
Genie-based Outer Bounds

for Interference Channels

LIU, Sida

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Information Engineering

The Chinese University of Hong Kong

September 2016



Abstract of thesis entitled:

Genie-based Outer Bounds for Interference Channels

Submitted by LIU, Sida

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in September 2016

In multi-user information theory, the interference channel is a classi-

cal model for communication between two or more transmitter-receiver

pairs over a shared medium. Determining the capacity region of the in-

terference channel remains a major open question in this field. Several

inner and outer bounds have been proposed for the capacity region.

Among those, Kramer (2004) developed a genie-based outer bound for

the degraded Gaussian interference channel studied by Sato (1978).

Later genie approaches are used to show the sum-capacity in a weak

interference regime of the Gaussian interference channel. In this thesis,

two outer bounds are developed, both for discrete and continuous set-

tings, using the genie idea. The genie-based outer bound is shown to

be sum-rate optimal for a specific class of discrete interference channels

with low interference. In the Gaussian setting, one of the outer-bound

developed in this thesis, enhanced genie-based outer bound turns out

to be tight in all cases where sum-capacity has been previously estab-

lished; thus unifying the converse arguments.

We study the optimality of Gaussian signaling using perturbations

along Hermite polynomials, an idea introduced by Abbe and Zheng

(2009). By generalizing the above approach we derive a larger regime

under which Gaussian signaling is not optimal for the coding scheme

of treating interference as noise.

This thesis also examines the weighted sum-rate for Gaussian Z
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interference channels. We present a conjecture that is equivalent to

testing the optimality of Gaussian signaling with power control at the

corner point of capacity region.
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摘摘摘要要要

在多用戶信息理論中，干擾信道是一個用來模擬兩對或更多傳輸

接受端通過共享媒介進行通訊的古典模型。解決干擾信道的信道容量

一直是這個領域中懸而未決的問題。幾種信道容量的內界和外界已經

被提出和研究。在其中，Krammer（2004）推導出一個對於降級高

斯干擾信道的基於精靈方法的外界。之後，精靈方法被用於證明高斯

干擾信道的信道容量和。此篇論文中，兩種基於精靈方法的外界被推

導出。這兩種精靈外界同時適用於離散和高斯的設定。在離散設定

中，對於某一類離散干擾信道的信道容量和，第一種精靈外界是最優

的。在高斯設定中，對於所有信道容量和已知的區間，另一種進階版

精靈外界都是最優的，由此統一了信道容量和的反面證明。

我們用Hermite多項式微擾的方法研究了高斯信號的最優性。這個

方法最初由Abbe和Zheng（2009）提出。對於干擾當作噪音的編碼方

式，我們推廣了以上方法並且得到了一個更大的高斯信號非最優的區

間。

此論文也研究了高斯Z型干擾信道的權重信道容量和。我們提出

了一個猜想，這個猜想被證明是等價於在高斯Z型干擾信道中高斯信

號與功率控制的最優性。
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Chapter 1

Introduction

The ground-breaking work done by Claude E. Shannon in his paper

“A Mathematical Theory of Communication” (1948) founded the disci-

pline of information theory. Communication from one point to another

was modeled as a three-stage process:

1. Encoding: There is a set of finitely many possible messages that

may need to be sent. The encoding process maps each message

to a codeword, a sequence of transmit symbols from a transmit

alphabet.

2. Channel: This models the physical medium that corrupts the

transmit symbol. The relationship between the received symbol

and the transmitted symbol is often characterized by a probability

transition matrix that yields the transition probabilities between

output symbols and input symbols.

3. Decoding: This is the process of estimating the message from the

sequence of received symbols.

Shannon’s channel coding theorem has successfully quantified the

maximum reliable rate of information flow through a channel, called

channel capacity. The point to point communication model can be

directly extended to a network setting. The first model in network

information theory is the two-way channel studied by Shannon (1961).
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CHAPTER 1. INTRODUCTION 2

During 1970s to 1980s, more channels were proposed and studied in-

cluding the multiple access channel, the broadcast channel, and the

interference channel. However determining the channel capacity re-

gion for most of these channels remains open. After decades when

researchers had little interest in this field, network information theory

was revived since 1990s thanks to development in wireless technology

and advance of data processing ability.

This thesis focuses on the interference channel.

1.1 Discrete memoryless interference channel

The interference channel was first introduced by Ahlswede (1974). It

is a classical model for communication consisting of two pairs of trans-

mitters and receivers over a shared medium. Each receiver wants to

send a private message to its intended receiver; however the sharing of

the medium causes it to suffer interference from the other communica-

tion pair. The characterization of the capacity region is a classical and

fundamental open problem in the area of multi-terminal information

theory.

M1

M2

Encoder 1

Encoder 2

Xn
1

Xn
2

w(y1, y2|x1, x2)

Y n
1

Y n
2

Decoder 1

Decoder 2

M̂1

M̂2

Figure 1.1: Discrete memoryless interference channel

Consider a discrete memoryless interference channel (DM-IC) de-

picted in Figure 1.1. The input and output alphabet are over two finite

sets X , Y . Interference and noise are characterized by the transition

probability w(y1, y2|x1, x2). An (R1, R2, n) rate coding scheme for the

discrete memoryless interference channel consists of

• Two message sets {1, 2, . . . , b2nRic}, i = 1, 2. The messages
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are assumed to be independent of each other and uniformly dis-

tributed over their message sets.

• Two encoders: Each encoder maps a messageMi ∈ {1, 2, . . . , b2nRic}
toXn

i using an encoding function Ψi : {1, 2, . . . , b2nRic} 7→ X n
i , i =

1, 2.

• Two decoders: Each decoder maps received n-letter sequence Y n
i

to an estimate of the message M̂i in {1, 2, . . . , b2nRic} using a

decoding function, Φi : Yni 7→ {1, 2, . . . , b2nRic}, i = 1, 2.

A rate pair (R1, R2) is said to be achievable if there is a sequence

of (R1, R2, n) coding schemes such that error probability Pe(n) :=

Pr{(M1,M2) 6= (M̂1, M̂2)} → 0 as n → ∞. The capacity region C

is the closure of the set of achievable rate pairs (R1, R2) ∈ R2. The

sum-capacity is defined as Csum = max(R1,R2)∈C R1 + R2. Note that

receivers decode messages independently, which means that the capac-

ity only depends on the marginals w(y1|x1, x2) and w(y2|x1, x2) rather

than w(y1, y2|x1, x2). It is also assumed that there is no feedback from

the receivers to the transmitter or co-operation between the two trans-

mitters.

A more detailed problem introduction and additional prior results

on interference channels can be found in Chapter 6 [9].

1.1.1 Strong interference

Definition 1.1.1 ([3]). A DM-IC is said to have very strong interfer-

ence if

I(X1;Y1|X2) ≤ I(X1;Y2) (1.1)

I(X2;Y2|X1) ≤ I(X2;Y1) (1.2)

for all p1(x1)p2(x2).

This definition sheds some light on the intensity of interference:

Consider equation (1.1). The left hand side is the rate that can be

achieved for channel X1 to Y1 without interference from X2. The right
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hand side is the rate that can be achieved for channel X1 to Y2 by

treating the intended signal X2 as noise. The inequality indicates that

interference is so strong that decoding interference would be optimal

(and can indeed shown to be the case [3]). This intuition will lead to

definition of very weak interference later in the following chapter.

Definition 1.1.2 ([7]). A DM-IC is said to have strong interference if

I(X1;Y1|X2) ≤ I(X1;Y2|X2) (1.3)

I(X2;Y2|X1) ≤ I(X2;Y1|X1) (1.4)

for all p(x1)p(x2).

It is clear that very strong interference channels also have strong in-

terference since I(X1;Y2|X2) ≥ I(X1;Y2) and I(X2;Y1|X1) ≥ I(X2;Y1).

Theorem 1.1.1 (Sato (1978) [17], Costa, El Gamal (1987) [7]). The

capacity region of the DM-IC with strong interference is the union of

rate pairs (R1, R2) such that

R1 ≤ I(X1;Y1|X2, Q) (1.5)

R2 ≤ I(X2;Y2|X1, Q) (1.6)

R1 +R2 ≤ min{I(X1, X2;Y1|Q), I(X1, X2;Y2|Q)} (1.7)

for some p(q)p(x1|q)p(x2|q) with |Q| ≤ 4.

For each distribution, the above constraints give a pentagonal region

in R2. The capacity region is given by the union of these pentagons.

The auxiliary random variable Q is a time/frequency sharing random

variable to mix different strategies. Since Q has a cardinality bound,

this characterization of the capacity region is computable by searching

over a finite dimensional space. The optimal achievable coding scheme

is simultaneous-nonunique-decoding and the converse is given by tradi-

tional single-letter argument using strong interference condition [7].

From this theorem, the sum-capacity for strong interference channel

is obtained as follows

Csum = max
p(q)p(x1|q)p(x2|q)

min{I(X1, X2;Y1|Q), I(X1, X2;Y2|Q)}
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1.2 Gaussian interference channel

The Gaussian interference channel (GIC) model in Figure 1.2 is widely

used in wireless communications. The Gaussian interference channel

with outputs Y1, Y2 and inputs X1, X2, i = 1, 2 are given by

Y1 = X1 + bX2 + Z1

Y2 = X2 + aX1 + Z2

where Z1 and Z2, used to model channel noise, are normally distributed

random variables with mean 0 and variance 1, denoted as N (0, 1).

Note that one can assume Z1, Z2 to have arbitrary correlation since

the capacity only depends on the marginal distribution.

X1

X2

Z1

Y1

Z2

Y2

a

b

Figure 1.2: Gaussian interference channel

The input and output alphabets are assumed to be real numbers.

The capacity of the Gaussian interference channel is often studied un-

der the assumption that the input codewords satisfy an average power

constraint, i.e.

1

2nRi

2nRi∑
m=1

‖Ψi(m)‖2 ≤ nPi, i = 1, 2.

where m is the message to be send and Ψi is the encoding function.

For a ≥ 1 and b ≥ 1, the GIC satisfies strong interference con-

dition (1.3) and (1.4). Hence, from Theorem 1.1.1, the capacity is

simultaneous-nonunique-decoding region and it is not hard to show
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that the optimal input distribution is Xi ∼ N (0, Pi), i = 1, 2 and

Q = ∅.
For a ≥ 1 and b < 1 (or a < 1 and b ≥ 1), the sum-capacity of the

GIC can be inferred from [17]

min

{
1

2
log(1 + a2P1 + P2),

1

2
log(1 +

P1

b2P2 + 1
) +

1

2
log(1 + P2)

}
and the optimal input distribution is Xi ∼ N (0, Pi), i = 1, 2 and

Q = ∅.
For a < 1 and b < 1, and if in addition the following condition holds

a(1 + b2P2) + b(1 + a2P1) < 1, (1.8)

then the sum-capacity of the GIC is given by

1

2
log(1 +

P1

b2P2 + 1
) +

1

2
log(1 +

P2

a2P1 + 1
).

This is the rate obtained by the treating-interference-as-noise strategy

with Gaussian inputs. This result was established independently by

[18], [2], [13]; and uses a genie-based approach.

1.3 Han–Kobayashi inner bound

The best known inner bound is Han-Kobayashi inner bound.

Theorem 1.3.1 (Han–Kobayashi [11], [4]). A rate pair (R1, R2) is

achievable for the DM-IC if

R1 ≤ I(X1;Y1|U2, Q)

R2 ≤ I(X2;Y2|U1, Q)

R1 +R2 ≤ I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q)

R1 +R2 ≤ I(X2, U1;Y2|Q) + I(X1;Y1|U1, U2, Q)

R1 +R2 ≤ I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q)

2R1 +R2 ≤ I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q)

R1 + 2R2 ≤ I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q)

for some p(q)p(u1, x1|q)p(u2, x2|q).
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In particular, by setting U1 = U2 = ∅, the Han–Kobayashi inner

bound reduces to the treating-interference-as-noise (TIN) inner bound:

R1 ≤ I(X1;Y1|Q)

R2 ≤ I(X2;Y2|Q)

for some p(q)p(x1|q)p(x2|q).
By setting Ui = Xi, i = 1, 2, the Han–Kobayashi inner bound

reduces to the simultaneous-nonunique-decoding inner bound, which

is tight for strong interference channels.

The Han–Kobayashi inner bound subsumes all known inner bounds

and is optimal for some classes of channels such as the strong interfer-

ence channel [17] and the injective deterministic interference channel

[8]. However, a recent work [14] has shown that there are some DM-ICs

for which the Han–Kobayashi inner bound is strictly sub-optimal.

1.4 Existing outer bounds

1.4.1 An outer bound using traditional techniques

Theorem 1.4.1 (Outer bound [12]). It can be shown that any achiev-

able rate pair (R1, R2) must satisfy

R1 ≤ min{I(U2X1;Y1|Q), I(X1;Y1|X2Q)}

R2 ≤ min{I(U1X2;Y2|Q), I(X2;Y2|X1Q)}

R1 +R2 ≤ I(U2X1;Y1|Q) + I(X2;Y2|U2X1Q)

R1 +R2 ≤ I(U1X2;Y2|Q) + I(X1;Y1|U1X2Q),

(1.9)

for some p(q, u1, u2)p(x1|u1, u2, q)p(x2|u1, u2, q) such that the following

statements hold:

1. X1, X2 are conditionally independent of Q,

2. For every Q = q, X1 and X2 are conditionally independent of U1,

3. For every Q = q, X1 and X2 are conditionally independent of U2,
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4. Q,U1, U2 → (X1, X2)→ (Y1, Y2) forms a Markov chain.

This outer bound is tight for the sum-capacity of mixed Gaussian

interference channels (a > 1, b < 1 or a < 1, b > 1). The proof [12]

uses traditional techniques like Csiszar sum lemma and identification

of auxiliaries U1i = (X
n\i
2 , Y i−1

11 , Y n
2i+1), U2i = (X

n\i
1 , Y i−1

11 , Y n
2i+1).

1.4.2 An outer bound for injective semi-deterministic inter-

ference channels

Figure 1.3 is a semi-deterministic interference channel. Fix x1 ∈ X1,

y1(x1, t2) is a one-to-one function of t2. Similarly for y2(x2, t1).

Figure 1.3: Injective semi-deterministic interference channel

Theorem 1.4.2 ([19]). Any achievable rate pair (R1, R2) for the in-

jective semi-deterministic IC must satisfy the inequalities

R1 ≤ H(Y1|X2, Q)−H(T2|X2),

R2 ≤ H(Y2|X1, Q)−H(T1|X1),

R1 +R2 ≤ H(Y1|Q) +H(Y2|U2, X1, Q)−H(T1|X1)−H(T2|X2),

R1 +R2 ≤ H(Y1|U1, X2, Q) +H(Y2|Q)−H(T1|X1)−H(T2|X2),

R1 +R2 ≤ H(Y1|U1, Q) +H(Y2|U2, Q)−H(T1|X1)−H(T2|X2),

2R1 +R2 ≤ H(Y1|Q) +H(Y1|U1, X2, Q) +H(Y2|U2, Q)

−H(T1|X1)− 2H(T2|X2),

R1 + 2R2 ≤ H(Y2|Q) +H(Y2|U2, X1, Q) +H(Y1|U1, Q)

− 2H(T1|X1)−H(T2|X2)
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for some p(q)p(x1|q)p(x2|q)pT1|X1(u1|x1)pT2|X2(u2|x2).

The GIC is a special class of this semi-deterministic IC with T1 =

aX1 + Z2 and T2 = bX2 + Z1. For GICs, [19] showed that the gap

between Han–Kobayashi inner bound and this outer bound is less than

half a bit.



Chapter 2

Genie-based outer bounds

Genie-based arguments were first used to establish the capacity of in-

jective deterministic ICs [8]. Recently, they has been employed to show

a half-bit gap for the Han–Kobayashi region in [10] and also to estab-

lish the sum-capacity of the Gaussian interference channel in [18], [2],

[13] for a subset of the weak interference regime. Motivated by these

works, two outer bounds on weighted sum-capacity are derived in this

chapter.

The capacity region is characterized using tangent lines which are

given by the maximal weighted sum rate maxR1 + λR2. Thus we

consider outer bound on maximal weighted sum rate for λ ≥ 1. (When

λ ≤ 1, the maximal weighted sum rate considered instead is max 1
λ
R1 +

R2. The outer bound on it can be obtained similarly.)

2.1 A genie-based outer bound

Capacity regions can be easily characterized in many multi-user set-

tings as a limit of n-letter expressions using Fano’s inequality. How-

ever these limits are infeasible to compute without knowing explicit

convergence behaviour. On the other hand information-theorists seek

computable characterizations of capacity regions.

Outer bounds to a capacity region are computable regions that con-

tain the capacity region. These outer bounds usually satisfy the ten-

10
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sorization property, i.e. their multi-letter extensions coincide with the

single-letter one. Usually, the outer bounds are obtained by upper

bounding an n-letter region which tends to the capacity region, by a

tensorizing functional whose single-letter region is computable.

In this chapter we develop outer bounds by giving additional infor-

mation (usually said to be provided by genies) to the receivers prior

to finding a tensorizing expression. With the help of genies, the n-

letter expression of the capacity region can be upper bounded by a

n-letter genie-based outer bound. Then this n-letter genie-based outer

bound is further single-letterized to a 1-letter genie-based outer bound

so that the express now becomes computable. We will show that in

later chapter this genie-based outer bound can be tight.

1-letter

inner bound

n-letter

expression

of capacity

n-letter

genie-based

outer bound

1-letter

genie-based

outer bound

1-letter

outer bound

⊆ ⊆ ⊆
⊆

compare

Figure 2.1: How a “genie” could help

Before we present the outer bound, we define the notion of upper

concave envelope, which will be used to express the genie-based outer

bound. The upper concave envelope of a function f(x) over domain D
is defined as

C[f ](x) := inf{g(x) : g(y) is concave in D, and g(y) ≥ f(y) ∀y ∈ D.}.

The following theorem provides an outer bound to the capacity

region of the interference channel with genie random variables denoted

by T1, T2 carrying information about X1 and X2 respectively. The

structure of the genie-aided channel is depicted in Figure 2.2.

Theorem 2.1.1 (Genie based outer bound). Consider a discrete mem-
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M1

M2

Encoder 1

Xn
1

p1(t1|x1)
Tn1

Encoder 2

Xn
2

p2(t2|x2)
Tn2

p(y1, y2|x1, x2, t1, t2)

Y n
1

Y n
2

Decoder 1

Decoder 2

M̂1

M̂2

Figure 2.2: Discrete memoryless interference channel with genies

oryless interference channel characterized by w(y1, y2|x1, x2). Let T1, T2

be any pair of random variables such that the joint distributions satisfy

p(y1, t1, y2, t2|x1, x2) = p(t1|x1)p(t2|x2)p(y1, y2|t1, t2, x1, x2), and their

marginals distributions are consistent with the given channel transi-

tion probabilities, i.e. p(y1|x1, x2) = w(y1|x1, x2) and p(y2|x1, x2) =

w(y2|x1, x2). The achievable weighted sum-rate can be upper bounded

as follows:

R1 + λR2 ≤ max
p1(x1)p2(x2)

I(X1;T1Y1) + λI(X2;T2Y2)

+ C[I(X1;T1|X2T2)− λI(X1;Y2|T2X2)]

− I(X1;T1|X2T2) + λI(X1;Y2|T2X2) (2.1)

+ C[I(X2;T2|X1T1)− I(X2;Y1|T1X1)]

− I(X2;T2|X1T1) + I(X2;Y1|T1X1),

where C[I(X2;T2|X1T1) − I(X2;Y1|T1X1)] denotes the upper concave

envelope of the function I(X2;T2|X1T1) − I(X2;Y1|T1X1) evaluated

with respect to the space of product distributions p1(x1)p2(x2). Simi-

larly, C[I(X1;T1|X2T2) − λI(X1;Y2|T2X2)] denotes the upper concave

envelope of the function I(X1;T1|X2T2) − λI(X1;Y2|T2X2) evaluated

with respect to the same space of product distributions p1(x1)p2(x2).
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Proof. See Appendix 2.A.

2.2 Enhanced genie-based outer bound

In the previous section, one can observe that from the Markov struc-

ture, the genie random variable T1 (T2) carries information about X1

(X2) and helps receiver 1 (2) to decode its message. Indeed, one can

use another genie random variable S2 (S1) carrying information of X2

(X1) to help receiver 1 (2) to decode its message. The pair of genies

T1 and S2 (T2 and S1) helping receiver 1 (2) to decode message would

be potentially better than the single genie in the previous subsection.

The enhanced structure of genie-aided channel is depicted in Figure

2.3. We obtain a single-letter outer bound based on this scenario and

it is presented below.

M1

M2

Encoder 1

Xn
1

p1(t1, s1|x1)
Sn1

Tn1

Encoder 2

Xn
2

p2(t2, s2|x2)
Sn2

Tn2

p(y1, y2|x1, x2, t1, t2, s1, s2)

Y n
1

Y n
2

Decoder 1

Decoder 2

M̂1

M̂2

Figure 2.3: DM-IC with two genies per decoder

Theorem 2.2.1 (Enhanced genie-based outer bound). Consider a dis-

crete memoryless interference channel with transition probability marginals

w(y1, y2|x1, x2). Let T1, S1, T2, S2 be any random variables such that
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p(y1, t1, s1, y2, t2, s2|x1, x2) decomposes as

p(t1, s1|x1)p(t2, s2|x2)p(y1, y2|t1, t2, s1, s2, x1, x2).

Further we require that

• the marginals are consistent with the given channel transition

probabilities, that is,

p(y1|x1, x2) = w(y1|x1, x2) and p(y2|x1, x2) = w(y2|x1, x2).

• for each i = 1, 2, Ti, Si has degraded order, i.e. either Xi → Ti →
Si or Xi → Si → Ti must form a Markov chain.

The weighted sum-capacity of this DMIC can be upper bounded as

following:

R1 + λR2 ≤ max
p1(x1)p2(x2)

I(X1;T1, Y1|S2) + λI(X2;T2, Y2|S1)

+ C[I(X1;T1|X2, T2, S1)− λI(X1;Y2|X2, T2, S1)]

− I(X1;T1|X2, T2, S1) + λI(X1;Y2|X2, T2, S1)

+ C[I(X2;T2|X1, T1, S2)− I(X2;Y1|X1, T1, S2)]

− I(X2;T2|X1, T1, S2) + I(X2;Y1|X1, T1, S2)

(2.2)

where C[·] denotes as before the upper concave envelope of a function

over the space of product distributions p1(x1)p2(x2).

Proof. See Appendix 2.B.

Genie random variables are different from traditional auxiliaries.

For an outer bound involving traditional auxiliaries, the region con-

taining the capacity region is usually obtained by taking the union

over all possible distribution of the auxiliaries. (This is the reason that

outer bounds can only be computable if there are cardinality bounds

on auxiliaries) Whereas in this genie-based outer bound, any feasible

genie produces a valid outer bound. Therefore the challenge is to find

genies that lead to plausibly tight outer bounds.
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Remark 2.2.1. The last degradation requirement in Theorem 2.2.1

that two genies together with channel input must form the Markov

chain is an assumption to make the single-letterization go through. In

the Gaussian interference channel, since we typically take the genies to

be the signals with additive Gaussian noise, this degradation condition

is automatically satisfied.

We will show in Sections 4.1, 4.2 and 4.4 that this outer bound

turns out to be tight for Gaussian interference channels in regimes

where the sum-capacity is known: strong interference regime (a ≥ 1,

b ≥ 1), mixed interference regime (a ≥ 1, b < 1 or a < 1, b ≥ 1), weak

interference sub-regime (a < 1, b < 1 and a(1+b2P2)+b(1+a2P1) ≤ 1).

Indeed this is the first outer bound that unifies all the results on sum-

capacity.



Appendix

2.A Proof of Theorem 2.1.1

Proof of theorem 2.1.1. Consider a sequence of codebooks with grow-

ing block length n such that their decoding error probabilities tend to

zero as n goes to infinity. The distribution on the n-tuples is given by

p(m1,m2, x
n
1 , x

n
2 , y

n
1 , t

n
1 , y

n
2 , t

n
2 )

= p(m1, x
n
1 )p(m2, x

n
2 )

n∏
i=1

p(t1i|x1i)p(y1i|x1i, x2i, t1i)p(t2i|x2i)p(y2i|x1i, x2i, t2i).

Keep in mind that the channel capacity of an interference channel

depends only on the marginals q(y1|x1, x2) and q(y2|x1, x2) and that

the distribution above is consistent with the marginal distributions by

assumption. For λ ≥ 1,

n(R1 + λR2)

= H(M1) + λH(M2)

≤ I(M1;Y n
1 ) + λI(M2;Y n

2 ) + nε (by Fano’s inequality)

≤ I(Xn
1 ;Y n

1 ) + λI(Xn
2 ;Y n

2 ) + nε

≤ I(Xn
1 ;Y n

1 T
n
1 ) + λI(Xn

2 ;Y n
2 T

n
2 ) + nε

= I(Xn
1 ;T n1 ) + I(Xn

1 ;Y n
1 |T n1 ) + λI(Xn

2 ;T n2 ) + λI(Xn
2 ;Y n

2 |T n2 ) + nε

= H(T n1 )−H(T n1 |Xn
1 ) +H(Y n

1 |T n1 )−H(Y n
1 |T n1 Xn

1 )

+ λH(T n2 )− λH(T n2 |Xn
2 ) + λH(Y n

2 |T n2 )− λH(Y n
2 |T n2 Xn

2 ) + nε.

16
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Then, for the term H(T n1 )− λH(Y n
2 |Xn

2 T
n
2 ), note that

H(T n1 )− λH(Y n
2 |Xn

2 T
n
2 )

=H(T n1 |T n2 Xn
2 )− λH(Y n

2 |Xn
2 T

n
2 )

(since T n1 is independent of (T n2 , X
n
2 ))

=
∑
i

H(T1i|T i−1
1 T n2 X

n
2 )− λH(Y2i|Y n

2,i+1X
n
2 T

n
2 )

≤
∑
i

H(T1i|Y n
2,i+1T

i−1
1 T n2 X

n
2 )− λH(Y2i|T i−1

1 Y n
2,i+1X

n
2 T

n
2 )

(Csiszar-sum lemma)

=
∑
i

H(T1i|UiX2iT2i)− λH(Y2i|UiX2iT2i).

(Ui := (Y n
2,i+1, T

i−1
1 , T

n\i
2 , X

n\i
2 ))

Consider a Bayesian network representation in Figure 2.A.1 of the

variables. Any path from X1i to X2i is d-separated by X n
2i+1. Hence

X1,i X2,i

Xi−1
1,1

X n
1,i+1

Xi−1
2,1

X n
2,i+1

T n
2,i+1Y n

2,i+1

T i−1
1,1 T i−1

2,1

Figure 2.A.1: Bayesian network of dependence

we have Markov chain X1i → Ui → X2i.

Similarly

H(T n2 )−H(Y n
1 |Xn

1 T
n
1 )

=
∑
i

H(T2i|ViX1iT1i)−H(Y1i|ViX1iT1i)

where Vi = (Y n
1,i+1, T

i−1
2 , T

n\i
1 , X

n\i
1 ) and X1i → Vi → X2i.
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Secondly, from the n-tuple distribution we get that

H(T n1 |Xn
1 ) =

n∑
i=1

H(T1i|X1iX
n\i
1 T i−1

1 ) =
n∑
i=1

H(T1i|X1i),

H(T n2 |Xn
2 ) =

n∑
i=1

H(T2i|X2iX
n\i
2 T i−1

2 ) =
n∑
i=1

H(T2i|X2i).

Following chain rule and that conditioning reduces entropy,

H(Y n
1 |T n1 ) ≤

n∑
i=1

H(Y1i|T1i),

H(Y n
2 |T n2 ) ≤

n∑
i=1

H(Y2i|T2i).

Combining the above arguments, using routine manipulations, we

obtain that

n(R1 + λR2)

≤ H(T n1 )−H(T n1 |Xn
1 ) +H(Y n

1 |T n1 )−H(Y n
1 |T n1 Xn

1 )

+H(T n2 )− λH(T n2 |Xn
2 ) + λH(Y n

2 |T n2 )− λH(Y n
2 |T n2 Xn

2 )

+ (λ− 1)H(T n2 ) + nε

≤
∑
i

H(T2i|ViX1iT1i)−H(Y1i|ViX1iT1i)−H(T1i|X1i) +H(Y1i|T1i)

+H(T1i|UiX2iT2i)− λH(Y2i|UiX2iT2i)− λH(T2i|X2i) + λH(Y2i|T2i)

+ (λ− 1)H(T2i) + nε

=
∑
i

I(X2i;T2i|ViX1iT1i) + I(ViX1i;Y1i|T1i)− (λ− 1)H(T2i|X2i)

+ I(X1i;T1i|UiX2iT2i) + λI(UiX2i;Y2i|T2i) + (λ− 1)H(T2i) + nε

=
∑
i

I(X2i;T2i|X1iT1i)− I(Vi;T2i|X1iT1i)

(since I(ViX2i;T2i|X1iT1i) = I(X2i;T2i|X1iT1i) )

+ I(X1i;Y1i|T1i) + I(Vi;Y1i|T1iX1i)

+ I(X1i;T1i|X2iT2i)− I(Ui;T1i|X2iT2i)

(since I(UiX1i;T1i|X2iT2i) = I(X1i;T1i|X2iT2i) )

+ λI(X2i;Y2i|T2i) + λI(Ui;Y2i|T2iX2i) + (λ− 1)I(X2i;T2i) + nε
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=
∑
i

λI(X2i;T2i)− I(Vi;T2i|X1iT1i) + I(X1i;Y1i|T1i) + I(Vi;Y1i|T1iX1i)

+ I(X1i;T1i)− I(Ui;T1i|X2iT2i) + λI(X2i;Y2i|T2i)

+ λI(Ui;Y2i|T2iX2i) + nε

(since (X1, T1) and (X2, T2) are independent)

=
∑
i

I(X1i;T1iY1i) + λI(X2i;T2iY2i)

− I(Vi;T2i|X1iT1i) + I(Vi;Y1i|T1iX1i)

− I(Ui;T1i|X2iT2i) + λI(Ui;Y2i|T2iX2i) + nε

Now since Vi → (X1i, T1i, X2i)→ (Y1i, T2i) and Ui → (X1i, X2i, T2i)→
(Y2i, T1i), one can rewrite the above as

n(R1 + λR2)

≤
∑
i

I(X1i;T1iY1i) + λI(X2i;T2iY2i)

− I(X2i;T2i|X1iT1i) + I(X2i;Y1i|T1iX1i)

+ I(X2i;T2i|Vi, X1iT1i)− I(X2i;Y1i|Vi, T1iX1i)

− I(X1i;T1i|X2iT2i) + λI(X1i;Y2i|T2iX2i)

+ I(X1i;T1i|Ui, X2iT2i)− λI(X1i;Y2i|Ui, T2iX2i) + nε

≤
∑
i

I(X1i;T1iY1i) + λI(X2i;T2iY2i) + nε

− I(X2i;T2i|X1iT1i) + I(X2i;Y1i|T1iX1i)

+ C[I(X2i;T2i|X1iT1i)− I(X2i;Y1i|T1iX1i)]

− I(X1i;T1i|X2iT2i) + λI(X1i;Y2i|T2iX2i)

+ C[I(X1i;T1i|X2iT2i)− λI(X1i;Y2i|T2iX2i)],

where C[I(X2i;T2i|X1iT1i)−I(X2i;Y1i|T1iX1i)] is the upper concave en-

velope of the function I(X2i;T2i|X1iT1i)− I(X2i;Y1i|T1iX1i) defined on

the space of distributions p1(x1)p2(x2). It is easy to see from the defi-

nition of the upper concave envelope that

C[I(X2i;T2i|X1iT1i)− I(X2i;Y1i|T1iX1i)]

= sup
U :X1i→U→X2i

U→(X1i,X2i)→(Y1i,T2i,T1i)

I(X1i;T1i|U,X2iT2i)
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− I(X1i;Y2i|U, T2iX2i).

Thus for any valid choice of genies T1, T2, we obtain an outer bound

to the sum-rate given by

R1 + λR2

≤ max
p1(x1)p2(x2)

I(X1;T1Y1) + λI(X2;T2Y2)

+ C[I(X2;T2|X1T1)− I(X2;Y1|T1X1)]

− I(X2;T2|X1T1) + I(X2;Y1|T1X1)

+ C[I(X1;T1|X2T2)− λI(X1;Y2|T2X2)]

− I(X1;T1|X2T2) + λI(X1;Y2|T2X2) (2.3)

2.B Proof of Theorem 2.2.1

Proof of Theorem 2.2.1. The proof is basically following Csiszar sum

lemma and manipulation of mutual information.

n(R1 + λR2)− nε

≤H(M1) + λH(M2)

≤I(Xn
1 ;Y n

1 ) + λI(Xn
1 ;Y n

1 )

≤I(Xn
1 ;Y n

1 T
n
1 S

n
2 ) + λI(Xn

2 ;Y n
2 T

n
2 S

n
1 )

=I(Xn
1 ;T n1 ) + I(Xn

1 ;Y n
1 |T n1 Sn2 ) + λI(Xn

2 ;T n2 ) + λI(Xn
2 ;Y n

2 |T n2 Sn1 )

=H(T n1 )−H(T n1 |Xn
1 ) +H(Y n

1 |T n1 Sn2 )−H(Y n
1 |T n1 Sn2Xn

1 )

+λH(T n2 )− λH(T n2 |Xn
2 ) + λH(Y n

2 |T n2 Sn1 )−λH(Y n
2 |T n2 Sn1Xn

2 )

Note that

H(T n1 )− λH(Y n
2 |T n2 Sn1Xn

2 )

=H(T n1 |Sn1 ) + I(T n1 ;Sn1 )− λH(Y n
2 |T n2 Sn1Xn

2 )

=H(T n1 |T n2 Sn1Xn
2 ) + I(T n1 ;Sn1 )− λH(Y n

2 |T n2 Sn1Xn
2 )

≤
∑
i

H(T1i|T i−1
1 Y n

2,i+1T
n
2 S

n
1X

n
2 )− λH(Y2i|T i−1

1 Y n
2,i+1T

n
2 S

n
1X

n
2 )
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+ I(T n1 ;Sn1 )

The last inequality is due to Csiszar sum identity. We have

n(R1 + λR2)− nε

≤
∑
i

H(T1i|T i−1
1 Y n

2,i+1T
n
2 S

n
1X

n
2 )− λH(Y2i|T i−1

1 Y n
2,i+1T

n
2 S

n
1X

n
2 )

+H(T2i|T i−1
2 Y n

1,i+1T
n
1 S

n
2X

n
1 )−H(Y1i|T i−1

2 Y n
1,i+1T

n
1 S

n
2X

n
1 )

−H(T1i|X1i) +H(Y1i|T1iS2i)− λH(T2i|X2i) + λH(Y2i|T2iS1i)

+ I(T n1 ;Sn1 ) + I(T n2 ;Sn2 ) + (λ− 1)H(T n2 )

Use substitution U1i = T i−1
1 S

n\i
1 , V1i = X

n\i
2 T

n\i
2 Y n

2,i+1,U2i = T i−1
2 S

n\i
2 ,

V2i = X
n\i
1 T

n\i
1 Y n

1,i+1,

n(R1 + λR2)− nε

=
∑
i

H(T1i|U1iV1iT2iS1iX2i)− λH(Y2i|U1iV1iT2iS1iX2i)

+H(T2i|U2iV2iT1iS2iX1i)−H(Y1i|U2iV2iT1iS2iX1i)

−H(T1i|X1iS1i)− I(T1i;S1i|X1i) +H(Y1i|T1iS2i)

− λH(T2i|X2iS2i)− λI(T2i;S2i|X2i) + λH(Y2i|T2iS1i)

+ I(T n1 ;Sn1 ) + I(T n2 ;Sn2 ) + (λ− 1)H(T2i)

≤
∑
i

H(T1i|U1iV1iT2iS1iX2i)− λH(Y2i|U1iV1iT2iS1iX2i)

−H(T1i|X1iU1iV1iT2iS1iX2i) +H(Y1i|T1iS2i)

+H(T2i|U2iV2iT1iS2iX1i)−H(Y1i|U2iV2iT1iS2iX1i)

− λH(T2i|X2iU2iV2iT1iS2iX1i) + λH(Y2i|T2iS1i)

− I(T1i;S1i|X1i)− λI(T2i;S2i|X2i) + I(T n1 ;Sn1 ) + I(T n2 ;Sn2 )

+ (λ− 1)H(T2i)

=
∑
i

I(X1i;T1i|U1iV1iT2iS1iX2i)− λI(X1i;Y2i|U1iV1iT2iS1iX2i)

− λH(Y2i|U1iV1iT2iS1iX2iX1i) +H(Y1i|T1iS2i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)

−H(Y1i|U2iV2iT1iS2iX1iX2i) + λH(Y2i|T2iS1i)
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− I(T1i;S1i|X1i)− λI(T2i;S2i|X2i) + I(T n1 ;Sn1 ) + I(T n2 ;Sn2 )

+ (λ− 1)I(X1iX2iU2iV2iT1iS2i;T2i)

The inequality is due to the fact conditional entropy is less than

original entropy. Use mutual information to rewrite above as follow,

n(R1 + λR2)− ε

=
∑
i

I(X1i;T1i|U1iV1iT2iS1iX2i)− λI(X1i;Y2i|U1iV1iT2iS1iX2i)

− λH(Y2i|U1iV1iT2iS1iX2iX1i) +H(Y1i|T1iS2i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)

−H(Y1i|U2iV2iT1iS2iX1iX2i) + λH(Y2i|T2iS1i)

− I(T1i;S1i|X1i)− λI(T2i;S2i|X2i) + I(T n1 ;Sn1 ) + I(T n2 ;Sn2 )

+ (λ− 1)I(X1iX2iU2iV2iT1iS2i;T2i)

=
∑
i

I(X1i;T1i|U1iV1iT2iS1iX2i)− λI(X1i;Y2i|U1iV1iT2iS1iX2i)

− λH(Y2i|T2iS1iX2iX1i) +H(Y1i|X1iT1iS2i) + I(X1i;Y1i|T1iS2i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)

−H(Y1i|T1iS2iX1iX2i) + λH(Y2i|X2iT2iS1i) + λI(X2i;Y2i|T2iS1i)

− I(T1i;S1i|X1i)− λI(T2i;S2i|X2i) + I(T n1 ;Sn1 ) + I(T n2 ;Sn2 )

+ (λ− 1)I(X1iX2iU2iV2iT1iS2i;T2i)

=
∑
i

I(X1i;T1i|U1iV1iT2iS1iX2i)− λI(X1i;Y2i|U1iV1iT2iS1iX2i)

+ I(X2i;Y1i|X1iT1iS2i) + I(X1i;Y1i|T1iS2i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)

+ λI(X1i;Y2i|X2iT2iS1i) + λI(X2i;Y2i|T2iS1i)

− I(T1i;S1i|X1i)− λI(T2i;S2i|X2i) + I(T n1 ;Sn1 ) + I(T n2 ;Sn2 )

+ (λ− 1)I(X1iX2iU2iV2iT1iS2i;T2i)

Add and subtract the terms I(X1i;T1i|T2iS1iX2i) (= I(X1i;T1i|S1i))
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and I(X2i;T2i|T1iS2iX1i) (= I(X2i;T2i|S2i)). We obtain

n(R1 + λR2)− nε

=
∑
i

I(X1i;T1i|U1iV1iT2iS1iX2i)− λI(X1i;Y2i|U1iV1iT2iS1iX2i)

− I(X1i;T1i|T2iS1iX2i) + λI(X1i;Y2i|X2iT2iS1i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)

− I(X2i;T2i|T1iS2iX1i) + I(X2i;Y1i|X1iT1iS2i)

+ I(X1i;T1i|S1i) + I(X2i;T2i|S2i) + I(X1i;Y1i|T1iS2i) + λI(X2i;Y2i|T2iS1i)

− I(T1i;S1i|X1i)− λI(T2i;S2i|X2i) + I(T n1 ;Sn1 ) + I(T n2 ;Sn2 )

+ (λ− 1)I(X1iX2iU2iV2iT1iS2i;T2i)

=
∑
i

I(X1i;T1i|U1iV1iT2iS1iX2i)− λI(X1i;Y2i|U1iV1iT2iS1iX2i)

− I(X1i;T1i|T2iS1iX2i) + λI(X1i;Y2i|X2iT2iS1i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)

− I(X2i;T2i|T1iS2iX1i) + I(X2i;Y1i|X1iT1iS2i)

+ I(X1i;T1i|S1i) + I(X2i;T2i|S2i) + I(X1i;Y1iT1i|S2i)− I(X1i;T1i|S2i)

+ λI(X2i;Y2iT2i|S1i)− λI(X2i;T2i|S1i)− I(T1i;S1i|X1i)− λI(T2i;S2i|X2i)

+ I(T n1 ;Sn1 ) + I(T n2 ;Sn2 ) + (λ− 1)I(X1iX2iU2iV2iT1iS2i;T2i)

Note (X1i, T1i) and S2i are independent. So I(X1i;T1i|S2i) = I(X1i;T1i)

and I(X2i;T2i|S1i) = I(X2i;T2i).

n(R1 + λR2)− nε

=
∑
i

I(X1i;T1i|U1iV1iT2iS1iX2i)− λI(X1i;Y2i|U1iV1iT2iS1iX2i)

− I(X1i;T1i|T2iS1iX2i) + λI(X1i;Y2i|X2iT2iS1i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)

− I(X2i;T2i|T1iS2iX1i) + I(X2i;Y1i|X1iT1iS2i)

+ I(X1i;T1i|S1i) + I(X2i;T2i|S2i) + I(X1i;Y1iT1i|S2i) + λI(X2i;Y2iT2i|S1i)

− I(T1i;S1iX1i)− λI(T2i;S2iX2i) + I(T n1 ;Sn1 ) + I(T n2 ;Sn2 )

+ (λ− 1)I(X1iX2iU2iV2iT1iS2i;T2i)
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When genies has degraded order, say X1 → T1 → S1, we have

I(T n1 ;Sn1 ) = H(Sn1 )−H(Sn1 |T n1 )

≤
∑
i

H(S1i)−H(S1i|Si−1
1 T n1 )

=
∑
i

H(S1i)−H(S1i|T1i)

=
∑
i

I(T1i;S1i)

since Si−1
1 T

n\i
1 → X1i → T1i → S1i.

n(R1 + λR2)− ε

≤
∑
i

I(X1i;T1i|U1iV1iT2iS1iX2i)− λI(X1i;Y2i|U1iV1iT2iS1iX2i)

− I(X1i;T1i|T2iS1iX2i) + λI(X1i;Y2i|X2iT2iS1i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)

− I(X2i;T2i|T1iS2iX1i) + I(X2i;Y1i|X1iT1iS2i)

+ I(X1i;T1i|S1i) + I(X2i;T2i|S2i) + I(X1i;Y1iT1i|S2i) + λI(X2i;Y2iT2i|S1i)

− I(T1i;S1iX1i)− λI(T2i;S2iX2i) + I(T n1 ;Sn1 ) + I(T n2 ;Sn2 )

+ (λ− 1)I(X1iX2iU2iV2iT1iS2i;T2i)

≤
∑
i

I(X1i;T1i|U1iV1iT2iS1iX2i)− λI(X1i;Y2i|U1iV1iT2iS1iX2i)

− I(X1i;T1i|T2iS1iX2i) + λI(X1i;Y2i|X2iT2iS1i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)

− I(X2i;T2i|T1iS2iX1i) + I(X2i;Y1i|X1iT1iS2i)

+ I(X1i;T1i|S1i) + I(X2i;T2i|S2i) + I(X1i;Y1iT1i|S2i) + λI(X2i;Y2iT2i|S1i)

− I(T1i;S1iX1i)− λI(T2i;S2iX2i) + I(T1i;S1i) + I(T2i;S2i)

+ (λ− 1)I(X2iS2i;T2i)

=
∑
i

I(X1i;T1i|U1iV1iT2iS1iX2i)− λI(X1i;Y2i|U1iV1iT2iS1iX2i)

− I(X1i;T1i|T2iS1iX2i) + λI(X1i;Y2i|X2iT2iS1i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)
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− I(X2i;T2i|T1iS2iX1i) + I(X2i;Y1i|X1iT1iS2i)

+ I(X1i;Y1iT1i|S2i) + λI(X2i;Y2iT2i|S1i).

It is easy to verify that X2i → (U1i, V1i)→ X1i, X2i → (U2i, V2i)→
X1i. Hence by using concave envelope, we have

R1 + λR2 ≤ max
p1(x1)p2(x2)

I(X1;Y1T1|S2) + λI(X2;Y2T2|S1)

+ C [I(X1;T1|T2S1X2)− λI(X1;Y2|T2S1X2)]

− I(X1;T1|T2S1X2) + λI(X1;Y2|X2T2S1)

+ C [I(X2;T2|T1S2X1)− I(X2;Y1|T1S2X1)]

− I(X2;T2|T1S2X1) + I(X2;Y1|X1T1S2)



Chapter 3

Very weak interference

As discussed in Chapter 1, for channels with very strong interference,

the best coding strategy for receivers is to decode both messages from

the intended signal as well as interference. In contrast, when interfer-

ence is very weak, one would expect that receivers do not decode any

information from interference. This chapter will study channels with

very weak interference. We are going to focus on sum-capacity only.

3.1 Definition of very weak interference

Definition 3.1.1 (Very weak interference). An interference channel is

said to have very weak interference if

I(U1;Y1) ≥ I(U1;Y2|X2) (3.1)

I(U2;Y2) ≥ I(U2;Y1|X1) (3.2)

for all auxiliaries (U1, U2) with joint distribution p(u1, u2, x1, x2) =

p(u1)p(x1|u1)p(u2)p(x2|u2).

The definition can be interpreted in the following way: the left

hand side of (3.1) represents the rate required for Y1 to decode U1,

which can be considered as partial information about X1 according

to the Markov structure, without other help. The right hand side of

26
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(3.1) represents the rate required for Y2 to decode the same U1 under

the most favourable situation where Y2 is fully aware of its intended

message X2. The inequality indicates that the interference is so weak

that decoding any part of X1 by Y2 would decreases the sum rate,

compared to decoding by Y1. Thus, to maximize R1 + R2, intuitively

the best strategy is to treat interference as noise and not decode any

part of the interference.

An equivalent definition to the very weak interference is given by

the following lemma. This condition is easier to check.

Lemma 3.1.1. The channel has very weak interference if and only if

I(X1;Y1) − I(X1;Y2|X2) is concave in p1(x1) (for a fixed p2(x2)), and

I(X2;Y2)− I(X2;Y1|X1) is concave in p2(x2) (for a fixed p1(x1)).

Proof. Since U1 → X1 → (X2, Y1, Y2) is Markov, observe that

I(U1;Y1) ≥ I(U1;Y2|X2) ⇐⇒

I(X1;Y1)− I(X1;Y2|X2) ≥ I(X1;Y1|U1)− I(X1;Y2|U1, X2),

which is equivalent to concavity w.r.t. p1(x1). Similar reasoning holds

for the second equation w.r.t. p2(x2).

3.2 Han–Kobayashi sum-rate for very weak inter-

ference channels

Using Fourier-Motzkin elimination, the Han–Kobayashi sum-rate is

given by the following lemma.

Lemma 3.2.1 (Han–Kobayashi sum-rate inner bound). The sum-capacity

R1 +R2 of interference channel is achievable if it satisfies

R1 +R2 ≤ I(X1;Y1|U2, Q) + I(X2;Y2|U1, Q), (3.3)

R1 +R2 ≤ I(U2, X1;Y1|Q) + I(X2;Y2|U2, U1, Q), (3.4)

R1 +R2 ≤ I(U1, X2;Y2|Q) + I(X1;Y1|U2, U1, Q), (3.5)

R1 +R2 ≤ I(U2, X1;Y1|U1, Q) + I(U1X2;Y2|U2, Q), (3.6)

for some p(q)p(u1, x1|q)p(u2, x2|q).
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For very weak interference channels, the Han–Kobayashi sum-rate

can be significantly simplified.

Theorem 3.2.1. The maximum achievable sum-rate of the Han-Kobayashi

inner bound (3.3)-(3.6), denoted as SHK for a DMIC, reduces to

SHK = max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;Y2)

under the very weak interference condition.

Proof. Treating interference as noise, or in particular, setting Q = U1 =

U2 = ∅ (i.e. the trivial random variable) gives that maxp1(x1)p2(x2) I(X1;Y1)+

I(X2;Y2) is achievable. This indicates that

SHK ≥ max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;Y2). (3.7)

Next, note that equation (3.6) satisfies:

I(U2, X1;Y1|U1, Q) + I(U1, X2;Y2|U2, Q)

(a)
= I(U2, X1;Y1|Q)− I(U1;Y1|Q) + I(U1, X2;Y2|Q)− I(U2;Y2|Q)

= I(X1;Y1|Q) + I(U2;Y1|X1, Q)− I(U2;Y2|Q)

+ I(X2;Y2|Q) + I(U1;Y2|X2, Q)− I(U1;Y1|Q)

(b)

≤ I(X1;Y1|Q) + I(X2;Y2|Q),

where (a) holds because U1 → X1 → (U2, X2, Y1, Y2), U2 → X2 →
(U1, X1, Y1, Y2) form Markov chains conditioned on Q = q and (b) holds

as an immediate consequence of the definition of very weak interference.

Since SHK has to be smaller than the maximum of any of the four

expressions, and that the average over Q is dominated by the maximum

value, we have SHK ≤ maxp1(x1)p2(x2) I(X1;Y1) + I(X2;Y2). Combining

this with (3.7), the proposition is established.

Remark 3.2.1. In Gaussian settings, X1, X2 need to satisfy power

constraints and in general,

max
E[X2

i ]≤Pi

I(X1;Y1) + I(X2;Y2) 6= max
E[X2

i ]≤Pi

I(X1;Y1|Q) + I(X2;Y2|Q)
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Thus Han–Kobayashi sum-rate reduces to maxE[X2
i ]≤Pi

I(X1;Y1|Q) +

I(X2;Y2|Q).

Remark 3.2.2. To characterize the entire HK region, one needs to

maximize λR1 +R2. Treating-interference-as-noise weighted sum-rate,

maxp1(x1)p2(x2) λI(X1;Y1) + I(X2;Y2), might not be equivalent to HK

weighted sum-rate under very weak interference. Therefore the defini-

tion of very weak interference is tailored for sum-rate (i.e. λ = 1).

3.3 Examples

3.3.1 Binary skewed-Z interference channel

The first example is a DMIC with binary input and output.

X2 = 0

X1 = 0

X2 = 1

X1 = 1

X1

0

1

Y1

0

1

X1

0

1

Y1

0

1

p

X2

0

1

Y2

0

1

X2

0

1

Y2

0

1

q

Figure 3.1: Binary skewed-Z interference channel (BSZIC)

Consider a DMIC with transition probabilities as depicted in Figure

3.1 with parameters p, q ∈ [0, 1]. We call such a channel a Binary

Skewed-Z Interference Channel (BSZIC).

Lemma 3.3.1. A BSZIC with parameter (p, q) has very weak inter-

ference if and only if

0 ≤ p+ q ≤ 1.

Proof. From Lemma 3.1.1, it suffices to determine the conditions under

which I(X1;Y1)− I(X1;Y2|X2) is concave in p1(x1) for all fixed p2(x2)
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and I(X2;Y2)− I(X2;Y1|X1) is concave in p2(x2) for all fixed p1(x1).

Let H(x) = −x log2 x−(1−x) log2(1−x) denote the binary entropy

function. Let P (X2 = 0) = a and P (X1 = 0) = x. We need to deter-

mine the set of values of p, q ∈ [0, 1] such that I(X1;Y1)− I(X1;Y2|X2)

is concave in x for all a ∈ [0, 1].

I(X1;Y1)− I(X1;Y2|X2)

= H(x(1− āp))− xH(1− āp)− āH(xq) + āxH(q),

where ā = 1− a. Note that the second and the last terms are linear in

x. After taking the second derivative, one could see that the concavity

of the above expression with respect to x is equivalent to showing that

1− āp
1− x(1− āp)

≥ āq

1− xq
,

i.e. (1− āp)(1− xq) ≥ āq(1− x(1− āp)).

The above condition must hold for all x ∈ [0, 1]. Since both sides

of the inequality are linear in x, it suffices to verify the inequality only

at x = 0 and x = 1. Substituting them in, we obtain the following two

conditions, respectively.{
1− āp ≥ āq,

(1− āp)(1− q) ≥ pqā2.

Both conditions have to be satisfied for all a ∈ [0, 1]. Keeping in

mind that p, q ∈ [0, 1], it is easy to check that this is equivalent to

0 ≤ p + q ≤ 1. The same condition can be derived from the concavity

of I(X2;Y2)− I(X2;Y1|X1).

The sum-capacity of BSZIC under a sub-regime of very weak inter-

ference region can be obtained using genie-based outer bound (2.1).

Theorem 3.3.1. Treating interference as noise is sum-rate optimal for

BSZIC when channel parameters (p, q) satisfy

p+ q + 3pq ≤ 1.

The regime of parameters is shown in Figure 3.2.
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p

q

1
3

1
3

0
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1

Figure 3.2: Regime of parameters where the sum-capacity is established for

the Skewed-Z interference channel

The following lemma aids in our proof of the theorem.

Lemma 3.3.2. Let C[f ](x, y) denote the upper concave envelope of

f(x, y) over the space of product distributions where Pr(X1 = 0) = x

and Pr(X2 = 1) = y. Suppose f(x, y) is linear in x. Let g0(y) = f(0, y)

and g1(y) = f(1, y), then f(x, y) = (1− x)g0(y) + xg1(y) and

C[f ](x, y) = (1− x)C[g0](y) + xC[g1](y),

where C[g0](y), C[g1](y) denotes the upper concave envelope of g0(y),

g1(y), w.r.t. y ∈ [0, 1].

Proof. For a generic variable x ∈ [0, 1], let x̄ = 1 − x. Now consider

a maximizing convex combination at (xȳ, xy, x̄ȳ, x̄y), i.e. a weight

vector {αi} and product distributions (xiȳi, xiyi, x̄iȳi, x̄iyi) such that∑
i αi(xiȳi, xiyi, x̄iȳi, x̄iyi) = (xȳ, xy, x̄ȳ, x̄y) and that

∑
i αif(xi, yi) =

C[f ](x, y). Note
∑

i αix̄i =
∑

i αix̄i(ȳi+yi) = x̄ȳ+x̄y = x̄,
∑

i αixi = x,∑
i αix̄iyi = x̄y and

∑
i αixiyi = xy. Therefore,

C[f ](x, y) =
∑
i

αif(xi, yi)

=
∑
i

(αix̄if(0, yi) + αixif(1, yi))
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= x̄

(∑
i

αix̄i
x̄
f(0, yi)

)
+ x

(∑
i

αixi
x
f(1, yi)

)
≤ x̄C[g0](

∑
i

αix̄i
x̄
yi) + xC[g1](

∑
i

αixi
x
yi)

= x̄C[g0](y) + xC[g1](y).

The other direction is immediate as one can always mix the convex

combination that achieves C[g0](y) and the convex combination that

achieves C[g1](y) to obtain (1− x)C[g0](y) + xC[g1](y).

Proof of Theorem 3.3.1. Let p∗1(x1)p∗2(x2) be the maximizing input for

equation (2.1) when λ = 1 and Pr(X1 = 0) = x∗, Pr(X2 = 1) = y∗

at p∗1(x1)p∗2(x2). We will show the existence of a valid pair of genies

(T1, T2) corresponds to any point of the green region of Figure 3.2 such

that the following two conditions hold:

1. Xi → Yi → Ti, at p∗1(x1)p∗2(x2), i = 1, 2.

2. I(X2;T2|X1, T1)−I(X2;Y1|T1, X1) and I(X1;T1|X2, T2)−I(X1;Y2|T2, X2)

are concave w.r.t. product distributions p1(x1)p2(x2).

The above conditions immediately imply that (2.1) reduces to

R1 +R2 ≤ I(X∗1 ;Y1) + I(X∗2 ;Y2)

≤ max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;Y2),

which is achievable by treating interference as noise. This establishes

the sum-rate capacity.

Remark 3.3.1. One should note that the above conditions, though

sufficient, are not necessary for the genie-based sum-rate outer bound

to match HK sum-rate inner bound. The second condition could be

relaxed to requiring that the functions match their corresponding con-

cave envelopes at p∗1(x1)p∗2(x2). Requiring the functions to be concave

everywhere vanishes the gap terms in (2.1).
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For the first condition to hold, given that the valid genies should

also satisfy T2 → X2 → X1 → T1 and the channel transition prob-

abilities q(y1|x1, x2), q(y2|x1, x2), one could verify that distributions

p1(x1, x2, y1, t1) and p2(x1, x2, y2, t2) must be of the form given in Table

3.1, where {ai}, {bi} are two generic probability vectors of size |T1| and

{ci}, {di} are two generic probability vectors of size |T2|. Pr(X1 = 0) =

x, Pr(X2 = 1) = y.

X1 X2 Y1 T1 Probability

0 0 0 i x(1− y)((1− p)ai + pbi))

1 0 1 i (1− x)(1− y)bi
0 1 0 i xy(1− p)ai
0 1 1 i xypbi

1 1 1 i (1− x)ybi,
X1 X2 Y2 T2 Probability

1 1 1 i (1− x)y((1− q)ci + qdi))

0 1 0 i xyqdi

1 0 0 i (1− x)(1− y)di
0 1 1 i xy(1− q)ci
0 0 0 i x(1− y)di,

Table 3.1: Generic probability distribution for genies that satisfy the Markov

conditions

Remark 3.3.2. Suppose the Markov chains hold for Pr(X1 = 0) = x∗,

Pr(X2 = 1) = y∗, note that our final joint distributions are indepen-

dent of (x∗, y∗). This is because if the Markov chains hold for some

(x∗, y∗), they continue to hold for any other product distribution. This

is a chance observation (peculiar to the Binary skewed-Z interference

channel) that greatly simplified our analysis.

Next, we will discuss the concavity condition for genies. Define
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f(x, y), f̃(x, y) as

f(x, y) := (I(X2;T2|X1, T1)− I(X2;Y1|X1, T1))|Pr(X1=0)=x,Pr(X2=1)=y ,

f̃(x, y) := (I(X1;T1|X2, T2)− I(X1;Y2|X2, T2))|Pr(X1=0)=x,Pr(X2=1)=y .

For a generic variable x ∈ [0, 1], let x̄ = 1 − x and L(x) = −x log2 x.

Then

f(x, y) =
∑
i

L(ȳdi + y(q̄ci + qdi))− ȳL(di)− yL(q̄ci + qdi)

−(xpbi + xp̄ai)L

(
ypbi

pbi + p̄ai

)
− x(pbi + p̄ai)L

(
ȳpbi + p̄ai
pbi + p̄ai

)
+xy(pbi + p̄ai)L

(
pbi

pbi + p̄ai

)
+ xy(pbi + p̄ai)L

(
p̄ai

pbi + p̄ai

)
Note that f(x, y) is linear in x. Therefore we could write it as the

linear combination of two functions g0(y) = f(0, y) and g1(y) = f(1, y)

as in Proposition 3.3.2.

g0(y) :=
∑
i

L(ȳdi + y(q̄ci + qdi))− ȳL(di)− yL(q̄ci + qdi) ,

g1(y) :=
∑
i

L(ȳdi + y(q̄ci + qdi))− ȳL(di)− yL(q̄ci + qdi)

− (pbi + p̄ai)L

(
ypbi

pbi + p̄ai

)
− (pbi + p̄ai)L

(
ȳpbi + p̄ai
pbi + p̄ai

)
+ y(pbi + p̄ai)L

(
pbi

pbi + p̄ai

)
+ y(pbi + p̄ai)L

(
p̄ai

pbi + p̄ai

)
.

Similar for f̃(x, y), define g̃0(x), g̃1(x) such that f̃(x, y) = (1−y)g̃0(x)+

yg̃1(x).

It is sufficient to consider only binary genies. i.e. T1, T2 ∈ {0, 1}.
Then, by Proposition 3.3.2, the concavity condition is equivalent

to that g0(y), g1(y) are concave for all y ∈ (0, 1) and g̃0(x), g̃1(x) are

concave for all x ∈ (0, 1). Since g0(y), g̃0(x) are already concave w.r.t.

y, x, respectively. The condition is further reduced to that g1(y) and
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g̃1(x) are concave. i.e. their second derivatives be non-positive:

1∑
i=0

− q̄2(ci − di)2

ȳdi + y(q̄ci + pdi)
+
pbi
y

+
p2b2

i

ȳpbi + p̄ai
≤ 0 (3.8)

1∑
i=0

− p̄2(ai − bi)2

x̄bi + y(p̄ai + pbi)
+
qdi
x

+
q2d2

i

x̄qdi + q̄ci
≤ 0 (3.9)

Note that in (3.8), either d0 or d1 has to be 0 in order to cancel pbi
y

while y → 0+. Similarly, either b0 or b1 has to be zero because of (3.9).

Without loss of generosity, we assume that d0 = 0 and b0 = 0. Setting

a0 = a, a1 = ā, c0 = c and c1 = c̄, (3.8) becomes equivalent to, for all

y ∈ (0, 1),

− q̄c

y
+
p

y
− q̄2(c̄− 1)2

ȳ + y(q̄c̄+ q)
+

p2

ȳp+ p̄ā
≤ 0

⇔p− p̄c
y
− p̄2c2

1− yp̄c
+

p2

ȳp+ p̄ā
≤ 0

⇔p

y
+

p2

ȳp+ p̄ā
≤ p̄c

y
+

p̄2c2

1− yp̄c

⇔p2 + pp̄ā

ȳp+ p̄ā
≤ p̄c

1− yp̄c
⇔(p2 + pp̄ā)(1− yp̄c) ≤ (p̄c)(ȳp+ p̄ā), ∀y ∈ (0, 1) (3.10)

As the expression is linear in y on both sides, it suffices to check the

validity of (3.10) for when y = 0 and y = 1, i.e. (3.10) is equivalent to
p ≤ q̄c,

p+
p2

p̄ā
≤ q̄c

1− q̄c
.

Rearranging the first inequality we get
p

p̄
≤ q̄c

1− q̄c
,

p+
p2

p̄ā
≤ q̄c

1− q̄c
.

Note that p + p2

p̄ā
= p(1 + p/ā

p̄
) ≥ p(1 + p

p̄
) = p

p̄
. Therefore, the first

inequality is redundant and we are left with a single constraint

p+
p2

p̄ā
≤ q̄c

1− q̄c
.
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Similarly, inequality (3.9) is equivalent to the following,

q +
q2

q̄c̄
≤ p̄a

1− p̄a
.

Further, without loss of generality, we assume p ≤ q. Putting all

the conditions together, we get

0 ≤ a ≤ 1 (3.11)

0 ≤ c ≤ 1 (3.12)

0 ≤ p ≤ q ≤ 1 (3.13)

0 ≤ p+ q ≤ 1 (3.14)

p+
p2

p̄ā
≤ q̄c

1− q̄c
(3.15)

q +
q2

q̄c̄
≤ p̄a

1− p̄a
(3.16)

Rearranging (3.15), we have

p̄a ≤ p̄q̄c− pp̄
q̄c− p2q̄c− pp̄

p̄a

1− p̄a
≤ q̄c− p

pq̄c

Note
q̄c− p
pq̄c

=
1− p/q̄c

p
≤ p̄

1− p̄
This means (3.11) is redundant.

Combining with (3.16) we have the condition

qq̄c̄+ q2

c̄
≤ q̄c− p

pc

(1− pq)q̄c2 − (1 + p)q̄c+ p ≤ 0 (3.17)

This inequality must holds for some c ∈ [0, 1].

When c = 1+p
2(1−pq) . 0 ≤ c ≤ 1 is given by the following

0 ≤ 1 + p

2(1− pq)
=

1 + p

1 + (1− 2pq)
≤ 1 + p

1 + (1− q)
≤ 1 + p

1 + (1− p̄)
= 1
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where first inequality is due to p ≤ 1
2

and the second one is due to

q ≤ p̄. So we can let c = 1+p
2(1−pq) .

Then inequality (3.17) gives

p− (1 + p)2q̄

4(1− pq)
≤ 0

q ≤ 1− p
1 + 3p

To satisfy (3.13), we need p ≤ 1−p
1+3p

. That is 0 ≤ p ≤ 1
3
.

Same analysis can be applied to the case q ≤ p.

Hence we derive the conditions for the existence of smart and useful

genie,

0 ≤ p ≤ 1

3
,

p ≤ q ≤ 1− p
1 + 3p

,
or

0 ≤ q ≤ 1

3
,

q ≤ p ≤ 1− q
1 + 3q

.

It is easy to verify that this region is equivalent to requiring p+ q+

3pq ≤ 1 and p, q ≥ 0.

The above theorem provides sum-rate capacity for a certain range

of (p, q) for BSZIC by showing genie-based outer bound (2.1) matches

treating-interference-as-noise inner bound. However, it is not true for

any (p, q) that satisfies very weak interference conditions. The following

lemma indicates that either genie-based outer bound (2.1) is not always

tight or treating interference as noise is not always sum-rate optimal

for BSZIC with very weak interference.

Lemma 3.3.3. For the binary skewed-Z interference channel when

p = q = 1
2
, the genie based outer bound is strictly greater than the

treating interference as noise inner bound.

Proof. Define f(x, y), g0(y) and g1(y) in the same way as before. The

joint distribution is the same as defined in Table 3.1.
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Setting p = q = 1
2

and taking second derivative of g1(y), we get

d2g1(y)

dy2
=
∑
i

(
− (ci − di)2

2y(ci − di) + 4di
+
bi
2y

+
b2
i

2ȳbi + 2ai

)
= −

∑
i

(ci − di)2

2y(ci − di) + 4di
+
∑
i

bi
2y

+
∑
i

yb2
i

2y(ȳbi + ai)

≥ −
∑
i

c2
i + d2

i

2y(ci − di) + 4di
+
∑
i

bi
2y

+
∑
i

yb2
i

2y(ȳbi + ai)

= −
∑
i

c2
i

2yci − 2ydi + 4di
−
∑
i

d2
i

2yci − 2ydi + 4di

+
1

2y
+
∑
i

yb2
i

2y(ȳbi + ai)

≥ −
∑
i

c2
i

2yci
−
∑
i

d2
i

−2ydi + 4di
+

1

2y
+
∑
i

yb2
i

2y(ȳbi + ai)

= − 1

2y
− 1

−2y + 4
+

1

2y
+
ȳ + 1

2

(∑
i

ȳbi + ai
ȳ + 1

b2
i

(ȳbi + ai)2

)
(a)

≥ − 1

−2y + 4
+
ȳ + 1

2

(∑
i

ȳbi + ai
ȳ + 1

bi
ȳbi + ai

)2

= − 1

−2y + 4
+

1

2(ȳ + 1)

= 0,

where (a) holds because E(X2) ≥ E(X)2. Thus g1(y) is convex in

general. The only hope for the outer bound to work would be that

g1(y) was a straight line. Next we analyze if this is possible.

Note d2g1(y)
dy2

= 0 would imply that cidi = 0 (for the first inequality

to be equality) and ai = bi (for the inequality labeled (a) to be an

equality).

For the symmetric condition to hold, define f̃(x, y) as

I(X1;T1|X2T2)− I(X1;Y2|T2X2)|Pr(X1=0)=x,Pr(X2=1)=y

Split f̃(x, y) in same way as for f(x, y),

f̃(x, y) = (1− y)g̃0(x) + yg̃1(x)
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Computing derivative of g̃1(x), we have

d2g̃1(x)

dx2
≥ 0

with equality holding only iff aibi = 0 and ci = di.

Clearly, both equalities cannot hold at the same time. At least one

of g1 and g̃1 is strictly convex. Therefore, for any (x, y) ∈ (0, 1)2,

C[f ](x, y) + C[f̃ ](x, y)

=xC[g0](y) + (1− x)C[g1](y) + yC[g̃0](x) + (1− y)C[g̃1](x)

>xg0(y) + (1− x)g1(y) + yg̃0(x) + (1− y)g̃1(x)

=f(x, y) + fci,di,ai,bi(y, x)

Hence outer bound (2.1) is strictly larger than I(X1;Y1)+I(X2;Y2) for

any independent distribution of X1, X2.

3.3.2 Gaussian Z interference channel

The second example of very weak interference channel is Gaussian Z

interference channel.

Set b = 0 in Gaussian interference channel model.

Y1 = X1 + Z1

Y2 = X2 + aX1 + Z2

whereX1, X2 are independent continues random variables with E[X2
1 ] ≤

P1 and E[X2
2 ] ≤ P2. Z1, Z2 are independent Gaussian noise N (0, 1)

and 0 ≤ a ≤ 1. See Figure 3.3.

Lemma 3.3.4. A Gaussian Z interference channel as described in Fig-

ure 3.3 has very weak interference.

Proof. Let U1 → X1 → (Y1, Y2), U2 → X2 → (Y1, Y2). Then

I(U2;Y1|X1) = I(U2;X1 + Z1|X1) = I(U2;Z1) = 0
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X1

X2

Z1

Y1

Z2

Y2

0 ≤ a ≤ 1

Figure 3.3: Gaussian Z interference channel

Hence I(U2;Y1|X1) ≤ I(U2;Y2). The second inequality is established

as follow,

I(U1;Y2|X2) = I(U1;X2 + aX1 + Z2|X2)

= I(U1; aX1 + Z2)

= I(U1;X1 +
1

a
Z2)

≤ I(U1;X1 + Z1)

= I(U1;Y1)

where the inequality holds because U1 → X1 + Z1 → X1 + 1
a
Z2 is

stochastically degraded.

Sum-capacity is known since it satisfies (1.8). In fact, the corner

point (R1, R2) =
(

1
2

log(1 + P1), 1
2

log
(

1 + P2

1+a2P1

))
of capacity region

attains the sum-capacity.

3.4 Mixed interference

For the sake of completeness, we discuss DMICs of which one sender

produces strong interference while the other produces very weak in-

terference. Sum-capacity of mixed Gaussian interference channel is

known.
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Lemma 3.4.1. Consider a DMIC satisfying

I(X1;Y1|X2) ≤ I(X1;Y2|X2) ∀p(x1)p(x2), (3.18)

I(U2;Y2) ≥ I(U2;Y1|X1) ∀p(x1)p(u2)p(x2|u2) (3.19)

The sum-capacity of this channel is

max
p(x1)p(x2)

min{I(X1;Y1) + I(X2;Y2|X1), I(X1X2;Y2)}

Proof. To show the sum-capacity, we use the traditional outer bound

provided in (1.9).

R1 +R2 ≤ I(X1;Y1|X2Q) + I(X2;Y2|X1Q) (3.20a)

R1 +R2 ≤ I(U2X1;Y1|Q) + I(U1X2;Y2|Q) (3.20b)

R1 +R2 ≤ I(U2X1;Y1|Q) + I(X2;Y2|U2X1Q) (3.20c)

R1 +R2 ≤ I(U1X2;Y2|Q) + I(X1;Y1|U1X2Q) (3.20d)

for some p(q)p(u1, x1|q)p(u2, x2|q).
By the data processing inequality and the strong interference con-

dition (3.18),

I(U1X2;Y2|Q) ≤ I(X1X2;Y2|Q)

I(U1X2;Y2|Q) + I(X1;Y1|U1X2Q) ≤ I(U1X2;Y2|Q) + I(X1;Y2|U1X2Q)

= I(X1X2;Y2|Q).

This indicates setting U1 = X1 is optimal for the sum-rate outer bound

since both (3.20b) and (3.20b) are maximized. Then the outer bound

reduces to

R1 +R2 ≤ I(X1;Y1|X2Q) + I(X2;Y2|X1Q) (3.21a)

R1 +R2 ≤ I(U2X1;Y1|Q) + I(X2;Y2|U2X1Q) (3.21b)

R1 +R2 ≤ I(X1X2;Y2|Q) (3.21c)

Now observe that from the weak interference condition (3.19).

I(U2;Y1|X1Q) ≤ I(U2;Y2|Q)

≤ I(U2;X1Y2|Q) = I(U2;Y2|X1Q)
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It follows

I(U2X1;Y1|Q) + I(X2;Y2|U2X1Q)

= I(X1;Y1|Q) + I(U2;Y1|X1Q) + I(X2;Y2|U2X1Q)

≤ I(X1;Y1|Q) + I(U2;Y2|X1Q) + I(X2;Y2|U2X1Q)

= I(X1;Y1|Q) + I(X2;Y2|X1Q)

and which indicates setting U2 = ∅ is optimal. Therefore (3.21a) is

redundant and the outer bound reduces to

R1 +R2 ≤ min{I(X1;Y1|Q) + I(X2;Y2|X1Q), I(X1X2;Y2|Q)}

≤ max
p(x1)p(x2)

min{I(X1;Y1) + I(X2;Y2|X1), I(X1X2;Y2)}

This rate is achievable by Han–Kobayashi sum-rate inner bound

(3.3)-(3.6) with auxiliaries chosen as U1 = X1, U2 = ∅ and Q = ∅.

3.5 Open questions about very weak interference

conditions

There are two questions of interest. The first one is whether our defi-

nition on very weak interference can extend to n-letter.

Question: Consider two very weak interference channels with tran-

sitional probability w1(y11, y21|x11, x21) and w2(y12, y22|x12, x22). Does

the product channel w1 ⊗ w2 also has very weak interference?

The product channel w1⊗w2 has two input (x11, x12) and (x21, x22),

two output (y11, y12) and (y21, y22), and transitional probability

w(y11, y12, y21, y22|x11, x12, x21, x22)

= w1(y11, y21|x11, x21)w2(y12, y22|x12, x22).

The Han–Kobayashi (HK) sum-rate is equivalent to the treating-interference-

as-noise (TIN) sum-rate for very weak interference channels. If the an-

swer to this question is yes, then the n-letter HK sum-rate reduces to

the n-letter TIN sum-rate for very weak interference channels. Then it
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can be concluded that both HK and TIN n-letter expressions converge

to sum-capacity at same rate of convergence.

Another question is whether TIN tensorizes, i.e. n-letter TIN is

equivalent one-letter TIN.

Question: Consider two very weak interference channels with tran-

sitional probability w1 and w2 and their product channel w1 ⊗ w2. Is

the following true?

max
p(q,x11,x12,x21,x22)

I(X11X12;Y11Y12|Q) + I(X21X22;Y21Y22|Q)

≤ max
p(q1,x11,x21)

I(X11;Y11|Q1) + I(X21;Y21|Q1)

+ max
p(q2,x12,x22)

I(X12;Y12|Q2) + I(X22;Y22|Q2)

If the answer is yes, then the one-letter TIN sum-rate is the sum-

capacity of very weak interference channel.



Chapter 4

Gaussian interference

channels

This chapter examines Gaussian interference channels (GICs). First,

we employ the enhanced genie-based outer bound on sum-capacity

(λ = 1) of GICs. We will see that, like the Han–Kobayashi inner bound,

the enhanced genie-based outer bound is tight for all the regimes where

capacity has been established. In the second part, we study the op-

timality of Gaussian signalling for the TIN sum rate using Hermite

polynomials. At last, we consider Gaussian Z interference channels. A

hypothesis related to optimality of Han–Kobayashi region with Gaus-

sian signalling is proposed.

4.1 Optimality for Gaussian Interference Channel

with Strong Interference

As introduced in Chapter 1, when a ≥ 1, b ≥ 1, Gaussian interference

channels have strong interference. The sum-capacity is therefore given

by

min{1

2
log(1 + P1 + b2P2),

1

2
log(1 + P2 + a2P1)}.

In the enhanced genie-based outer bound (2.2), set S1 = ∅, T2 =

∅ and S2 = X2. Since a ≥ 1, we could find independent Ż1, Z̈1 ∼

44
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N (0, 1) such that Z1 = 1
a
Ż1 +

√
a2−1
a

Z̈1. Thus Y1 = X1 + bX2 + 1
a
Ż1 +

√
a2−1
a

Z̈1. Let T1 = X1 + 1
a
Ż1. Then the genie-based sum-rate outer

bound becomes

R1 +R2 ≤ max
p1(x1)p2(x2)

I(X1;T1, Y1|S2) + I(X2;T2, Y2|S1)

+ C[I(X1;T1|X2, T2, S1)− I(X1;Y2|X2, T2, S1)]

− I(X1;T1|X2, T2, S1) + I(X1;Y2|X2, T2, S1)

+ C[I(X2;T2|X1, T1, S2)− I(X2;Y1|X1, T1, S2)]

− I(X2;T2|X1, T1, S2) + I(X2;Y1|X1, T1, S2)

= max
p1(x1)p2(x2)

I(X1;X1 +
1

a
Ż1, X1 +

1

a
Ż1 +

√
a2 − 1

a
Z̈1)

+ I(X2;Y2) + C[I(X1;X1 +
1

a
Ż1)− I(X1; aX1 + Z2)]

− I(X1;X1 +
1

a
Ż1) + I(X1;Y2|X2)

∗
= max

p1(x1)p2(x2)
I(X2;Y2) + I(X1;Y2|X2)

= max
p1(x1)p2(x2)

I(X1X2;Y2|X2)

∗∗
=

1

2
log(1 + P2 + a2P1)

where (*) holds because X1 → X1 + 1
a
Ż1 → X1 + 1

a
Ż1 +

√
a2−1
a

Z̈1 is

degraded and (**) holds because the Gaussian inputs maximize the

expression. Symmetrically, since b ≥ 1 we can get

R1 +R2 ≤
1

2
log(1 + P1 + b2P2).

Hence the enhanced genie-based outer bound is tight for Gaussian in-

terference channels with strong interference.

4.2 Optimality for Gaussian Interference Channel

with Mixed Interference

When a ≥ 1 and b < 1 or a < 1 and b ≥ 1, the Gaussian interference

channel has strong interference from only one sender-receiver pair. For
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a ≥ 1 and b < 1, the sum-rate capacity is

min{1

2
log(1 + P2 + a2P1),

1

2
log

(
1 +

P1

b2P2 + 1

)
+

1

2
log (1 + P2)}.

Since a ≥ 1, the argument in previous section shows enhanced genie-

based outer bound is no greater than 1
2

log(1 + P2 + a2P1).

Since b ≤ 1 and capacity does not depend on correlation between

Z1 and Z2, we could find independent Z̈1 ∼ N (0, 1) such that Z1 =

bZ2 +
√

1− b2Z̈1. Setting T1 = ∅, S1 = X1, T2 = X2 + 1
b
Z1 = X2 +Z2 +

√
1−b2
b

Z̈1 and S2 = ∅, the enhanced genie-based sum-rate outer bound

becomes

R1 +R2 ≤ max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;Y2, X2 + Z2 +

√
1− b2

b
Z̈1|X1)

+ C
[
I(X2;X2 +

1

b
Z1|X1)− I(X2; bX2 + Z1|X1)

]
− I(X2;X2 +

1

b
Z1|X1) + I(X2; bX2 + Z1|X1)

= max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;X2 + Z2, X2 + Z2 +

√
1− b2

b
Z̈1|X1)

∗
= max

p1(x1)p2(x2)
I(X1;Y1) + I(X2;X2 + Z2|X1)

= max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;X2 + aX1 + Z2|X1)

= max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;Y2|X1)

∗∗
=

1

2
log

(
1 +

P1

b2P2 + 1

)
+

1

2
log (1 + P2) ,

where (*) holds because X2 → X2+Z2 → X2+Z2+
√

1−b2
b

Z̈1 is degraded

and (**) holds because the Gaussian inputs maximize the expression.

Hence the enhanced genie-based sum-rate outer bound is tight for

Gaussian interference channels with mixed interference.
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4.3 A closed form of the enhanced genie-based

outer bound

Before going to the discussion in the weak interference regime, we pro-

vide a closed form of the outer bound under following settings of genie

random variable.

We could find independent Ż1, Z̈1, Z̃1 ∼ N (0, 1) such that Z1 =

ρ11Ż1 + ρ12Z̈1 + ρ13Z̃1 and independent Ż2, Z̈2, Z̃2 ∼ N (0, 1) such that

Z2 = ρ21Ż2 + ρ22Z̈2 + ρ23Z̃2, where ρ2
11 + ρ2

12 + ρ2
13 = 1 and ρ2

21 + ρ2
22 +

ρ2
23 = 1. Let T1 = X1 + η1Ż1, S2 = X2 + µ2Z̈1, and T2 = X2 + η2Ż2,

S1 = X1 + µ1Z̈2.

Again taking advantage of the fact that capacity do not depend on

correlation between noise Z1 and Z2, we may assume η1Ż1 and µ1Z̈2

are correlated so that X1 → T1 → S1 if µ1 ≥ η1 or X1 → S1 → T1

if µ1 ≤ η1. So do η2Ż2 and µ2Z̈1. Thus genie random variables Ti,

Si, i = 1, 2 are valid choices. It is ready to evaluate the enhanced

genie-based outer bound under this setting.

Lemma 4.3.1. Assume Xi ∼ N (0, Pi) is the optimal distribution for

(2.2) under aforementioned setting, then sum-capacity must satisfy,

min
ρ,η,µ

1

2
log

1 + P1

 1

η2
1

+
1

(bµ2−ρ12)2

P2+µ22
P2 + ρ2

13

(
ρ11

η1

− 1

)2


+
1

2
log

1 + P2

 1

η2
2

+
1

(aµ1−ρ22)2

P1+µ21
P1 + ρ2

23

(
ρ21

η2

− 1

)2


+

[
1

2
log

(
1 + P1

(ρ22 − aµ1)2 + ρ2
23

µ2
1ρ

2
23

)
− 1

2
log

(
1 +

P1

η2
1 ∧ µ2

1

)]
+

+

[
1

2
log

(
1 + P2

(ρ12 − bµ2)2 + ρ2
13

µ2
2ρ

2
13

)
− 1

2
log

(
1 +

P2

η2
2 ∧ µ2

2

)]
+

,

(4.1)

where a ∧ b = min{a, b} and [a]+ = max{a, 0}, or equivalently,

min
ρ,η,µ

max {B1, B2, B3, B4} ,
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where

B1 =
1

2
log

1 + P1

 1

η2
1

+
1

(bµ2−ρ12)2

P2+µ22
P2 + ρ2

13

(
ρ11

η1

− 1

)2


+
1

2
log

1 + P2

 1

η2
2

+
1

(aµ1−ρ22)2

P1+µ21
P1 + ρ2

23

(
ρ21

η2

− 1

)2
 ;

B2 =
1

2
log

1 + P1

 1

η2
1

+
1

(bµ2−ρ12)2

P2+µ22
P2 + ρ2

13

(
ρ11

η1

− 1

)2


+
1

2
log

1 + P2

 1

η2
2

+
1

(aµ1−ρ22)2

P1+µ21
P1 + ρ2

23

(
ρ21

η2

− 1

)2


+
1

2
log

(
1 + P1

(ρ22 − aµ1)2 + ρ2
23

µ2
1ρ

2
23

)
− 1

2
log

(
1 +

P1

η2
1 ∧ µ2

1

)
;

B3 =
1

2
log

1 + P1

 1

η2
1

+
1

(bµ2−ρ12)2

P2+µ22
P2 + ρ2

13

(
ρ11

η1

− 1

)2


+
1

2
log

1 + P2

 1

η2
2

+
1

(aµ1−ρ22)2

P1+µ21
P1 + ρ2

23

(
ρ21

η2

− 1

)2


+
1

2
log

(
1 + P2

(ρ12 − bµ2)2 + ρ2
13

µ2
2ρ

2
13

)
− 1

2
log

(
1 +

P2

η2
2 ∧ µ2

2

)
;

B4 =
1

2
log

1 + P1

 1

η2
1

+
1

(bµ2−ρ12)2

P2+µ22
P2 + ρ2

13

(
ρ11

η1

− 1

)2


+
1

2
log

1 + P2

 1

η2
2

+
1

(aµ1−ρ22)2

P1+µ21
P1 + ρ2

23

(
ρ21

η2

− 1

)2


+
1

2
log

(
1 + P1

(ρ22 − aµ1)2 + ρ2
23

µ2
1ρ

2
23

)
− 1

2
log

(
1 +

P1

η2
1 ∧ µ2

1

)
+

1

2
log

(
1 + P2

(ρ12 − bµ2)2 + ρ2
13

µ2
2ρ

2
13

)
− 1

2
log

(
1 +

P2

η2
2 ∧ µ2

2

)
;

Proof. See Appendix 4.A for detail.
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4.4 Optimality for Gaussian Interference Channel

with weak Interference

The optimization problem in Lemma 4.3.1 is hard to solve analytically.

We consider the case

max{B1, B2, B3, B4} = B1.

In this case, we are going to find the condition for which outer bound

(4.1) is tight.

Let η∗1, η∗2 be defined as

1

η∗1
=

ρ11

(bµ2−ρ12)2

P2+µ22
P2 + ρ2

11 + ρ2
13

1

η∗2
=

ρ21

(aµ1−ρ22)2

P1+µ21
P1 + ρ2

21 + ρ2
23

In order to satisfy max{B1, B2, B3, B4} = B1 when η1 = η∗1, η2 = η∗2,

it requires
ρ2

23 + (ρ22 − aµ1)2

µ2
1ρ

2
23

≤ 1

η∗21

(4.2)

ρ2
13 + (ρ12 − bµ2)2

µ2
2ρ

2
13

≤ 1

η∗22

(4.3)

Under these conditions, it can be concluded that B1 attains mini-

mum by setting η1 = η∗1, η2 = η∗2. Outer bound (4.1) reduces to

1

2
log(1 +

P1

(bµ2−ρ12)2

P2+µ22
P2 + ρ2

11 + ρ2
13

) +
1

2
log(1 +

P2

(aµ1−ρ22)2

P1+µ21
P1 + ρ2

21 + ρ2
23

)

Furthermore, if µ2 → ∞, ρ12 = 0 and µ1 → ∞, ρ22 = 0, the outer

bound reduces to the treating interference as noise inner bound. To

make conditions (4.2) and (4.3) continue to hold, it requires

a2

ρ2
23

≤ ρ2
11

(b2P2 + 1)2

b2

ρ2
13

≤ ρ2
21

(a2P1 + 1)2
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or equivalently,

a(b2P2 + 1) + b(a2P1 + 1) ≤ 1.

The following Figure 4.1 shows the enhanced genie-based outer

bound for symmetric GICs with P1 = P2 = 100.
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Figure 4.1: Inner and outer bounds for symmetric GICs
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4.5 Hermite perturbation on Gaussian distribu-

tion for TIN

From the previous section, the treating-interference-as-noise (TIN) sum-

rate inter bound is optimal in a sub-regime of Gaussian interference

channel with weak interference. Moreover, Gaussian distribution is the

optimal input distribution that maximizes TIN sum-rate in the sub-

regime. However, Gaussian input is not always optimal. This section

examines the sub-optimality of Gaussian input for TIN using Hermite

polynomials to perturb Gaussian distribution, as proposed in [1]. For

simplicity, we consider symmetric Gaussian interference channel, where

a = b, P1 = P2 = p.

Denote normal probability density function N (0, p) as

gp(x) =
1√
2πp

e−
x2

2p .

Hermite polynomial with degree k and power p is defined as

Hp
k(x) =

(−1)k
√
pk

√
k!

ex
2/2p d

k

dxk
e−

x
2p , k = 1, 2 . . . ,

Hp
0 (x) = 1.

In particular,

Hp
1 (x) =

x
√
p
,

Hp
2 (x) =

1√
2

(
x2

p
− 1),

Hp
4 (x) =

x4

p2
− 6

x2

p
+ 3.

We may omit variable x without confusions and use gp, Hp
k in short-

hand.

One merit of using Hermite polynomial is its invariance under con-

volution.

Lemma 4.5.1. We have

gpHp
k ∗ g

qHq
l = cp,qk,lg

p+qHp+q
k+l
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where cp,qk,l =

√
(k+l)!pkql√
k!l!(p+q)k+l

is a constant.

Proof. By linear property of convolution for differentiation,

gpHp
k ∗ g

qHq
l =

(−1)k
√
pk

√
k!

dk

dxk
e−

x
2p

√
2πp
∗

(−1)l
√
ql

√
l!

dl

dxl
e−

x
2q

√
2πq

=
(−1)k

√
pk

√
k!

(−1)l
√
ql

√
l!

∗ dk+l

dxk+l

e−
x

2(p+q)√
2π(p+ q)

=

√
(k + l)!pkql√
k!l!(p+ q)k+l

gp+qHp+q
k+l .

When l = 0, we have

gpHp
k ∗ g

q =

√
pk√

(p+ q)k
gp+qHp+q

k .

The following two lemmas are used to compute difference of differ-

ential entropy after perturbation on Gaussian distribution.

Lemma 4.5.2. Let gε(x) be a probability density function and h(gε)

denotes differential entropy of some random variable with distribution

gε. Then

h(gε)− h(gp) = −D(gε||gp) +
1

2

∫
x2

p
(gε(x)− gp(x))dx

Proof. By definition of KL divergence,

D(gε||gp) =

∫
gε(x) log gε(x)− gε(x) log gp(x)

= −h(gε)−
∫
gε(x)(−1

2
log 2πp− x2

2p
)

= −h(gε) +
1

2
log 2πp+

∫
gε(x)(

x2

2p
)

= −h(gε) + h(gp)− 1/2 +

∫
gε(x)

x2

2p

= −h(gε) + h(gp) +

∫
(gε(x)− gp(x))

x2

2p
.

The lemma follows after rearrange terms.
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Lemma 4.5.3. Let gε(x) = gP (x) + ε
∑

k,l ak,lH
pk
l (x)gpk(x) be a per-

turbed probability density function. Then we can approximate KL

divergence by

D(gε||g) =
ε2

2

∫
(
∑

k,l ak,lH
pk
l g

pk)2

gP
+ o(ε2).

Proof. Write the KL divergence,

D(gε||gP )

=

∫
(gP + ε

∑
k,l

ak,lH
pk
l g

pk) log

(
1 + ε

∑
k,l

ak,lH
pk
l g

pk

gP

)
.

Expand log(1 + x) in integrand,

log

(
1 + ε

∑
k,l

ak,lH
pk
l g

pk

gP

)

= ε
∑
k,l

ak,lH
pk
l g

pk

gP
− ε2

2

(
∑

k,l ak,lH
pk
l g

pk)2

(gP )2
+ o(ε2),

Then

D(gε||g)

=

∫ (
gP + ε

∑
k,l

ak,lH
pk
l g

pk

)
(
ε
∑
k,l

ak,lH
pk
l g

pk

gP
− ε2/2

(
∑

k,l ak,lH
pk
l g

pk)2

(gP )2
+ o(ε2)

)

=
ε2

2

∫
(
∑

k,l ak,lH
pk
l g

pk)2

gP
+ o(ε2)

Now we are ready to compute the change after certain special per-

turbation on Gaussian distribution for TIN. The following theorem

states the result of this perturbation method.
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Theorem 4.5.1. For the symmetric Gaussian interference channel

with cross channel gain a and power constrain p, Gaussian signalling

Xi ∼ N (0, p) i = 1, 2 do not maximize TIN without power control

I(X1;Y1) + I(X2;Y2)

if there exists some y ∈ [0, (1− r)2] such that

a4r(2r2 + a4y)

(r2 − a4y)
5
2

+
2a2(2− a2y)

(1 + a2y)
5
2

−

(
a4(2 + a4y)

(1− a4y)
5
2

+
(2 + y)

(1− y)
5
2

)
> 0

where r = 1+a2p
1+p+a2p

.

Proof. See Appendix 4.B.

In theorem 4.5.1, numerical evidence suggests that setting y = 0

is optimal. Then we have Gaussian is not optimal when a2

1−a2 > r, or

2a2(1 +a2p) > 1. This is the same regime as the moderate interference

in [6].

4.6 Z-interference channel corner point

Consider the Gaussian Z-interference channel

Y1 = X1 + Z1

Y2 = aX1 +X2 + Z2,

where 0 < a < 1, Zi ∼ N (0, 1) and the power constraints

E[X2
1 ] ≤ P1, E[X2

2 ] ≤ P2.

Since Y1 are independent of U2 and U2 = ∅ maximize all terms

involving U2, after having redundant conditions removed, the Han–

Kobayashi region reduces to

R1 ≤ I(X1;Y1|Q)

R2 ≤ I(X2;Y2|U1, Q)

R1 +R2 ≤ I(X1;Y1|U1, Q) + I(X2, U1;Y2|Q)
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for some p(q)p(u1, x1|q)p(u2, x2|q).
It is clear that the maximal achievable rate for each communica-

tion pair (Xi, Yi) is 1
2

log(1 + Pi), i = 1, 2. It can be easily shown that(
1
2

log(1 + P1), 1
2

log
(

1 + P2

1+a2P1

))
is a corner point of the GZIC ca-

pacity region and it attains the sum-capacity. The other corner point

of the capacity region is(
1

2
log

(
1 +

a2P1

1 + P2

)
,
1

2
log(1 + P2)

)
(4.4)

which is established in [6] and recently completed in [15]. [5] provides

the slope at this corner point of Han–Kobayashi region with Gaussian

signalling and power control. More precisely, [5] shows for all (R1, R2)

in Han–Kobayashi region with Gaussian signalling and power control,

maxR1 + λR2 passes through the corner point (4.4) (i.e. this corner

point is the maximizer of maxR1 + λR2) whenever

λ ≥ λcr := max

{
− log a2 − 1−a2

(1+a2P1+P2)

log(1 + P2)− P2

1+P2

,
(1− a2)(1 + P2)

a2P2

}
+ 1. (4.5)

Regarding to the optimality of Han–Kobayashi region with Gaus-

sian signalling and power control, we come up with the following hy-

pothesis.

Hypothesis 1. For some choice of P1, P2 there exists independent

random vectors X1,X2 ∈ Rn for some n, satisfying power constraints

E(‖X1‖2) ≤ nP1,E(‖X2‖2) ≤ nP2, such that for some λ ≥ λcr (given

by (4.5))

n
λ− 1

2
log(1 + P2) < (λ− 1)h(X2 + aX1 + Z)

− λh(aX1 + Z) + h(X1 + Z). (4.6)

Verification of the Hypothesis 1 can determine the optimality of

Han–Kobayashi region with Gaussian signalling and power control.

Lemma 4.6.1. If Hypothesis 1 holds then (single-letter) Han–Kobayashi

with Gaussian signaling and power control is not optimal.
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Proof. Suppose there exists some a, P1, P2, n, λ ≥ λcr, and independent

random vectors X1,X2 satisfying power constraints such that

n
λ− 1

2
log(1 + P2) + nδ = (λ− 1)h(X2 + aX1 + Z)

− λh(aX1 + Z) + h(X1 + Z),

for some δ > 0.

Let P̂1 = P1 + Q1 be the true power constraint on the transmit-

ters. Take the transmitted sequence to be X̂1 = X1 + U1 where U ∼
N (0, Q1I) independent of X1. Notice that the λcr for the parameters(a, P̂1, P2)

is smaller than that of (a, P1, P2); therefore the inequality λ ≥ λcr con-

tinues to hold for the new parameter set.

By using multi-letter Han–Kobayashi scheme one can achieve the

weighted sum rate

n(R1 + λR2)

= I(X̂1,X2; Y2) + (λ− 1)I(X2; Y2|U1)− I(X̂1; Y2|U1,X2)

+ I(X̂1; Y1|U1)

= h(X2 + aU1 + aX1 + Z)− h(Z) + (λ− 1)h(X2 + aX1 + Z)

− λh(aX1 + Z) + h(X1 + Z)

= h(X2 + aU1 + aX1 + Z)− h(Z) + n
λ− 1

2
log(1 + P2) + nδ.

Since λ ≥ λcr, the corner point (4.4) attains maximal weighted sum-

rate of single-letter Han–Kobayashi with Gaussian signalling and power

control

λ− 1

2
log(1 + P2) +

1

2
log(1 + a2(Q1 + P1) + P2).

Therefore to show the sub-optimality of the above expression it suffices

to show that

n

2
log 2πe(1 + a2(Q1 + P1) + P2)− h(X2 + aU1 + aX1 + Z)→ 0

as Q1 →∞.
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Clearly since

h(X2 + aU1 + aX1 + Z) ≥ h(aU1 + Z)

=
n

2
log 2πe(1 + a2Q1),

we are done.

Lemma 4.6.2. If Hypothesis 1 is not true then the title=When a =

b = 0.07,(single-letter) Han–Kobayashi with Gaussian signaling (and

power control) is optimal.

Proof. Clearly by Fano’s inequality we obtain that any achievable rates

R1, R2 must satisfy

R1 + λR2

≤ lim
n

1

n
sup
X1,X2

I(X1; Y1) + λI(X2; Y2)

≤ lim
n

1

n

(
suph(Y2)− h(Y1|X1)

+ sup
(
(λ− 1)h(Y2)− λh(Y2|X2) + h(Y1)

))
(a)

≤ 1

2
log(1 + P2 + a2P1) +

λ− 1

2
log(1 + P2),

and the last expression matches the sum-rate of the (single-letter) Han–

Kobayashi with Gaussian signaling and power control. Inequality (a)

follows since the hypothesis is false.

Remark 4.6.1. The inequality in Hypothesis 1 does not hold if either

X2 ∼ N (0, P2I) or if X1 ∼ N (0, P1I). It is immediate that when X1 ∼
N (0, P1I), the maximizing choice of X2 is X2 ∼ N (0, P2I); and then

one can verify that the inequality does not hold when X2 ∼ N (0, P2I).

From the concavity of h(
√
tX1 + Z) in t [16],

(λ−1)h(

√
a2

1 + P2

X1+Z)+h(X1+Z) ≤ λh(

√
λ− 1

λ

a2

1 + P2

+
1

λ
X1+Z).

Since λ ≥ 1−a2+P2

a2P2
,

λ− 1

λ

a2

1 + P2

+
1

λ
≤ a2.
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As h(
√
tX1 + Z) is increasing in t, it follows

(λ− 1)h(aX1 +
√

1 + P2Z)− λh(aX1 + Z) + h(X1 + Z)

≤ n

2
log(1 + P2) + λh(

√
λ− 1

λ

a2

1 + P2

+
1

λ
X1 + Z)− λh(aX1 + Z)

≤ n

2
log(1 + P2).

Remark 4.6.2. An attempt to prove the converse of Hypothesis 1 is

a path argument. For any (X1,X2) with second moment (P1, P2), con-

sider new input random variables (X1t,X2t) = (
√

1− tX1,
√

1− tX2 +
√
tP2Z). The converse of Hypothesis 1 follows if right hand side of

(4.6) is increasing in t. However this is not true for certain (X1,X2).

4.7 Discussion on the weighted sum-rate

Maximizers of weighted sum-rate can be used to characterize the bound-

ary of Han–Kobayashi region. We are interested in the question that

whether Gaussian signalling maximizes the weighted sum-rate for any

λ > 1. (When λ ≤ 1, the maximizing boundary point is the cor-

ner point
(

1
2

log(1 + P1), 1
2

log
(

1 + P2

1+a2P1

))
, which is obtained with

Gaussian signalling. )

Consider the weighted sum-rate R1 + λR2, λ > 1. Using Fourier-

Motzkin elimination as did in finding the Han-Kobayashi sum-rate, we

have

R1 + λR2 ≤ I(X1;Y1|Q) + λI(X2;Y2|U1, Q)

R1 + λR2 ≤ I(X1;Y1|U1, Q) + I(X2, U1;Y2|Q) + (λ− 1)I(X2;Y2|U1, Q).

As I(U1;Y1) ≥ I(U1, Y2), the first inequality is redundant. Thus the

weighted sum-rate is

R1 + λR2

≤ I(X1;Y1|U1, Q) + I(X2, U1;Y2|Q) + (λ− 1)I(X2;Y2|U1, Q)

= h(Y2|Q)− h(Z1|Q) + h(X1 + Z1|U1, Q)− λh(aX1 + Z2|U1, Q)
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+ (λ− 1)h(Y2|U1, Q)

= C [h(Y2)− h(Z1) + CX1 [(λ− 1)h(Y2)− λh(aX1 + Z2) + h(X1 + Z1)]] .

(4.7)

The last equality makes use of nested concave envelops notation to

remove auxiliaries. Keep in mind the inner concave envelop is taken

over X1.

Use Gaussian signalling as input, (4.7) becomes

CP1,P2

[
1

2
log(1 + a2P1 + P2)

+ max
x≤P1

[
λ− 1

2
log

1 + a2x+ P2

1 + a2x
+

1

2
log

1 + x

1 + a2x

]]
. (4.8)

By differentiating the function in inner bracket of (4.8) with respect

to x, we can find that the behaviour of the function depends on λ.

When λ ≥ 1−a2+P2

a2P2
, it is decreasing in (0,+∞). When 1−a2+P2

P2
< λ <

1−a2+P2

a2P2
, it is increasing in

(
0,

1−a2+P2
a2P2

−λ

λ− 1−a2+P2
P2

)
and then decrease. When

λ ≤ 1−a2+P2

P2
, it is increasing in (0,+∞). We therefore can evaluate the

maximum and compare it with non Gaussian signalling.

An observation is that the function inside inner concave envelope

in (4.7) is not maximized by Gaussian signalling. A counterexample

is λ = 3.1641, a = 0.6759, P1 = 4.6547, P2 = 0.3417. The inputs

are mixed Gaussian distributions X1 ∼ 0.5 ∗ N (1.0374, 2.2836) + 0.5 ∗
N (−1.0374, 4.8735), X2 ∼ 0.5 ∗ N (0.3505, 0.4376)− 0.1752.

Figure 4.1 plots the weighted sum-rate (4.8) without concave en-

velope for λ = 3.1641, a = 0.6759. When P1 ≥ 4.6547, P2 = 0.3417,

it can be observed that the function is not concave in (P1, P2). Thus

power control is needed. Although the counterexample outperforms

Gaussian signalling without power control, simulation shows that it is

still less than Gaussian signalling with power control. This indicates

that to prove Gaussian signalling is optimal, one should not try to

maximize the leading term h(Y2) − h(Z1) (this term is maximized by

Gaussian) and the rest concave envelop function separately.
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Figure 4.1: Gaussian signalling without power control



Appendix

4.A Proof of Lemma 4.3.1

Proof of Lemma 4.3.1. First, consider the expression inside concave

envelop.

I(X1;T1|T2S1X2)− I(X1;Y2|T2S1X2)

=I(X1;T1|S1)− I(X1;Y2|T2S1X2)

=I(X1;T1S1)− I(X1;Y2S1|T2X2) (since I(X1;S1) = I(X1;S1|T2X2))

=I(X1;X1 + η1Ż1, X1 + µ1Z̈2)

− I(X1;X1 + µ1Z̈2, X2 + aX1 + ρ21Ż2 + ρ22Z̈2 + ρ23Z̃2|Ż2, X2)

=I(X1;X1 + η1Ż1, X1 + µ1Z̈2)− I(X1;X1 + µ1Z̈2, aX1 + ρ22Z̈2 + ρ23Z̃2)

=I(X1;X1 + η1Ż1, X1 + µ1Z̈2)− I(X1;X1 + µ1Z̈2, (ρ22 − aµ1)Z̈2 + ρ23Z̃2)

=I(X1;X1 + η1Ż1, X1 + µ1Z̈2)− I(X1;X1 + µ1Z̈2|(ρ22 − aµ1)Z̈2 + ρ23Z̃2).

As X1 → T1 → S1 or X1 → S1 → T1, the first term, when using

Gaussian input, is

I(X1;X1 + η1Ż1, X1 + µ1Z̈2) =
1

2
log

(
1 +

P1

η2
1 ∧ µ2

1

)
.

Now to simplify the second term, consider α such that

Cov[X1 + µ1Z̈2 − α((ρ22 − aµ1)Z̈2 + ρ23Z̃2), (ρ22 − aµ1)Z̈2 + ρ23Z̃2] = 0

(4.9)

or

α =
µ1(ρ22 − aµ1)

(ρ22 − aµ1)2 + ρ2
23

.

61
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Uncorrelated Gaussian random variables are independent. Thus

I(X1;X1 + µ1Z̈2|(ρ22 − aµ1)Z̈2 + ρ23Z̃2)

=I(X1;X1 + µ1Z̈2 − α((ρ22 − aµ1)Z̈2 + ρ23Z̃2)|(ρ22 − aµ1)Z̈2 + ρ23Z̃2)

=I

(
X1;X1 +

µ1ρ
2
23

(ρ22 − aµ1)2 + ρ2
23

Z̈2 −
µ1ρ23(ρ22 − aµ1)

(ρ22 − aµ1)2 + ρ2
23

Z̃2

)
=

1

2
log

(
1 + P1

(ρ22 − aµ1)2 + ρ2
23

µ2
1ρ

2
23

)
.

Note that when Gaussian signalling is used, the expression is ei-

ther concave (when positive) or convex (when negative) as a result of

stochastic degradation of Gaussian noise. Thus

C [I(X1;T1|T2S1X2)− I(X1;Y2|T2S1X2)]

=

[
1

2
log

(
1 +

P1

η2
1 ∧ µ2

1

)
− 1

2
log

(
1 + P1

(ρ22 − aµ1)2 + ρ2
23

µ2
1ρ

2
23

)]
+

.

Similar for the other concave envelop,

C [I(X2;T2|T1S2X1)− I(X2;Y1|T1S2X1)]

=

[
1

2
log

(
1 +

P2

η2
2 ∧ µ2

2

)
− 1

2
log

(
1 + P2

(ρ12 − bµ2)2 + ρ2
13

µ2
2ρ

2
13

)]
+

.

Now evaluate the leading terms. By the same technique in (4.9)

and differential entropy of Gaussian random variables, it follows

I(X1;Y1T1|S2)

=I(X1;X1 + bX2 + ρ11Ż1 + ρ12Z̈1 + ρ13Z̃1, X1 + η1Ż1|X2 + µ2Z̈1)

=I

(
X1;X1 + bX2 + ρ11Ż1 + ρ12Z̈1 + ρ13Z̃1 −

bP2 + ρ12µ2

P2 + µ2
2

(
X2 + µ2Z̈1

)
,

X1 + η1Ż1

)
=I

(
X1;X1 +

bµ2
2 − ρ12µ2

P2 + µ2
2

X2 + ρ11Ż1 +
P2ρ12 − bP2µ2

P2 + µ2
2

Z̈1 + ρ13Z̃1, X1 + η1Ż1

)
=

1

2
log

det(K1)

det(N1)
,

where

K1 =

(
P1 + (bµ2−ρ12)2

P2+µ22
P2 + ρ2

11 + ρ2
13 P1 + η1ρ11

P1 + η1ρ11 P1 + η2
1

)
,
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N1 =

(
(bµ2−ρ12)2

P2+µ22
P2 + ρ2

11 + ρ2
13 η1ρ11

η1ρ11 η2
1

)
.

So

I(X1;Y1T1|S2)

=
1

2
log

(bµ2−ρ12)2(P1+η21)

P2+µ22
P2 + P1 − ρ2

12P1 + P1η
2
1 − 2η1ρ11P1 + η2

1ρ
2
13

(bµ2−ρ12)2η21
P2+µ22

P2 + ρ2
13η

2
1

=
1

2
log

1 + P1

 1

η2
1

+
1

(bµ2−ρ12)2

P2+µ22
P2 + ρ2

13

(
ρ11

η1

− 1

)2
 .

Similarly,

I(X2;Y2T2|S1)

=
1

2
log

1 + P2

 1

η2
2

+
1

(aµ1−ρ22)2

P1+µ21
P1 + ρ2

23

(
ρ21

η2

− 1

)2
 .

Hence we have the outer bound (4.1).

4.B Proof of Theorem 4.5.1

Proof of Theorem 4.5.1. Consider the following perturbed distribution

on X1 and X2,

X1 ∼ gp(x) + εcHp
1 (x)gp(x) + εαHp1

2 (x)gp1(x) + εδHp
4 (x)gp(x),

X2 ∼ gp(x)− εbHp
1 (x)gp(x) + εβHp2

2 (x)gp2(x) + εδHp
4 (x)gp(x).

The above probability density function (pdf) is valid for δ > 0 and ε

small enough so that value of pdf at any x is positive. Also, orthogonal

property of Hermite polynomial guarantees the integration of the pdf

is 1. We may assume δ is negligible compared to α, β, b, c and thus

omit δ terms.
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First, use Lemma 4.5.1 to compute pdf of sums of random variables.

aX2 + Z ∼(
ga

2p − εbHa2p
1 ga

2p + εβHa2p2
2 ga

2p2 + εδHa2p
4 ga

2p
)
∗ g1

= ga
2p+1 − εb

√
a2p√

a2p+ 1
Ha2p+1

1 ga
2p+1 + εβ

a2p2

a2p2 + 1
Ha2p2+1

2 ga
2p2+1.

aX1 + Z ∼

(ga
2p + εcHa2p

1 ga
2p + εαHa2p1

2 ga
2p1 + εδHa2p

4 ga
2p) ∗ g1

= ga
2p+1 + εc

√
a2p√

a2p+ 1
Ha2p+1

1 ga
2p+1 + εα

a2p1

a2p1 + 1
Ha2p1+1

2 ga
2p1+1.

X1 + aX2 + Z ∼

(gp(x) + εcHp
1 (x)gp(x) + εαHp1

2 (x)gp1(x))

∗

(
ga

2p+1 − εb
√
a2p√

a2p+ 1
Ha2p+1

1 ga
2p+1

+εβ
a2p2

a2p2 + 1
Ha2p2+1

2 ga
2p2+1

)
= gp+a

2p+1 + ε

[
c

√
p

p+ a2p+ 1
Hp+a2p+1

1 gp+a
2p+1

+ α
p1

p1 + a2p+ 1
Hp1+a2p+1

2 gp1+a2p+1

− b

√
a2p

p+ a2p+ 1
Hp+a2p+1

1 gp+a
2p+1

+β
a2p2

p+ a2p2 + 1
Hp+a2p2+1

2 gp+a
2p2+1

]
+ ε2

[
−bc

√
a2p√

p+ a2p+ 1

√
2p

p+ a2p+ 1
Hp+ap+1

2 gp+a
p+1

+ βc
a2p2

√
3p

(p+ a2p2 + 1)3/2
Hp+a2p2+1

3 gp+a
2p2+1

− αb
√
a2p
√

3p1

(1 + a2p+ p1)3/2
gp1+ap+1Hp1+ap+1

3

+αβ
a2p2p1

√
6

(p1 + a2p2 + 1)2
gp1+a2p2+1Hp1+a2p2+1

4

]
.
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X2 + aX1 + Z ∼

(gp(x)− εbHp
1 (x)gp(x) + εβHp2

2 (x)gp2(x))

∗

(
ga

2p+1 + εc

√
a2p√

a2p+ 1
Ha2p+1

1 ga
2p+1

+εα
a2p1

a2p1 + 1
Ha2p1+1

2 ga
2p1+1

)
= gp+a

2p+1 + ε

[
−b
√

p

p+ a2p+ 1
Hp+a2p+1

1 gp+a
2p+1

+ β
p2

p2 + a2p+ 1
Hp2+a2p+1

2 gp2+a2p+1

+ c

√
a2p

p+ a2p+ 1
Hp+a2p+1

1 gp+a
2p+1

+α
a2p1

p+ a2p1 + 1
Hp+a2p1+1

2 gp+a
2p1+1

]
+ ε2

[
−bc

√
a2p√

p+ a2p+ 1

√
2p

p+ a2p+ 1
Hp+ap+1

2 gp+a
p+1

− αb a2p1

√
3p

(p+ a2p1 + 1)3/2
Hp+a2p1+1

3 gp+a
2p1+1

+ βc

√
a2p
√

3p2

(1 + a2p+ p2)3/2
gp2+ap+1Hp2+ap+1

3

+αβ
a2p2p1

√
6

(p1 + a2p2 + 1)2
gp1+a2p2+1Hp1+a2p2+1

4

]
.

Then, we compute change in differential entropy

h(X1 + aX2 + Z1)− h(gp+a
2p+1)

=−D(gε||g) +
1

2

∫
x

p+ a2p+ 1
(gε(x)− g(x))dx

=− ε2

2

∫
1

gp+a2p+1

[√
p

p+ a2p+ 1
(c− ab)gp+a2p+1Hp+a2p+1

1

+
βa2p2

p+ a2p2 + 1
gp+a

2p2+1Hp+a2p+1
2 +

αp1

p1 + a2p1

gp1+a2p+1Hp1+a2p+1
2

]2

+
ε

2

[ √
2αp1

p+ a2p+ 1
+

√
2βa2p2

p+ a2p+ 1

]
− ε2

2

(
2apbc

p+ a2p+ 1

)
.
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h(aX2 + Z1)− h(ga
2p+1)

=−D(gε||g) + 1/2

∫
x

p+ a2p+ 1
(gε − g)

=− ε2

2

∫
1

g1+a2p

[
−b

√
a2p√

a2p+ 1
Ha2p+1

1 ga
2p+1 +

βa2p2

a2p2 + 1
Ha2p2+1

2 ga
2p2+1

]2

+
ε

2

√
2βa2p2

1 + a2p
.

Hence TIN total increment after perturbation is

∆

= −ε
2

2

∫
1

gp+a2p+1

([√
p

p+ a2p+ 1
(c− ab)gp+a2p+1Hp+a2p+1

1

+
βa2p2

p+ a2p2 + 1
gp+a

2p2+1Hp+a2p2+1
2 +

αp1

p1 + a2p+ 1
gp1+a2p+1Hp1+a2p+1

2

]2

+

[
−
√

p

p+ a2p+ 1
(−b+ ac)gp+a

2p+1Hp+a2p+1
1

+
αa2p1

p+ a2p1 + 1
gp+a

2p1+1Hp+a2p1+1
2 +

βp2

p2 + a2p+ 1
gp2+a2p+1Hp2+a2p+1

2

]2
)

+
ε2

2

∫
1

g1+a2p

[−b √
a2p√

a2p+ 1
Ha2p+1

1 ga
2p+1 +

βa2p2

a2p2 + 1
Ha2p2+1

2 ga
2p2+1

]2

+

[
c

√
a2p√

a2p+ 1
Ha2p+1

1 (x)ga
2p+1(x) +

αa2p1

a2p1 + 1
Ha2p1+1

2 (x)ga
2p1+1(x)

]2


+
ε√
2

[
(αp1 + βp2)(1 + a2)

p+ a2p+ 1
− a2(αp1 + βp2)

1 + a2p

]
− ε2

(
2apbc

p+ a2p+ 1

)
Note

∫
gP (x)fodd(x) = 0 for odd function fodd(x). Also, it is easy to

verify
gP1gP2

gP
=

P√
P1P + P2P − P1P2

g
P1P2P

P1P+P2P−P1P2 .

We can simplify the increment.

∆

= −ε
2

2

(
β2a4p2

2

(p+ a2p2 + 1)2

2(1 + a2p+ p)3 + (1 + a2p+ p)a4(p− p2)2

2
√

(1 + a2p2 + p)(1 + p+ 2a2p− a2p2)5
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+
α2p2

1

(p1 + a2p+ 1)2

2(1 + a2p+ p)3 + (1 + a2p+ p)(p− p1)2

2
√

(1 + a2p+ p1)(1 + a2p+ 2p− p1)5

+
2βa2p2αp1(1 + a2p+ p)[2(1 + a2p+ p)2 + (p1 − p)a2(p2 − p)]

2
√

[(1 + a2p+ p)2 − a2(p2 − p)(p1 − p)]5

+
α2a4p2

1

(p+ a2p1 + 1)2

2(1 + a2p+ p)3 + (1 + a2p+ p)a4(p− p1)2

2
√

(1 + a2p1 + p)(1 + p+ 2a2p− a2p1)5

+
β2p2

2

(p2 + a2p+ 1)2

2(1 + a2p+ p)3 + (1 + a2p+ p)(p− p2)2

2
√

(1 + a2p+ p2)(1 + a2p+ 2p− p2)5

+
2βa2p2αp1(1 + a2p+ p)[2(1 + a2p+ p)2 + (p1 − p)a2(p2 − p)]

2
√

[(1 + a2p+ p)2 − a2(p2 − p)(p1 − p)]5

)

+
ε2

2

(
β2a4p2

2(1 + a2p)(2(1 + a2p)2 + a4(p− p2)2)

2
√

(1 + a2p2)5(1 + 2a2p− a2p2)5

+
α2a4p2

1(1 + a2p)(2(1 + a2p)2 + a4(p− p1)2)

2
√

(1 + a2p1)5(1 + 2a2p− a2p1)5

)
− ε2/2 p(b2 + c2)

(a2p+ 1)(p+ a2p+ 1)
.

Note X1, X2 need to satisfy power constrain.∫
x2(gp(x) + εHp

1 (x)gp(x) + εαHp1
2 (x)gp1(x) + εδHp

4 (x)gp(x))

+

∫
x2(gp(x)− εHp

1 (x)gp(x) + εβHp2
2 (x)gp2(x) + εδHp

4 (x)gp(x))

=2p+ ε
√

2(αp1 + βp2) ≤ 2p

So αp1+βp2 ≤ 0. To make the increment positive, we need αp1+βp2 =

0. Then increment is

∆

= −ε
2α2p2

1

2

(
a4

(p+ a2p2 + 1)2

2(1 + a2p+ p)3 + (1 + a2p+ p)a4(p− p2)2

2
√

(1 + a2p2 + p)(1 + p+ 2a2p− a2p2)5

+
1

(p1 + a2p+ 1)2

2(1 + a2p+ p)3 + (1 + a2p+ p)(p− p1)2

2
√

(1 + a2p+ p1)(1 + a2p+ 2p− p1)5

− 2a2(1 + a2p+ p)[2(1 + a2p+ p)2 + (p1 − p)a2(p2 − p)]√
[(1 + a2p+ p)2 − a2(p2 − p)(p1 − p)]5

+ (
a4

(p+ a2p1 + 1)2

2(1 + a2p+ p)3 + (1 + a2p+ p)a4(p− p1)2

2
√

(1 + a2p1 + p)(1 + p+ 2a2p− a2p1)5
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+
1

(p2 + a2p+ 1)2

2(1 + a2p+ p)3 + (1 + a2p+ p)(p− p2)2

2
√

(1 + a2p+ p2)(1 + a2p+ 2p− p2)5
)

)

+
ε2α2p2

1

2

(
a4(1 + a2p)(2(1 + a2p)2 + a4(p− p2)2)

2
√

(1 + a2p2)5(1 + 2a2p− a2p2)5

+
a4(1 + a2p)(2(1 + a2p)2 + a4(p− p1)2)

2
√

(1 + a2p1)5(1 + 2a2p− a2p1)5

)
− ε2

2

p(b2 + c2)

(a2p+ 1)(p+ a2p+ 1)
.

Since α is arbitrary, ∆ > 0 is equivalent to

0 <
a4(1 + a2p)(2(1 + a2p)2 + a4(p− p2)2)

2
√

(1 + a2p2)5(1 + 2a2p− a2p2)5

+
a4(1 + a2p)(2(1 + a2p)2 + a4(p− p1)2)

2
√

(1 + a2p1)5(1 + 2a2p− a2p1)5

+
2a2(1 + a2p+ p)[2(1 + a2p+ p)2 + (p1 − p)a2(p2 − p)]√

[(1 + a2p+ p)2 − a2(p2 − p)(p1 − p)]5

−

(
a4(1 + a2p+ p)(2(1 + a2p+ p)2 + a4(p− p2)2)

2
√

(1 + a2p2 + p)5(1 + p+ 2a2p− a2p2)5

+
(1 + a2p+ p)(2(1 + a2p+ p)2 + (p− p1)2)

2
√

(1 + a2p+ p1)5(1 + a2p+ 2p− p1)5

+
a4(1 + a2p+ p)(2(1 + a2p+ p)2 + a4(p− p1)2)

2
√

(1 + a2p1 + p)5(1 + p+ 2a2p− a2p1)5

+
(1 + a2p+ p)(2(1 + a2p+ p)3 + (p− p2)2)

2
√

(1 + a2p+ p2)5(1 + a2p+ 2p− p2)5

)
.

In particular, if p1 + p2 = 2p and denote x = p1 − p ∈ [−p, p], then the

condition is

0 < max
x∈[−p,p]

a4(1 + a2p)(2(1 + a2p)2 + a4x2)

((1 + a2p)2 − a4x2) 5
2

+
2a2(1 + a2p+ p)(2(1 + a2p+ p)2 − a2x2)

((1 + a2p+ p)2 + a2x2)
5
2

−
(
a4(1 + a2p+ p)(2(1 + a2p+ p)2 + a4x2)

((1 + a2p+ p)2 − a4x2) 5
2

+
(1 + a2p+ p)(2(1 + a2p+ p)2 + x2)

((1 + a2p+ p)2 − x2) 5
2

)
.

Denote y = x
1+p+a2p

, r = 1+a2p
1+p+a2p

∈ [ a2

1+a2
, 1], then the condition is

equivalent to

0 < max
y∈[0,(1−r)2]

a4r(2r2 + a4y)

(r2 − a4y)
5
2

+
2a2(2− a2y)

(1 + a2y)
5
2

−

(
a4(2 + a4y)

(1− a4y)
5
2

+
(2 + y)

(1− y)
5
2

)



Chapter 5

Conclusion

Characterizing capacity of interference channel has been a fundamen-

tal open problem in information theory. This thesis was set out to

provide outer bounds on capacity using genie-based techniques and

has examined the tightness of these outer bound in comparison with

Han–Kobayashi inner bound. One of the major difficulties in anal-

ysis of capacity region of interference channel is the computation of

Han–Kobayashi inner bound which involves optimizing over space of all

probability distributions with certain Markov structure. To overcome

this challenge, the thesis focuses on sum-capacity in discrete settings

where interference is weak and in Gaussian settings.

Two genie-based outer bounds are developed in Chapter 2. The first

outer bound is obtained by providing to each decoder additional infor-

mation about its intended sender, then single-letterizing the n-letter

expression, identifying auxiliary random variables, and at last using

concave envelop to suppress these auxiliaries. The second outer bound

is an enhanced version of the first one in the sense that information

about interference is also provided to each decoder.

In chapter 3, a class of interference channels, called very weak in-

terference channels, are defined and studied. Han–Kobayashi sum-rate

for a very weak interference channel reduces to treating-interference-

as-noise sum rate. Discrete and continuous examples of this class

of channels are also provided. In discrete case, it is shown that for

69
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this particular example, the genie-based outer bound matches treating-

interference-as-noise inner bound in a sub-regime of very weak inter-

ference regime.

Chapter 4 discusses Gaussian interference channels. The enhanced

genie-based outer bound is applied to Gaussian interference channels

and it turns out the outer bound is tight for sum rate in all regimes

where the sum-capacity has been established, including regimes where

treating-interference-as-noise is optimal. Then the optimality of Gaus-

sian signalling for both treating-interference-as-noise sum rate of the

symmetric Gaussian interference channels and Han–Kobayashi weighted

sum-rate of Gaussian Z interference channels are also discussed. For the

symmetric Gaussian interference channels, we use perturbation method

by Hermite polynomials to discover a condition where Gaussian sig-

nalling is sub-optimal. For Gaussian Z interference channels, we pro-

pose a hypothesis about certain information inequality and this hypoth-

esis is equivalent to the optimality of Han–Kobayashi with Gaussian

signalling around the corner point of capacity region.

There is still need for a lot of effort in order to completely un-

derstand capacity regions of interference channels. The analysis of

tightness of the genie-based outer bounds in general settings are still

challenging due to the large search space of genies and behaviours of

concave envelops. In Gaussian settings, optimality of Gaussian sig-

nalling is still an interesting topic to study which may reveal more

properties about differential entropy of Gaussian random variables.
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