corresponding product channel, we obtain what

is usually termed the two-letter realization of the original channel. For the two

letter product channel of a CZI channel, the transition probability satisfies

q̃(y1,1, y1,2|x1,1, x1,2, x2,1, x2,2) = q(y1,1|x1,1x2,1)q(y1,2|x1,2, x2,2),

where q is the transition probability of the CZI channel.

Proposition 9. The set of rate pairs satisfying

R1 =
1

2
I(X1,1, X1,2;Y1,1, Y1,2|Q),

R2 =
1

2
H(X2,1, X2,2|Q),

for some pmf p(q)p(x1,1, x1,2|q)p(x2,1, x2,2|q) with |Q| ≤ 2 is achievable by the

original channel.

Proof. This rate pair is precisely the treating-interference-as-noise rate pair of

the two-letter channel, and the normalization by 1
2

indicates is due to the fact

that we code over two time-slots of the original channel.
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We denote this (normalized) region as H 2. Note that this is not the (normal-

ized) two-letter HK Region but rather a region contained inside the two-letter

HK region. HK region is sub-optimal if max
H

(λR1 +R2) < max
H 2

(λR1 +R2).

4.1.1 Sub-optimality of the HK region

In this part we provide several CZI channels for which, for some fixed (λ >

1), max
H 2

(λR1 + R2) becomes larger than max
H

(λR1 + R2), which proves the sub-

optimality of the HK region.

Examples are of channels with binary input/output. A 2 × 2 matrix is used

to represent the channel:

q(y1|x1, x2)

=

[
P (Y1 = 0|X1, X2 = 0, 0) P (Y1 = 0|X1, X2 = 0, 1)

P (Y1 = 0|X1, X2 = 1, 0) P (Y1 = 0|X1, X2 = 1, 1)

]
.

The fact that X2 is binary allows us to compute the upper concave envelope

in Lemma 5 with extremely high precision.

The channels in Table 4.1 are obtained using numerical methods. We prove, as

a demonstration, in the Appendix that the difference in rates of the first channel

listed above is not due to numerical errors and that the maximum single-letter

rate is indeed strictly smaller than the maximum (normalized) two-letter rate

achieved by the corresponding two-letter product channel.

4.1.2 Intuition and a natural modification

In this section, we present an intuition as well as a coding strategy motivated

by this intuition that indicates how one may improve on the Han–Kobayashi

encoding scheme.

The counterexamples we generated in the last section had the following fea-

ture: even though λ was strictly larger than one, the optimal U2 that yielded

max
H

(λR1 + R2) was still the trivial random variable; implying that there were

distributions p1(x1) and p2(x2) such that

R1 = I(X1;Y1), R2 = I(X2;Y2) = H(X2)

yielded the maximum weighted sum-rate.

Suppose we now go to the two-letter product channel and take the product

distribution of the marginals that yielded the one letter maximum as the trans-

mitter distribution, clearly we would get the same rate. It is an easy exercise
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Table 4.1: Table of counter-examples

λ channel max
H

(λR1 +R2) max
H 2

(λR1 +R2)

2

[
1 0.5
1 0

]
1.107516 1.108141

2.5

[
0.204581 0.364813
0.030209 0.992978

]
1.159383 1.169312

3

[
0.591419 0.865901
0.004021 0.898113

]
1.241521 1.255814

3

[
0.356166 0.073253
0.985504 0.031707

]
1.292172 1.311027

3

[
0.287272 0.459966
0.113711 0.995405

]
1.117253 1.123151

4

[
0.429804 0.147712
0.948192 0.002848

]
1.181392 1.196189

4

[
0.068730 0.443630
0.011377 0.954887

]
1.223409 1.243958

5

[
0.969199 0.564440
0.954079 0.061409

]
1.351229 1.372191

5

[
0.943226 0.447252
0.950791 0.024302

]
1.231254 1.250564

6

[
0.943292 0.045996
0.589551 0.202487

]
1.069405 1.076932

6

[
0.714431 0.019375
0.955918 0.448539

]
1.528508 1.541781

7

[
0.058449 0.558649
0.194915 0.959172

]
1.424974 1.452769

7

[
0.033312 0.876067
0.286125 0.992825

]
1.179438 1.187867

10

[
0.307723 0.874843
0.032090 0.710535

]
1.370830 1.388674

15

[
0.946802 0.311909
0.730770 0.155075

]
1.391596 1.406325

100

[
0.382410 0.081474
0.584797 0.241840

]
3.754016 3.789316

100

[
0.673979 0.194596
0.781192 0.285216

]
1.711938 1.730715
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to verify that I(X1;Y1) is convex in X2 (utilizing the fact that X1 and X2 are

independent). Thus a perturbation of the product distribution into two distribu-

tions that preserve the average would reduce R2 = 1
2
H(X2,1, X2,2) but increase

R1 = 1
2
I(X1,1, X1,2;Y1,1, Y1,2). Since we are interested in λR1 + R2 with λ > 1, it

is conceivable that such a perturbation would increase the weighted sum-rate.

Note that X2 acts like a state variable on the communication of the channel

between X1 and Y1. If the channel from X1 → Y1, with X2 as the state, is

not memoryless, we know that the optimal code distributions on Xn
1,1 are not

independent distributions.

For instance, if one creates Xn
2,1 according to a first-order Markov process,

the channel from Xn
1,1 to Y n

1,1 becomes a channel whose state varies like a first

order Markov process. For such a coding strategy, one could achieve R2 = H̄(X2),

R1 = C̄(X1;Y1), where H̄(X2) denotes the entropy rate of the Markov processXn
2,1

and C̄(X1;Y1) denotes the capacity of the channel whose state varies according

to Xn
2,1.

Note that in general C̄(X1;Y1) does not have a closed form and is quite hard

to compute; but this scheme, as opposed to block coding, appears to be a natural

fit for interference channels. It would also explain why i.i.d. coding (in the sense

of Han–Kobayashi) might not be optimal for a CZI channel.

4.2 Conclusion

We have shown in the paper that Han–Kobayashi achievable region is strictly

sub-optimal, which makes finding new ways of modeling achievable regions for

interference channels almost a necessity in the future.

Appendix

Analysis of a particular example

Consider the CZI channel depicted in Figure 4.2 where q(y1|x1, x2) is illustrated

as two point-to-point channels X1 → Y1 depending on the choice of X2. We show

the details of computing H when λ = 2.

By Lemma 4.2

max
H

(2R1 +R2)

= max
p1(x1)p2(x2)

{
I(X1, X2;Y1) + C

p2(x2)

(
H(X2)− I(X2;Y1|X1) + I(X1;Y1)

)}
.

(4.5)
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X2 = 0 X2 = 1

X1

0

1

Y1

0

1

X1

0

1

Y1

0

1

1
2

1
2

Figure 4.2: Binary CZI channel

Let P (X1 = 0) = p and P (X2 = 0) = q. Define

f(p, q) :=H(X2)− I(X2;Y1|X1) + I(X1;Y1)

=Hb(q)− 2pHb(
q + 1

2
)− 2p̄Hb(q) +Hb(q +

p

2
q̄) + pq̄. (4.6)

Here Hb(x) = −x log2(x)−(1−x) log2(1−x) denotes the binary entropy function.

Thus, we obtain that

max
H

(2R1 +R2) = max
p,q

{
Hb(q +

p

2
q̄)− pq̄ + C

q

(
Hb(q +

p

2
q̄)− pq̄

)}
. (4.7)

Clearly the main computational imprecision may2 arise from the estimation

of the concave envelope; however as the next result shows; for this channel we

obtain an explicit characterization of the concave envelope.

Lemma 6. Consider the bivariate function f(p, q) as defined in (4.6) where

(p, q) ∈ [0, 1]× [0, 1]. Then

(i) if p > 1
2
,

C
q
[f(p, q)] = f(p, q).

(ii) if p ≤ 1
2
,

C
q
[f(p, q)] =

 f(p, q) q ≥ 1− 2p

f(p,1−2p)−f(p,0)
1−2p

q + f(p, 0) o.w.
.

Proof. The second derivative with respect to q is

∂2f(p, q)

∂q2
=

p

qq̄ ln 2

(1− 3q − 2pq̄)

(1 + q)(2q + pq̄)
(4.8)

If p ∈ (1
2
, 1), then (4.8) is negative for q ∈ (0, 1), i.e., if p > 1

2
, f(p, q) is

concave in q and C
q
[f(p, q)] = f(p, q).

2In general since the concave envelope is computed over a single variable and the function is
rather well behaved (at most two inflection points) when X2 is binary, numerical computations
using Matlab have yielded very high precision results even for the other counter examples listed.
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If p ∈ (0, 1
2
), then (4.8) has one solution, q∗ ∈ (0, 1).

q∗ =
1− 2p

3− 2p
.

In fact, f(p, q) is convex for q ∈ (0, q∗) and concave for q ∈ (q∗, 1). Thus

C
q
[f(p, q)] consists of two parts. First part is a tangent line from the point f(p, 0)

to the function f(p, q̂) and the second part is equal to f(p, q).

To find the point where the tangent line meets the function, (q̂), we need to

solve the following equation

f(p, q̂)− f(p, 0)

q̂
=
∂f(p, q)

∂q

∣∣∣
q̂
.

Because the function is initially convex and then concave, the above equation will

have at most one solution q̂ 6= 0. One can verify that q̂ = 1− 2p is the required

solution, and this completes the proof.

Define F (p, q) for (p, q) ∈ [0, 1]× [0, 1] as

F (p, q) =

 Hb(q + p
2
q̄)− pq̄ + f(p, q) q ≥ 1− 2p

Hb(q + p
2
q̄)− pq̄ + f(p,1−2p)−f(p,0)

1−2p
q + f(p, 0) o.w.

(4.9)

where f(p, q) is defined in (4.6).

From Lemma 6 and (4.7), we know that

max
H

(2R1 +R2) = max
p,q

F (p, q). (4.10)

A plot of F (p, q) is shown in Figure 4.3 along with a zoom-in plot on the

maximizing point.

Figure 4.3: F (p, q)
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We see that F (p, q) is very well behaved and hence it is easy to achieve

high precisions in calculations. A tedious exercise shows that the concave en-

velope of F (p, q) w.r.t. (p, q) matches the function value F (p0, q0) at3 (p0, q0) =

(0.507829413, 0.436538150). Hence an upper bound on max
H

(2R1 +R2) is given by

maximum value of the supporting hyperplane to F (p, q) at p0, q0, which is in turn

upper bounded by F (p0, q0)+ |a|+ |b| where a = ∂F
∂p

∣∣∣
p0

, and b = ∂F
∂q

∣∣∣
q0
. Evaluating

the values we obtain an upper bound given by

max
H

(2R1 +R2) ≤ 1.107577. (4.11)

On the other hand consider the following point in H 2 given by

R1 =
1

2
I(X1,1, X1,2;Y1,1, Y1,2), R2 =

1

2
H(X2,1, H2,2|Q),

where P (X1,1, X1,2 = (0, 0)) = p0, P (X1,1, X1,2 = (1, 1)) = 1−p0, P ((X2,1, X2,2) =

(0, 0)) = 0.36q0, P ((X2,1, X2,2) = (0, 1)) = P ((X2,1, X2,2) = (1, 0)) = 0.64q0 and

P ((X2,1, X2,2) = (1, 1)) = 1 − 1.64q0. For this choice of distribution we get

2R1 + R2 = 1.1080356, which is strictly larger than the bound given in (4.11).

This establishes the sub-optimality of the Han–Kobayashi region for the particular

example considered in the Appendix.

As mentioned in Section 4.1.2 the distribution of (X2,1, X2,2) that outperforms

the one-letter region is not the product distribution; but more surprisingly one is

doing repetition coding on X1,1, X1,2.

3We choose a point that is numerically very close to the true maximum.

70



Chapter 5

Summary

This thesis considers two of the most basic settings in network information theory

where the capacity regions are unknown, namely the broadcast channel and the

interference channel.

For broadcast channel, we showed via counterexamples that superposition-

coding region is sub-optimal for three-receiver more-capable channel. Further-

more, we showed that Marton’s inner bound actually achieves capacity of the

counterexamples.

For interference channel, we proposed the concept of very weak interfer-

ence which significantly simplified the expression of achievable sum-rate of Han–

Kobayashi inner bound and made simulations possible at last. Han–Kobayahi

inner bound is Marton’s inner bound’s counter part in interference channel in

the sense that it subsumes all known inner bound and achieves the capacity for

all interference channels where capacity is known. In fact, we showed that it

also achieves sum-rate capacity for a new set of channels with a newly developed

genie-based outer bound.

In the future, we would like to find the intrinsic reasons as to why some

information theoretic expressions tensorize while others do not. We know that

only those achievable regions which tensorizes can represent capacity region but

we do not have efficient ways of identifying them. This thesis demonstrates that

computational techniques, coupled with identifying extremal distributions, can

be useful both in proving sub-optimality of certain achievable regions as well as

reduction of outer bounds to achievable regions for special channel structures.

This is still a largely underutilized and relatively unknown direction of research

in network information theory.
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Appendix A

Information measures and

properties

Let X ∼ p(x), then we define entropy of X as

H(X) = −
∑
x∈X

p(x) log p(x) = −EX(log p(X))

which measures the uncertainty in the outcome of X.

Further, let Y |{X = x} ∼ p(y|x) for every x, we define the conditional entropy

H(Y |X) as the average of H(Y |X = x) over X, i.e.,

H(Y |X) =
∑
x∈X

p(x)

(
−
∑
y∈Y

p(y|x) log p(y|x)

)
= −

∑
(x,y)∈X×Y

p(x, y) log p(y|x)

= −EX,Y (log p(Y |X)).

Let (X, Y ) ∼ p(x, y) be the pair of discrete random variables defined as above.

We define the joint entropy of X and Y as

H(X, Y ) = −EX,Y (log p(X, Y )).

We define the mutual information between X and Y as

I(X;Y ) =
∑

(x,y)∈X×Y

p(x, y) log
p(x, y)

p(x)p(y)

which measures the amount of information on X obtainable from observing Y ,

or vice versa.

Similarly, let (X, Y, Z) ∼ p(x, y, z), we define conditional mutual information
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between X, Y given Z as

I(X;Y |Z) =
∑

(x,y,z)∈X×Y×YZ

p(x, y, z) log
p(x, y|z)

p(x|z)p(y|z)

Theorem 14 (Jensen’s inequality). Let X ∈ X (or R) be a random variable

with finite mean E(X) and g be a real-valued convex function over X (or R) with

finite expectation E(g(X)). Then

E(g(X)) ≥ g(E(X)).

The following properties are used frequently and could be derived from the

definitions and Jensen’s inequality:

i 0 ≤ H(X) ≤ log |X |.

ii H(Y |X) ≤ H(Y ).

iii H(X, Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ) ≤ H(X) +H(Y ).

iv I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) +H(Y )−H(X, Y ).

v I(X;Y |Z) = H(X|Z) − H(X|Y, Z) = H(Y |Z) − H(Y |X,Z) = H(X|Z) +

H(Y |Z)−H(X, Y |Z).

vi If X → Y → Z forms a Markov chain, i.e. (X, Y, Z) ∼ p(x)p(y|x)p(z|y), then

H(Z|Y,X) = H(Z|Y ), I(X;Z|Y ) = 0 and I(X;Z) ≤ I(X;Y ), where the last

one is called data processing inequality.

vii Let Xn ∼ p(xn), then

H(Xn) = H(X1) +H(X2|X1) + · · ·+H(X1|X1, . . . , Xn−1)

=
n∑
i=1

H(Xi|X1, . . . , Xi−1)

=
n∑
i=1

H(Xi|X i−1).

viii I(Xn;Y ) =
∑n

i=1 I(Xi;Y |X i−1).

The following two results are used in converse proofs frequently:

Theorem 15 (Fano’s inequality). Let (X, Y ) ∼ p(x, y) and Pe = P{X 6= Y },
then

H(X|Y ) ≤ H(Pe) + Pe log |X | ≤ 1 + Pe log |X |.
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Theorem 16 (Csiszár’s sum lemma). For any p(U, yn1,1, y
n
2,1) we have

n∑
i=1

I(Y i−1
1,1 ;Y2,i|U, Y n

2,i+1) =

n∑
i=1

I(Y n
2,i+1;Y1,i|U, Y i−1

1,1 ).

Csiszár’s sum lemma, originally presented in [5], is one of the most commonly

used identities to derive outer bounds for discrete memoryless broadcast channels

and is considered the bottleneck of traditional techniques.
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Appendix B

Cardinality bounding techniques

We introduce the frequently used convex cover method for bounding the cardi-

nalities of auxiliary random variables.

The following theorem is the basis of cardinality bounding.

Theorem 17 (Fenchel-Eggleston-Carathéodory theorem). Any point in the con-

vex closure of a connected set R ∈ Rd can be represented as a convex combination

of at most d points in R.

The following lemma is a direct consequence of Fenchel-Eggleston-Carathéodory

theorem.

Lemma 7 (Support lemma). Let X be a finite set and U be an arbitrary set. Let

P be a connected compact subset of pmfs on X . Suppose that gj(π), j = 1, . . . , d,

are real-valued continuous functions of π ∈P. Then for every U ∼ F (u) defined

on U , there exist a random variable U ′ ∼ p(u′) with |U ′| ≤ d and a collection of

conditional pmfs p(x|u′) ∈P, indexed by u′ ∈ U ′, such that for j = 1, . . . , d,∫
U

gj(p(x|u))dF (u) =
∑
u′∈U ′

gj(p(x|u′))p(u′).

We use the following example to demonstrate the general steps to take in

bounding the cardinalities of auxiliary random variables.

Let U ∼ F (u) be defined on U . Let (X, Y1, Y2)|{U = u} ∼ p(x|u)p(y1, y2|x)

and R be the union of all non-negative rate pairs (R1, R2) such that

R1 ≤ I(X;Y1|U),

R2 ≤ I(U ;Y2),

for some F (u). We show that it is sufficient to consider U define on U ′ where

|U ′| ≤ min{|X |, |Y1|, |Y2|}+ 1 to completely characterize R.
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To show this, we prove that given any (U,X), there exists (U ′, X) with

|U ′| ≤ min{|X |, |Y1|, |Y2|}+1 such that I(X;Y1|U ′) = I(X;Y1|U) and I(U ′;Y2) =

I(U ;Y2).

We first show that it suffices to take |U| ≤ |X |+1. Without loss of generality,

we take X = {1, 2, . . . , |X |}. Given (U,X), the set P of all pmfs on X is

connected and compact. Consider the following |X | + 1 continuous functions on

P:

gj(p(x)) =


p(j), j = 1, 2, . . . , |X | − 1

H(Y1), j = |X | − 1

H(Y2), j = |X |+ 1

All |X |+1 functions are continuous in p(x). Now by the support lemma mentioned

above, there exists a random variable U ′ defined on |X |+ 1 such that

H(Y1|U) =

∫
U

H(Y1|U = u)dF (u) =
∑
u′∈U ′

gj(p(x|u′))p(u′) = H(Y1|U ′),

H(Y2|U) =

∫
U

H(Y2|U = u)dF (u) =
∑
u′∈U ′

gj(p(x|u′))p(u′) = H(Y2|U ′),∫
U

p(x|U = u)dF (u) =
∑
u′∈U ′

pX|U ′(x|u′)p(u′), ∀x ∈ {1, 2, . . . , |X | − 1}.

Because p(x) uniquely determines H(Y1|X) and H(Y2), we have

I(X;Y1|U) = H(Y1|U)−H(Y1|X) = H(Y1|U ′)−H(Y1|X) = I(X;Y1|U ′),

I(U ;Y2) = H(Y2)−H(Y2|U) = H(Y2)−H(Y2|U ′) = I(U ′;Y2)

Therefore, there exists (U ′, X) with |U ′| ≤ |X | + 1 such that I(X;Y1|U ′) =

I(X;Y1|U) and I(U ′;Y2) = I(U ;Y2).

Following similar arguments, we can eventually get (U ′, X) with |U ′| ≤ min{|X |,
|Y1|, |Y2|}+ 1 such that I(X;Y1|U ′) = I(X;Y1|U) and I(U ′;Y2) = I(U ;Y2).

Therefore, it is sufficient to consider U defined on U ′ where |U ′| ≤ min{|X |, |Y1|,
|Y2|}+ 1 to completely characterize R.
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