Genie-based Outer Bounds for Interference Channels

LIU, Sida

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of
Doctor of Philosophy
in
Information Engineering

The Chinese University of Hong Kong
September 2016

Abstract of thesis entitled:
Genie-based Outer Bounds for Interference Channels
Submitted by LIU, Sida
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in September 2016

In multi-user information theory, the interference channel is a classical model for communication between two or more transmitter-receiver pairs over a shared medium. Determining the capacity region of the interference channel remains a major open question in this field. Several inner and outer bounds have been proposed for the capacity region. Among those, Kramer (2004) developed a genie-based outer bound for the degraded Gaussian interference channel studied by Sato (1978). Later genie approaches are used to show the sum-capacity in a weak interference regime of the Gaussian interference channel. In this thesis, two outer bounds are developed, both for discrete and continuous settings, using the genie idea. The genie-based outer bound is shown to be sum-rate optimal for a specific class of discrete interference channels with low interference. In the Gaussian setting, one of the outer-bound developed in this thesis, enhanced genie-based outer bound turns out to be tight in all cases where sum-capacity has been previously established; thus unifying the converse arguments.

We study the optimality of Gaussian signaling using perturbations along Hermite polynomials, an idea introduced by Abbe and Zheng (2009). By generalizing the above approach we derive a larger regime under which Gaussian signaling is not optimal for the coding scheme of treating interference as noise.

This thesis also examines the weighted sum-rate for Gaussian Z
interference channels. We present a conjecture that is equivalent to testing the optimality of Gaussian signaling with power control at the corner point of capacity region.

摘要

在多用户信息理論中，干擾信道是一個用來模擬雨對或更多璌輸接受端通過共享媒介進行通訊的古典模型。解決干擾信道的信道容量一直是這個領域中懸而未決的問题。幾種信道容量的内界和外界已經被提出和研究。在其中，Krammer（2004）推導出一個對於降级高斯干擾信道的基於精靈方法的外界。之後，精電方法被用於澄明高斯干㩚信道的信道容量和。此篇論文中，雨種基於精需方法的外界被推導出。這雨種精霝外界同時適用於離散和高斯的設定。在離散設定中，對於某一類離散干擾信道的信道容量和，第一種精霝外界是最優的。在高斯設定中，對於所有信道容量和已知的區間，另一種進階版精靈外界都是最優的，由此統一了信道容量和的反面登明。

我們用Hermite多項式微擾的方法研究了高斯信號的最優性。這個方法最初由Abbe和Zheng（2009）提出。對於干擾當作噪音的编碼方式，我們推廣了以上方法並且得到了一個更大的高斯信號非最優的區間。

此論文也研究了高斯Z型干擾信道的權重信道容量和。我們提出了一個猜想，這個猜想被證明是等價於在高斯Z型干擾信道中高斯信號與功率控制的最優性。

Acknowledgement

First and foremost I want to thank my advisor, Professor Chandra M. Nair. He has been a helpful mentor since I undertook a research project with him as an undergraduate. Throughout my Ph.D. pursuit, he has been supportive with his expertise in information theory, his insight in academic research and his patience in teaching me. I appreciate all his guidance in academic and beyond, his influence on my growth and the excellent model he provided for me to learn from.

I would also like to acknowledge Professor Max H. M. Costa, Professor Raymond Yeung, Professor Sidharth Jaggi and Professor Pascal Vontobel. It has been an honor to have these outstanding scholars on my thesis committee. Thanks to them for the time on the thesis review and comments to improve the thesis.

Many thanks goes to the former and current group members and fellow labmates in CUHK: Dr. Yanlin Geng, Dr. Fan Cheng, Dr. Chengwei Guo, Dr. Lingxiao Xia, Dr. Yang Liu, Mr. Chenglong Ma, Mr. Yuanming Yu, Mr. Mehdi Yazdanpanah, Mr. Yannan Wang and many other friends. Together with them, I had a lot of fun.

Finally, I would like to express my gratitude to my parents for their unconditional deep love.

This work is dedicated to my parents.

Contents

Abstract i
Acknowledgement iv
1 Introduction 1
1.1 Discrete memoryless interference channel 2
1.1.1 Strong interference 3
1.2 Gaussian interference channel 5
1.3 Han-Kobayashi inner bound 6
1.4 Existing outer bounds 7
1.4.1 An outer bound using traditional techniques 7
1.4.2 An outer bound for injective semi-deterministic interference channels 8
2 Genie-based outer bounds 10
2.1 A genie-based outer bound 10
2.2 Enhanced genie-based outer bound 13
Appendices 16
2.A Proof of Theorem 2.1.1 16
2.B Proof of Theorem 2.2.1 20
3 Very weak interference 26
3.1 Definition of very weak interference 26
3.2 Han-Kobayashi sum-rate for very weak interference chan- nels 27
3.3 Examples 29
3.3.1 Binary skewed-Z interference channel 29
3.3.2 Gaussian Z interference channel 39
3.4 Mixed interference 40
3.5 Open questions about very weak interference conditions 42
4 Gaussian interference channels 44
4.1 Optimality for Gaussian Interference Channel with Strong Interference 44
4.2 Optimality for Gaussian Interference Channel with Mixed Interference 45
4.3 A closed form of the enhanced genie-based outer bound 47
4.4 Optimality for Gaussian Interference Channel with weak Interference 49
4.5 Hermite perturbation on Gaussian distribution for TIN 51
4.6 Z-interference channel corner point 54
4.7 Discussion on the weighted sum-rate 58
Appendices 61
4.A Proof of Lemma 4.3.1 61
4.B Proof of Theorem 4.5.1 63
5 Conclusion 69
Bibliography 71

List of Figures

1.1 Discrete memoryless interference channel 2
1.2 Gaussian interference channel 5
1.3 Injective semi-deterministic interference channel 8
2.1 How a "genie" could help 11
2.2 Discrete memoryless interference channel with genies 12
2.3 DM-IC with two genies per decoder 13
2.A.1Bayesian network of dependence 17
3.1 Binary skewed-Z interference channel (BSZIC) 29
3.2 Regime of parameters where the sum-capacity is estab- lished for the Skewed-Z interference channel 31
3.3 Gaussian Z interference channel 40
4.1 Inner and outer bounds for symmetric GICs 50
4.1 Gaussian signalling without power control 60

Chapter 1

Introduction

The ground-breaking work done by Claude E. Shannon in his paper "A Mathematical Theory of Communication" (1948) founded the discipline of information theory. Communication from one point to another was modeled as a three-stage process:

1. Encoding: There is a set of finitely many possible messages that may need to be sent. The encoding process maps each message to a codeword, a sequence of transmit symbols from a transmit alphabet.
2. Channel: This models the physical medium that corrupts the transmit symbol. The relationship between the received symbol and the transmitted symbol is often characterized by a probability transition matrix that yields the transition probabilities between output symbols and input symbols.
3. Decoding: This is the process of estimating the message from the sequence of received symbols.

Shannon's channel coding theorem has successfully quantified the maximum reliable rate of information flow through a channel, called channel capacity. The point to point communication model can be directly extended to a network setting. The first model in network information theory is the two-way channel studied by Shannon (1961).

During 1970s to 1980s, more channels were proposed and studied including the multiple access channel, the broadcast channel, and the interference channel. However determining the channel capacity region for most of these channels remains open. After decades when researchers had little interest in this field, network information theory was revived since 1990s thanks to development in wireless technology and advance of data processing ability.

This thesis focuses on the interference channel.

1.1 Discrete memoryless interference channel

The interference channel was first introduced by Ahlswede (1974). It is a classical model for communication consisting of two pairs of transmitters and receivers over a shared medium. Each receiver wants to send a private message to its intended receiver; however the sharing of the medium causes it to suffer interference from the other communication pair. The characterization of the capacity region is a classical and fundamental open problem in the area of multi-terminal information theory.

Figure 1.1: Discrete memoryless interference channel

Consider a discrete memoryless interference channel (DM-IC) depicted in Figure 1.1. The input and output alphabet are over two finite sets \mathcal{X}, \mathcal{Y}. Interference and noise are characterized by the transition probability $w\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$. An $\left(R_{1}, R_{2}, n\right)$ rate coding scheme for the discrete memoryless interference channel consists of

- Two message sets $\left\{1,2, \ldots,\left\lfloor 2^{n R_{i}}\right\rfloor\right\}, i=1,2$. The messages
are assumed to be independent of each other and uniformly distributed over their message sets.
- Two encoders: Each encoder maps a message $M_{i} \in\left\{1,2, \ldots,\left\lfloor 2^{n R_{i}}\right\rfloor\right\}$ to X_{i}^{n} using an encoding function $\Psi_{i}:\left\{1,2, \ldots,\left\lfloor 2^{n R_{i}}\right\rfloor\right\} \mapsto \mathcal{X}_{i}^{n}, i=$ 1,2 .
- Two decoders: Each decoder maps received n-letter sequence Y_{i}^{n} to an estimate of the message \hat{M}_{i} in $\left\{1,2, \ldots,\left\lfloor 2^{n R_{i}}\right\rfloor\right\}$ using a decoding function, $\Phi_{i}: \mathcal{Y}_{i}^{n} \mapsto\left\{1,2, \ldots,\left\lfloor 2^{n R_{i}}\right\rfloor\right\}, i=1,2$.

A rate pair $\left(R_{1}, R_{2}\right)$ is said to be achievable if there is a sequence of $\left(R_{1}, R_{2}, n\right)$ coding schemes such that error probability $P_{e}(n):=$ $\operatorname{Pr}\left\{\left(M_{1}, M_{2}\right) \neq\left(\hat{M}_{1}, \hat{M}_{2}\right)\right\} \rightarrow 0$ as $n \rightarrow \infty$. The capacity region C is the closure of the set of achievable rate pairs $\left(R_{1}, R_{2}\right) \in \mathbb{R}^{2}$. The sum-capacity is defined as $C_{\text {sum }}=\max _{\left(R_{1}, R_{2}\right) \in C} R_{1}+R_{2}$. Note that receivers decode messages independently, which means that the capacity only depends on the marginals $w\left(y_{1} \mid x_{1}, x_{2}\right)$ and $w\left(y_{2} \mid x_{1}, x_{2}\right)$ rather than $w\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$. It is also assumed that there is no feedback from the receivers to the transmitter or co-operation between the two transmitters.

A more detailed problem introduction and additional prior results on interference channels can be found in Chapter 6 [9].

1.1.1 Strong interference

Definition 1.1.1 ([3]). A DM-IC is said to have very strong interference if

$$
\begin{align*}
& I\left(X_{1} ; Y_{1} \mid X_{2}\right) \leq I\left(X_{1} ; Y_{2}\right) \tag{1.1}\\
& I\left(X_{2} ; Y_{2} \mid X_{1}\right) \leq I\left(X_{2} ; Y_{1}\right) \tag{1.2}
\end{align*}
$$

for all $p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)$.
This definition sheds some light on the intensity of interference: Consider equation (1.1). The left hand side is the rate that can be achieved for channel X_{1} to Y_{1} without interference from X_{2}. The right
hand side is the rate that can be achieved for channel X_{1} to Y_{2} by treating the intended signal X_{2} as noise. The inequality indicates that interference is so strong that decoding interference would be optimal (and can indeed shown to be the case [3]). This intuition will lead to definition of very weak interference later in the following chapter.

Definition 1.1.2 ([7]). A DM-IC is said to have strong interference if

$$
\begin{align*}
I\left(X_{1} ; Y_{1} \mid X_{2}\right) & \leq I\left(X_{1} ; Y_{2} \mid X_{2}\right) \tag{1.3}\\
I\left(X_{2} ; Y_{2} \mid X_{1}\right) & \leq I\left(X_{2} ; Y_{1} \mid X_{1}\right) \tag{1.4}
\end{align*}
$$

for all $p\left(x_{1}\right) p\left(x_{2}\right)$.
It is clear that very strong interference channels also have strong interference since $I\left(X_{1} ; Y_{2} \mid X_{2}\right) \geq I\left(X_{1} ; Y_{2}\right)$ and $I\left(X_{2} ; Y_{1} \mid X_{1}\right) \geq I\left(X_{2} ; Y_{1}\right)$. Theorem 1.1.1 (Sato (1978) [17], Costa, El Gamal (1987) [7]). The capacity region of the DM-IC with strong interference is the union of rate pairs $\left(R_{1}, R_{2}\right)$ such that

$$
\begin{align*}
R_{1} & \leq I\left(X_{1} ; Y_{1} \mid X_{2}, Q\right) \tag{1.5}\\
R_{2} & \leq I\left(X_{2} ; Y_{2} \mid X_{1}, Q\right) \tag{1.6}\\
R_{1}+R_{2} & \leq \min \left\{I\left(X_{1}, X_{2} ; Y_{1} \mid Q\right), I\left(X_{1}, X_{2} ; Y_{2} \mid Q\right)\right\} \tag{1.7}
\end{align*}
$$

for some $p(q) p\left(x_{1} \mid q\right) p\left(x_{2} \mid q\right)$ with $|\mathcal{Q}| \leq 4$.
For each distribution, the above constraints give a pentagonal region in \mathbb{R}^{2}. The capacity region is given by the union of these pentagons. The auxiliary random variable Q is a time/frequency sharing random variable to mix different strategies. Since Q has a cardinality bound, this characterization of the capacity region is computable by searching over a finite dimensional space. The optimal achievable coding scheme is simultaneous-nonunique-decoding and the converse is given by traditional single-letter argument using strong interference condition [7].

From this theorem, the sum-capacity for strong interference channel is obtained as follows

$$
C_{\text {sum }}=\max _{p(q) p\left(x_{1} \mid q\right) p\left(x_{2} \mid q\right)} \min \left\{I\left(X_{1}, X_{2} ; Y_{1} \mid Q\right), I\left(X_{1}, X_{2} ; Y_{2} \mid Q\right)\right\}
$$

1.2 Gaussian interference channel

The Gaussian interference channel (GIC) model in Figure 1.2 is widely used in wireless communications. The Gaussian interference channel with outputs Y_{1}, Y_{2} and inputs $X_{1}, X_{2}, i=1,2$ are given by

$$
\begin{aligned}
& Y_{1}=X_{1}+b X_{2}+Z_{1} \\
& Y_{2}=X_{2}+a X_{1}+Z_{2}
\end{aligned}
$$

where Z_{1} and Z_{2}, used to model channel noise, are normally distributed random variables with mean 0 and variance 1 , denoted as $\mathcal{N}(0,1)$. Note that one can assume Z_{1}, Z_{2} to have arbitrary correlation since the capacity only depends on the marginal distribution.

Figure 1.2: Gaussian interference channel

The input and output alphabets are assumed to be real numbers. The capacity of the Gaussian interference channel is often studied under the assumption that the input codewords satisfy an average power constraint, i.e.

$$
\frac{1}{2^{n R_{i}}} \sum_{m=1}^{2^{n R_{i}}}\left\|\Psi_{i}(m)\right\|^{2} \leq n P_{i}, i=1,2
$$

where m is the message to be send and Ψ_{i} is the encoding function.
For $a \geq 1$ and $b \geq 1$, the GIC satisfies strong interference condition (1.3) and (1.4). Hence, from Theorem 1.1.1, the capacity is simultaneous-nonunique-decoding region and it is not hard to show
that the optimal input distribution is $X_{i} \sim \mathcal{N}\left(0, P_{i}\right), i=1,2$ and $Q=\emptyset$.

For $a \geq 1$ and $b<1$ (or $a<1$ and $b \geq 1$), the sum-capacity of the GIC can be inferred from [17]

$$
\min \left\{\frac{1}{2} \log \left(1+a^{2} P_{1}+P_{2}\right), \frac{1}{2} \log \left(1+\frac{P_{1}}{b^{2} P_{2}+1}\right)+\frac{1}{2} \log \left(1+P_{2}\right)\right\}
$$

and the optimal input distribution is $X_{i} \sim \mathcal{N}\left(0, P_{i}\right), i=1,2$ and $Q=\emptyset$.

For $a<1$ and $b<1$, and if in addition the following condition holds

$$
\begin{equation*}
a\left(1+b^{2} P_{2}\right)+b\left(1+a^{2} P_{1}\right)<1 \tag{1.8}
\end{equation*}
$$

then the sum-capacity of the GIC is given by

$$
\frac{1}{2} \log \left(1+\frac{P_{1}}{b^{2} P_{2}+1}\right)+\frac{1}{2} \log \left(1+\frac{P_{2}}{a^{2} P_{1}+1}\right)
$$

This is the rate obtained by the treating-interference-as-noise strategy with Gaussian inputs. This result was established independently by [18], [2], [13]; and uses a genie-based approach.

1.3 Han-Kobayashi inner bound

The best known inner bound is Han-Kobayashi inner bound.
Theorem 1.3.1 (Han-Kobayashi [11], [4]). A rate pair $\left(R_{1}, R_{2}\right)$ is achievable for the DM-IC if

$$
\begin{aligned}
& R_{1} \leq I\left(X_{1} ; Y_{1} \mid U_{2}, Q\right) \\
& R_{2} \leq I\left(X_{2} ; Y_{2} \mid U_{1}, Q\right) \\
& R_{1}+R_{2} \leq I\left(X_{1}, U_{2} ; Y_{1} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid U_{1}, U_{2}, Q\right) \\
& R_{1}+R_{2} \leq I\left(X_{2}, U_{1} ; Y_{2} \mid Q\right)+I\left(X_{1} ; Y_{1} \mid U_{1}, U_{2}, Q\right) \\
& R_{1}+R_{2} \leq I\left(X_{1}, U_{2} ; Y_{1} \mid U_{1}, Q\right)+I\left(X_{2}, U_{1} ; Y_{2} \mid U_{2}, Q\right) \\
& 2 R_{1}+R_{2} \leq I\left(X_{1}, U_{2} ; Y_{1} \mid Q\right)+I\left(X_{1} ; Y_{1} \mid U_{1}, U_{2}, Q\right)+I\left(X_{2}, U_{1} ; Y_{2} \mid U_{2}, Q\right) \\
& R_{1}+2 R_{2} \leq I\left(X_{2}, U_{1} ; Y_{2} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid U_{1}, U_{2}, Q\right)+I\left(X_{1}, U_{2} ; Y_{1} \mid U_{1}, Q\right) \\
& \text { for some } p(q) p\left(u_{1}, x_{1} \mid q\right) p\left(u_{2}, x_{2} \mid q\right)
\end{aligned}
$$

In particular, by setting $U_{1}=U_{2}=\emptyset$, the Han-Kobayashi inner bound reduces to the treating-interference-as-noise (TIN) inner bound:

$$
\begin{aligned}
& R_{1} \leq I\left(X_{1} ; Y_{1} \mid Q\right) \\
& R_{2} \leq I\left(X_{2} ; Y_{2} \mid Q\right)
\end{aligned}
$$

for some $p(q) p\left(x_{1} \mid q\right) p\left(x_{2} \mid q\right)$.
By setting $U_{i}=X_{i}, i=1,2$, the Han-Kobayashi inner bound reduces to the simultaneous-nonunique-decoding inner bound, which is tight for strong interference channels.

The Han-Kobayashi inner bound subsumes all known inner bounds and is optimal for some classes of channels such as the strong interference channel [17] and the injective deterministic interference channel [8]. However, a recent work [14] has shown that there are some DM-ICs for which the Han-Kobayashi inner bound is strictly sub-optimal.

1.4 Existing outer bounds

1.4.1 An outer bound using traditional techniques

Theorem 1.4.1 (Outer bound [12]). It can be shown that any achievable rate pair (R_{1}, R_{2}) must satisfy

$$
\begin{align*}
R_{1} & \leq \min \left\{I\left(U_{2} X_{1} ; Y_{1} \mid Q\right), I\left(X_{1} ; Y_{1} \mid X_{2} Q\right)\right\} \\
R_{2} & \leq \min \left\{I\left(U_{1} X_{2} ; Y_{2} \mid Q\right), I\left(X_{2} ; Y_{2} \mid X_{1} Q\right)\right\} \tag{1.9}\\
R_{1}+R_{2} & \leq I\left(U_{2} X_{1} ; Y_{1} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid U_{2} X_{1} Q\right) \\
R_{1}+R_{2} & \leq I\left(U_{1} X_{2} ; Y_{2} \mid Q\right)+I\left(X_{1} ; Y_{1} \mid U_{1} X_{2} Q\right),
\end{align*}
$$

for some $p\left(q, u_{1}, u_{2}\right) p\left(x_{1} \mid u_{1}, u_{2}, q\right) p\left(x_{2} \mid u_{1}, u_{2}, q\right)$ such that the following statements hold:

1. X_{1}, X_{2} are conditionally independent of Q,
2. For every $Q=q, X_{1}$ and X_{2} are conditionally independent of U_{1},
3. For every $Q=q, X_{1}$ and X_{2} are conditionally independent of U_{2},
4. $Q, U_{1}, U_{2} \rightarrow\left(X_{1}, X_{2}\right) \rightarrow\left(Y_{1}, Y_{2}\right)$ forms a Markov chain.

This outer bound is tight for the sum-capacity of mixed Gaussian interference channels $(a>1, b<1$ or $a<1, b>1)$. The proof [12] uses traditional techniques like Csiszar sum lemma and identification of auxiliaries $U_{1 i}=\left(X_{2}^{n \backslash i}, Y_{11}^{i-1}, Y_{2 i+1}^{n}\right), U_{2 i}=\left(X_{1}^{n \backslash i}, Y_{11}^{i-1}, Y_{2 i+1}^{n}\right)$.

1.4.2 An outer bound for injective semi-deterministic interference channels

Figure 1.3 is a semi-deterministic interference channel. Fix $x_{1} \in \mathcal{X}_{1}$, $y_{1}\left(x_{1}, t_{2}\right)$ is a one-to-one function of t_{2}. Similarly for $y_{2}\left(x_{2}, t_{1}\right)$.

Figure 1.3: Injective semi-deterministic interference channel

Theorem 1.4.2 ([19]). Any achievable rate pair $\left(R_{1}, R_{2}\right)$ for the injective semi-deterministic IC must satisfy the inequalities

$$
\begin{aligned}
& R_{1} \leq H\left(Y_{1} \mid X_{2}, Q\right)-H\left(T_{2} \mid X_{2}\right) \\
& R_{2} \leq H\left(Y_{2} \mid X_{1}, Q\right)-H\left(T_{1} \mid X_{1}\right) \\
& R_{1}+R_{2} \leq H\left(Y_{1} \mid Q\right)+H\left(Y_{2} \mid U_{2}, X_{1}, Q\right)-H\left(T_{1} \mid X_{1}\right)-H\left(T_{2} \mid X_{2}\right) \\
& R_{1}+R_{2} \leq H\left(Y_{1} \mid U_{1}, X_{2}, Q\right)+H\left(Y_{2} \mid Q\right)-H\left(T_{1} \mid X_{1}\right)-H\left(T_{2} \mid X_{2}\right) \\
& R_{1}+R_{2} \leq H\left(Y_{1} \mid U_{1}, Q\right)+H\left(Y_{2} \mid U_{2}, Q\right)-H\left(T_{1} \mid X_{1}\right)-H\left(T_{2} \mid X_{2}\right) \\
& 2 R_{1}+R_{2} \leq H\left(Y_{1} \mid Q\right)+H\left(Y_{1} \mid U_{1}, X_{2}, Q\right)+H\left(Y_{2} \mid U_{2}, Q\right) \\
& \quad-H\left(T_{1} \mid X_{1}\right)-2 H\left(T_{2} \mid X_{2}\right) \\
& R_{1}+2 R_{2} \leq H\left(Y_{2} \mid Q\right)+H\left(Y_{2} \mid U_{2}, X_{1}, Q\right)+H\left(Y_{1} \mid U_{1}, Q\right) \\
& \quad-2 H\left(T_{1} \mid X_{1}\right)-H\left(T_{2} \mid X_{2}\right)
\end{aligned}
$$

for some $p(q) p\left(x_{1} \mid q\right) p\left(x_{2} \mid q\right) p_{T_{1} \mid X_{1}}\left(u_{1} \mid x_{1}\right) p_{T_{2} \mid X_{2}}\left(u_{2} \mid x_{2}\right)$.
The GIC is a special class of this semi-deterministic IC with $T_{1}=$ $a X_{1}+Z_{2}$ and $T_{2}=b X_{2}+Z_{1}$. For GICs, [19] showed that the gap between Han-Kobayashi inner bound and this outer bound is less than half a bit.

Chapter 2

Genie-based outer bounds

Genie-based arguments were first used to establish the capacity of injective deterministic ICs [8]. Recently, they has been employed to show a half-bit gap for the Han-Kobayashi region in [10] and also to establish the sum-capacity of the Gaussian interference channel in [18], [2], [13] for a subset of the weak interference regime. Motivated by these works, two outer bounds on weighted sum-capacity are derived in this chapter.

The capacity region is characterized using tangent lines which are given by the maximal weighted sum rate $\max R_{1}+\lambda R_{2}$. Thus we consider outer bound on maximal weighted sum rate for $\lambda \geq 1$. (When $\lambda \leq 1$, the maximal weighted sum rate considered instead is max $\frac{1}{\lambda} R_{1}+$ R_{2}. The outer bound on it can be obtained similarly.)

2.1 A genie-based outer bound

Capacity regions can be easily characterized in many multi-user settings as a limit of n-letter expressions using Fano's inequality. However these limits are infeasible to compute without knowing explicit convergence behaviour. On the other hand information-theorists seek computable characterizations of capacity regions.

Outer bounds to a capacity region are computable regions that contain the capacity region. These outer bounds usually satisfy the ten-
sorization property, i.e. their multi-letter extensions coincide with the single-letter one. Usually, the outer bounds are obtained by upper bounding an n-letter region which tends to the capacity region, by a tensorizing functional whose single-letter region is computable.

In this chapter we develop outer bounds by giving additional information (usually said to be provided by genies) to the receivers prior to finding a tensorizing expression. With the help of genies, the n letter expression of the capacity region can be upper bounded by a n-letter genie-based outer bound. Then this n-letter genie-based outer bound is further single-letterized to a 1-letter genie-based outer bound so that the express now becomes computable. We will show that in later chapter this genie-based outer bound can be tight.

Figure 2.1: How a "genie" could help

Before we present the outer bound, we define the notion of upper concave envelope, which will be used to express the genie-based outer bound. The upper concave envelope of a function $f(x)$ over domain \mathcal{D} is defined as

$$
\mathcal{C}[f](x):=\inf \{g(x): g(y) \text { is concave in } \mathcal{D}, \text { and } g(y) \geq f(y) \forall y \in \mathcal{D} .\}
$$

The following theorem provides an outer bound to the capacity region of the interference channel with genie random variables denoted by T_{1}, T_{2} carrying information about X_{1} and X_{2} respectively. The structure of the genie-aided channel is depicted in Figure 2.2.

Theorem 2.1.1 (Genie based outer bound). Consider a discrete mem-

Figure 2.2: Discrete memoryless interference channel with genies
oryless interference channel characterized by $w\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$. Let T_{1}, T_{2} be any pair of random variables such that the joint distributions satisfy $p\left(y_{1}, t_{1}, y_{2}, t_{2} \mid x_{1}, x_{2}\right)=p\left(t_{1} \mid x_{1}\right) p\left(t_{2} \mid x_{2}\right) p\left(y_{1}, y_{2} \mid t_{1}, t_{2}, x_{1}, x_{2}\right)$, and their marginals distributions are consistent with the given channel transition probabilities, i.e. $p\left(y_{1} \mid x_{1}, x_{2}\right)=w\left(y_{1} \mid x_{1}, x_{2}\right)$ and $p\left(y_{2} \mid x_{1}, x_{2}\right)=$ $w\left(y_{2} \mid x_{1}, x_{2}\right)$. The achievable weighted sum-rate can be upper bounded as follows:

$$
\begin{align*}
R_{1}+\lambda R_{2} \leq & \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; T_{1} Y_{1}\right)+\lambda I\left(X_{2} ; T_{2} Y_{2}\right) \\
& +\mathcal{C}\left[I\left(X_{1} ; T_{1} \mid X_{2} T_{2}\right)-\lambda I\left(X_{1} ; Y_{2} \mid T_{2} X_{2}\right)\right] \\
& -I\left(X_{1} ; T_{1} \mid X_{2} T_{2}\right)+\lambda I\left(X_{1} ; Y_{2} \mid T_{2} X_{2}\right) \tag{2.1}\\
& +\mathcal{C}\left[I\left(X_{2} ; T_{2} \mid X_{1} T_{1}\right)-I\left(X_{2} ; Y_{1} \mid T_{1} X_{1}\right)\right] \\
& -I\left(X_{2} ; T_{2} \mid X_{1} T_{1}\right)+I\left(X_{2} ; Y_{1} \mid T_{1} X_{1}\right),
\end{align*}
$$

where $\mathcal{C}\left[I\left(X_{2} ; T_{2} \mid X_{1} T_{1}\right)-I\left(X_{2} ; Y_{1} \mid T_{1} X_{1}\right)\right]$ denotes the upper concave envelope of the function $I\left(X_{2} ; T_{2} \mid X_{1} T_{1}\right)-I\left(X_{2} ; Y_{1} \mid T_{1} X_{1}\right)$ evaluated with respect to the space of product distributions $p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)$. Similarly, $\mathcal{C}\left[I\left(X_{1} ; T_{1} \mid X_{2} T_{2}\right)-\lambda I\left(X_{1} ; Y_{2} \mid T_{2} X_{2}\right)\right]$ denotes the upper concave envelope of the function $I\left(X_{1} ; T_{1} \mid X_{2} T_{2}\right)-\lambda I\left(X_{1} ; Y_{2} \mid T_{2} X_{2}\right)$ evaluated with respect to the same space of product distributions $p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)$.

Proof. See Appendix 2.A.

2.2 Enhanced genie-based outer bound

In the previous section, one can observe that from the Markov structure, the genie random variable $T_{1}\left(T_{2}\right)$ carries information about X_{1} $\left(X_{2}\right)$ and helps receiver 1 (2) to decode its message. Indeed, one can use another genie random variable $S_{2}\left(S_{1}\right)$ carrying information of X_{2} $\left(X_{1}\right)$ to help receiver 1 (2) to decode its message. The pair of genies T_{1} and $S_{2}\left(T_{2}\right.$ and $\left.S_{1}\right)$ helping receiver $1(2)$ to decode message would be potentially better than the single genie in the previous subsection. The enhanced structure of genie-aided channel is depicted in Figure 2.3. We obtain a single-letter outer bound based on this scenario and it is presented below.

Figure 2.3: DM-IC with two genies per decoder

Theorem 2.2.1 (Enhanced genie-based outer bound). Consider a discrete memoryless interference channel with transition probability marginals $w\left(y_{1}, y_{2} \mid x_{1}, x_{2}\right)$. Let $T_{1}, S_{1}, T_{2}, S_{2}$ be any random variables such that
$p\left(y_{1}, t_{1}, s_{1}, y_{2}, t_{2}, s_{2} \mid x_{1}, x_{2}\right)$ decomposes as

$$
p\left(t_{1}, s_{1} \mid x_{1}\right) p\left(t_{2}, s_{2} \mid x_{2}\right) p\left(y_{1}, y_{2} \mid t_{1}, t_{2}, s_{1}, s_{2}, x_{1}, x_{2}\right)
$$

Further we require that

- the marginals are consistent with the given channel transition probabilities, that is, $p\left(y_{1} \mid x_{1}, x_{2}\right)=w\left(y_{1} \mid x_{1}, x_{2}\right)$ and $p\left(y_{2} \mid x_{1}, x_{2}\right)=w\left(y_{2} \mid x_{1}, x_{2}\right)$.
- for each $i=1,2, T_{i}, S_{i}$ has degraded order, i.e. either $X_{i} \rightarrow T_{i} \rightarrow$ S_{i} or $X_{i} \rightarrow S_{i} \rightarrow T_{i}$ must form a Markov chain.

The weighted sum-capacity of this DMIC can be upper bounded as following:

$$
\begin{align*}
R_{1}+\lambda R_{2} \leq & \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; T_{1}, Y_{1} \mid S_{2}\right)+\lambda I\left(X_{2} ; T_{2}, Y_{2} \mid S_{1}\right) \\
& +\mathcal{C}\left[I\left(X_{1} ; T_{1} \mid X_{2}, T_{2}, S_{1}\right)-\lambda I\left(X_{1} ; Y_{2} \mid X_{2}, T_{2}, S_{1}\right)\right] \\
& -I\left(X_{1} ; T_{1} \mid X_{2}, T_{2}, S_{1}\right)+\lambda I\left(X_{1} ; Y_{2} \mid X_{2}, T_{2}, S_{1}\right) \tag{2.2}\\
& +\mathcal{C}\left[I\left(X_{2} ; T_{2} \mid X_{1}, T_{1}, S_{2}\right)-I\left(X_{2} ; Y_{1} \mid X_{1}, T_{1}, S_{2}\right)\right] \\
& -I\left(X_{2} ; T_{2} \mid X_{1}, T_{1}, S_{2}\right)+I\left(X_{2} ; Y_{1} \mid X_{1}, T_{1}, S_{2}\right)
\end{align*}
$$

where $\mathcal{C}[\cdot]$ denotes as before the upper concave envelope of a function over the space of product distributions $p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)$.

Proof. See Appendix 2.B.
Genie random variables are different from traditional auxiliaries. For an outer bound involving traditional auxiliaries, the region containing the capacity region is usually obtained by taking the union over all possible distribution of the auxiliaries. (This is the reason that outer bounds can only be computable if there are cardinality bounds on auxiliaries) Whereas in this genie-based outer bound, any feasible genie produces a valid outer bound. Therefore the challenge is to find genies that lead to plausibly tight outer bounds.

Remark 2.2.1. The last degradation requirement in Theorem 2.2.1 that two genies together with channel input must form the Markov chain is an assumption to make the single-letterization go through. In the Gaussian interference channel, since we typically take the genies to be the signals with additive Gaussian noise, this degradation condition is automatically satisfied.

We will show in Sections 4.1, 4.2 and 4.4 that this outer bound turns out to be tight for Gaussian interference channels in regimes where the sum-capacity is known: strong interference regime ($a \geq 1$, $b \geq 1$), mixed interference regime ($a \geq 1, b<1$ or $a<1, b \geq 1$), weak interference sub-regime $\left(a<1, b<1\right.$ and $\left.a\left(1+b^{2} P_{2}\right)+b\left(1+a^{2} P_{1}\right) \leq 1\right)$. Indeed this is the first outer bound that unifies all the results on sumcapacity.

Appendix

2.A Proof of Theorem 2.1.1

Proof of theorem 2.1.1. Consider a sequence of codebooks with growing block length n such that their decoding error probabilities tend to zero as n goes to infinity. The distribution on the n-tuples is given by

$$
\begin{aligned}
& p\left(m_{1}, m_{2}, x_{1}^{n}, x_{2}^{n}, y_{1}^{n}, t_{1}^{n}, y_{2}^{n}, t_{2}^{n}\right) \\
& =p\left(m_{1}, x_{1}^{n}\right) p\left(m_{2}, x_{2}^{n}\right) \prod_{i=1}^{n} p\left(t_{1 i} \mid x_{1 i}\right) p\left(y_{1 i} \mid x_{1 i}, x_{2 i}, t_{1 i}\right) p\left(t_{2 i} \mid x_{2 i}\right) p\left(y_{2 i} \mid x_{1 i}, x_{2 i}, t_{2 i}\right) .
\end{aligned}
$$

Keep in mind that the channel capacity of an interference channel depends only on the marginals $q\left(y_{1} \mid x_{1}, x_{2}\right)$ and $q\left(y_{2} \mid x_{1}, x_{2}\right)$ and that the distribution above is consistent with the marginal distributions by assumption. For $\lambda \geq 1$,

$$
\begin{aligned}
& n\left(R_{1}+\lambda R_{2}\right) \\
& =H\left(M_{1}\right)+\lambda H\left(M_{2}\right) \\
& \leq I\left(M_{1} ; Y_{1}^{n}\right)+\lambda I\left(M_{2} ; Y_{2}^{n}\right)+n \epsilon \quad \text { (by Fano's inequality) } \\
& \leq I\left(X_{1}^{n} ; Y_{1}^{n}\right)+\lambda I\left(X_{2}^{n} ; Y_{2}^{n}\right)+n \epsilon \\
& \leq I\left(X_{1}^{n} ; Y_{1}^{n} T_{1}^{n}\right)+\lambda I\left(X_{2}^{n} ; Y_{2}^{n} T_{2}^{n}\right)+n \epsilon \\
& =I\left(X_{1}^{n} ; T_{1}^{n}\right)+I\left(X_{1}^{n} ; Y_{1}^{n} \mid T_{1}^{n}\right)+\lambda I\left(X_{2}^{n} ; T_{2}^{n}\right)+\lambda I\left(X_{2}^{n} ; Y_{2}^{n} \mid T_{2}^{n}\right)+n \epsilon \\
& =H\left(T_{1}^{n}\right)-H\left(T_{1}^{n} \mid X_{1}^{n}\right)+H\left(Y_{1}^{n} \mid T_{1}^{n}\right)-H\left(Y_{1}^{n} \mid T_{1}^{n} X_{1}^{n}\right) \\
& \quad+\lambda H\left(T_{2}^{n}\right)-\lambda H\left(T_{2}^{n} \mid X_{2}^{n}\right)+\lambda H\left(Y_{2}^{n} \mid T_{2}^{n}\right)-\lambda H\left(Y_{2}^{n} \mid T_{2}^{n} X_{2}^{n}\right)+n \epsilon
\end{aligned}
$$

Then, for the term $H\left(T_{1}^{n}\right)-\lambda H\left(Y_{2}^{n} \mid X_{2}^{n} T_{2}^{n}\right)$, note that

$$
\begin{aligned}
& H\left(T_{1}^{n}\right)-\lambda H\left(Y_{2}^{n} \mid X_{2}^{n} T_{2}^{n}\right) \\
&= H\left(T_{1}^{n} \mid T_{2}^{n} X_{2}^{n}\right)-\lambda H\left(Y_{2}^{n} \mid X_{2}^{n} T_{2}^{n}\right) \\
&\left.\quad \quad \quad \text { since } T_{1}^{n} \text { is independent of }\left(T_{2}^{n}, X_{2}^{n}\right)\right) \\
&= \sum_{i} H\left(T_{1 i} \mid T_{1}^{i-1} T_{2}^{n} X_{2}^{n}\right)-\lambda H\left(Y_{2 i} \mid Y_{2, i+1}^{n} X_{2}^{n} T_{2}^{n}\right) \\
& \leq \sum_{i} H\left(T_{1 i} \mid Y_{2, i+1}^{n} T_{1}^{i-1} T_{2}^{n} X_{2}^{n}\right)-\lambda H\left(Y_{2 i} \mid T_{1}^{i-1} Y_{2, i+1}^{n} X_{2}^{n} T_{2}^{n}\right) \\
&= \quad \sum_{i} H\left(T_{1 i} \mid U_{i} X_{2 i} T_{2 i}\right)-\lambda H\left(Y_{2 i} \mid U_{i} X_{2 i} T_{2 i}\right) . \\
&\left(U_{i}:=\left(Y_{2, i+1}^{n}, T_{1}^{i-1}, T_{2}^{n \backslash i}, X_{2}^{n \backslash i}\right)\right)
\end{aligned}
$$

Consider a Bayesian network representation in Figure 2.A. 1 of the variables. Any path from $X_{1 i}$ to $X_{2 i}$ is d-separated by $X_{2 i+1}^{n}$. Hence

Figure 2.A.1: Bayesian network of dependence
we have Markov chain $X_{1 i} \rightarrow U_{i} \rightarrow X_{2 i}$.
Similarly

$$
\begin{aligned}
& H\left(T_{2}^{n}\right)-H\left(Y_{1}^{n} \mid X_{1}^{n} T_{1}^{n}\right) \\
& \quad=\sum_{i} H\left(T_{2 i} \mid V_{i} X_{1 i} T_{1 i}\right)-H\left(Y_{1 i} \mid V_{i} X_{1 i} T_{1 i}\right)
\end{aligned}
$$

where $V_{i}=\left(Y_{1, i+1}^{n}, T_{2}^{i-1}, T_{1}^{n \backslash i}, X_{1}^{n \backslash i}\right)$ and $X_{1 i} \rightarrow V_{i} \rightarrow X_{2 i}$.

Secondly, from the n-tuple distribution we get that

$$
\begin{aligned}
& H\left(T_{1}^{n} \mid X_{1}^{n}\right)=\sum_{i=1}^{n} H\left(T_{1 i} \mid X_{1 i} X_{1}^{n \backslash i} T_{1}^{i-1}\right)=\sum_{i=1}^{n} H\left(T_{1 i} \mid X_{1 i}\right), \\
& H\left(T_{2}^{n} \mid X_{2}^{n}\right)=\sum_{i=1}^{n} H\left(T_{2 i} \mid X_{2 i} X_{2}^{n \backslash i} T_{2}^{i-1}\right)=\sum_{i=1}^{n} H\left(T_{2 i} \mid X_{2 i}\right) .
\end{aligned}
$$

Following chain rule and that conditioning reduces entropy,

$$
\begin{aligned}
& H\left(Y_{1}^{n} \mid T_{1}^{n}\right) \leq \sum_{i=1}^{n} H\left(Y_{1 i} \mid T_{1 i}\right), \\
& H\left(Y_{2}^{n} \mid T_{2}^{n}\right) \leq \sum_{i=1}^{n} H\left(Y_{2 i} \mid T_{2 i}\right) .
\end{aligned}
$$

Combining the above arguments, using routine manipulations, we obtain that

$$
\begin{aligned}
& n\left(R_{1}+\lambda R_{2}\right) \\
& \leq H\left(T_{1}^{n}\right)-H\left(T_{1}^{n} \mid X_{1}^{n}\right)+H\left(Y_{1}^{n} \mid T_{1}^{n}\right)-H\left(Y_{1}^{n} \mid T_{1}^{n} X_{1}^{n}\right) \\
&+ H\left(T_{2}^{n}\right)-\lambda H\left(T_{2}^{n} \mid X_{2}^{n}\right)+\lambda H\left(Y_{2}^{n} \mid T_{2}^{n}\right)-\lambda H\left(Y_{2}^{n} \mid T_{2}^{n} X_{2}^{n}\right) \\
&+(\lambda-1) H\left(T_{2}^{n}\right)+n \epsilon \\
& \leq \sum_{i} H\left(T_{2 i} \mid V_{i} X_{1 i} T_{1 i}\right)-H\left(Y_{1 i} \mid V_{i} X_{1 i} T_{1 i}\right)-H\left(T_{1 i} \mid X_{1 i}\right)+H\left(Y_{1 i} \mid T_{1 i}\right) \\
& \quad+H\left(T_{1 i} \mid U_{i} X_{2 i} T_{2 i}\right)-\lambda H\left(Y_{2 i} \mid U_{i} X_{2 i} T_{2 i}\right)-\lambda H\left(T_{2 i} \mid X_{2 i}\right)+\lambda H\left(Y_{2 i} \mid T_{2 i}\right) \\
& \quad+(\lambda-1) H\left(T_{2 i}\right)+n \epsilon \\
&= \sum_{i} I\left(X_{2 i} ; T_{2 i} \mid V_{i} X_{1 i} T_{1 i}\right)+I\left(V_{i} X_{1 i} ; Y_{1 i} \mid T_{1 i}\right)-(\lambda-1) H\left(T_{2 i} \mid X_{2 i}\right) \\
&+I\left(X_{1 i} ; T_{1 i} \mid U_{i} X_{2 i} T_{2 i}\right)+\lambda I\left(U_{i} X_{2 i} ; Y_{2 i} \mid T_{2 i}\right)+(\lambda-1) H\left(T_{2 i}\right)+n \epsilon \\
&= \sum_{i} I\left(X_{2 i} ; T_{2 i} \mid X_{1 i} T_{1 i}\right)-I\left(V_{i} ; T_{2 i} \mid X_{1 i} T_{1 i}\right)
\end{aligned}
$$

$$
\left(\text { since } I\left(V_{i} X_{2 i} ; T_{2 i} \mid X_{1 i} T_{1 i}\right)=I\left(X_{2 i} ; T_{2 i} \mid X_{1 i} T_{1 i}\right)\right)
$$

$$
+I\left(X_{1 i} ; Y_{1 i} \mid T_{1 i}\right)+I\left(V_{i} ; Y_{1 i} \mid T_{1 i} X_{1 i}\right)
$$

$$
+I\left(X_{1 i} ; T_{1 i} \mid X_{2 i} T_{2 i}\right)-I\left(U_{i} ; T_{1 i} \mid X_{2 i} T_{2 i}\right)
$$

$$
\left(\text { since } I\left(U_{i} X_{1 i} ; T_{1 i} \mid X_{2 i} T_{2 i}\right)=I\left(X_{1 i} ; T_{1 i} \mid X_{2 i} T_{2 i}\right)\right)
$$

$$
+\lambda I\left(X_{2 i} ; Y_{2 i} \mid T_{2 i}\right)+\lambda I\left(U_{i} ; Y_{2 i} \mid T_{2 i} X_{2 i}\right)+(\lambda-1) I\left(X_{2 i} ; T_{2 i}\right)+n \epsilon
$$

$$
\begin{aligned}
= & \sum_{i} \lambda I\left(X_{2 i} ; T_{2 i}\right)-I\left(V_{i} ; T_{2 i} \mid X_{1 i} T_{1 i}\right)+I\left(X_{1 i} ; Y_{1 i} \mid T_{1 i}\right)+I\left(V_{i} ; Y_{1 i} \mid T_{1 i} X_{1 i}\right) \\
& +I\left(X_{1 i} ; T_{1 i}\right)-I\left(U_{i} ; T_{1 i} \mid X_{2 i} T_{2 i}\right)+\lambda I\left(X_{2 i} ; Y_{2 i} \mid T_{2 i}\right) \\
& +\lambda I\left(U_{i} ; Y_{2 i} \mid T_{2 i} X_{2 i}\right)+n \epsilon
\end{aligned}
$$

(since $\left(X_{1}, T_{1}\right)$ and $\left(X_{2}, T_{2}\right)$ are independent)
$=\sum_{i} I\left(X_{1 i} ; T_{1 i} Y_{1 i}\right)+\lambda I\left(X_{2 i} ; T_{2 i} Y_{2 i}\right)$
$-I\left(V_{i} ; T_{2 i} \mid X_{1 i} T_{1 i}\right)+I\left(V_{i} ; Y_{1 i} \mid T_{1 i} X_{1 i}\right)$
$-I\left(U_{i} ; T_{1 i} \mid X_{2 i} T_{2 i}\right)+\lambda I\left(U_{i} ; Y_{2 i} \mid T_{2 i} X_{2 i}\right)+n \epsilon$
Now since $V_{i} \rightarrow\left(X_{1 i}, T_{1 i}, X_{2 i}\right) \rightarrow\left(Y_{1 i}, T_{2 i}\right)$ and $U_{i} \rightarrow\left(X_{1 i}, X_{2 i}, T_{2 i}\right) \rightarrow$ $\left(Y_{2 i}, T_{1 i}\right)$, one can rewrite the above as

$$
\begin{aligned}
& n\left(R_{1}+\lambda R_{2}\right) \\
& \leq \\
& \quad \sum_{i} I\left(X_{1 i} ; T_{1 i} Y_{1 i}\right)+\lambda I\left(X_{2 i} ; T_{2 i} Y_{2 i}\right) \\
& \quad-I\left(X_{2 i} ; T_{2 i} \mid X_{1 i} T_{1 i}\right)+I\left(X_{2 i} ; Y_{1 i} \mid T_{1 i} X_{1 i}\right) \\
& \quad+I\left(X_{2 i} ; T_{2 i} \mid V_{i}, X_{1 i} T_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid V_{i}, T_{1 i} X_{1 i}\right) \\
& \quad-I\left(X_{1 i} ; T_{1 i} \mid X_{2 i} T_{2 i}\right)+\lambda I\left(X_{1 i} ; Y_{2 i} \mid T_{2 i} X_{2 i}\right) \\
& \quad+I\left(X_{1 i} ; T_{1 i} \mid U_{i}, X_{2 i} T_{2 i}\right)-\lambda I\left(X_{1 i} ; Y_{2 i} \mid U_{i}, T_{2 i} X_{2 i}\right)+n \epsilon \\
& \leq \\
& \quad \sum_{i} I\left(X_{1 i} ; T_{1 i} Y_{1 i}\right)+\lambda I\left(X_{2 i} ; T_{2 i} Y_{2 i}\right)+n \epsilon \\
& \quad-I\left(X_{2 i} ; T_{2 i} \mid X_{1 i} T_{1 i}\right)+I\left(X_{2 i} ; Y_{1 i} \mid T_{1 i} X_{1 i}\right) \\
& \quad+\mathcal{C}\left[I\left(X_{2 i} ; T_{2 i} \mid X_{1 i} T_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid T_{1 i} X_{1 i}\right)\right] \\
& \quad-I\left(X_{1 i} ; T_{1 i} \mid X_{2 i} T_{2 i}\right)+\lambda I\left(X_{1 i} ; Y_{2 i} \mid T_{2 i} X_{2 i}\right) \\
& \quad+\mathcal{C}\left[I\left(X_{1 i} ; T_{1 i} \mid X_{2 i} T_{2 i}\right)-\lambda I\left(X_{1 i} ; Y_{2 i} \mid T_{2 i} X_{2 i}\right)\right]
\end{aligned}
$$

where $\mathcal{C}\left[I\left(X_{2 i} ; T_{2 i} \mid X_{1 i} T_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid T_{1 i} X_{1 i}\right)\right]$ is the upper concave envelope of the function $I\left(X_{2 i} ; T_{2 i} \mid X_{1 i} T_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid T_{1 i} X_{1 i}\right)$ defined on the space of distributions $p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)$. It is easy to see from the definition of the upper concave envelope that

$$
\begin{aligned}
& \mathcal{C}\left[I\left(X_{2 i} ; T_{2 i} \mid X_{1 i} T_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid T_{1 i} X_{1 i}\right)\right] \\
& =\sup _{\substack{U: X_{1 i} \rightarrow U \rightarrow X_{2 i} \\
U \rightarrow\left(X_{1 i}, X_{2 i}\right) \rightarrow\left(Y_{1 i}, T_{2 i}, T_{1 i}\right)}} I\left(X_{1 i} ; T_{1 i} \mid U, X_{2 i} T_{2 i}\right)
\end{aligned}
$$

$$
-I\left(X_{1 i} ; Y_{2 i} \mid U, T_{2 i} X_{2 i}\right)
$$

Thus for any valid choice of genies T_{1}, T_{2}, we obtain an outer bound to the sum-rate given by

$$
\begin{align*}
& R_{1}+ \lambda R_{2} \\
& \leq \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; T_{1} Y_{1}\right)+\lambda I\left(X_{2} ; T_{2} Y_{2}\right) \\
&+\mathcal{C}\left[I\left(X_{2} ; T_{2} \mid X_{1} T_{1}\right)-I\left(X_{2} ; Y_{1} \mid T_{1} X_{1}\right)\right] \\
&-I\left(X_{2} ; T_{2} \mid X_{1} T_{1}\right)+I\left(X_{2} ; Y_{1} \mid T_{1} X_{1}\right) \\
&+\mathcal{C}\left[I\left(X_{1} ; T_{1} \mid X_{2} T_{2}\right)-\lambda I\left(X_{1} ; Y_{2} \mid T_{2} X_{2}\right)\right] \\
&-I\left(X_{1} ; T_{1} \mid X_{2} T_{2}\right)+\lambda I\left(X_{1} ; Y_{2} \mid T_{2} X_{2}\right) \tag{2.3}
\end{align*}
$$

2.B Proof of Theorem 2.2.1

Proof of Theorem 2.2.1. The proof is basically following Csiszar sum lemma and manipulation of mutual information.

$$
\begin{aligned}
& n\left(R_{1}+\lambda R_{2}\right)-n \epsilon \\
\leq & H\left(M_{1}\right)+\lambda H\left(M_{2}\right) \\
\leq & I\left(X_{1}^{n} ; Y_{1}^{n}\right)+\lambda I\left(X_{1}^{n} ; Y_{1}^{n}\right) \\
\leq & I\left(X_{1}^{n} ; Y_{1}^{n} T_{1}^{n} S_{2}^{n}\right)+\lambda I\left(X_{2}^{n} ; Y_{2}^{n} T_{2}^{n} S_{1}^{n}\right) \\
= & I\left(X_{1}^{n} ; T_{1}^{n}\right)+I\left(X_{1}^{n} ; Y_{1}^{n} \mid T_{1}^{n} S_{2}^{n}\right)+\lambda I\left(X_{2}^{n} ; T_{2}^{n}\right)+\lambda I\left(X_{2}^{n} ; Y_{2}^{n} \mid T_{2}^{n} S_{1}^{n}\right) \\
= & \underline{H\left(T_{1}^{n}\right)}-H\left(T_{1}^{n} \mid X_{1}^{n}\right)+H\left(Y_{1}^{n} \mid T_{1}^{n} S_{2}^{n}\right) \underline{-H\left(Y_{1}^{n} \mid T_{1}^{n} S_{2}^{n} X_{1}^{n}\right)} \\
& \underline{+\lambda H\left(T_{2}^{n}\right)}-\lambda H\left(T_{2}^{n} \mid X_{2}^{n}\right)+\lambda H\left(Y_{2}^{n} \mid T_{2}^{n} S_{1}^{n}\right) \underline{-\lambda\left(Y_{2}^{n} \mid T_{2}^{n} S_{1}^{n} X_{2}^{n}\right)}
\end{aligned}
$$

Note that

$$
\begin{aligned}
& H\left(T_{1}^{n}\right)-\lambda H\left(Y_{2}^{n} \mid T_{2}^{n} S_{1}^{n} X_{2}^{n}\right) \\
= & H\left(T_{1}^{n} \mid S_{1}^{n}\right)+I\left(T_{1}^{n} ; S_{1}^{n}\right)-\lambda H\left(Y_{2}^{n} \mid T_{2}^{n} S_{1}^{n} X_{2}^{n}\right) \\
= & H\left(T_{1}^{n} \mid T_{2}^{n} S_{1}^{n} X_{2}^{n}\right)+I\left(T_{1}^{n} ; S_{1}^{n}\right)-\lambda H\left(Y_{2}^{n} \mid T_{2}^{n} S_{1}^{n} X_{2}^{n}\right) \\
\leq & \sum_{i} H\left(T_{1 i} \mid T_{1}^{i-1} Y_{2, i+1}^{n} T_{2}^{n} S_{1}^{n} X_{2}^{n}\right)-\lambda H\left(Y_{2 i} \mid T_{1}^{i-1} Y_{2, i+1}^{n} T_{2}^{n} S_{1}^{n} X_{2}^{n}\right)
\end{aligned}
$$

$$
+I\left(T_{1}^{n} ; S_{1}^{n}\right)
$$

The last inequality is due to Csiszar sum identity. We have

$$
\begin{aligned}
& n\left(R_{1}+\lambda R_{2}\right)-n \epsilon \\
\leq & \sum_{i} H\left(T_{1 i} \mid T_{1}^{i-1} Y_{2, i+1}^{n} T_{2}^{n} S_{1}^{n} X_{2}^{n}\right)-\lambda H\left(Y_{2 i} \mid T_{1}^{i-1} Y_{2, i+1}^{n} T_{2}^{n} S_{1}^{n} X_{2}^{n}\right) \\
& +H\left(T_{2 i} \mid T_{2}^{i-1} Y_{1, i+1}^{n} T_{1}^{n} S_{2}^{n} X_{1}^{n}\right)-H\left(Y_{1 i} \mid T_{2}^{i-1} Y_{1, i+1}^{n} T_{1}^{n} S_{2}^{n} X_{1}^{n}\right) \\
& -H\left(T_{1 i} \mid X_{1 i}\right)+H\left(Y_{1 i} \mid T_{1 i} S_{2 i}\right)-\lambda H\left(T_{2 i} \mid X_{2 i}\right)+\lambda H\left(Y_{2 i} \mid T_{2 i} S_{1 i}\right) \\
& +I\left(T_{1}^{n} ; S_{1}^{n}\right)+I\left(T_{2}^{n} ; S_{2}^{n}\right)+(\lambda-1) H\left(T_{2}^{n}\right)
\end{aligned}
$$

Use substitution $U_{1 i}=T_{1}^{i-1} S_{1}^{n \backslash i}, V_{1 i}=X_{2}^{n \backslash i} T_{2}^{n \backslash i} Y_{2, i+1}^{n}, U_{2 i}=T_{2}^{i-1} S_{2}^{n \backslash i}$, $V_{2 i}=X_{1}^{n \backslash i} T_{1}^{n \backslash i} Y_{1, i+1}^{n}$,

$$
\begin{aligned}
& n\left(R_{1}+\lambda R_{2}\right)-n \epsilon \\
= & \sum_{i} H\left(T_{1 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)-\lambda H\left(Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right) \\
& +H\left(T_{2 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)-H\left(Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right) \\
& -\underline{H\left(T_{1 i} \mid X_{1 i} S_{1 i}\right)}-I\left(T_{1 i} ; S_{1 i} \mid X_{1 i}\right)+H\left(Y_{1 i} \mid T_{1 i} S_{2 i}\right) \\
& -\underline{\lambda H\left(T_{2 i} \mid X_{2 i} S_{2 i}\right)}-\lambda I\left(T_{2 i} ; S_{2 i} \mid X_{2 i}\right)+\lambda H\left(Y_{2 i} \mid T_{2 i} S_{1 i}\right) \\
& +I\left(T_{1}^{n} ; S_{1}^{n}\right)+I\left(T_{2}^{n} ; S_{2}^{n}\right)+(\lambda-1) H\left(T_{2 i}\right)
\end{aligned}
$$

$$
\leq \sum_{i} \underline{H\left(T_{1 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)}-\lambda H\left(Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)
$$

$$
-\underline{H\left(T_{1 i} \mid X_{1 i} U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)}+H\left(Y_{1 i} \mid T_{1 i} S_{2 i}\right)
$$

$$
+\underline{H\left(T_{2 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)}-H\left(Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)
$$

$$
-\underline{\lambda H\left(T_{2 i} \mid X_{2 i} U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)}+\lambda H\left(Y_{2 i} \mid T_{2 i} S_{1 i}\right)
$$

$$
-I\left(T_{1 i} ; S_{1 i} \mid X_{1 i}\right)-\lambda I\left(T_{2 i} ; S_{2 i} \mid X_{2 i}\right)+I\left(T_{1}^{n} ; S_{1}^{n}\right)+I\left(T_{2}^{n} ; S_{2}^{n}\right)
$$

$$
+(\lambda-1) H\left(T_{2 i}\right)
$$

$$
=\sum_{i} I\left(X_{1 i} ; T_{1 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)-\lambda I\left(X_{1 i} ; Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)
$$

$$
-\underline{\lambda H\left(Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i} X_{1 i}\right)}+H\left(Y_{1 i} \mid T_{1 i} S_{2 i}\right)
$$

$$
+I\left(X_{2 i} ; T_{2 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)
$$

$$
-\underline{H\left(Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i} X_{2 i}\right)}+\lambda H\left(Y_{2 i} \mid T_{2 i} S_{1 i}\right)
$$

$$
\begin{aligned}
& -I\left(T_{1 i} ; S_{1 i} \mid X_{1 i}\right)-\lambda I\left(T_{2 i} ; S_{2 i} \mid X_{2 i}\right)+I\left(T_{1}^{n} ; S_{1}^{n}\right)+I\left(T_{2}^{n} ; S_{2}^{n}\right) \\
& +(\lambda-1) I\left(X_{1 i} X_{2 i} U_{2 i} V_{2 i} T_{1 i} S_{2 i} ; T_{2 i}\right)
\end{aligned}
$$

The inequality is due to the fact conditional entropy is less than original entropy. Use mutual information to rewrite above as follow,

$$
\begin{aligned}
& n\left(R_{1}+\lambda R_{2}\right)-\epsilon \\
= & \sum_{i} I\left(X_{1 i} ; T_{1 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)-\lambda I\left(X_{1 i} ; Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right) \\
& -\underline{\lambda H\left(Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i} X_{1 i}\right)+H\left(Y_{1 i} \mid T_{1 i} S_{2 i}\right)} \\
& +I\left(X_{2 i} ; T_{2 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right) \\
& -\underline{H\left(Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i} X_{2 i}\right)}+\lambda H\left(Y_{2 i} \mid T_{2 i} S_{1 i}\right) \\
& -I\left(T_{1 i} ; S_{1 i} \mid X_{1 i}\right)-\lambda I\left(T_{2 i} ; S_{2 i} \mid X_{2 i}\right)+I\left(T_{1}^{n} ; S_{1}^{n}\right)+I\left(T_{2}^{n} ; S_{2}^{n}\right) \\
& +(\lambda-1) I\left(X_{1 i} X_{2 i} U_{2 i} V_{2 i} T_{1 i} S_{2 i} ; T_{2 i}\right) \\
= & \sum_{i} I\left(X_{1 i} ; T_{1 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)-\lambda I\left(X_{1 i} ; Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right) \\
& -\underline{\lambda H\left(Y_{2 i} \mid T_{2 i} S_{1 i} X_{2 i} X_{1 i}\right)}+\underline{H\left(Y_{1 i} \mid X_{1 i} T_{1 i} S_{2 i}\right)}+I\left(X_{1 i} ; Y_{1 i} \mid T_{1 i} S_{2 i}\right) \\
& +I\left(X_{2 i} ; T_{2 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right) \\
& -\underline{H\left(Y_{1 i} \mid T_{1 i} S_{2 i} X_{1 i} X_{2 i}\right)+\lambda H\left(Y_{2 i} \mid X_{2 i} T_{2 i} S_{1 i}\right)}+\lambda I\left(X_{2 i} ; Y_{2 i} \mid T_{2 i} S_{1 i}\right) \\
& -I\left(T_{1 i} ; S_{1 i} \mid X_{1 i}\right)-\lambda I\left(T_{2 i} ; S_{2 i} \mid X_{2 i}\right)+I\left(T_{1}^{n} ; S_{1}^{n}\right)+I\left(T_{2}^{n} ; S_{2}^{n}\right) \\
& +(\lambda-1) I\left(X_{1 i} X_{2 i} U_{2 i} V_{2 i} T_{1 i} S_{2 i} ; T_{2 i}\right) \\
= & \sum_{i} I\left(X_{1 i} ; T_{1 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)-\lambda I\left(X_{1 i} ; Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right) \\
& +I\left(X_{2 i} ; Y_{1 i} \mid X_{1 i} T_{1 i} S_{2 i}\right)+I\left(X_{1 i} ; Y_{1 i} \mid T_{1 i} S_{2 i}\right) \\
& +I\left(X_{2 i} ; T_{2 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right) \\
& +\lambda I\left(X_{1 i} ; Y_{2 i} \mid X_{2 i} T_{2 i} S_{1 i}\right)+\lambda I\left(X_{2 i} ; Y_{2 i} \mid T_{2 i} S_{1 i}\right) \\
& -I\left(T_{1 i} ; S_{1 i} \mid X_{1 i}\right)-\lambda I\left(T_{2 i} ; S_{2 i} \mid X_{2 i}\right)+I\left(T_{1}^{n} ; S_{1}^{n}\right)+I\left(T_{2}^{n} ; S_{2}^{n}\right) \\
& +(\lambda-1) I\left(X_{1 i} X_{2 i} U_{2 i} V_{2 i} T_{1 i} S_{2 i} ; T_{2 i}\right)
\end{aligned}
$$

Add and subtract the terms $I\left(X_{1 i} ; T_{1 i} \mid T_{2 i} S_{1 i} X_{2 i}\right)\left(=I\left(X_{1 i} ; T_{1 i} \mid S_{1 i}\right)\right)$
and $I\left(X_{2 i} ; T_{2 i} \mid T_{1 i} S_{2 i} X_{1 i}\right)\left(=I\left(X_{2 i} ; T_{2 i} \mid S_{2 i}\right)\right)$. We obtain

$$
\begin{aligned}
& n\left(R_{1}+\lambda R_{2}\right)-n \epsilon \\
= & \sum_{i} I\left(X_{1 i} ; T_{1 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)-\lambda I\left(X_{1 i} ; Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right) \\
& -I\left(X_{1 i} ; T_{1 i} \mid T_{2 i} S_{1 i} X_{2 i}\right)+\lambda I\left(X_{1 i} ; Y_{2 i} \mid X_{2 i} T_{2 i} S_{1 i}\right) \\
& +I\left(X_{2 i} ; T_{2 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right) \\
& -I\left(X_{2 i} ; T_{2 i} \mid T_{1 i} S_{2 i} X_{1 i}\right)+I\left(X_{2 i} ; Y_{1 i} \mid X_{1 i} T_{1 i} S_{2 i}\right) \\
& +\underline{I\left(X_{1 i} ; T_{1 i} \mid S_{1 i}\right)}+\underline{I\left(X_{2 i} ; T_{2 i} \mid S_{2 i}\right)}+\underline{I\left(X_{1 i} ; Y_{1 i} \mid T_{1 i} S_{2 i}\right)}+\underline{\lambda I\left(X_{2 i} ; Y_{2 i} \mid T_{2 i} S_{1 i}\right)} \\
& -I\left(T_{1 i} ; S_{1 i} \mid X_{1 i}\right)-\lambda I\left(T_{2 i} ; S_{2 i} \mid X_{2 i}\right)+I\left(T_{1}^{n} ; S_{1}^{n}\right)+I\left(T_{2}^{n} ; S_{2}^{n}\right) \\
& +(\lambda-1) I\left(X_{1 i} X_{2 i} U_{2 i} V_{2 i} T_{1 i} S_{2 i} ; T_{2 i}\right) \\
= & \sum_{i} I\left(X_{1 i} ; T_{1 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)-\lambda I\left(X_{1 i} ; Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right) \\
& -I\left(X_{1 i} ; T_{1 i} \mid T_{2 i} S_{1 i} X_{2 i}\right)+\lambda I\left(X_{1 i} ; Y_{2 i} \mid X_{2 i} T_{2 i} S_{1 i}\right) \\
& +I\left(X_{2 i} ; T_{2 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right) \\
& -I\left(X_{2 i} ; T_{2 i} \mid T_{1 i} S_{2 i} X_{1 i}\right)+I\left(X_{2 i} ; Y_{1 i} \mid X_{1 i} T_{1 i} S_{2 i}\right) \\
& +I\left(X_{1 i} ; T_{1 i} \mid S_{1 i}\right)+I\left(X_{2 i} ; T_{2 i} \mid S_{2 i}\right)+I\left(X_{1 i} ; Y_{1 i} T_{1 i} \mid S_{2 i}\right)-\underline{I\left(X_{1 i} ; T_{1 i} \mid S_{2 i}\right)} \\
& \left.+\lambda I\left(X_{2 i} ; Y_{2 i} T_{2 i} \mid S_{1 i}\right)-\underline{\lambda I\left(X_{2 i} ; T_{2 i} \mid S_{1 i}\right)}-\underline{I\left(T_{1 i} ; S_{1 i} \mid X_{1 i}\right)}-\underline{\lambda I\left(T_{2 i} ; S_{2 i} \mid X_{2 i}\right.}\right) \\
& +I\left(T_{1}^{n} ; S_{1}^{n}\right)+I\left(T_{2}^{n} ; S_{2}^{n}\right)+(\lambda-1) I\left(X_{1 i} X_{2 i} U_{2 i} V_{2 i} T_{1 i} S_{2 i} ; T_{2 i}\right)
\end{aligned}
$$

Note $\left(X_{1 i}, T_{1 i}\right)$ and $S_{2 i}$ are independent. So $I\left(X_{1 i} ; T_{1 i} \mid S_{2 i}\right)=I\left(X_{1 i} ; T_{1 i}\right)$ and $I\left(X_{2 i} ; T_{2 i} \mid S_{1 i}\right)=I\left(X_{2 i} ; T_{2 i}\right)$.

$$
\begin{aligned}
& n\left(R_{1}+\lambda R_{2}\right)-n \epsilon \\
= & \sum_{i} I\left(X_{1 i} ; T_{1 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)-\lambda I\left(X_{1 i} ; Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right) \\
& -I\left(X_{1 i} ; T_{1 i} \mid T_{2 i} S_{1 i} X_{2 i}\right)+\lambda I\left(X_{1 i} ; Y_{2 i} \mid X_{2 i} T_{2 i} S_{1 i}\right) \\
& +I\left(X_{2 i} ; T_{2 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right) \\
& -I\left(X_{2 i} ; T_{2 i} \mid T_{1 i} S_{2 i} X_{1 i}\right)+I\left(X_{2 i} ; Y_{1 i} \mid X_{1 i} T_{1 i} S_{2 i}\right) \\
& +I\left(X_{1 i} ; T_{1 i} \mid S_{1 i}\right)+I\left(X_{2 i} ; T_{2 i} \mid S_{2 i}\right)+I\left(X_{1 i} ; Y_{1 i} T_{1 i} \mid S_{2 i}\right)+\lambda I\left(X_{2 i} ; Y_{2 i} T_{2 i} \mid S_{1 i}\right) \\
& -I\left(T_{1 i} ; S_{1 i} X_{1 i}\right)-\lambda I\left(T_{2 i} ; S_{2 i} X_{2 i}\right)+I\left(T_{1}^{n} ; S_{1}^{n}\right)+I\left(T_{2}^{n} ; S_{2}^{n}\right) \\
& +(\lambda-1) I\left(X_{1 i} X_{2 i} U_{2 i} V_{2 i} T_{1 i} S_{2 i} ; T_{2 i}\right)
\end{aligned}
$$

When genies has degraded order, say $X_{1} \rightarrow T_{1} \rightarrow S_{1}$, we have

$$
\begin{aligned}
I\left(T_{1}^{n} ; S_{1}^{n}\right) & =H\left(S_{1}^{n}\right)-H\left(S_{1}^{n} \mid T_{1}^{n}\right) \\
& \leq \sum_{i} H\left(S_{1 i}\right)-H\left(S_{1 i} \mid S_{1}^{i-1} T_{1}^{n}\right) \\
& =\sum_{i} H\left(S_{1 i}\right)-H\left(S_{1 i} \mid T_{1 i}\right) \\
& =\sum_{i} I\left(T_{1 i} ; S_{1 i}\right)
\end{aligned}
$$

since $S_{1}^{i-1} T_{1}^{n \backslash i} \rightarrow X_{1 i} \rightarrow T_{1 i} \rightarrow S_{1 i}$.

$$
\begin{aligned}
& n\left(R_{1}+\lambda R_{2}\right)-\epsilon \\
\leq & \sum_{i} I\left(X_{1 i} ; T_{1 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)-\lambda I\left(X_{1 i} ; Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right) \\
& -I\left(X_{1 i} ; T_{1 i} \mid T_{2 i} S_{1 i} X_{2 i}\right)+\lambda I\left(X_{1 i} ; Y_{2 i} \mid X_{2 i} T_{2 i} S_{1 i}\right) \\
& +I\left(X_{2 i} ; T_{2 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right) \\
& -I\left(X_{2 i} ; T_{2 i} \mid T_{1 i} S_{2 i} X_{1 i}\right)+I\left(X_{2 i} ; Y_{1 i} \mid X_{1 i} T_{1 i} S_{2 i}\right) \\
& +I\left(X_{1 i} ; T_{1 i} \mid S_{1 i}\right)+I\left(X_{2 i} ; T_{2 i} \mid S_{2 i}\right)+I\left(X_{1 i} ; Y_{1 i} T_{1 i} \mid S_{2 i}\right)+\lambda I\left(X_{2 i} ; Y_{2 i} T_{2 i} \mid S_{1 i}\right) \\
& -I\left(T_{1 i} ; S_{1 i} X_{1 i}\right)-\lambda I\left(T_{2 i} ; S_{2 i} X_{2 i}\right)+I\left(T_{1}^{n} ; S_{1}^{n}\right)+I\left(T_{2}^{n} ; S_{2}^{n}\right) \\
& +(\lambda-1) I\left(X_{1 i} X_{2 i} U_{2 i} V_{2 i} T_{1 i} S_{2 i} ; T_{2 i}\right) \\
\leq & \sum_{i} I\left(X_{1 i} ; T_{1 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)-\lambda I\left(X_{1 i} ; Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right) \\
& -I\left(X_{1 i} ; T_{1 i} \mid T_{2 i} S_{1 i} X_{2 i}\right)+\lambda I\left(X_{1 i} ; Y_{2 i} \mid X_{2 i} T_{2 i} S_{1 i}\right) \\
& +I\left(X_{2 i} ; T_{2 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right) \\
& -I\left(X_{2 i} ; T_{2 i} \mid T_{1 i} S_{2 i} X_{1 i}\right)+I\left(X_{2 i} ; Y_{1 i} \mid X_{1 i} T_{1 i} S_{2 i}\right) \\
& +I\left(X_{1 i} ; T_{1 i} \mid S_{1 i}\right)+\underline{I\left(X_{2 i} ; T_{2 i} \mid S_{2 i}\right)+I\left(X_{1 i} ; Y_{1 i} T_{1 i} \mid S_{2 i}\right)+\lambda I\left(X_{2 i} ; Y_{2 i} T_{2 i} \mid S_{1 i}\right)} \\
& -\frac{I\left(T_{1 i} ; S_{1 i} X_{1 i}\right)}{}-\underline{\lambda\left(T_{2 i} ; S_{2 i} X_{2 i}\right)}+\underline{I\left(T_{1 i} ; S_{1 i}\right)+\underline{I\left(T_{2 i} ; S_{2 i}\right)}} \\
& +(\lambda-1) I\left(X_{2 i} S_{2 i} ; T_{2 i}\right) \\
= & \sum_{i} I\left(X_{1 i} ; T_{1 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right)-\lambda I\left(X_{1 i} ; Y_{2 i} \mid U_{1 i} V_{1 i} T_{2 i} S_{1 i} X_{2 i}\right) \\
& -I\left(X_{1 i} ; T_{1 i} \mid T_{2 i} S_{1 i} X_{2 i}\right)+\lambda I\left(X_{1 i} ; Y_{2 i} \mid X_{2 i} T_{2 i} S_{1 i}\right) \\
& +I\left(X_{2 i} ; T_{2 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)-I\left(X_{2 i} ; Y_{1 i} \mid U_{2 i} V_{2 i} T_{1 i} S_{2 i} X_{1 i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -I\left(X_{2 i} ; T_{2 i} \mid T_{1 i} S_{2 i} X_{1 i}\right)+I\left(X_{2 i} ; Y_{1 i} \mid X_{1 i} T_{1 i} S_{2 i}\right) \\
& +I\left(X_{1 i} ; Y_{1 i} T_{1 i} \mid S_{2 i}\right)+\lambda I\left(X_{2 i} ; Y_{2 i} T_{2 i} \mid S_{1 i}\right) .
\end{aligned}
$$

It is easy to verify that $X_{2 i} \rightarrow\left(U_{1 i}, V_{1 i}\right) \rightarrow X_{1 i}, X_{2 i} \rightarrow\left(U_{2 i}, V_{2 i}\right) \rightarrow$ $X_{1 i}$. Hence by using concave envelope, we have

$$
\begin{aligned}
R_{1}+\lambda R_{2} \leq & \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; Y_{1} T_{1} \mid S_{2}\right)+\lambda I\left(X_{2} ; Y_{2} T_{2} \mid S_{1}\right) \\
& +\mathcal{C}\left[I\left(X_{1} ; T_{1} \mid T_{2} S_{1} X_{2}\right)-\lambda I\left(X_{1} ; Y_{2} \mid T_{2} S_{1} X_{2}\right)\right] \\
& -I\left(X_{1} ; T_{1} \mid T_{2} S_{1} X_{2}\right)+\lambda I\left(X_{1} ; Y_{2} \mid X_{2} T_{2} S_{1}\right) \\
& +\mathcal{C}\left[I\left(X_{2} ; T_{2} \mid T_{1} S_{2} X_{1}\right)-I\left(X_{2} ; Y_{1} \mid T_{1} S_{2} X_{1}\right)\right] \\
& -I\left(X_{2} ; T_{2} \mid T_{1} S_{2} X_{1}\right)+I\left(X_{2} ; Y_{1} \mid X_{1} T_{1} S_{2}\right)
\end{aligned}
$$

Chapter 3

Very weak interference

As discussed in Chapter 1, for channels with very strong interference, the best coding strategy for receivers is to decode both messages from the intended signal as well as interference. In contrast, when interference is very weak, one would expect that receivers do not decode any information from interference. This chapter will study channels with very weak interference. We are going to focus on sum-capacity only.

3.1 Definition of very weak interference

Definition 3.1.1 (Very weak interference). An interference channel is said to have very weak interference if

$$
\begin{align*}
& I\left(U_{1} ; Y_{1}\right) \geq I\left(U_{1} ; Y_{2} \mid X_{2}\right) \tag{3.1}\\
& I\left(U_{2} ; Y_{2}\right) \geq I\left(U_{2} ; Y_{1} \mid X_{1}\right) \tag{3.2}
\end{align*}
$$

for all auxiliaries $\left(U_{1}, U_{2}\right)$ with joint distribution $p\left(u_{1}, u_{2}, x_{1}, x_{2}\right)=$ $p\left(u_{1}\right) p\left(x_{1} \mid u_{1}\right) p\left(u_{2}\right) p\left(x_{2} \mid u_{2}\right)$.

The definition can be interpreted in the following way: the left hand side of (3.1) represents the rate required for Y_{1} to decode U_{1}, which can be considered as partial information about X_{1} according to the Markov structure, without other help. The right hand side of
(3.1) represents the rate required for Y_{2} to decode the same U_{1} under the most favourable situation where Y_{2} is fully aware of its intended message X_{2}. The inequality indicates that the interference is so weak that decoding any part of X_{1} by Y_{2} would decreases the sum rate, compared to decoding by Y_{1}. Thus, to maximize $R_{1}+R_{2}$, intuitively the best strategy is to treat interference as noise and not decode any part of the interference.

An equivalent definition to the very weak interference is given by the following lemma. This condition is easier to check.

Lemma 3.1.1. The channel has very weak interference if and only if $I\left(X_{1} ; Y_{1}\right)-I\left(X_{1} ; Y_{2} \mid X_{2}\right)$ is concave in $p_{1}\left(x_{1}\right)$ (for a fixed $\left.p_{2}\left(x_{2}\right)\right)$, and $I\left(X_{2} ; Y_{2}\right)-I\left(X_{2} ; Y_{1} \mid X_{1}\right)$ is concave in $p_{2}\left(x_{2}\right)$ (for a fixed $p_{1}\left(x_{1}\right)$).

Proof. Since $U_{1} \rightarrow X_{1} \rightarrow\left(X_{2}, Y_{1}, Y_{2}\right)$ is Markov, observe that

$$
\begin{aligned}
& I\left(U_{1} ; Y_{1}\right) \geq I\left(U_{1} ; Y_{2} \mid X_{2}\right) \Longleftrightarrow \\
& \quad I\left(X_{1} ; Y_{1}\right)-I\left(X_{1} ; Y_{2} \mid X_{2}\right) \geq I\left(X_{1} ; Y_{1} \mid U_{1}\right)-I\left(X_{1} ; Y_{2} \mid U_{1}, X_{2}\right)
\end{aligned}
$$

which is equivalent to concavity w.r.t. $p_{1}\left(x_{1}\right)$. Similar reasoning holds for the second equation w.r.t. $p_{2}\left(x_{2}\right)$.

3.2 Han-Kobayashi sum-rate for very weak interference channels

Using Fourier-Motzkin elimination, the Han-Kobayashi sum-rate is given by the following lemma.

Lemma 3.2.1 (Han-Kobayashi sum-rate inner bound). The sum-capacity $R_{1}+R_{2}$ of interference channel is achievable if it satisfies

$$
\begin{align*}
& R_{1}+R_{2} \leq I\left(X_{1} ; Y_{1} \mid U_{2}, Q\right)+I\left(X_{2} ; Y_{2} \mid U_{1}, Q\right) \tag{3.3}\\
& R_{1}+R_{2} \leq I\left(U_{2}, X_{1} ; Y_{1} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid U_{2}, U_{1}, Q\right) \tag{3.4}\\
& R_{1}+R_{2} \leq I\left(U_{1}, X_{2} ; Y_{2} \mid Q\right)+I\left(X_{1} ; Y_{1} \mid U_{2}, U_{1}, Q\right) \tag{3.5}\\
& R_{1}+R_{2} \leq I\left(U_{2}, X_{1} ; Y_{1} \mid U_{1}, Q\right)+I\left(U_{1} X_{2} ; Y_{2} \mid U_{2}, Q\right) \tag{3.6}
\end{align*}
$$

for some $p(q) p\left(u_{1}, x_{1} \mid q\right) p\left(u_{2}, x_{2} \mid q\right)$.

For very weak interference channels, the Han-Kobayashi sum-rate can be significantly simplified.

Theorem 3.2.1. The maximum achievable sum-rate of the Han-Kobayashi inner bound (3.3)-(3.6), denoted as $S_{H K}$ for a DMIC, reduces to

$$
S_{H K}=\max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)
$$

under the very weak interference condition.
Proof. Treating interference as noise, or in particular, setting $Q=U_{1}=$ $U_{2}=\emptyset$ (i.e. the trivial random variable) gives that $\max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; Y_{1}\right)+$ $I\left(X_{2} ; Y_{2}\right)$ is achievable. This indicates that

$$
\begin{equation*}
S_{H K} \geq \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right) . \tag{3.7}
\end{equation*}
$$

Next, note that equation (3.6) satisfies:

$$
\begin{aligned}
& I\left(U_{2}, X_{1} ; Y_{1} \mid U_{1}, Q\right)+I\left(U_{1}, X_{2} ; Y_{2} \mid U_{2}, Q\right) \\
& \quad \stackrel{(a)}{=} I\left(U_{2}, X_{1} ; Y_{1} \mid Q\right)-I\left(U_{1} ; Y_{1} \mid Q\right)+I\left(U_{1}, X_{2} ; Y_{2} \mid Q\right)-I\left(U_{2} ; Y_{2} \mid Q\right) \\
& \quad=I\left(X_{1} ; Y_{1} \mid Q\right)+I\left(U_{2} ; Y_{1} \mid X_{1}, Q\right)-I\left(U_{2} ; Y_{2} \mid Q\right) \\
& \quad+I\left(X_{2} ; Y_{2} \mid Q\right)+I\left(U_{1} ; Y_{2} \mid X_{2}, Q\right)-I\left(U_{1} ; Y_{1} \mid Q\right) \\
& \quad \stackrel{(b)}{\leq} I\left(X_{1} ; Y_{1} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid Q\right)
\end{aligned}
$$

where (a) holds because $U_{1} \rightarrow X_{1} \rightarrow\left(U_{2}, X_{2}, Y_{1}, Y_{2}\right), U_{2} \rightarrow X_{2} \rightarrow$ ($U_{1}, X_{1}, Y_{1}, Y_{2}$) form Markov chains conditioned on $Q=q$ and (b) holds as an immediate consequence of the definition of very weak interference. Since $S_{H K}$ has to be smaller than the maximum of any of the four expressions, and that the average over Q is dominated by the maximum value, we have $S_{H K} \leq \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)$. Combining this with (3.7), the proposition is established.

Remark 3.2.1. In Gaussian settings, X_{1}, X_{2} need to satisfy power constraints and in general,

$$
\max _{E\left[X_{i}^{2}\right] \leq P_{i}} I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right) \neq \max _{E\left[X_{i}^{2}\right] \leq P_{i}} I\left(X_{1} ; Y_{1} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid Q\right)
$$

Thus Han-Kobayashi sum-rate reduces to $\max _{E\left[X_{i}^{2}\right] \leq P_{i}} I\left(X_{1} ; Y_{1} \mid Q\right)+$ $I\left(X_{2} ; Y_{2} \mid Q\right)$.

Remark 3.2.2. To characterize the entire HK region, one needs to maximize $\lambda R_{1}+R_{2}$. Treating-interference-as-noise weighted sum-rate, $\max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} \lambda I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)$, might not be equivalent to HK weighted sum-rate under very weak interference. Therefore the definition of very weak interference is tailored for sum-rate (i.e. $\lambda=1$).

3.3 Examples

3.3.1 Binary skewed-Z interference channel

The first example is a DMIC with binary input and output.

Figure 3.1: Binary skewed-Z interference channel (BSZIC)

Consider a DMIC with transition probabilities as depicted in Figure 3.1 with parameters $p, q \in[0,1]$. We call such a channel a Binary Skewed-Z Interference Channel (BSZIC).

Lemma 3.3.1. A BSZIC with parameter (p, q) has very weak interference if and only if

$$
0 \leq p+q \leq 1
$$

Proof. From Lemma 3.1.1, it suffices to determine the conditions under which $I\left(X_{1} ; Y_{1}\right)-I\left(X_{1} ; Y_{2} \mid X_{2}\right)$ is concave in $p_{1}\left(x_{1}\right)$ for all fixed $p_{2}\left(x_{2}\right)$
and $I\left(X_{2} ; Y_{2}\right)-I\left(X_{2} ; Y_{1} \mid X_{1}\right)$ is concave in $p_{2}\left(x_{2}\right)$ for all fixed $p_{1}\left(x_{1}\right)$.
Let $H(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)$ denote the binary entropy function. Let $P\left(X_{2}=0\right)=a$ and $P\left(X_{1}=0\right)=x$. We need to determine the set of values of $p, q \in[0,1]$ such that $I\left(X_{1} ; Y_{1}\right)-I\left(X_{1} ; Y_{2} \mid X_{2}\right)$ is concave in x for all $a \in[0,1]$.

$$
\begin{aligned}
& I\left(X_{1} ; Y_{1}\right)-I\left(X_{1} ; Y_{2} \mid X_{2}\right) \\
& \quad=H(x(1-\bar{a} p))-x H(1-\bar{a} p)-\bar{a} H(x q)+\bar{a} x H(q)
\end{aligned}
$$

where $\bar{a}=1-a$. Note that the second and the last terms are linear in x. After taking the second derivative, one could see that the concavity of the above expression with respect to x is equivalent to showing that

$$
\begin{aligned}
\frac{1-\bar{a} p}{1-x(1-\bar{a} p)} & \geq \frac{\bar{a} q}{1-x q}, \\
\text { i.e. } \quad(1-\bar{a} p)(1-x q) & \geq \bar{a} q(1-x(1-\bar{a} p)) .
\end{aligned}
$$

The above condition must hold for all $x \in[0,1]$. Since both sides of the inequality are linear in x, it suffices to verify the inequality only at $x=0$ and $x=1$. Substituting them in, we obtain the following two conditions, respectively.

$$
\left\{\begin{array}{l}
1-\bar{a} p \geq \bar{a} q \\
(1-\bar{a} p)(1-q) \geq p q \bar{a}^{2}
\end{array}\right.
$$

Both conditions have to be satisfied for all $a \in[0,1]$. Keeping in mind that $p, q \in[0,1]$, it is easy to check that this is equivalent to $0 \leq p+q \leq 1$. The same condition can be derived from the concavity of $I\left(X_{2} ; Y_{2}\right)-I\left(X_{2} ; Y_{1} \mid X_{1}\right)$.

The sum-capacity of BSZIC under a sub-regime of very weak interference region can be obtained using genie-based outer bound (2.1).

Theorem 3.3.1. Treating interference as noise is sum-rate optimal for BSZIC when channel parameters (p, q) satisfy

$$
p+q+3 p q \leq 1
$$

The regime of parameters is shown in Figure 3.2.

Figure 3.2: Regime of parameters where the sum-capacity is established for the Skewed-Z interference channel

The following lemma aids in our proof of the theorem.
Lemma 3.3.2. Let $\mathcal{C}[f](x, y)$ denote the upper concave envelope of $f(x, y)$ over the space of product distributions where $\operatorname{Pr}\left(X_{1}=0\right)=x$ and $\operatorname{Pr}\left(X_{2}=1\right)=y$. Suppose $f(x, y)$ is linear in x. Let $g_{0}(y)=f(0, y)$ and $g_{1}(y)=f(1, y)$, then $f(x, y)=(1-x) g_{0}(y)+x g_{1}(y)$ and

$$
\mathcal{C}[f](x, y)=(1-x) \mathcal{C}\left[g_{0}\right](y)+x \mathcal{C}\left[g_{1}\right](y),
$$

where $\mathcal{C}\left[g_{0}\right](y), \mathcal{C}\left[g_{1}\right](y)$ denotes the upper concave envelope of $g_{0}(y)$, $g_{1}(y)$, w.r.t. $y \in[0,1]$.

Proof. For a generic variable $x \in[0,1]$, let $\bar{x}=1-x$. Now consider a maximizing convex combination at $(x \bar{y}, x y, \bar{x} \bar{y}, \bar{x} y)$, i.e. a weight vector $\left\{\alpha_{i}\right\}$ and product distributions $\left(x_{i} \bar{y}_{i}, x_{i} y_{i}, \bar{x}_{i} \bar{y}_{i}, \bar{x}_{i} y_{i}\right)$ such that $\sum_{i} \alpha_{i}\left(x_{i} \bar{y}_{i}, x_{i} y_{i}, \bar{x}_{i} \bar{y}_{i}, \bar{x}_{i} y_{i}\right)=(x \bar{y}, x y, \bar{x} \bar{y}, \bar{x} y)$ and that $\sum_{i} \alpha_{i} f\left(x_{i}, y_{i}\right)=$ $\mathcal{C}[f](x, y)$. Note $\sum_{i} \alpha_{i} \bar{x}_{i}=\sum_{i} \alpha_{i} \bar{x}_{i}\left(\bar{y}_{i}+y_{i}\right)=\bar{x} \bar{y}+\bar{x} y=\bar{x}, \sum_{i} \alpha_{i} x_{i}=x$, $\sum_{i} \alpha_{i} \bar{x}_{i} y_{i}=\bar{x} y$ and $\sum_{i} \alpha_{i} x_{i} y_{i}=x y$. Therefore,

$$
\begin{aligned}
\mathcal{C}[f](x, y) & =\sum_{i} \alpha_{i} f\left(x_{i}, y_{i}\right) \\
& =\sum_{i}\left(\alpha_{i} \bar{x}_{i} f\left(0, y_{i}\right)+\alpha_{i} x_{i} f\left(1, y_{i}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\bar{x}\left(\sum_{i} \frac{\alpha_{i} \bar{x}_{i}}{\bar{x}} f\left(0, y_{i}\right)\right)+x\left(\sum_{i} \frac{\alpha_{i} x_{i}}{x} f\left(1, y_{i}\right)\right) \\
& \leq \bar{x} \mathcal{C}\left[g_{0}\right]\left(\sum_{i} \frac{\alpha_{i} \bar{x}_{i}}{\bar{x}} y_{i}\right)+x \mathcal{C}\left[g_{1}\right]\left(\sum_{i} \frac{\alpha_{i} x_{i}}{x} y_{i}\right) \\
& =\bar{x} \mathcal{C}\left[g_{0}\right](y)+x \mathcal{C}\left[g_{1}\right](y) .
\end{aligned}
$$

The other direction is immediate as one can always mix the convex combination that achieves $\mathcal{C}\left[g_{0}\right](y)$ and the convex combination that achieves $\mathcal{C}\left[g_{1}\right](y)$ to obtain $(1-x) \mathcal{C}\left[g_{0}\right](y)+x \mathcal{C}\left[g_{1}\right](y)$.

Proof of Theorem 3.3.1. Let $p_{1}^{*}\left(x_{1}\right) p_{2}^{*}\left(x_{2}\right)$ be the maximizing input for equation (2.1) when $\lambda=1$ and $\operatorname{Pr}\left(X_{1}=0\right)=x^{*}, \operatorname{Pr}\left(X_{2}=1\right)=y^{*}$ at $p_{1}^{*}\left(x_{1}\right) p_{2}^{*}\left(x_{2}\right)$. We will show the existence of a valid pair of genies $\left(T_{1}, T_{2}\right)$ corresponds to any point of the green region of Figure 3.2 such that the following two conditions hold:

1. $X_{i} \rightarrow Y_{i} \rightarrow T_{i}$, at $p_{1}^{*}\left(x_{1}\right) p_{2}^{*}\left(x_{2}\right), i=1,2$.
2. $I\left(X_{2} ; T_{2} \mid X_{1}, T_{1}\right)-I\left(X_{2} ; Y_{1} \mid T_{1}, X_{1}\right)$ and $I\left(X_{1} ; T_{1} \mid X_{2}, T_{2}\right)-I\left(X_{1} ; Y_{2} \mid T_{2}, X_{2}\right)$ are concave w.r.t. product distributions $p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)$.

The above conditions immediately imply that (2.1) reduces to

$$
\begin{aligned}
R_{1}+R_{2} & \leq I\left(X_{1}^{*} ; Y_{1}\right)+I\left(X_{2}^{*} ; Y_{2}\right) \\
& \leq \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right),
\end{aligned}
$$

which is achievable by treating interference as noise. This establishes the sum-rate capacity.

Remark 3.3.1. One should note that the above conditions, though sufficient, are not necessary for the genie-based sum-rate outer bound to match HK sum-rate inner bound. The second condition could be relaxed to requiring that the functions match their corresponding concave envelopes at $p_{1}^{*}\left(x_{1}\right) p_{2}^{*}\left(x_{2}\right)$. Requiring the functions to be concave everywhere vanishes the gap terms in (2.1).

For the first condition to hold, given that the valid genies should also satisfy $T_{2} \rightarrow X_{2} \rightarrow X_{1} \rightarrow T_{1}$ and the channel transition probabilities $q\left(y_{1} \mid x_{1}, x_{2}\right), q\left(y_{2} \mid x_{1}, x_{2}\right)$, one could verify that distributions $p_{1}\left(x_{1}, x_{2}, y_{1}, t_{1}\right)$ and $p_{2}\left(x_{1}, x_{2}, y_{2}, t_{2}\right)$ must be of the form given in Table 3.1, where $\left\{a_{i}\right\},\left\{b_{i}\right\}$ are two generic probability vectors of size $\left|T_{1}\right|$ and $\left\{c_{i}\right\},\left\{d_{i}\right\}$ are two generic probability vectors of size $\left|T_{2}\right| \cdot \operatorname{Pr}\left(X_{1}=0\right)=$ $x, \operatorname{Pr}\left(X_{2}=1\right)=y$.

X_{1}	X_{2}	Y_{1}	T_{1}	Probability
0	0	0	i	$\left.x(1-y)\left((1-p) a_{i}+p b_{i}\right)\right)$
1	0	1	i	$(1-x)(1-y) b_{i}$
0	1	0	i	$x y(1-p) a_{i}$
0	1	1	i	$x y p b_{i}$
1	1	1	i	$(1-x) y b_{i}$,
X_{1}	X_{2}	Y_{2}	T_{2}	Probability
1	1	1	i	$\left.(1-x) y\left((1-q) c_{i}+q d_{i}\right)\right)$
0	1	0	i	$x y q d_{i}$
1	0	0	i	$(1-x)(1-y) d_{i}$
0	1	1	i	$x y(1-q) c_{i}$
0	0	0	i	$x(1-y) d_{i}$,

Table 3.1: Generic probability distribution for genies that satisfy the Markov conditions

Remark 3.3.2. Suppose the Markov chains hold for $\operatorname{Pr}\left(X_{1}=0\right)=x_{*}$, $\operatorname{Pr}\left(X_{2}=1\right)=y_{*}$, note that our final joint distributions are independent of $\left(x_{*}, y_{*}\right)$. This is because if the Markov chains hold for some $\left(x_{*}, y_{*}\right)$, they continue to hold for any other product distribution. This is a chance observation (peculiar to the Binary skewed-Z interference channel) that greatly simplified our analysis.

Next, we will discuss the concavity condition for genies. Define
$f(x, y), \tilde{f}(x, y)$ as

$$
\begin{aligned}
& f(x, y):=\left.\left(I\left(X_{2} ; T_{2} \mid X_{1}, T_{1}\right)-I\left(X_{2} ; Y_{1} \mid X_{1}, T_{1}\right)\right)\right|_{\operatorname{Pr}\left(X_{1}=0\right)=x, \operatorname{Pr}\left(X_{2}=1\right)=y}, \\
& \tilde{f}(x, y):=\left.\left(I\left(X_{1} ; T_{1} \mid X_{2}, T_{2}\right)-I\left(X_{1} ; Y_{2} \mid X_{2}, T_{2}\right)\right)\right|_{\operatorname{Pr}\left(X_{1}=0\right)=x, \operatorname{Pr}\left(X_{2}=1\right)=y} .
\end{aligned}
$$

For a generic variable $x \in[0,1]$, let $\bar{x}=1-x$ and $L(x)=-x \log _{2} x$. Then

$$
\begin{aligned}
f(x, y)= & \sum_{i} L\left(\bar{y} d_{i}+y\left(\bar{q} c_{i}+q d_{i}\right)\right)-\bar{y} L\left(d_{i}\right)-y L\left(\bar{q} c_{i}+q d_{i}\right) \\
& -\left(x p b_{i}+x \bar{p} a_{i}\right) L\left(\frac{y p b_{i}}{p b_{i}+\bar{p} a_{i}}\right)-x\left(p b_{i}+\bar{p} a_{i}\right) L\left(\frac{\bar{y} p b_{i}+\bar{p} a_{i}}{p b_{i}+\bar{p} a_{i}}\right) \\
& +x y\left(p b_{i}+\bar{p} a_{i}\right) L\left(\frac{p b_{i}}{p b_{i}+\bar{p} a_{i}}\right)+x y\left(p b_{i}+\bar{p} a_{i}\right) L\left(\frac{\bar{p} a_{i}}{p b_{i}+\bar{p} a_{i}}\right)
\end{aligned}
$$

Note that $f(x, y)$ is linear in x. Therefore we could write it as the linear combination of two functions $g_{0}(y)=f(0, y)$ and $g_{1}(y)=f(1, y)$ as in Proposition 3.3.2.

$$
\begin{aligned}
g_{0}(y):= & \sum_{i} L\left(\bar{y} d_{i}+y\left(\bar{q} c_{i}+q d_{i}\right)\right)-\bar{y} L\left(d_{i}\right)-y L\left(\bar{q} c_{i}+q d_{i}\right), \\
g_{1}(y):= & \sum_{i} L\left(\bar{y} d_{i}+y\left(\bar{q} c_{i}+q d_{i}\right)\right)-\bar{y} L\left(d_{i}\right)-y L\left(\bar{q} c_{i}+q d_{i}\right) \\
& -\left(p b_{i}+\bar{p} a_{i}\right) L\left(\frac{y p b_{i}}{p b_{i}+\bar{p} a_{i}}\right)-\left(p b_{i}+\bar{p} a_{i}\right) L\left(\frac{\bar{y} p b_{i}+\bar{p} a_{i}}{p b_{i}+\bar{p} a_{i}}\right) \\
& +y\left(p b_{i}+\bar{p} a_{i}\right) L\left(\frac{p b_{i}}{p b_{i}+\bar{p} a_{i}}\right)+y\left(p b_{i}+\bar{p} a_{i}\right) L\left(\frac{\bar{p} a_{i}}{p b_{i}+\bar{p} a_{i}}\right) .
\end{aligned}
$$

Similar for $\tilde{f}(x, y)$, define $\tilde{g}_{0}(x), \tilde{g}_{1}(x)$ such that $\tilde{f}(x, y)=(1-y) \tilde{g}_{0}(x)+$ $y \tilde{g}_{1}(x)$.

It is sufficient to consider only binary genies. i.e. $T_{1}, T_{2} \in\{0,1\}$.
Then, by Proposition 3.3.2, the concavity condition is equivalent to that $g_{0}(y), g_{1}(y)$ are concave for all $y \in(0,1)$ and $\tilde{g}_{0}(x), \tilde{g}_{1}(x)$ are concave for all $x \in(0,1)$. Since $g_{0}(y), \tilde{g}_{0}(x)$ are already concave w.r.t. y, x, respectively. The condition is further reduced to that $g_{1}(y)$ and
$\tilde{g}_{1}(x)$ are concave. i.e. their second derivatives be non-positive:

$$
\begin{align*}
& \sum_{i=0}^{1}-\frac{\bar{q}^{2}\left(c_{i}-d_{i}\right)^{2}}{\bar{y} d_{i}+y\left(\bar{q} c_{i}+p d_{i}\right)}+\frac{p b_{i}}{y}+\frac{p^{2} b_{i}^{2}}{\bar{y} p b_{i}+\bar{p} a_{i}} \leq 0 \tag{3.8}\\
& \sum_{i=0}^{1}-\frac{\bar{p}^{2}\left(a_{i}-b_{i}\right)^{2}}{\bar{x} b_{i}+y\left(\bar{p} a_{i}+p b_{i}\right)}+\frac{q d_{i}}{x}+\frac{q^{2} d_{i}^{2}}{\bar{x} q d_{i}+\bar{q} c_{i}} \leq 0 \tag{3.9}
\end{align*}
$$

Note that in (3.8), either d_{0} or d_{1} has to be 0 in order to cancel $\frac{p b_{i}}{y}$ while $y \rightarrow 0^{+}$. Similarly, either b_{0} or b_{1} has to be zero because of (3.9). Without loss of generosity, we assume that $d_{0}=0$ and $b_{0}=0$. Setting $a_{0}=a, a_{1}=\bar{a}, c_{0}=c$ and $c_{1}=\bar{c},(3.8)$ becomes equivalent to, for all $y \in(0,1)$,

$$
\begin{align*}
& -\frac{\bar{q} c}{y}+\frac{p}{y}-\frac{\bar{q}^{2}(\bar{c}-1)^{2}}{\bar{y}+y(\bar{q} \bar{c}+q)}+\frac{p^{2}}{\bar{y} p+\bar{p} \bar{a}} \leq 0 \\
\Leftrightarrow & \frac{p-\bar{p} c}{y}-\frac{\bar{p}^{2} c^{2}}{1-y \bar{p} c}+\frac{p^{2}}{\bar{y} p+\bar{p} \bar{a}} \leq 0 \\
\Leftrightarrow & \frac{p}{y}+\frac{p^{2}}{\bar{y} p+\bar{p} \bar{a}} \leq \frac{\bar{p} c}{y}+\frac{\bar{p}^{2} c^{2}}{1-y \bar{p} c} \\
\Leftrightarrow & \frac{p^{2}+p \bar{p} \bar{a}}{\bar{y} p+\bar{p} \bar{a}} \leq \frac{\bar{p} c}{1-y \bar{p} c} \\
\Leftrightarrow & \left(p^{2}+p \bar{p} \bar{a}\right)(1-y \bar{p} c) \leq(\bar{p} c)(\bar{y} p+\bar{p} \bar{a}), \forall y \in(0,1) \tag{3.10}
\end{align*}
$$

As the expression is linear in y on both sides, it suffices to check the validity of (3.10) for when $y=0$ and $y=1$, i.e. (3.10) is equivalent to

$$
\left\{\begin{array}{l}
p \leq \bar{q} c \\
p+\frac{p^{2}}{\bar{p} \bar{a}} \leq \frac{\bar{q} c}{1-\bar{q} c}
\end{array}\right.
$$

Rearranging the first inequality we get

$$
\left\{\begin{array}{l}
\frac{p}{\bar{p}} \leq \frac{\bar{q} c}{1-\bar{q} c}, \\
p+\frac{p^{2}}{\bar{p} \bar{a}} \leq \frac{\bar{q} c}{1-\bar{q} c} .
\end{array}\right.
$$

Note that $p+\frac{p^{2}}{\bar{p} \bar{a}}=p\left(1+\frac{p / \bar{a}}{\bar{p}}\right) \geq p\left(1+\frac{p}{\bar{p}}\right)=\frac{p}{\bar{p}}$. Therefore, the first inequality is redundant and we are left with a single constraint

$$
p+\frac{p^{2}}{\bar{p} \bar{a}} \leq \frac{\bar{q} c}{1-\bar{q} c} .
$$

Similarly, inequality (3.9) is equivalent to the following,

$$
q+\frac{q^{2}}{\bar{q} \bar{c}} \leq \frac{\bar{p} a}{1-\bar{p} a}
$$

Further, without loss of generality, we assume $p \leq q$. Putting all the conditions together, we get

$$
\begin{array}{r}
0 \leq a \leq 1 \\
0 \leq c \leq 1 \\
0 \leq p \leq q \leq 1 \\
0 \leq p+q \leq 1 \\
p+\frac{p^{2}}{\bar{p} \bar{a}} \leq \frac{\bar{q} c}{1-\bar{q} c} \\
q+\frac{q^{2}}{\bar{q} \bar{c}} \leq \frac{\bar{p} a}{1-\bar{p} a} \tag{3.16}
\end{array}
$$

Rearranging (3.15), we have

$$
\begin{gathered}
\bar{p} a \leq \frac{\bar{p} \bar{q} c-p \bar{p}}{\bar{q} c-p^{2} \bar{q} c-p \bar{p}} \\
\frac{\bar{p} a}{1-\bar{p} a} \leq \frac{\bar{q} c-p}{p \bar{q} c}
\end{gathered}
$$

Note

$$
\frac{\bar{q} c-p}{p \bar{q} c}=\frac{1-p / \bar{q} c}{p} \leq \frac{\bar{p}}{1-\bar{p}}
$$

This means (3.11) is redundant.
Combining with (3.16) we have the condition

$$
\begin{gather*}
\frac{q \bar{q} \bar{c}+q^{2}}{\bar{c}} \leq \frac{\bar{q} c-p}{p c} \\
(1-p q) \bar{q} c^{2}-(1+p) \bar{q} c+p \leq 0 \tag{3.17}
\end{gather*}
$$

This inequality must holds for some $c \in[0,1]$.
When $c=\frac{1+p}{2(1-p q)} .0 \leq c \leq 1$ is given by the following

$$
0 \leq \frac{1+p}{2(1-p q)}=\frac{1+p}{1+(1-2 p q)} \leq \frac{1+p}{1+(1-q)} \leq \frac{1+p}{1+(1-\bar{p})}=1
$$

where first inequality is due to $p \leq \frac{1}{2}$ and the second one is due to $q \leq \bar{p}$. So we can let $c=\frac{1+p}{2(1-p q)}$.

Then inequality (3.17) gives

$$
\begin{gathered}
p-\frac{(1+p)^{2} \bar{q}}{4(1-p q)} \leq 0 \\
q \leq \frac{1-p}{1+3 p}
\end{gathered}
$$

To satisfy (3.13), we need $p \leq \frac{1-p}{1+3 p}$. That is $0 \leq p \leq \frac{1}{3}$.
Same analysis can be applied to the case $q \leq p$.
Hence we derive the conditions for the existence of smart and useful genie,

$$
\begin{aligned}
& 0 \leq p \leq \frac{1}{3}, \\
& 0 \leq q \leq \frac{1}{3}, \\
& p \leq q \leq \frac{1-p}{1+3 p}, \quad \text { or } \quad q \leq p \leq \frac{1-q}{1+3 q} .
\end{aligned}
$$

It is easy to verify that this region is equivalent to requiring $p+q+$ $3 p q \leq 1$ and $p, q \geq 0$.

The above theorem provides sum-rate capacity for a certain range of (p, q) for BSZIC by showing genie-based outer bound (2.1) matches treating-interference-as-noise inner bound. However, it is not true for any (p, q) that satisfies very weak interference conditions. The following lemma indicates that either genie-based outer bound (2.1) is not always tight or treating interference as noise is not always sum-rate optimal for BSZIC with very weak interference.

Lemma 3.3.3. For the binary skewed- Z interference channel when $p=q=\frac{1}{2}$, the genie based outer bound is strictly greater than the treating interference as noise inner bound.

Proof. Define $f(x, y), g_{0}(y)$ and $g_{1}(y)$ in the same way as before. The joint distribution is the same as defined in Table 3.1.

Setting $p=q=\frac{1}{2}$ and taking second derivative of $g_{1}(y)$, we get

$$
\begin{aligned}
& \frac{d^{2} g_{1}(y)}{d y^{2}}= \sum_{i}\left(-\frac{\left(c_{i}-d_{i}\right)^{2}}{2 y\left(c_{i}-d_{i}\right)+4 d_{i}}+\frac{b_{i}}{2 y}+\frac{b_{i}^{2}}{2 \bar{y} b_{i}+2 a_{i}}\right) \\
&=-\sum_{i} \frac{\left(c_{i}-d_{i}\right)^{2}}{2 y\left(c_{i}-d_{i}\right)+4 d_{i}}+\sum_{i} \frac{b_{i}}{2 y}+\sum_{i} \frac{y b_{i}^{2}}{2 y\left(\bar{y} b_{i}+a_{i}\right)} \\
& \geq-\sum_{i} \frac{c_{i}^{2}+d_{i}^{2}}{2 y\left(c_{i}-d_{i}\right)+4 d_{i}}+\sum_{i} \frac{b_{i}}{2 y}+\sum_{i} \frac{y b_{i}^{2}}{2 y\left(\bar{y} b_{i}+a_{i}\right)} \\
&=-\sum_{i} \frac{c_{i}^{2}}{2 y c_{i}-2 y d_{i}+4 d_{i}}-\sum_{i} \frac{d_{i}^{2}}{2 y c_{i}-2 y d_{i}+4 d_{i}} \\
&+\frac{1}{2 y}+\sum_{i} \frac{y b_{i}^{2}}{2 y\left(\bar{y} b_{i}+a_{i}\right)} \\
& \geq-\sum_{i} \frac{c_{i}^{2}}{2 y c_{i}}-\sum_{i} \frac{d_{i}^{2}}{-2 y d_{i}+4 d_{i}}+\frac{1}{2 y}+\sum_{i} \frac{y b_{i}^{2}}{2 y\left(\bar{y} b_{i}+a_{i}\right)} \\
&=-\frac{1}{2 y}-\frac{1}{-2 y+4}+\frac{1}{2 y}+\frac{\bar{y}+1}{2}\left(\sum_{i} \frac{\bar{y} b_{i}+a_{i}}{\bar{y}+1} \frac{b_{i}^{2}}{\left(\bar{y} b_{i}+a_{i}\right)^{2}}\right) \\
&(a) \\
& \geq-\frac{1}{-2 y+4}+\frac{\bar{y}+1}{2}\left(\sum_{i} \frac{\bar{y} b_{i}+a_{i}}{\bar{y}+1} \frac{b_{i}}{\bar{y} b_{i}+a_{i}}\right)^{2} \\
&=-\frac{1}{-2 y+4}+\frac{1}{2(\bar{y}+1)} \\
&= 0,
\end{aligned}
$$

where (a) holds because $\mathrm{E}\left(X^{2}\right) \geq \mathrm{E}(X)^{2}$. Thus $g_{1}(y)$ is convex in general. The only hope for the outer bound to work would be that $g_{1}(y)$ was a straight line. Next we analyze if this is possible.

Note $\frac{d^{2} g_{1}(y)}{d y^{2}}=0$ would imply that $c_{i} d_{i}=0$ (for the first inequality to be equality) and $a_{i}=b_{i}$ (for the inequality labeled (a) to be an equality).

For the symmetric condition to hold, define $\tilde{f}(x, y)$ as

$$
I\left(X_{1} ; T_{1} \mid X_{2} T_{2}\right)-\left.I\left(X_{1} ; Y_{2} \mid T_{2} X_{2}\right)\right|_{\operatorname{Pr}\left(X_{1}=0\right)=x, \operatorname{Pr}\left(X_{2}=1\right)=y}
$$

Split $\tilde{f}(x, y)$ in same way as for $f(x, y)$,

$$
\tilde{f}(x, y)=(1-y) \tilde{g}_{0}(x)+y \tilde{g}_{1}(x)
$$

Computing derivative of $\tilde{g}_{1}(x)$, we have

$$
\frac{d^{2} \tilde{g}_{1}(x)}{d x^{2}} \geq 0
$$

with equality holding only iff $a_{i} b_{i}=0$ and $c_{i}=d_{i}$.
Clearly, both equalities cannot hold at the same time. At least one of g_{1} and \tilde{g}_{1} is strictly convex. Therefore, for any $(x, y) \in(0,1)^{2}$,

$$
\begin{aligned}
& \mathfrak{C}[f](x, y)+\mathfrak{C}[\tilde{f}](x, y) \\
= & x \mathfrak{C}\left[g_{0}\right](y)+(1-x) \mathfrak{C}\left[g_{1}\right](y)+y \mathfrak{C}\left[\tilde{g}_{0}\right](x)+(1-y) \mathfrak{C}\left[\tilde{g}_{1}\right](x) \\
> & x g_{0}(y)+(1-x) g_{1}(y)+y \tilde{g}_{0}(x)+(1-y) \tilde{g}_{1}(x) \\
= & f(x, y)+f_{c_{i}, d_{i}, a_{i}, b_{i}}(y, x)
\end{aligned}
$$

Hence outer bound (2.1) is strictly larger than $I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)$ for any independent distribution of X_{1}, X_{2}.

3.3.2 Gaussian Z interference channel

The second example of very weak interference channel is Gaussian Z interference channel.

Set $b=0$ in Gaussian interference channel model.

$$
\begin{aligned}
& Y_{1}=X_{1}+Z_{1} \\
& Y_{2}=X_{2}+a X_{1}+Z_{2}
\end{aligned}
$$

where X_{1}, X_{2} are independent continues random variables with $E\left[X_{1}^{2}\right] \leq$ P_{1} and $E\left[X_{2}^{2}\right] \leq P_{2} . \quad Z_{1}, Z_{2}$ are independent Gaussian noise $\mathcal{N}(0,1)$ and $0 \leq a \leq 1$. See Figure 3.3.

Lemma 3.3.4. A Gaussian Z interference channel as described in Figure 3.3 has very weak interference.

Proof. Let $U_{1} \rightarrow X_{1} \rightarrow\left(Y_{1}, Y_{2}\right), U_{2} \rightarrow X_{2} \rightarrow\left(Y_{1}, Y_{2}\right)$. Then

$$
I\left(U_{2} ; Y_{1} \mid X_{1}\right)=I\left(U_{2} ; X_{1}+Z_{1} \mid X_{1}\right)=I\left(U_{2} ; Z_{1}\right)=0
$$

Figure 3.3: Gaussian Z interference channel

Hence $I\left(U_{2} ; Y_{1} \mid X_{1}\right) \leq I\left(U_{2} ; Y_{2}\right)$. The second inequality is established as follow,

$$
\begin{aligned}
I\left(U_{1} ; Y_{2} \mid X_{2}\right) & =I\left(U_{1} ; X_{2}+a X_{1}+Z_{2} \mid X_{2}\right) \\
& =I\left(U_{1} ; a X_{1}+Z_{2}\right) \\
& =I\left(U_{1} ; X_{1}+\frac{1}{a} Z_{2}\right) \\
& \leq I\left(U_{1} ; X_{1}+Z_{1}\right) \\
& =I\left(U_{1} ; Y_{1}\right)
\end{aligned}
$$

where the inequality holds because $U_{1} \rightarrow X_{1}+Z_{1} \rightarrow X_{1}+\frac{1}{a} Z_{2}$ is stochastically degraded.

Sum-capacity is known since it satisfies (1.8). In fact, the corner point $\left(R_{1}, R_{2}\right)=\left(\frac{1}{2} \log \left(1+P_{1}\right), \frac{1}{2} \log \left(1+\frac{P_{2}}{1+a^{2} P_{1}}\right)\right)$ of capacity region attains the sum-capacity.

3.4 Mixed interference

For the sake of completeness, we discuss DMICs of which one sender produces strong interference while the other produces very weak interference. Sum-capacity of mixed Gaussian interference channel is known.

Lemma 3.4.1. Consider a DMIC satisfying

$$
\begin{align*}
I\left(X_{1} ; Y_{1} \mid X_{2}\right) & \leq I\left(X_{1} ; Y_{2} \mid X_{2}\right) \forall p\left(x_{1}\right) p\left(x_{2}\right) \tag{3.18}\\
I\left(U_{2} ; Y_{2}\right) & \geq I\left(U_{2} ; Y_{1} \mid X_{1}\right) \forall p\left(x_{1}\right) p\left(u_{2}\right) p\left(x_{2} \mid u_{2}\right) \tag{3.19}
\end{align*}
$$

The sum-capacity of this channel is

$$
\max _{p\left(x_{1}\right) p\left(x_{2}\right)} \min \left\{I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2} \mid X_{1}\right), I\left(X_{1} X_{2} ; Y_{2}\right)\right\}
$$

Proof. To show the sum-capacity, we use the traditional outer bound provided in (1.9).

$$
\begin{align*}
& R_{1}+R_{2} \leq I\left(X_{1} ; Y_{1} \mid X_{2} Q\right)+I\left(X_{2} ; Y_{2} \mid X_{1} Q\right) \tag{3.20a}\\
& R_{1}+R_{2} \leq I\left(U_{2} X_{1} ; Y_{1} \mid Q\right)+I\left(U_{1} X_{2} ; Y_{2} \mid Q\right) \tag{3.20b}\\
& R_{1}+R_{2} \leq I\left(U_{2} X_{1} ; Y_{1} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid U_{2} X_{1} Q\right) \tag{3.20c}\\
& R_{1}+R_{2} \leq I\left(U_{1} X_{2} ; Y_{2} \mid Q\right)+I\left(X_{1} ; Y_{1} \mid U_{1} X_{2} Q\right) \tag{3.20d}
\end{align*}
$$

for some $p(q) p\left(u_{1}, x_{1} \mid q\right) p\left(u_{2}, x_{2} \mid q\right)$.
By the data processing inequality and the strong interference condition (3.18),

$$
\begin{aligned}
I\left(U_{1} X_{2} ; Y_{2} \mid Q\right) & \leq I\left(X_{1} X_{2} ; Y_{2} \mid Q\right) \\
I\left(U_{1} X_{2} ; Y_{2} \mid Q\right)+I\left(X_{1} ; Y_{1} \mid U_{1} X_{2} Q\right) & \leq I\left(U_{1} X_{2} ; Y_{2} \mid Q\right)+I\left(X_{1} ; Y_{2} \mid U_{1} X_{2} Q\right) \\
& =I\left(X_{1} X_{2} ; Y_{2} \mid Q\right) .
\end{aligned}
$$

This indicates setting $U_{1}=X_{1}$ is optimal for the sum-rate outer bound since both (3.20b) and (3.20b) are maximized. Then the outer bound reduces to

$$
\begin{align*}
& R_{1}+R_{2} \leq I\left(X_{1} ; Y_{1} \mid X_{2} Q\right)+I\left(X_{2} ; Y_{2} \mid X_{1} Q\right) \tag{3.21a}\\
& R_{1}+R_{2} \leq I\left(U_{2} X_{1} ; Y_{1} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid U_{2} X_{1} Q\right) \tag{3.21b}\\
& R_{1}+R_{2} \leq I\left(X_{1} X_{2} ; Y_{2} \mid Q\right) \tag{3.21c}
\end{align*}
$$

Now observe that from the weak interference condition (3.19).

$$
\begin{aligned}
I\left(U_{2} ; Y_{1} \mid X_{1} Q\right) & \leq I\left(U_{2} ; Y_{2} \mid Q\right) \\
& \leq I\left(U_{2} ; X_{1} Y_{2} \mid Q\right)=I\left(U_{2} ; Y_{2} \mid X_{1} Q\right)
\end{aligned}
$$

It follows

$$
\begin{aligned}
& I\left(U_{2} X_{1} ; Y_{1} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid U_{2} X_{1} Q\right) \\
& \quad=I\left(X_{1} ; Y_{1} \mid Q\right)+I\left(U_{2} ; Y_{1} \mid X_{1} Q\right)+I\left(X_{2} ; Y_{2} \mid U_{2} X_{1} Q\right) \\
& \quad \leq I\left(X_{1} ; Y_{1} \mid Q\right)+I\left(U_{2} ; Y_{2} \mid X_{1} Q\right)+I\left(X_{2} ; Y_{2} \mid U_{2} X_{1} Q\right) \\
& \quad=I\left(X_{1} ; Y_{1} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid X_{1} Q\right)
\end{aligned}
$$

and which indicates setting $U_{2}=\emptyset$ is optimal. Therefore (3.21a) is redundant and the outer bound reduces to

$$
\begin{aligned}
R_{1}+R_{2} & \leq \min \left\{I\left(X_{1} ; Y_{1} \mid Q\right)+I\left(X_{2} ; Y_{2} \mid X_{1} Q\right), I\left(X_{1} X_{2} ; Y_{2} \mid Q\right)\right\} \\
& \leq \max _{p\left(x_{1}\right) p\left(x_{2}\right)} \min \left\{I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2} \mid X_{1}\right), I\left(X_{1} X_{2} ; Y_{2}\right)\right\}
\end{aligned}
$$

This rate is achievable by Han-Kobayashi sum-rate inner bound (3.3)-(3.6) with auxiliaries chosen as $U_{1}=X_{1}, U_{2}=\emptyset$ and $Q=\emptyset$.

3.5 Open questions about very weak interference conditions

There are two questions of interest. The first one is whether our definition on very weak interference can extend to n-letter.

Question: Consider two very weak interference channels with transitional probability $w_{1}\left(y_{11}, y_{21} \mid x_{11}, x_{21}\right)$ and $w_{2}\left(y_{12}, y_{22} \mid x_{12}, x_{22}\right)$. Does the product channel $w_{1} \otimes w_{2}$ also has very weak interference?

The product channel $w_{1} \otimes w_{2}$ has two input $\left(x_{11}, x_{12}\right)$ and $\left(x_{21}, x_{22}\right)$, two output $\left(y_{11}, y_{12}\right)$ and $\left(y_{21}, y_{22}\right)$, and transitional probability

$$
\begin{aligned}
& w\left(y_{11}, y_{12}, y_{21}, y_{22} \mid x_{11}, x_{12}, x_{21}, x_{22}\right) \\
& \quad=w_{1}\left(y_{11}, y_{21} \mid x_{11}, x_{21}\right) w_{2}\left(y_{12}, y_{22} \mid x_{12}, x_{22}\right)
\end{aligned}
$$

The Han-Kobayashi (HK) sum-rate is equivalent to the treating-interference-as-noise (TIN) sum-rate for very weak interference channels. If the answer to this question is yes, then the n-letter HK sum-rate reduces to the n-letter TIN sum-rate for very weak interference channels. Then it
can be concluded that both HK and TIN n-letter expressions converge to sum-capacity at same rate of convergence.

Another question is whether TIN tensorizes, i.e. n-letter TIN is equivalent one-letter TIN.

Question: Consider two very weak interference channels with transitional probability w_{1} and w_{2} and their product channel $w_{1} \otimes w_{2}$. Is the following true?

$$
\begin{aligned}
& \max _{p\left(q, x_{11}, x_{12}, x_{21}, x_{22}\right)} I\left(X_{11} X_{12} ; Y_{11} Y_{12} \mid Q\right)+I\left(X_{21} X_{22} ; Y_{21} Y_{22} \mid Q\right) \\
& \leq \max _{p\left(q_{1}, x_{11}, x_{21}\right)} I\left(X_{11} ; Y_{11} \mid Q_{1}\right)+I\left(X_{21} ; Y_{21} \mid Q_{1}\right) \\
& \quad \quad+\max _{p\left(q_{2}, x_{12}, x_{22}\right)} I\left(X_{12} ; Y_{12} \mid Q_{2}\right)+I\left(X_{22} ; Y_{22} \mid Q_{2}\right)
\end{aligned}
$$

If the answer is yes, then the one-letter TIN sum-rate is the sumcapacity of very weak interference channel.

Chapter 4

Gaussian interference channels

This chapter examines Gaussian interference channels (GICs). First, we employ the enhanced genie-based outer bound on sum-capacity $(\lambda=1)$ of GICs. We will see that, like the Han-Kobayashi inner bound, the enhanced genie-based outer bound is tight for all the regimes where capacity has been established. In the second part, we study the optimality of Gaussian signalling for the TIN sum rate using Hermite polynomials. At last, we consider Gaussian Z interference channels. A hypothesis related to optimality of Han-Kobayashi region with Gaussian signalling is proposed.

4.1 Optimality for Gaussian Interference Channel with Strong Interference

As introduced in Chapter 1, when $a \geq 1, b \geq 1$, Gaussian interference channels have strong interference. The sum-capacity is therefore given by

$$
\min \left\{\frac{1}{2} \log \left(1+P_{1}+b^{2} P_{2}\right), \frac{1}{2} \log \left(1+P_{2}+a^{2} P_{1}\right)\right\} .
$$

In the enhanced genie-based outer bound (2.2), set $S_{1}=\emptyset, T_{2}=$ \emptyset and $S_{2}=X_{2}$. Since $a \geq 1$, we could find independent $\dot{Z}_{1}, \ddot{Z}_{1} \sim$
$\mathcal{N}(0,1)$ such that $Z_{1}=\frac{1}{a} \dot{Z}_{1}+\frac{\sqrt{a^{2}-1}}{a} \ddot{Z}_{1}$. Thus $Y_{1}=X_{1}+b X_{2}+\frac{1}{a} \dot{Z}_{1}+$ $\frac{\sqrt{a^{2}-1}}{a} \ddot{Z}_{1}$. Let $T_{1}=X_{1}+\frac{1}{a} \dot{Z}_{1}$. Then the genie-based sum-rate outer bound becomes

$$
\begin{aligned}
& R_{1}+R_{2} \leq \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; T_{1}, Y_{1} \mid S_{2}\right)+I\left(X_{2} ; T_{2}, Y_{2} \mid S_{1}\right) \\
&+\mathcal{C}\left[I\left(X_{1} ; T_{1} \mid X_{2}, T_{2}, S_{1}\right)-I\left(X_{1} ; Y_{2} \mid X_{2}, T_{2}, S_{1}\right)\right] \\
&-I\left(X_{1} ; T_{1} \mid X_{2}, T_{2}, S_{1}\right)+I\left(X_{1} ; Y_{2} \mid X_{2}, T_{2}, S_{1}\right) \\
&+\mathcal{C}\left[I\left(X_{2} ; T_{2} \mid X_{1}, T_{1}, S_{2}\right)-I\left(X_{2} ; Y_{1} \mid X_{1}, T_{1}, S_{2}\right)\right] \\
&-I\left(X_{2} ; T_{2} \mid X_{1}, T_{1}, S_{2}\right)+I\left(X_{2} ; Y_{1} \mid X_{1}, T_{1}, S_{2}\right) \\
&= \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; X_{1}+\frac{1}{a} \dot{Z}_{1}, X_{1}+\frac{1}{a} \dot{Z}_{1}+\frac{\sqrt{a^{2}-1}}{a} \ddot{Z}_{1}\right) \\
&+I\left(X_{2} ; Y_{2}\right)+\mathcal{C}\left[I\left(X_{1} ; X_{1}+\frac{1}{a} \dot{Z}_{1}\right)-I\left(X_{1} ; a X_{1}+Z_{2}\right)\right] \\
&-I\left(X_{1} ; X_{1}+\frac{1}{a} \dot{Z}_{1}\right)+I\left(X_{1} ; Y_{2} \mid X_{2}\right) \\
& \stackrel{*}{=} \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{2} ; Y_{2}\right)+I\left(X_{1} ; Y_{2} \mid X_{2}\right) \\
&= \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} X_{2} ; Y_{2} \mid X_{2}\right) \\
& \stackrel{* *}{=} \frac{1}{2} \log \left(1+P_{2}+a^{2} P_{1}\right)
\end{aligned}
$$

where $\left({ }^{*}\right)$ holds because $X_{1} \rightarrow X_{1}+\frac{1}{a} \dot{Z}_{1} \rightarrow X_{1}+\frac{1}{a} \dot{Z}_{1}+\frac{\sqrt{a^{2}-1}}{a} \ddot{Z}_{1}$ is degraded and $\left({ }^{* *}\right)$ holds because the Gaussian inputs maximize the expression. Symmetrically, since $b \geq 1$ we can get

$$
R_{1}+R_{2} \leq \frac{1}{2} \log \left(1+P_{1}+b^{2} P_{2}\right)
$$

Hence the enhanced genie-based outer bound is tight for Gaussian interference channels with strong interference.

4.2 Optimality for Gaussian Interference Channel with Mixed Interference

When $a \geq 1$ and $b<1$ or $a<1$ and $b \geq 1$, the Gaussian interference channel has strong interference from only one sender-receiver pair. For
$a \geq 1$ and $b<1$, the sum-rate capacity is

$$
\min \left\{\frac{1}{2} \log \left(1+P_{2}+a^{2} P_{1}\right), \frac{1}{2} \log \left(1+\frac{P_{1}}{b^{2} P_{2}+1}\right)+\frac{1}{2} \log \left(1+P_{2}\right)\right\}
$$

Since $a \geq 1$, the argument in previous section shows enhanced geniebased outer bound is no greater than $\frac{1}{2} \log \left(1+P_{2}+a^{2} P_{1}\right)$.

Since $b \leq 1$ and capacity does not depend on correlation between Z_{1} and Z_{2}, we could find independent $\ddot{Z}_{1} \sim \mathcal{N}(0,1)$ such that $Z_{1}=$ $b Z_{2}+\sqrt{1-b^{2}} \ddot{Z}_{1}$. Setting $T_{1}=\emptyset, S_{1}=X_{1}, T_{2}=X_{2}+\frac{1}{b} Z_{1}=X_{2}+Z_{2}+$ $\frac{\sqrt{1-b^{2}}}{b} \ddot{Z}_{1}$ and $S_{2}=\emptyset$, the enhanced genie-based sum-rate outer bound becomes

$$
\begin{aligned}
& R_{1}+R_{2} \leq \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}, \left.X_{2}+Z_{2}+\frac{\sqrt{1-b^{2}}}{b} \ddot{Z}_{1} \right\rvert\, X_{1}\right) \\
&+\mathcal{C}\left[I\left(X_{2} ; \left.X_{2}+\frac{1}{b} Z_{1} \right\rvert\, X_{1}\right)-I\left(X_{2} ; b X_{2}+Z_{1} \mid X_{1}\right)\right] \\
&-I\left(X_{2} ; \left.X_{2}+\frac{1}{b} Z_{1} \right\rvert\, X_{1}\right)+I\left(X_{2} ; b X_{2}+Z_{1} \mid X_{1}\right) \\
&= \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; X_{2}+Z_{2}, \left.X_{2}+Z_{2}+\frac{\sqrt{1-b^{2}}}{b} \ddot{Z}_{1} \right\rvert\, X_{1}\right) \\
& \stackrel{*}{=} \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; X_{2}+Z_{2} \mid X_{1}\right) \\
&= \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; X_{2}+a X_{1}+Z_{2} \mid X_{1}\right) \\
&= \max _{p_{1}\left(x_{1}\right) p_{2}\left(x_{2}\right)} I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2} \mid X_{1}\right) \\
& \stackrel{* *}{=} \frac{1}{2} \log \left(1+\frac{P_{1}}{b^{2} P_{2}+1}\right)+\frac{1}{2} \log \left(1+P_{2}\right),
\end{aligned}
$$

where $\left(^{*}\right)$ holds because $X_{2} \rightarrow X_{2}+Z_{2} \rightarrow X_{2}+Z_{2}+\frac{\sqrt{1-b^{2}}}{b} \ddot{Z}_{1}$ is degraded and $\left({ }^{* *}\right)$ holds because the Gaussian inputs maximize the expression.

Hence the enhanced genie-based sum-rate outer bound is tight for Gaussian interference channels with mixed interference.

4.3 A closed form of the enhanced genie-based outer bound

Before going to the discussion in the weak interference regime, we provide a closed form of the outer bound under following settings of genie random variable.

We could find independent $\dot{Z}_{1}, \ddot{Z}_{1}, \tilde{Z}_{1} \sim \mathcal{N}(0,1)$ such that $Z_{1}=$ $\rho_{11} \dot{Z}_{1}+\rho_{12} \ddot{Z}_{1}+\rho_{13} \tilde{Z}_{1}$ and independent $\dot{Z}_{2}, \ddot{Z}_{2}, \tilde{Z}_{2} \sim \mathcal{N}(0,1)$ such that $Z_{2}=\rho_{21} \dot{Z}_{2}+\rho_{22} \ddot{Z}_{2}+\rho_{23} \tilde{Z}_{2}$, where $\rho_{11}^{2}+\rho_{12}^{2}+\rho_{13}^{2}=1$ and $\rho_{21}^{2}+\rho_{22}^{2}+$ $\rho_{23}^{2}=1$. Let $T_{1}=X_{1}+\eta_{1} \dot{Z}_{1}, S_{2}=X_{2}+\mu_{2} \ddot{Z}_{1}$, and $T_{2}=X_{2}+\eta_{2} \dot{Z}_{2}$, $S_{1}=X_{1}+\mu_{1} \ddot{Z}_{2}$.

Again taking advantage of the fact that capacity do not depend on correlation between noise Z_{1} and Z_{2}, we may assume $\eta_{1} \dot{Z}_{1}$ and $\mu_{1} \ddot{Z}_{2}$ are correlated so that $X_{1} \rightarrow T_{1} \rightarrow S_{1}$ if $\mu_{1} \geq \eta_{1}$ or $X_{1} \rightarrow S_{1} \rightarrow T_{1}$ if $\mu_{1} \leq \eta_{1}$. So do $\eta_{2} \dot{Z}_{2}$ and $\mu_{2} \ddot{Z}_{1}$. Thus genie random variables T_{i}, $S_{i}, i=1,2$ are valid choices. It is ready to evaluate the enhanced genie-based outer bound under this setting.

Lemma 4.3.1. Assume $X_{i} \sim \mathcal{N}\left(0, P_{i}\right)$ is the optimal distribution for (2.2) under aforementioned setting, then sum-capacity must satisfy,

$$
\begin{align*}
\min _{\rho, \eta, \mu} \quad & \frac{1}{2} \log \left(1+P_{1}\left(\frac{1}{\eta_{1}^{2}}+\frac{1}{\frac{\left(b \mu_{2}-\rho_{12}\right)^{2}}{P_{2}+\mu_{2}^{2}} P_{2}+\rho_{13}^{2}}\left(\frac{\rho_{11}}{\eta_{1}}-1\right)^{2}\right)\right) \\
& +\frac{1}{2} \log \left(1+P_{2}\left(\frac{1}{\eta_{2}^{2}}+\frac{1}{\frac{\left(a \mu_{1}-\rho_{22}\right)^{2}}{P_{1}+\mu_{1}^{2}} P_{1}+\rho_{23}^{2}}\left(\frac{\rho_{21}}{\eta_{2}}-1\right)^{2}\right)\right) \\
& +\left[\frac{1}{2} \log \left(1+P_{1} \frac{\left(\rho_{22}-a \mu_{1}\right)^{2}+\rho_{23}^{2}}{\mu_{1}^{2} \rho_{23}^{2}}\right)-\frac{1}{2} \log \left(1+\frac{P_{1}}{\eta_{1}^{2} \wedge \mu_{1}^{2}}\right)\right]_{+} \\
& +\left[\frac{1}{2} \log \left(1+P_{2} \frac{\left(\rho_{12}-b \mu_{2}\right)^{2}+\rho_{13}^{2}}{\mu_{2}^{2} \rho_{13}^{2}}\right)-\frac{1}{2} \log \left(1+\frac{P_{2}}{\eta_{2}^{2} \wedge \mu_{2}^{2}}\right)\right]_{+}, \tag{4.1}
\end{align*}
$$

where $a \wedge b=\min \{a, b\}$ and $[a]_{+}=\max \{a, 0\}$, or equivalently,

$$
\min _{\rho, \eta, \mu}^{\max }\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\},
$$

where

$$
\begin{aligned}
B_{1} & =\frac{1}{2} \log \left(1+P_{1}\left(\frac{1}{\eta_{1}^{2}}+\frac{1}{\frac{\left(b \mu_{2}-\rho_{12}\right)^{2}}{P_{2}+\mu_{2}^{2}} P_{2}+\rho_{13}^{2}}\left(\frac{\rho_{11}}{\eta_{1}}-1\right)^{2}\right)\right) \\
& +\frac{1}{2} \log \left(1+P_{2}\left(\frac{1}{\eta_{2}^{2}}+\frac{1}{\frac{\left(a \mu_{1}-\rho_{22}\right)^{2}}{P_{1}+\mu_{1}^{2}} P_{1}+\rho_{23}^{2}}\left(\frac{\rho_{21}}{\eta_{2}}-1\right)^{2}\right)\right) ; \\
B_{2} & =\frac{1}{2} \log \left(1+P_{1}\left(\frac{1}{\eta_{1}^{2}}+\frac{1}{\frac{\left(b \mu_{2}-\rho_{12}\right)^{2}}{P_{2}+\mu_{2}^{2}} P_{2}+\rho_{13}^{2}}\left(\frac{\rho_{11}}{\eta_{1}}-1\right)^{2}\right)\right) \\
& +\frac{1}{2} \log \left(1+P_{2}\left(\frac{1}{\eta_{2}^{2}}+\frac{1}{\frac{\left(a \mu_{1}-\rho_{22}\right)^{2}}{P_{1}+\mu_{1}^{2}} P_{1}+\rho_{23}^{2}}\left(\frac{\rho_{21}}{\eta_{2}}-1\right)^{2}\right)\right) \\
& +\frac{1}{2} \log \left(1+P_{1} \frac{\left(\rho_{22}-a \mu_{1}\right)^{2}+\rho_{23}^{2}}{\mu_{1}^{2} \rho_{23}^{2}}\right)-\frac{1}{2} \log \left(1+\frac{P_{1}}{\eta_{1}^{2} \wedge \mu_{1}^{2}}\right) ;
\end{aligned}
$$

$$
B_{3}=\frac{1}{2} \log \left(1+P_{1}\left(\frac{1}{\eta_{1}^{2}}+\frac{1}{\frac{\left(b \mu_{2}-\rho_{12}\right)^{2}}{P_{2}+\mu_{2}^{2}} P_{2}+\rho_{13}^{2}}\left(\frac{\rho_{11}}{\eta_{1}}-1\right)^{2}\right)\right)
$$

$$
+\frac{1}{2} \log \left(1+P_{2}\left(\frac{1}{\eta_{2}^{2}}+\frac{1}{\frac{\left(a \mu_{1}-\rho_{22}\right)^{2}}{P_{1}+\mu_{1}^{2}} P_{1}+\rho_{23}^{2}}\left(\frac{\rho_{21}}{\eta_{2}}-1\right)^{2}\right)\right)
$$

$$
+\frac{1}{2} \log \left(1+P_{2} \frac{\left(\rho_{12}-b \mu_{2}\right)^{2}+\rho_{13}^{2}}{\mu_{2}^{2} \rho_{13}^{2}}\right)-\frac{1}{2} \log \left(1+\frac{P_{2}}{\eta_{2}^{2} \wedge \mu_{2}^{2}}\right)
$$

$$
B_{4}=\frac{1}{2} \log \left(1+P_{1}\left(\frac{1}{\eta_{1}^{2}}+\frac{1}{\frac{\left(b \mu_{2}-\rho_{12}\right)^{2}}{P_{2}+\mu_{2}^{2}} P_{2}+\rho_{13}^{2}}\left(\frac{\rho_{11}}{\eta_{1}}-1\right)^{2}\right)\right)
$$

$$
+\frac{1}{2} \log \left(1+P_{2}\left(\frac{1}{\eta_{2}^{2}}+\frac{1}{\frac{\left(a \mu_{1}-\rho_{22}\right)^{2}}{P_{1}+\mu_{1}^{2}} P_{1}+\rho_{23}^{2}}\left(\frac{\rho_{21}}{\eta_{2}}-1\right)^{2}\right)\right)
$$

$$
+\frac{1}{2} \log \left(1+P_{1} \frac{\left(\rho_{22}-a \mu_{1}\right)^{2}+\rho_{23}^{2}}{\mu_{1}^{2} \rho_{23}^{2}}\right)-\frac{1}{2} \log \left(1+\frac{P_{1}}{\eta_{1}^{2} \wedge \mu_{1}^{2}}\right)
$$

$$
+\frac{1}{2} \log \left(1+P_{2} \frac{\left(\rho_{12}-b \mu_{2}\right)^{2}+\rho_{13}^{2}}{\mu_{2}^{2} \rho_{13}^{2}}\right)-\frac{1}{2} \log \left(1+\frac{P_{2}}{\eta_{2}^{2} \wedge \mu_{2}^{2}}\right)
$$

Proof. See Appendix 4.A for detail.

4.4 Optimality for Gaussian Interference Channel with weak Interference

The optimization problem in Lemma 4.3.1 is hard to solve analytically. We consider the case

$$
\max \left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}=B_{1} .
$$

In this case, we are going to find the condition for which outer bound (4.1) is tight.

Let $\eta_{1}^{*}, \eta_{2}^{*}$ be defined as

$$
\begin{aligned}
& \frac{1}{\eta_{1}^{*}}=\frac{\rho_{11}}{\frac{\left(b \mu_{2}-\rho_{12}\right)^{2}}{P_{2}+\mu_{2}^{2}} P_{2}+\rho_{11}^{2}+\rho_{13}^{2}} \\
& \frac{1}{\eta_{2}^{*}}=\frac{\rho_{21}}{\frac{\left(a \mu_{1}-\rho_{22}\right)^{2}}{P_{1}+\mu_{1}^{2}} P_{1}+\rho_{21}^{2}+\rho_{23}^{2}}
\end{aligned}
$$

In order to satisfy $\max \left\{B_{1}, B_{2}, B_{3}, B_{4}\right\}=B_{1}$ when $\eta_{1}=\eta_{1}^{*}, \eta_{2}=\eta_{2}^{*}$, it requires

$$
\begin{align*}
& \frac{\rho_{23}^{2}+\left(\rho_{22}-a \mu_{1}\right)^{2}}{\mu_{1}^{2} \rho_{23}^{2}} \leq \frac{1}{\eta_{1}^{* 2}} \tag{4.2}\\
& \frac{\rho_{13}^{2}+\left(\rho_{12}-b \mu_{2}\right)^{2}}{\mu_{2}^{2} \rho_{13}^{2}} \leq \frac{1}{\eta_{2}^{* 2}} \tag{4.3}
\end{align*}
$$

Under these conditions, it can be concluded that B_{1} attains minimum by setting $\eta_{1}=\eta_{1}^{*}, \eta_{2}=\eta_{2}^{*}$. Outer bound (4.1) reduces to

$$
\frac{1}{2} \log \left(1+\frac{P_{1}}{\frac{\left(b \mu_{2}-\rho_{12}\right)^{2}}{P_{2}+\mu_{2}^{2}} P_{2}+\rho_{11}^{2}+\rho_{13}^{2}}\right)+\frac{1}{2} \log \left(1+\frac{P_{2}}{\frac{\left(a \mu_{1}-\rho_{22}\right)^{2}}{P_{1}+\mu_{1}^{2}} P_{1}+\rho_{21}^{2}+\rho_{23}^{2}}\right)
$$

Furthermore, if $\mu_{2} \rightarrow \infty, \rho_{12}=0$ and $\mu_{1} \rightarrow \infty, \rho_{22}=0$, the outer bound reduces to the treating interference as noise inner bound. To make conditions (4.2) and (4.3) continue to hold, it requires

$$
\begin{aligned}
& \frac{a^{2}}{\rho_{23}^{2}} \leq \frac{\rho_{11}^{2}}{\left(b^{2} P_{2}+1\right)^{2}} \\
& \frac{b^{2}}{\rho_{13}^{2}} \leq \frac{\rho_{21}^{2}}{\left(a^{2} P_{1}+1\right)^{2}}
\end{aligned}
$$

or equivalently,

$$
a\left(b^{2} P_{2}+1\right)+b\left(a^{2} P_{1}+1\right) \leq 1
$$

The following Figure 4.1 shows the enhanced genie-based outer bound for symmetric GICs with $P_{1}=P_{2}=100$.

Figure 4.1: Inner and outer bounds for symmetric GICs

4.5 Hermite perturbation on Gaussian distribution for TIN

From the previous section, the treating-interference-as-noise (TIN) sumrate inter bound is optimal in a sub-regime of Gaussian interference channel with weak interference. Moreover, Gaussian distribution is the optimal input distribution that maximizes TIN sum-rate in the subregime. However, Gaussian input is not always optimal. This section examines the sub-optimality of Gaussian input for TIN using Hermite polynomials to perturb Gaussian distribution, as proposed in [1]. For simplicity, we consider symmetric Gaussian interference channel, where $a=b, P_{1}=P_{2}=p$.

Denote normal probability density function $\mathcal{N}(0, p)$ as

$$
g^{p}(x)=\frac{1}{\sqrt{2 \pi p}} e^{-\frac{x^{2}}{2 p}}
$$

Hermite polynomial with degree k and power p is defined as

$$
\begin{gathered}
H_{k}^{p}(x)=\frac{(-1)^{k} \sqrt{p}^{k}}{\sqrt{k!}} e^{x^{2} / 2 p} \frac{d^{k}}{d x^{k}} e^{-\frac{x}{2 p}}, \quad k=1,2 \ldots, \\
H_{0}^{p}(x)=1
\end{gathered}
$$

In particular,

$$
\begin{gathered}
H_{1}^{p}(x)=\frac{x}{\sqrt{p}} \\
H_{2}^{p}(x)=\frac{1}{\sqrt{2}}\left(\frac{x^{2}}{p}-1\right), \\
H_{4}^{p}(x)=\frac{x^{4}}{p^{2}}-6 \frac{x^{2}}{p}+3 .
\end{gathered}
$$

We may omit variable x without confusions and use g^{p}, H_{k}^{p} in shorthand.

One merit of using Hermite polynomial is its invariance under convolution.

Lemma 4.5.1. We have

$$
g^{p} H_{k}^{p} * g^{q} H_{l}^{q}=c_{k, l}^{p, q} g^{p+q} H_{k+l}^{p+q}
$$

where $c_{k, l}^{p, q}=\frac{\sqrt{(k+l)!p^{k} q^{l}}}{\sqrt{k!!!(p+q)^{k+l}}}$ is a constant.
Proof. By linear property of convolution for differentiation,

$$
\begin{aligned}
g^{p} H_{k}^{p} * g^{q} H_{l}^{q} & =\frac{(-1)^{k} \sqrt{p}^{k}}{\sqrt{k!}} \frac{d^{k}}{d x^{k}} \frac{e^{-\frac{x}{2 p}}}{\sqrt{2 \pi p}} * \frac{(-1)^{l} \sqrt{q} l}{\sqrt{l!}} \frac{d^{l}}{d x^{l}} \frac{e^{-\frac{x}{2 q}}}{\sqrt{2 \pi q}} \\
& =\frac{(-1)^{k} \sqrt{p}}{\sqrt{k!}} \frac{(-1)^{l} \sqrt{q}}{\sqrt{l!}} * \frac{d^{k+l}}{d x^{k+l}} \frac{e^{-\frac{x}{2(p+q)}}}{\sqrt{2 \pi(p+q)}} \\
& =\frac{\sqrt{(k+l)!p^{k} q^{l}}}{\sqrt{k!l!(p+q)^{k+l}}} g^{p+q} H_{k+l}^{p+q} .
\end{aligned}
$$

When $l=0$, we have

$$
g^{p} H_{k}^{p} * g^{q}=\frac{\sqrt{p^{k}}}{\sqrt{(p+q)^{k}}} g^{p+q} H_{k}^{p+q}
$$

The following two lemmas are used to compute difference of differential entropy after perturbation on Gaussian distribution.

Lemma 4.5.2. Let $g_{\epsilon}(x)$ be a probability density function and $h\left(g_{\epsilon}\right)$ denotes differential entropy of some random variable with distribution g_{ϵ}. Then

$$
h\left(g_{\epsilon}\right)-h\left(g^{p}\right)=-D\left(g_{\epsilon} \| g^{p}\right)+\frac{1}{2} \int \frac{x^{2}}{p}\left(g_{\epsilon}(x)-g^{p}(x)\right) \mathrm{d} x
$$

Proof. By definition of KL divergence,

$$
\begin{aligned}
D\left(g_{\epsilon} \| g^{p}\right) & =\int g_{\epsilon}(x) \log g_{\epsilon}(x)-g_{\epsilon}(x) \log g^{p}(x) \\
& =-h\left(g_{\epsilon}\right)-\int g_{\epsilon}(x)\left(-\frac{1}{2} \log 2 \pi p-\frac{x^{2}}{2 p}\right) \\
& =-h\left(g_{\epsilon}\right)+\frac{1}{2} \log 2 \pi p+\int g_{\epsilon}(x)\left(\frac{x^{2}}{2 p}\right) \\
& =-h\left(g_{\epsilon}\right)+h\left(g^{p}\right)-1 / 2+\int g_{\epsilon}(x) \frac{x^{2}}{2 p} \\
& =-h\left(g_{\epsilon}\right)+h\left(g^{p}\right)+\int\left(g_{\epsilon}(x)-g^{p}(x)\right) \frac{x^{2}}{2 p} .
\end{aligned}
$$

The lemma follows after rearrange terms.

Lemma 4.5.3. Let $g_{\epsilon}(x)=g^{P}(x)+\epsilon \sum_{k, l} a_{k, l} H_{l}^{p_{k}}(x) g^{p_{k}}(x)$ be a perturbed probability density function. Then we can approximate KL divergence by

$$
D\left(g_{\epsilon} \| g\right)=\frac{\epsilon^{2}}{2} \int \frac{\left(\sum_{k, l} a_{k, l} H_{l}^{p_{k}} g^{p_{k}}\right)^{2}}{g^{P}}+o\left(\epsilon^{2}\right)
$$

Proof. Write the KL divergence,

$$
\begin{aligned}
& D\left(g_{\epsilon} \| g^{P}\right) \\
& \quad=\int\left(g^{P}+\epsilon \sum_{k, l} a_{k, l} H_{l}^{p_{k}} g^{p_{k}}\right) \log \left(1+\epsilon \sum_{k, l} \frac{a_{k, l} H_{l}^{p_{k}} g^{p_{k}}}{g^{P}}\right) .
\end{aligned}
$$

Expand $\log (1+x)$ in integrand,

$$
\begin{aligned}
& \log \left(1+\epsilon \sum_{k, l} \frac{a_{k, l} H_{l}^{p_{k}} g^{p_{k}}}{g^{P}}\right) \\
& \quad=\epsilon \sum_{k, l} \frac{a_{k, l} H_{l}^{p_{k}} g^{p_{k}}}{g^{P}}-\frac{\epsilon^{2}}{2} \frac{\left(\sum_{k, l} a_{k, l} H_{l}^{p_{k}} g^{p_{k}}\right)^{2}}{\left(g^{P}\right)^{2}}+o\left(\epsilon^{2}\right),
\end{aligned}
$$

Then

$$
\begin{aligned}
& D\left(g_{\epsilon} \| g\right) \\
& = \\
& \quad \int\left(g^{P}+\epsilon \sum_{k, l} a_{k, l} H_{l}^{p_{k}} g^{p_{k}}\right) \\
& \\
& \quad\left(\epsilon \sum_{k, l} \frac{a_{k, l} H_{l}^{p_{k}} g^{p_{k}}}{g^{P}}-\epsilon^{2} / 2 \frac{\left(\sum_{k, l} a_{k, l} H_{l}^{p_{k}} g^{p_{k}}\right)^{2}}{\left(g^{P}\right)^{2}}+o\left(\epsilon^{2}\right)\right) \\
& \quad= \\
& \frac{\epsilon^{2}}{2} \int \frac{\left(\sum_{k, l} a_{k, l} H_{l}^{p_{k}} g^{p_{k}}\right)^{2}}{g^{P}}+o\left(\epsilon^{2}\right)
\end{aligned}
$$

Now we are ready to compute the change after certain special perturbation on Gaussian distribution for TIN. The following theorem states the result of this perturbation method.

Theorem 4.5.1. For the symmetric Gaussian interference channel with cross channel gain a and power constrain p, Gaussian signalling $X_{i} \sim \mathcal{N}(0, p) i=1,2$ do not maximize TIN without power control

$$
I\left(X_{1} ; Y_{1}\right)+I\left(X_{2} ; Y_{2}\right)
$$

if there exists some $y \in\left[0,(1-r)^{2}\right]$ such that

$$
\frac{a^{4} r\left(2 r^{2}+a^{4} y\right)}{\left(r^{2}-a^{4} y\right)^{\frac{5}{2}}}+\frac{2 a^{2}\left(2-a^{2} y\right)}{\left(1+a^{2} y\right)^{\frac{5}{2}}}-\left(\frac{a^{4}\left(2+a^{4} y\right)}{\left(1-a^{4} y\right)^{\frac{5}{2}}}+\frac{(2+y)}{(1-y)^{\frac{5}{2}}}\right)>0
$$

where $r=\frac{1+a^{2} p}{1+p+a^{2} p}$.
Proof. See Appendix 4.B.
In theorem 4.5.1, numerical evidence suggests that setting $y=0$ is optimal. Then we have Gaussian is not optimal when $\frac{a^{2}}{1-a^{2}}>r$, or $2 a^{2}\left(1+a^{2} p\right)>1$. This is the same regime as the moderate interference in [6].

4.6 Z-interference channel corner point

Consider the Gaussian Z-interference channel

$$
\begin{aligned}
& Y_{1}=X_{1}+Z_{1} \\
& Y_{2}=a X_{1}+X_{2}+Z_{2}
\end{aligned}
$$

where $0<a<1, Z_{i} \sim \mathcal{N}(0,1)$ and the power constraints

$$
\mathrm{E}\left[X_{1}^{2}\right] \leq P_{1}, \quad \mathbb{E}\left[X_{2}^{2}\right] \leq P_{2}
$$

Since Y_{1} are independent of U_{2} and $U_{2}=\emptyset$ maximize all terms involving U_{2}, after having redundant conditions removed, the HanKobayashi region reduces to

$$
\begin{aligned}
R_{1} & \leq I\left(X_{1} ; Y_{1} \mid Q\right) \\
R_{2} & \leq I\left(X_{2} ; Y_{2} \mid U_{1}, Q\right) \\
R_{1}+R_{2} & \leq I\left(X_{1} ; Y_{1} \mid U_{1}, Q\right)+I\left(X_{2}, U_{1} ; Y_{2} \mid Q\right)
\end{aligned}
$$

for some $p(q) p\left(u_{1}, x_{1} \mid q\right) p\left(u_{2}, x_{2} \mid q\right)$.
It is clear that the maximal achievable rate for each communication pair $\left(X_{i}, Y_{i}\right)$ is $\frac{1}{2} \log \left(1+P_{i}\right), i=1,2$. It can be easily shown that $\left(\frac{1}{2} \log \left(1+P_{1}\right), \frac{1}{2} \log \left(1+\frac{P_{2}}{1+a^{2} P_{1}}\right)\right)$ is a corner point of the GZIC capacity region and it attains the sum-capacity. The other corner point of the capacity region is

$$
\begin{equation*}
\left(\frac{1}{2} \log \left(1+\frac{a^{2} P_{1}}{1+P_{2}}\right), \frac{1}{2} \log \left(1+P_{2}\right)\right) \tag{4.4}
\end{equation*}
$$

which is established in [6] and recently completed in [15]. [5] provides the slope at this corner point of Han-Kobayashi region with Gaussian signalling and power control. More precisely, [5] shows for all $\left(R_{1}, R_{2}\right)$ in Han-Kobayashi region with Gaussian signalling and power control, $\max R_{1}+\lambda R_{2}$ passes through the corner point (4.4) (i.e. this corner point is the maximizer of $\max R_{1}+\lambda R_{2}$) whenever

$$
\begin{equation*}
\lambda \geq \lambda_{c r}:=\max \left\{\frac{-\log a^{2}-\frac{1-a^{2}}{\left(1+a^{2} P_{1}+P_{2}\right)}}{\log \left(1+P_{2}\right)-\frac{P_{2}}{1+P_{2}}}, \frac{\left(1-a^{2}\right)\left(1+P_{2}\right)}{a^{2} P_{2}}\right\}+1 \tag{4.5}
\end{equation*}
$$

Regarding to the optimality of Han-Kobayashi region with Gaussian signalling and power control, we come up with the following hypothesis.

Hypothesis 1. For some choice of P_{1}, P_{2} there exists independent random vectors $\mathbf{X}_{1}, \mathbf{X}_{2} \in \mathbb{R}^{n}$ for some n, satisfying power constraints $\mathrm{E}\left(\left\|\mathbf{X}_{1}\right\|^{2}\right) \leq n P_{1}, \mathrm{E}\left(\left\|\mathbf{X}_{2}\right\|^{2}\right) \leq n P_{2}$, such that for some $\lambda \geq \lambda_{\text {cr }}$ (given by (4.5))

$$
\begin{align*}
& n \frac{\lambda-1}{2} \log \left(1+P_{2}\right)<(\lambda-1) h\left(\mathbf{X}_{2}+a \mathbf{X}_{1}+\mathbf{Z}\right) \\
& \quad-\lambda h\left(a \mathbf{X}_{1}+\mathbf{Z}\right)+h\left(\mathbf{X}_{1}+\mathbf{Z}\right) \tag{4.6}
\end{align*}
$$

Verification of the Hypothesis 1 can determine the optimality of Han-Kobayashi region with Gaussian signalling and power control.

Lemma 4.6.1. If Hypothesis 1 holds then (single-letter) Han-Kobayashi with Gaussian signaling and power control is not optimal.

Proof. Suppose there exists some $a, P_{1}, P_{2}, n, \lambda \geq \lambda_{c r}$, and independent random vectors $\mathbf{X}_{1}, \mathbf{X}_{2}$ satisfying power constraints such that

$$
\begin{aligned}
& n \frac{\lambda-1}{2} \log \left(1+P_{2}\right)+n \delta=(\lambda-1) h\left(\mathbf{X}_{2}+a \mathbf{X}_{1}+\mathbf{Z}\right) \\
& \quad-\lambda h\left(a \mathbf{X}_{1}+\mathbf{Z}\right)+h\left(\mathbf{X}_{1}+\mathbf{Z}\right)
\end{aligned}
$$

for some $\delta>0$.
Let $\hat{P}_{1}=P_{1}+Q_{1}$ be the true power constraint on the transmitters. Take the transmitted sequence to be $\hat{\mathbf{X}}_{1}=\mathbf{X}_{1}+\mathbf{U}_{1}$ where $\mathbf{U} \sim$ $\mathcal{N}\left(0, Q_{1} I\right)$ independent of \mathbf{X}_{1}. Notice that the $\lambda_{\text {cr }}$ for the parameters $\left(a, \hat{P}_{1}, P_{2}\right)$ is smaller than that of $\left(a, P_{1}, P_{2}\right)$; therefore the inequality $\lambda \geq \lambda_{c r}$ continues to hold for the new parameter set.

By using multi-letter Han-Kobayashi scheme one can achieve the weighted sum rate

$$
\begin{aligned}
& n\left(R_{1}+\lambda R_{2}\right) \\
= & I\left(\hat{\mathbf{X}}_{1}, \mathbf{X}_{2} ; \mathbf{Y}_{2}\right)+(\lambda-1) I\left(\mathbf{X}_{2} ; \mathbf{Y}_{2} \mid \mathbf{U}_{1}\right)-I\left(\hat{\mathbf{X}}_{1} ; \mathbf{Y}_{2} \mid \mathbf{U}_{1}, \mathbf{X}_{2}\right) \\
& +I\left(\hat{\mathbf{X}}_{1} ; \mathbf{Y}_{1} \mid \mathbf{U}_{1}\right) \\
= & h\left(\mathbf{X}_{2}+a \mathbf{U}_{1}+a \mathbf{X}_{1}+\mathbf{Z}\right)-h(\mathbf{Z})+(\lambda-1) h\left(\mathbf{X}_{2}+a \mathbf{X}_{1}+\mathbf{Z}\right) \\
& -\lambda h\left(a \mathbf{X}_{1}+Z\right)+h\left(\mathbf{X}_{1}+\mathbf{Z}\right) \\
= & h\left(\mathbf{X}_{2}+a \mathbf{U}_{1}+a \mathbf{X}_{1}+\mathbf{Z}\right)-h(\mathbf{Z})+n \frac{\lambda-1}{2} \log \left(1+P_{2}\right)+n \delta .
\end{aligned}
$$

Since $\lambda \geq \lambda_{c r}$, the corner point (4.4) attains maximal weighted sumrate of single-letter Han-Kobayashi with Gaussian signalling and power control

$$
\frac{\lambda-1}{2} \log \left(1+P_{2}\right)+\frac{1}{2} \log \left(1+a^{2}\left(Q_{1}+P_{1}\right)+P_{2}\right)
$$

Therefore to show the sub-optimality of the above expression it suffices to show that

$$
\frac{n}{2} \log 2 \pi e\left(1+a^{2}\left(Q_{1}+P_{1}\right)+P_{2}\right)-h\left(\mathbf{X}_{2}+a \mathbf{U}_{1}+a \mathbf{X}_{1}+\mathbf{Z}\right) \rightarrow 0
$$

as $Q_{1} \rightarrow \infty$.

Clearly since

$$
\begin{aligned}
h\left(\mathbf{X}_{2}+a \mathbf{U}_{1}+a \mathbf{X}_{1}+\mathbf{Z}\right) & \geq h\left(a \mathbf{U}_{1}+\mathbf{Z}\right) \\
& =\frac{n}{2} \log 2 \pi e\left(1+a^{2} Q_{1}\right)
\end{aligned}
$$

we are done.
Lemma 4.6.2. If Hypothesis 1 is not true then the title=When $a=$ $b=0.07$,(single-letter) Han-Kobayashi with Gaussian signaling (and power control) is optimal.

Proof. Clearly by Fano's inequality we obtain that any achievable rates R_{1}, R_{2} must satisfy

$$
\begin{aligned}
& R_{1}+\lambda R_{2} \\
& \leq \lim _{n} \frac{1}{n} \sup _{\mathbf{X}_{1}, \mathbf{X}_{2}} I\left(\mathbf{X}_{1} ; \mathbf{Y}_{1}\right)+\lambda I\left(\mathbf{X}_{2} ; \mathbf{Y}_{2}\right) \\
& \leq \\
& \lim _{n} \frac{1}{n}\left(\sup h\left(\mathbf{Y}_{2}\right)-h\left(\mathbf{Y}_{1} \mid \mathbf{X}_{1}\right)\right. \\
& \left.\quad+\sup \left((\lambda-1) h\left(\mathbf{Y}_{2}\right)-\lambda h\left(\mathbf{Y}_{2} \mid \mathbf{X}_{2}\right)+h\left(\mathbf{Y}_{1}\right)\right)\right) \\
& \stackrel{(a)}{\leq} \frac{1}{2} \log \left(1+P_{2}+a^{2} P_{1}\right)+\frac{\lambda-1}{2} \log \left(1+P_{2}\right)
\end{aligned}
$$

and the last expression matches the sum-rate of the (single-letter) HanKobayashi with Gaussian signaling and power control. Inequality (a) follows since the hypothesis is false.

Remark 4.6.1. The inequality in Hypothesis 1 does not hold if either $\mathbf{X}_{2} \sim \mathcal{N}\left(0, P_{2} I\right)$ or if $\mathbf{X}_{1} \sim \mathcal{N}\left(0, P_{1} I\right)$. It is immediate that when $\mathbf{X}_{1} \sim$ $\mathcal{N}\left(0, P_{1} I\right)$, the maximizing choice of \mathbf{X}_{2} is $\mathbf{X}_{2} \sim \mathcal{N}\left(0, P_{2} I\right)$; and then one can verify that the inequality does not hold when $\mathbf{X}_{2} \sim \mathcal{N}\left(0, P_{2} I\right)$.

From the concavity of $h\left(\sqrt{t} \mathbf{X}_{1}+\mathbf{Z}\right)$ in t [16],

$$
(\lambda-1) h\left(\sqrt{\frac{a^{2}}{1+P_{2}}} \mathbf{X}_{1}+\mathbf{Z}\right)+h\left(\mathbf{X}_{1}+\mathbf{Z}\right) \leq \lambda h\left(\sqrt{\frac{\lambda-1}{\lambda} \frac{a^{2}}{1+P_{2}}+\frac{1}{\lambda}} \mathbf{X}_{1}+\mathbf{Z}\right)
$$

Since $\lambda \geq \frac{1-a^{2}+P_{2}}{a^{2} P_{2}}$,

$$
\frac{\lambda-1}{\lambda} \frac{a^{2}}{1+P_{2}}+\frac{1}{\lambda} \leq a^{2} .
$$

As $h\left(\sqrt{t} \mathbf{X}_{1}+\mathbf{Z}\right)$ is increasing in t, it follows

$$
\begin{aligned}
(\lambda & -1) h\left(a \mathbf{X}_{1}+\sqrt{1+P_{2}} \mathbf{Z}\right)-\lambda h\left(a \mathbf{X}_{1}+\mathbf{Z}\right)+h\left(\mathbf{X}_{1}+\mathbf{Z}\right) \\
& \leq \frac{n}{2} \log \left(1+P_{2}\right)+\lambda h\left(\sqrt{\frac{\lambda-1}{\lambda} \frac{a^{2}}{1+P_{2}}+\frac{1}{\lambda}} \mathbf{X}_{1}+\mathbf{Z}\right)-\lambda h\left(a \mathbf{X}_{1}+\mathbf{Z}\right) \\
& \leq \frac{n}{2} \log \left(1+P_{2}\right) .
\end{aligned}
$$

Remark 4.6.2. An attempt to prove the converse of Hypothesis 1 is a path argument. For any $\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$ with second moment $\left(P_{1}, P_{2}\right)$, consider new input random variables $\left(\mathbf{X}_{1 t}, \mathbf{X}_{2 t}\right)=\left(\sqrt{1-t} \mathbf{X}_{1}, \sqrt{1-t} \mathbf{X}_{2}+\right.$ $\left.\sqrt{t P_{2}} \mathbf{Z}\right)$. The converse of Hypothesis 1 follows if right hand side of (4.6) is increasing in t. However this is not true for certain $\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)$.

4.7 Discussion on the weighted sum-rate

Maximizers of weighted sum-rate can be used to characterize the boundary of Han-Kobayashi region. We are interested in the question that whether Gaussian signalling maximizes the weighted sum-rate for any $\lambda>1$. (When $\lambda \leq 1$, the maximizing boundary point is the corner point $\left(\frac{1}{2} \log \left(1+P_{1}\right), \frac{1}{2} \log \left(1+\frac{P_{2}}{1+a^{2} P_{1}}\right)\right)$, which is obtained with Gaussian signalling.)

Consider the weighted sum-rate $R_{1}+\lambda R_{2}, \lambda>1$. Using FourierMotzkin elimination as did in finding the Han-Kobayashi sum-rate, we have

$$
\begin{aligned}
& R_{1}+\lambda R_{2} \leq I\left(X_{1} ; Y_{1} \mid Q\right)+\lambda I\left(X_{2} ; Y_{2} \mid U_{1}, Q\right) \\
& R_{1}+\lambda R_{2} \leq I\left(X_{1} ; Y_{1} \mid U_{1}, Q\right)+I\left(X_{2}, U_{1} ; Y_{2} \mid Q\right)+(\lambda-1) I\left(X_{2} ; Y_{2} \mid U_{1}, Q\right)
\end{aligned}
$$

As $I\left(U_{1} ; Y_{1}\right) \geq I\left(U_{1}, Y_{2}\right)$, the first inequality is redundant. Thus the weighted sum-rate is

$$
\begin{aligned}
& R_{1}+\lambda R_{2} \\
\leq & I\left(X_{1} ; Y_{1} \mid U_{1}, Q\right)+I\left(X_{2}, U_{1} ; Y_{2} \mid Q\right)+(\lambda-1) I\left(X_{2} ; Y_{2} \mid U_{1}, Q\right) \\
= & h\left(Y_{2} \mid Q\right)-h\left(Z_{1} \mid Q\right)+h\left(X_{1}+Z_{1} \mid U_{1}, Q\right)-\lambda h\left(a X_{1}+Z_{2} \mid U_{1}, Q\right)
\end{aligned}
$$

$$
\begin{align*}
& \quad+(\lambda-1) h\left(Y_{2} \mid U_{1}, Q\right) \\
& =\mathcal{C}\left[h\left(Y_{2}\right)-h\left(Z_{1}\right)+\mathcal{C}_{X_{1}}\left[(\lambda-1) h\left(Y_{2}\right)-\lambda h\left(a X_{1}+Z_{2}\right)+h\left(X_{1}+Z_{1}\right)\right]\right] . \tag{4.7}
\end{align*}
$$

The last equality makes use of nested concave envelops notation to remove auxiliaries. Keep in mind the inner concave envelop is taken over X_{1}.

Use Gaussian signalling as input, (4.7) becomes

$$
\begin{align*}
\mathcal{C}_{P_{1}, P_{2}} & {\left[\frac{1}{2} \log \left(1+a^{2} P_{1}+P_{2}\right)\right.} \\
& \left.+\max _{x \leq P_{1}}\left[\frac{\lambda-1}{2} \log \frac{1+a^{2} x+P_{2}}{1+a^{2} x}+\frac{1}{2} \log \frac{1+x}{1+a^{2} x}\right]\right] . \tag{4.8}
\end{align*}
$$

By differentiating the function in inner bracket of (4.8) with respect to x, we can find that the behaviour of the function depends on λ. When $\lambda \geq \frac{1-a^{2}+P_{2}}{a^{2} P_{2}}$, it is decreasing in $(0,+\infty)$. When $\frac{1-a^{2}+P_{2}}{P_{2}}<\lambda<$ $\frac{1-a^{2}+P_{2}}{a^{2} P_{2}}$, it is increasing in $\left(0, \frac{\frac{1-a^{2}+P_{2}}{a^{2} P_{2}}-\lambda}{\lambda-\frac{1-a^{2}+P_{2}}{P_{2}}}\right)$ and then decrease. When $\lambda \leq \frac{1-a^{2}+P_{2}}{P_{2}}$, it is increasing in $(0,+\infty)$. We therefore can evaluate the maximum and compare it with non Gaussian signalling.

An observation is that the function inside inner concave envelope in (4.7) is not maximized by Gaussian signalling. A counterexample is $\lambda=3.1641, a=0.6759, P_{1}=4.6547, P_{2}=0.3417$. The inputs are mixed Gaussian distributions $X_{1} \sim 0.5 * \mathcal{N}(1.0374,2.2836)+0.5 *$ $\mathcal{N}(-1.0374,4.8735), X_{2} \sim 0.5 * \mathcal{N}(0.3505,0.4376)-0.1752$.

Figure 4.1 plots the weighted sum-rate (4.8) without concave envelope for $\lambda=3.1641, a=0.6759$. When $P_{1} \geq 4.6547, P_{2}=0.3417$, it can be observed that the function is not concave in $\left(P_{1}, P_{2}\right)$. Thus power control is needed. Although the counterexample outperforms Gaussian signalling without power control, simulation shows that it is still less than Gaussian signalling with power control. This indicates that to prove Gaussian signalling is optimal, one should not try to maximize the leading term $h\left(Y_{2}\right)-h\left(Z_{1}\right)$ (this term is maximized by Gaussian) and the rest concave envelop function separately.

Figure 4.1: Gaussian signalling without power control

Appendix

4.A Proof of Lemma 4.3.1

Proof of Lemma 4.3.1. First, consider the expression inside concave envelop.

$$
\begin{aligned}
& I\left(X_{1} ; T_{1} \mid T_{2} S_{1} X_{2}\right)-I\left(X_{1} ; Y_{2} \mid T_{2} S_{1} X_{2}\right) \\
= & I\left(X_{1} ; T_{1} \mid S_{1}\right)-I\left(X_{1} ; Y_{2} \mid T_{2} S_{1} X_{2}\right) \\
= & \left.I\left(X_{1} ; T_{1} S_{1}\right)-I\left(X_{1} ; Y_{2} S_{1} \mid T_{2} X_{2}\right) \quad \text { (since } I\left(X_{1} ; S_{1}\right)=I\left(X_{1} ; S_{1} \mid T_{2} X_{2}\right)\right) \\
= & I\left(X_{1} ; X_{1}+\eta_{1} \dot{Z}_{1}, X_{1}+\mu_{1} \ddot{Z}_{2}\right) \\
& \quad-I\left(X_{1} ; X_{1}+\mu_{1} \ddot{Z}_{2}, X_{2}+a X_{1}+\rho_{21} \dot{Z}_{2}+\rho_{22} \ddot{Z}_{2}+\rho_{23} \tilde{Z}_{2} \mid \dot{Z}_{2}, X_{2}\right) \\
= & I\left(X_{1} ; X_{1}+\eta_{1} \dot{Z}_{1}, X_{1}+\mu_{1} \ddot{Z}_{2}\right)-I\left(X_{1} ; X_{1}+\mu_{1} \ddot{Z}_{2}, a X_{1}+\rho_{22} \ddot{Z}_{2}+\rho_{23} \tilde{Z}_{2}\right) \\
= & I\left(X_{1} ; X_{1}+\eta_{1} \dot{Z}_{1}, X_{1}+\mu_{1} \ddot{Z}_{2}\right)-I\left(X_{1} ; X_{1}+\mu_{1} \ddot{Z}_{2},\left(\rho_{22}-a \mu_{1}\right) \ddot{Z}_{2}+\rho_{23} \tilde{Z}_{2}\right) \\
= & I\left(X_{1} ; X_{1}+\eta_{1} \dot{Z}_{1}, X_{1}+\mu_{1} \ddot{Z}_{2}\right)-I\left(X_{1} ; X_{1}+\mu_{1} \ddot{Z}_{2} \mid\left(\rho_{22}-a \mu_{1}\right) \ddot{Z}_{2}+\rho_{23} \tilde{Z}_{2}\right) .
\end{aligned}
$$

As $X_{1} \rightarrow T_{1} \rightarrow S_{1}$ or $X_{1} \rightarrow S_{1} \rightarrow T_{1}$, the first term, when using Gaussian input, is

$$
I\left(X_{1} ; X_{1}+\eta_{1} \dot{Z}_{1}, X_{1}+\mu_{1} \ddot{Z}_{2}\right)=\frac{1}{2} \log \left(1+\frac{P_{1}}{\eta_{1}^{2} \wedge \mu_{1}^{2}}\right) .
$$

Now to simplify the second term, consider α such that
$\operatorname{Cov}\left[X_{1}+\mu_{1} \ddot{Z}_{2}-\alpha\left(\left(\rho_{22}-a \mu_{1}\right) \ddot{Z}_{2}+\rho_{23} \tilde{Z}_{2}\right),\left(\rho_{22}-a \mu_{1}\right) \ddot{Z}_{2}+\rho_{23} \tilde{Z}_{2}\right]=0$
or

$$
\begin{equation*}
\alpha=\frac{\mu_{1}\left(\rho_{22}-a \mu_{1}\right)}{\left(\rho_{22}-a \mu_{1}\right)^{2}+\rho_{23}^{2}} . \tag{4.9}
\end{equation*}
$$

Uncorrelated Gaussian random variables are independent. Thus

$$
\begin{aligned}
& I\left(X_{1} ; X_{1}+\mu_{1} \ddot{Z}_{2} \mid\left(\rho_{22}-a \mu_{1}\right) \ddot{Z}_{2}+\rho_{23} \tilde{Z}_{2}\right) \\
= & I\left(X_{1} ; X_{1}+\mu_{1} \ddot{Z}_{2}-\alpha\left(\left(\rho_{22}-a \mu_{1}\right) \ddot{Z}_{2}+\rho_{23} \tilde{Z}_{2}\right) \mid\left(\rho_{22}-a \mu_{1}\right) \ddot{Z}_{2}+\rho_{23} \tilde{Z}_{2}\right) \\
= & I\left(X_{1} ; X_{1}+\frac{\mu_{1} \rho_{23}^{2}}{\left(\rho_{22}-a \mu_{1}\right)^{2}+\rho_{23}^{2}} \ddot{Z}_{2}-\frac{\mu_{1} \rho_{23}\left(\rho_{22}-a \mu_{1}\right)}{\left(\rho_{22}-a \mu_{1}\right)^{2}+\rho_{23}^{2}} \tilde{Z}_{2}\right) \\
= & \frac{1}{2} \log \left(1+P_{1} \frac{\left(\rho_{22}-a \mu_{1}\right)^{2}+\rho_{23}^{2}}{\mu_{1}^{2} \rho_{23}^{2}}\right) .
\end{aligned}
$$

Note that when Gaussian signalling is used, the expression is either concave (when positive) or convex (when negative) as a result of stochastic degradation of Gaussian noise. Thus

$$
\begin{aligned}
& \mathcal{C} {\left[I\left(X_{1} ; T_{1} \mid T_{2} S_{1} X_{2}\right)-I\left(X_{1} ; Y_{2} \mid T_{2} S_{1} X_{2}\right)\right] } \\
& \quad=\left[\frac{1}{2} \log \left(1+\frac{P_{1}}{\eta_{1}^{2} \wedge \mu_{1}^{2}}\right)-\frac{1}{2} \log \left(1+P_{1} \frac{\left(\rho_{22}-a \mu_{1}\right)^{2}+\rho_{23}^{2}}{\mu_{1}^{2} \rho_{23}^{2}}\right)\right]_{+}
\end{aligned}
$$

Similar for the other concave envelop,

$$
\begin{aligned}
\mathcal{C} & {\left[I\left(X_{2} ; T_{2} \mid T_{1} S_{2} X_{1}\right)-I\left(X_{2} ; Y_{1} \mid T_{1} S_{2} X_{1}\right)\right] } \\
& =\left[\frac{1}{2} \log \left(1+\frac{P_{2}}{\eta_{2}^{2} \wedge \mu_{2}^{2}}\right)-\frac{1}{2} \log \left(1+P_{2} \frac{\left(\rho_{12}-b \mu_{2}\right)^{2}+\rho_{13}^{2}}{\mu_{2}^{2} \rho_{13}^{2}}\right)\right]_{+} .
\end{aligned}
$$

Now evaluate the leading terms. By the same technique in (4.9) and differential entropy of Gaussian random variables, it follows

$$
\begin{aligned}
& I\left(X_{1} ; Y_{1} T_{1} \mid S_{2}\right) \\
= & I\left(X_{1} ; X_{1}+b X_{2}+\rho_{11} \dot{Z}_{1}+\rho_{12} \ddot{Z}_{1}+\rho_{13} \tilde{Z}_{1}, X_{1}+\eta_{1} \dot{Z}_{1} \mid X_{2}+\mu_{2} \ddot{Z}_{1}\right) \\
= & I\left(X_{1} ; X_{1}+b X_{2}+\rho_{11} \dot{Z}_{1}+\rho_{12} \ddot{Z}_{1}+\rho_{13} \tilde{Z}_{1}-\frac{b P_{2}+\rho_{12} \mu_{2}}{P_{2}+\mu_{2}^{2}}\left(X_{2}+\mu_{2} \ddot{Z}_{1}\right),\right. \\
& \left.X_{1}+\eta_{1} \dot{Z}_{1}\right) \\
= & I\left(X_{1} ; X_{1}+\frac{b \mu_{2}^{2}-\rho_{12} \mu_{2}}{P_{2}+\mu_{2}^{2}} X_{2}+\rho_{11} \dot{Z}_{1}+\frac{P_{2} \rho_{12}-b P_{2} \mu_{2}}{P_{2}+\mu_{2}^{2}} \ddot{Z}_{1}+\rho_{13} \tilde{Z}_{1}, X_{1}+\eta_{1} \dot{Z}_{1}\right) \\
= & \frac{1}{2} \log \frac{\operatorname{det}\left(K_{1}\right)}{\operatorname{det}\left(N_{1}\right)},
\end{aligned}
$$

where

$$
K_{1}=\left(\begin{array}{cc}
P_{1}+\frac{\left(b \mu_{2}-\rho_{12}\right)^{2}}{P_{2}+\mu_{2}^{2}} P_{2}+\rho_{11}^{2}+\rho_{13}^{2} & P_{1}+\eta_{1} \rho_{11} \\
P_{1}+\eta_{1} \rho_{11} & P_{1}+\eta_{1}^{2}
\end{array}\right)
$$

$$
N_{1}=\left(\begin{array}{cc}
\frac{\left(b \mu_{2}-\rho_{12}\right)^{2}}{P_{2}+\mu_{2}^{2}} P_{2}+\rho_{11}^{2}+\rho_{13}^{2} & \eta_{1} \rho_{11} \\
\eta_{1} \rho_{11} & \eta_{1}^{2}
\end{array}\right) .
$$

So

$$
\begin{aligned}
& I\left(X_{1} ; Y_{1} T_{1} \mid S_{2}\right) \\
= & \frac{1}{2} \log \frac{\frac{\left(b \mu_{2}-\rho_{12}\right)^{2}\left(P_{1}+\eta_{1}^{2}\right)}{P_{2}+\mu_{2}^{2}} P_{2}+P_{1}-\rho_{12}^{2} P_{1}+P_{1} \eta_{1}^{2}-2 \eta_{1} \rho_{11} P_{1}+\eta_{1}^{2} \rho_{13}^{2}}{\frac{\left(b \mu_{2}-\rho_{12}\right)^{2} \eta_{1}^{2}}{P_{2}+\mu_{2}^{2}} P_{2}+\rho_{13}^{2} \eta_{1}^{2}} \\
= & \frac{1}{2} \log \left(1+P_{1}\left(\frac{1}{\eta_{1}^{2}}+\frac{1}{\frac{\left(b \mu_{2}-\rho_{12}\right)^{2}}{P_{2}+\mu_{2}^{2}} P_{2}+\rho_{13}^{2}}\left(\frac{\rho_{11}}{\eta_{1}}-1\right)^{2}\right)\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& I\left(X_{2} ; Y_{2} T_{2} \mid S_{1}\right) \\
= & \frac{1}{2} \log \left(1+P_{2}\left(\frac{1}{\eta_{2}^{2}}+\frac{1}{\frac{\left(a \mu_{1}-\rho_{22}\right)^{2}}{P_{1}+\mu_{1}^{2}} P_{1}+\rho_{23}^{2}}\left(\frac{\rho_{21}}{\eta_{2}}-1\right)^{2}\right)\right) .
\end{aligned}
$$

Hence we have the outer bound (4.1).

4.B Proof of Theorem 4.5.1

Proof of Theorem 4.5.1. Consider the following perturbed distribution on X_{1} and X_{2},

$$
\begin{aligned}
X_{1} & \sim g^{p}(x)+\epsilon c H_{1}^{p}(x) g^{p}(x)+\epsilon \alpha H_{2}^{p_{1}}(x) g^{p_{1}}(x)+\epsilon \delta H_{4}^{p}(x) g^{p}(x), \\
X_{2} & \sim g^{p}(x)-\epsilon b H_{1}^{p}(x) g^{p}(x)+\epsilon \beta H_{2}^{p_{2}}(x) g^{p_{2}}(x)+\epsilon \delta H_{4}^{p}(x) g^{p}(x) .
\end{aligned}
$$

The above probability density function (pdf) is valid for $\delta>0$ and ϵ small enough so that value of pdf at any x is positive. Also, orthogonal property of Hermite polynomial guarantees the integration of the pdf is 1 . We may assume δ is negligible compared to α, β, b, c and thus omit δ terms.

First, use Lemma 4.5.1 to compute pdf of sums of random variables.

$$
\begin{aligned}
& a X_{2}+Z \sim \\
& \left(g^{a^{2} p}-\epsilon b H_{1}^{a^{2} p} g^{a^{2} p}+\epsilon \beta H_{2}^{a^{2} p_{2}} g^{a^{2} p_{2}}+\epsilon \delta H_{4}^{a^{2} p} g^{a^{2} p}\right) * g^{1} \\
& =g^{a^{2} p+1}-\epsilon b \frac{\sqrt{a^{2} p}}{\sqrt{a^{2} p+1}} H_{1}^{a^{2} p+1} g^{a^{2} p+1}+\epsilon \beta \frac{a^{2} p_{2}}{a^{2} p_{2}+1} H_{2}^{a^{2} p_{2}+1} g^{a^{2} p_{2}+1} . \\
& a X_{1}+Z \sim \\
& \left(g^{a^{2} p}+\epsilon c H_{1}^{a^{2} p} g^{a^{2} p}+\epsilon \alpha H_{2}^{a^{2} p_{1}} g^{a^{2} p_{1}}+\epsilon \delta H_{4}^{a^{2} p} g^{a^{2} p}\right) * g^{1} \\
& =g^{a^{2} p+1}+\epsilon c \frac{\sqrt{a^{2} p}}{\sqrt{a^{2} p+1}} H_{1}^{a^{2} p+1} g^{a^{2} p+1}+\epsilon \alpha \frac{a^{2} p_{1}}{a^{2} p_{1}+1} H_{2}^{a^{2} p_{1}+1} g^{a^{2} p_{1}+1} . \\
& X_{1}+a X_{2}+Z \sim \\
& \left(g^{p}(x)+\epsilon c H_{1}^{p}(x) g^{p}(x)+\epsilon \alpha H_{2}^{p_{1}}(x) g^{p_{1}}(x)\right) \\
& *\left(g^{a^{2} p+1}-\epsilon b \frac{\sqrt{a^{2} p}}{\sqrt{a^{2} p+1}} H_{1}^{a^{2} p+1} g^{a^{2} p+1}\right. \\
& \left.+\epsilon \beta \frac{a^{2} p_{2}}{a^{2} p_{2}+1} H_{2}^{a^{2} p_{2}+1} g^{a^{2} p_{2}+1}\right) \\
& =g^{p+a^{2} p+1}+\epsilon\left[c \sqrt{\frac{p}{p+a^{2} p+1}} H_{1}^{p+a^{2} p+1} g^{p+a^{2} p+1}\right. \\
& +\alpha \frac{p_{1}}{p_{1}+a^{2} p+1} H_{2}^{p_{1}+a^{2} p+1} g^{p_{1}+a^{2} p+1} \\
& -b \sqrt{\frac{a^{2} p}{p+a^{2} p+1}} H_{1}^{p+a^{2} p+1} g^{p+a^{2} p+1} \\
& \left.+\beta \frac{a^{2} p_{2}}{p+a^{2} p_{2}+1} H_{2}^{p+a^{2} p_{2}+1} g^{p+a^{2} p_{2}+1}\right] \\
& +\epsilon^{2}\left[-b c \frac{\sqrt{a^{2} p}}{\sqrt{p+a^{2} p+1}} \sqrt{\frac{2 p}{p+a^{2} p+1}} H_{2}^{p+a^{p}+1} g^{p+a^{p}+1}\right. \\
& +\beta c \frac{a^{2} p_{2} \sqrt{3 p}}{\left(p+a^{2} p_{2}+1\right)^{3 / 2}} H_{3}^{p+a^{2} p_{2}+1} g^{p+a^{2} p_{2}+1} \\
& -\alpha b \frac{\sqrt{a^{2} p} \sqrt{3} p_{1}}{\left(1+a^{2} p+p_{1}\right)^{3 / 2}} g^{p_{1}+a^{p}+1} H_{3}^{p_{1}+a^{p}+1} \\
& \left.+\alpha \beta \frac{a^{2} p_{2} p_{1} \sqrt{6}}{\left(p_{1}+a^{2} p_{2}+1\right)^{2}} g^{p_{1}+a^{2} p_{2}+1} H_{4}^{p_{1}+a^{2} p_{2}+1}\right] .
\end{aligned}
$$

$$
\begin{aligned}
& X_{2}+a X_{1}+Z \\
& \begin{aligned}
&\left(g^{p}(x)-\epsilon b H_{1}^{p}(x) g^{p}(x)+\epsilon \beta H_{2}^{p_{2}}(x) g^{p_{2}}(x)\right) \\
& *\left(g^{a^{2} p+1}\right.+\epsilon c \frac{\sqrt{a^{2} p}}{\sqrt{a^{2} p+1}} H_{1}^{a^{2} p+1} g^{a^{2} p+1} \\
&\left.+\epsilon \alpha \frac{a^{2} p_{1}}{a^{2} p_{1}+1} H_{2}^{a^{2} p_{1}+1} g^{a^{2} p_{1}+1}\right) \\
&=g^{p+a^{2} p+1}+ \epsilon\left[-b \sqrt{\frac{p}{p+a^{2} p+1}} H_{1}^{p+a^{2} p+1} g^{p+a^{2} p+1}\right. \\
&+\beta \frac{p_{2}}{p_{2}+a^{2} p+1} H_{2}^{p_{2}+a^{2} p+1} g^{p_{2}+a^{2} p+1} \\
&+c \sqrt{\frac{a^{2} p}{p+a^{2} p+1}} H_{1}^{p+a^{2} p+1} g^{p+a^{2} p+1} \\
&\left.+\alpha \frac{a^{2} p_{1}}{p+a^{2} p_{1}+1} H_{2}^{p+a^{2} p_{1}+1} g^{p+a^{2} p_{1}+1}\right] \\
&+\epsilon^{2}\left[\begin{array}{rc}
& \frac{\sqrt{a^{2} p}}{\sqrt{p+a^{2} p+1}} \sqrt{\frac{2 p+a^{2} p+1}{p}} H_{2}^{p+a^{p}+1} g^{p+a^{p}+1} \\
& \quad \alpha b \frac{a^{2} p_{1} \sqrt{3 p}}{\left(p+a^{2} p_{1}+1\right)^{3 / 2}} H_{3}^{p+a^{2} p_{1}+1} g^{p+a^{2} p_{1}+1} \\
& +\beta c \frac{\sqrt{a^{2} p} \sqrt{3} p_{2}}{\left(1+a^{2} p+p_{2}\right)^{3 / 2}} g^{p_{2}+a^{p}+1} H_{3}^{p_{2}+a^{p}+1} \\
& \left.+\alpha \beta \frac{a^{2} p_{2} p_{1} \sqrt{6}}{\left(p_{1}+a^{2} p_{2}+1\right)^{2}} g^{p_{1}+a^{2} p_{2}+1} H_{4}^{p_{1}+a^{2} p_{2}+1}\right] .
\end{array}\right.
\end{aligned} .
\end{aligned}
$$

Then, we compute change in differential entropy

$$
\begin{aligned}
& h\left(X_{1}+a X_{2}+Z_{1}\right)-h\left(g^{p+a^{2} p+1}\right) \\
= & -D\left(g_{\epsilon} \| g\right)+\frac{1}{2} \int \frac{x}{p+a^{2} p+1}\left(g_{\epsilon}(x)-g(x)\right) \mathrm{d} x \\
= & -\frac{\epsilon^{2}}{2} \int \frac{1}{g^{p+a^{2} p+1}}\left[\sqrt{\frac{p}{p+a^{2} p+1}}(c-a b) g^{p+a^{2} p+1} H_{1}^{p+a^{2} p+1}\right. \\
& \left.+\frac{\beta a^{2} p_{2}}{p+a^{2} p_{2}+1} g^{p+a^{2} p_{2}+1} H_{2}^{p+a^{2} p+1}+\frac{\alpha p_{1}}{p_{1}+a^{2} p_{1}} g^{p_{1}+a^{2} p+1} H_{2}^{p_{1}+a^{2} p+1}\right]^{2} \\
& +\frac{\epsilon}{2}\left[\frac{\sqrt{2} \alpha p_{1}}{p+a^{2} p+1}+\frac{\sqrt{2} \beta a^{2} p_{2}}{p+a^{2} p+1}\right]-\frac{\epsilon^{2}}{2}\left(\frac{2 a p b c}{p+a^{2} p+1}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& h\left(a X_{2}+Z_{1}\right)-h\left(g^{a^{2} p+1}\right) \\
= & -D\left(g_{\epsilon} \| g\right)+1 / 2 \int \frac{x}{p+a^{2} p+1}\left(g_{\epsilon}-g\right) \\
= & -\frac{\epsilon^{2}}{2} \int \frac{1}{g^{1+a^{2} p}}\left[-b \frac{\sqrt{a^{2} p}}{\sqrt{a^{2} p+1}} H_{1}^{a^{2} p+1} g^{a^{2} p+1}+\frac{\beta a^{2} p_{2}}{a^{2} p_{2}+1} H_{2}^{a^{2} p_{2}+1} g^{a^{2} p_{2}+1}\right]^{2} \\
& +\frac{\epsilon}{2} \frac{\sqrt{2} \beta a^{2} p_{2}}{1+a^{2} p} .
\end{aligned}
$$

Hence TIN total increment after perturbation is

$$
\begin{aligned}
& \Delta \\
&=- \frac{\epsilon^{2}}{2} \int \frac{1}{g^{p+a^{2} p+1}}\left(\left[\sqrt{\frac{p}{p+a^{2} p+1}}(c-a b) g^{p+a^{2} p+1} H_{1}^{p+a^{2} p+1}\right.\right. \\
&\left.+\frac{\beta a^{2} p_{2}}{p+a^{2} p_{2}+1} g^{p+a^{2} p_{2}+1} H_{2}^{p+a^{2} p_{2}+1}+\frac{\alpha p_{1}}{p_{1}+a^{2} p+1} g^{p_{1}+a^{2} p+1} H_{2}^{p_{1}+a^{2} p+1}\right]^{2} \\
&+\left[-\sqrt{\frac{p}{p+a^{2} p+1}}(-b+a c) g^{p+a^{2} p+1} H_{1}^{p+a^{2} p+1}\right. \\
&\left.\left.+\frac{\alpha a^{2} p_{1}}{p+a^{2} p_{1}+1} g^{p+a^{2} p_{1}+1} H_{2}^{p+a^{2} p_{1}+1}+\frac{\beta p_{2}}{p_{2}+a^{2} p+1} g^{p_{2}+a^{2} p+1} H_{2}^{p_{2}+a^{2} p+1}\right]^{2}\right) \\
&+\frac{\epsilon^{2}}{2} \int \frac{1}{g^{1+a^{2} p}}\left(\left[-b \frac{\sqrt{a^{2} p}}{\sqrt{a^{2} p+1}} H_{1}^{a^{2} p+1} g^{a^{2} p+1}+\frac{\beta a^{2} p_{2}}{a^{2} p_{2}+1} H_{2}^{a^{2} p_{2}+1} g^{a^{2} p_{2}+1}\right]^{2}\right. \\
&\left.+\left[c \frac{\sqrt{a^{2} p}}{\sqrt{a^{2} p+1}} H_{1}^{a^{2} p+1}(x) g^{a^{2} p+1}(x)+\frac{\alpha a^{2} p_{1}}{a^{2} p_{1}+1} H_{2}^{a^{2} p_{1}+1}(x) g^{a^{2} p_{1}+1}(x)\right]^{2}\right) \\
&+ \epsilon \\
& \sqrt{2} {\left[\frac{\left(\alpha p_{1}+\beta p_{2}\right)\left(1+a^{2}\right)}{p+a^{2} p+1}-\frac{a^{2}\left(\alpha p_{1}+\beta p_{2}\right)}{1+a^{2} p}\right]-\epsilon^{2}\left(\frac{2 a p b c}{p+a^{2} p+1}\right) }
\end{aligned}
$$

Note $\int g^{P}(x) f_{\text {odd }}(x)=0$ for odd function $f_{\text {odd }}(x)$. Also, it is easy to verify

$$
\frac{g^{P_{1}} g^{P_{2}}}{g^{P}}=\frac{P}{\sqrt{P_{1} P+P_{2} P-P_{1} P_{2}}} g^{\frac{P_{1} P_{2} P}{P_{1} P+P_{2} P-P_{1} P_{2}}} .
$$

We can simplify the increment.

$$
=-\frac{\epsilon^{2}}{2}\left(\frac{\beta^{2} a^{4} p_{2}^{2}}{\left(p+a^{2} p_{2}+1\right)^{2}} \frac{2\left(1+a^{2} p+p\right)^{3}+\left(1+a^{2} p+p\right) a^{4}\left(p-p_{2}\right)^{2}}{2 \sqrt{\left(1+a^{2} p_{2}+p\right)\left(1+p+2 a^{2} p-a^{2} p_{2}\right)^{5}}}\right.
$$

$$
\begin{aligned}
& +\frac{\alpha^{2} p_{1}^{2}}{\left(p_{1}+a^{2} p+1\right)^{2}} \frac{2\left(1+a^{2} p+p\right)^{3}+\left(1+a^{2} p+p\right)\left(p-p_{1}\right)^{2}}{2 \sqrt{\left(1+a^{2} p+p_{1}\right)\left(1+a^{2} p+2 p-p_{1}\right)^{5}}} \\
& +\frac{2 \beta a^{2} p_{2} \alpha p_{1}\left(1+a^{2} p+p\right)\left[2\left(1+a^{2} p+p\right)^{2}+\left(p_{1}-p\right) a^{2}\left(p_{2}-p\right)\right]}{2 \sqrt{\left[\left(1+a^{2} p+p\right)^{2}-a^{2}\left(p_{2}-p\right)\left(p_{1}-p\right)\right]^{5}}} \\
& +\frac{\alpha^{2} a^{4} p_{1}^{2}}{\left(p+a^{2} p_{1}+1\right)^{2}} \frac{2\left(1+a^{2} p+p\right)^{3}+\left(1+a^{2} p+p\right) a^{4}\left(p-p_{1}\right)^{2}}{2 \sqrt{\left(1+a^{2} p_{1}+p\right)\left(1+p+2 a^{2} p-a^{2} p_{1}\right)^{5}}} \\
& +\frac{\beta^{2} p_{2}^{2}}{\left(p_{2}+a^{2} p+1\right)^{2}} \frac{2\left(1+a^{2} p+p\right)^{3}+\left(1+a^{2} p+p\right)\left(p-p_{2}\right)^{2}}{2 \sqrt{\left(1+a^{2} p+p_{2}\right)\left(1+a^{2} p+2 p-p_{2}\right)^{5}}} \\
& \left.\quad+\frac{2 \beta a^{2} p_{2} \alpha p_{1}\left(1+a^{2} p+p\right)\left[2\left(1+a^{2} p+p\right)^{2}+\left(p_{1}-p\right) a^{2}\left(p_{2}-p\right)\right]}{2 \sqrt{\left[\left(1+a^{2} p+p\right)^{2}-a^{2}\left(p_{2}-p\right)\left(p_{1}-p\right)\right]^{5}}}\right) \\
& +\frac{\epsilon^{2}}{2}\left(\frac{\beta^{2} a^{4} p_{2}^{2}\left(1+a^{2} p\right)\left(2\left(1+a^{2} p\right)^{2}+a^{4}\left(p-p_{2}\right)^{2}\right)}{2 \sqrt{\left(1+a^{2} p_{2}\right)^{5}\left(1+2 a^{2} p-a^{2} p_{2}\right)^{5}}}\right. \\
& \left.+\frac{\alpha^{2} a^{4} p_{1}^{2}\left(1+a^{2} p\right)\left(2\left(1+a^{2} p\right)^{2}+a^{4}\left(p-p_{1}\right)^{2}\right)}{2 \sqrt{\left(1+a^{2} p_{1}\right)^{5}\left(1+2 a^{2} p-a^{2} p_{1}\right)^{5}}}\right)-\epsilon^{2} / 2 \frac{p\left(b^{2}+c^{2}\right)}{\left(a^{2} p+1\right)\left(p+a^{2} p+1\right)} .
\end{aligned}
$$

Note X_{1}, X_{2} need to satisfy power constrain.

$$
\begin{aligned}
& \quad \int x^{2}\left(g^{p}(x)+\epsilon H_{1}^{p}(x) g^{p}(x)+\epsilon \alpha H_{2}^{p_{1}}(x) g^{p_{1}}(x)+\epsilon \delta H_{4}^{p}(x) g^{p}(x)\right) \\
& \quad+\int x^{2}\left(g^{p}(x)-\epsilon H_{1}^{p}(x) g^{p}(x)+\epsilon \beta H_{2}^{p_{2}}(x) g^{p_{2}}(x)+\epsilon \delta H_{4}^{p}(x) g^{p}(x)\right) \\
& =2 p+\epsilon \sqrt{2}\left(\alpha p_{1}+\beta p_{2}\right) \leq 2 p
\end{aligned}
$$

So $\alpha p_{1}+\beta p_{2} \leq 0$. To make the increment positive, we need $\alpha p_{1}+\beta p_{2}=$ 0 . Then increment is

$$
\begin{aligned}
& \Delta \\
&= \frac{\epsilon^{2} \alpha^{2} p_{1}^{2}}{2}\left(\frac{a^{4}}{\left(p+a^{2} p_{2}+1\right)^{2}} \frac{2\left(1+a^{2} p+p\right)^{3}+\left(1+a^{2} p+p\right) a^{4}\left(p-p_{2}\right)^{2}}{2 \sqrt{\left(1+a^{2} p_{2}+p\right)\left(1+p+2 a^{2} p-a^{2} p_{2}\right)^{5}}}\right. \\
&+\frac{1}{\left(p_{1}+a^{2} p+1\right)^{2}} \frac{2\left(1+a^{2} p+p\right)^{3}+\left(1+a^{2} p+p\right)\left(p-p_{1}\right)^{2}}{2 \sqrt{\left(1+a^{2} p+p_{1}\right)\left(1+a^{2} p+2 p-p_{1}\right)^{5}}} \\
&-\frac{2 a^{2}\left(1+a^{2} p+p\right)\left[2\left(1+a^{2} p+p\right)^{2}+\left(p_{1}-p\right) a^{2}\left(p_{2}-p\right)\right]}{\sqrt{\left[\left(1+a^{2} p+p\right)^{2}-a^{2}\left(p_{2}-p\right)\left(p_{1}-p\right)\right]^{5}}} \\
&+\left(\frac{a^{4}}{\left(p+a^{2} p_{1}+1\right)^{2}} \frac{2\left(1+a^{2} p+p\right)^{3}+\left(1+a^{2} p+p\right) a^{4}\left(p-p_{1}\right)^{2}}{2 \sqrt{\left(1+a^{2} p_{1}+p\right)\left(1+p+2 a^{2} p-a^{2} p_{1}\right)^{5}}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\quad+\frac{1}{\left(p_{2}+a^{2} p+1\right)^{2}} \frac{2\left(1+a^{2} p+p\right)^{3}+\left(1+a^{2} p+p\right)\left(p-p_{2}\right)^{2}}{2 \sqrt{\left(1+a^{2} p+p_{2}\right)\left(1+a^{2} p+2 p-p_{2}\right)^{5}}}\right)\right) \\
& +\frac{\epsilon^{2} \alpha^{2} p_{1}^{2}}{2}\left(\frac{a^{4}\left(1+a^{2} p\right)\left(2\left(1+a^{2} p\right)^{2}+a^{4}\left(p-p_{2}\right)^{2}\right)}{2 \sqrt{\left(1+a^{2} p_{2}\right)^{5}\left(1+2 a^{2} p-a^{2} p_{2}\right)^{5}}}\right. \\
& \left.+\frac{a^{4}\left(1+a^{2} p\right)\left(2\left(1+a^{2} p\right)^{2}+a^{4}\left(p-p_{1}\right)^{2}\right)}{2 \sqrt{\left(1+a^{2} p_{1}\right)^{5}\left(1+2 a^{2} p-a^{2} p_{1}\right)^{5}}}\right)-\frac{\epsilon^{2}}{2} \frac{p\left(b^{2}+c^{2}\right)}{\left(a^{2} p+1\right)\left(p+a^{2} p+1\right)} .
\end{aligned}
$$

Since α is arbitrary, $\Delta>0$ is equivalent to

$$
\begin{aligned}
0< & \frac{a^{4}\left(1+a^{2} p\right)\left(2\left(1+a^{2} p\right)^{2}+a^{4}\left(p-p_{2}\right)^{2}\right)}{2 \sqrt{\left(1+a^{2} p_{2}\right)^{5}\left(1+2 a^{2} p-a^{2} p_{2}\right)^{5}}} \\
& +\frac{a^{4}\left(1+a^{2} p\right)\left(2\left(1+a^{2} p\right)^{2}+a^{4}\left(p-p_{1}\right)^{2}\right)}{2 \sqrt{\left(1+a^{2} p_{1}\right)^{5}\left(1+2 a^{2} p-a^{2} p_{1}\right)^{5}}} \\
& +\frac{2 a^{2}\left(1+a^{2} p+p\right)\left[2\left(1+a^{2} p+p\right)^{2}+\left(p_{1}-p\right) a^{2}\left(p_{2}-p\right)\right]}{\sqrt{\left[\left(1+a^{2} p+p\right)^{2}-a^{2}\left(p_{2}-p\right)\left(p_{1}-p\right)\right]^{5}}} \\
& -\left(\frac{a^{4}\left(1+a^{2} p+p\right)\left(2\left(1+a^{2} p+p\right)^{2}+a^{4}\left(p-p_{2}\right)^{2}\right)}{2 \sqrt{\left(1+a^{2} p_{2}+p\right)^{5}\left(1+p+2 a^{2} p-a^{2} p_{2}\right)^{5}}}\right. \\
& +\frac{\left(1+a^{2} p+p\right)\left(2\left(1+a^{2} p+p\right)^{2}+\left(p-p_{1}\right)^{2}\right)}{2 \sqrt{\left(1+a^{2} p+p_{1}\right)^{5}\left(1+a^{2} p+2 p-p_{1}\right)^{5}}} \\
& +\frac{a^{4}\left(1+a^{2} p+p\right)\left(2\left(1+a^{2} p+p\right)^{2}+a^{4}\left(p-p_{1}\right)^{2}\right)}{2 \sqrt{\left(1+a^{2} p_{1}+p\right)^{5}\left(1+p+2 a^{2} p-a^{2} p_{1}\right)^{5}}} \\
& \left.+\frac{\left(1+a^{2} p+p\right)\left(2\left(1+a^{2} p+p\right)^{3}+\left(p-p_{2}\right)^{2}\right)}{2 \sqrt{\left(1+a^{2} p+p_{2}\right)^{5}\left(1+a^{2} p+2 p-p_{2}\right)^{5}}}\right) .
\end{aligned}
$$

In particular, if $p_{1}+p_{2}=2 p$ and denote $x=p_{1}-p \in[-p, p]$, then the condition is

$$
\begin{aligned}
0< & \max _{x \in[-p, p]} \frac{a^{4}\left(1+a^{2} p\right)\left(2\left(1+a^{2} p\right)^{2}+a^{4} x^{2}\right)}{\left(\left(1+a^{2} p\right)^{2}-a^{4} x^{2}\right)^{\frac{5}{2}}}+\frac{2 a^{2}\left(1+a^{2} p+p\right)\left(2\left(1+a^{2} p+p\right)^{2}-a^{2} x^{2}\right)}{\left(\left(1+a^{2} p+p\right)^{2}+a^{2} x^{2}\right)^{\frac{5}{2}}} \\
& -\left(\frac{a^{4}\left(1+a^{2} p+p\right)\left(2\left(1+a^{2} p+p\right)^{2}+a^{4} x^{2}\right)}{\left(\left(1+a^{2} p+p\right)^{2}-a^{4} x^{2}\right)^{\frac{5}{2}}}+\frac{\left(1+a^{2} p+p\right)\left(2\left(1+a^{2} p+p\right)^{2}+x^{2}\right)}{\left(\left(1+a^{2} p+p\right)^{2}-x^{2}\right)^{\frac{5}{2}}}\right) .
\end{aligned}
$$

Denote $y=\frac{x}{1+p+a^{2} p}, r=\frac{1+a^{2} p}{1+p+a^{2} p} \in\left[\frac{a^{2}}{1+a^{2}}, 1\right]$, then the condition is equivalent to
$0<\max _{y \in\left[0,(1-r)^{2}\right]} \frac{a^{4} r\left(2 r^{2}+a^{4} y\right)}{\left(r^{2}-a^{4} y\right)^{\frac{5}{2}}}+\frac{2 a^{2}\left(2-a^{2} y\right)}{\left(1+a^{2} y\right)^{\frac{5}{2}}}-\left(\frac{a^{4}\left(2+a^{4} y\right)}{\left(1-a^{4} y\right)^{\frac{5}{2}}}+\frac{(2+y)}{(1-y)^{\frac{5}{2}}}\right)$

Chapter 5

Conclusion

Characterizing capacity of interference channel has been a fundamental open problem in information theory. This thesis was set out to provide outer bounds on capacity using genie-based techniques and has examined the tightness of these outer bound in comparison with Han-Kobayashi inner bound. One of the major difficulties in analysis of capacity region of interference channel is the computation of Han-Kobayashi inner bound which involves optimizing over space of all probability distributions with certain Markov structure. To overcome this challenge, the thesis focuses on sum-capacity in discrete settings where interference is weak and in Gaussian settings.

Two genie-based outer bounds are developed in Chapter 2. The first outer bound is obtained by providing to each decoder additional information about its intended sender, then single-letterizing the n-letter expression, identifying auxiliary random variables, and at last using concave envelop to suppress these auxiliaries. The second outer bound is an enhanced version of the first one in the sense that information about interference is also provided to each decoder.

In chapter 3, a class of interference channels, called very weak interference channels, are defined and studied. Han-Kobayashi sum-rate for a very weak interference channel reduces to treating-interference-as-noise sum rate. Discrete and continuous examples of this class of channels are also provided. In discrete case, it is shown that for
this particular example, the genie-based outer bound matches treating-interference-as-noise inner bound in a sub-regime of very weak interference regime.

Chapter 4 discusses Gaussian interference channels. The enhanced genie-based outer bound is applied to Gaussian interference channels and it turns out the outer bound is tight for sum rate in all regimes where the sum-capacity has been established, including regimes where treating-interference-as-noise is optimal. Then the optimality of Gaussian signalling for both treating-interference-as-noise sum rate of the symmetric Gaussian interference channels and Han-Kobayashi weighted sum-rate of Gaussian Z interference channels are also discussed. For the symmetric Gaussian interference channels, we use perturbation method by Hermite polynomials to discover a condition where Gaussian signalling is sub-optimal. For Gaussian Z interference channels, we propose a hypothesis about certain information inequality and this hypothesis is equivalent to the optimality of Han-Kobayashi with Gaussian signalling around the corner point of capacity region.

There is still need for a lot of effort in order to completely understand capacity regions of interference channels. The analysis of tightness of the genie-based outer bounds in general settings are still challenging due to the large search space of genies and behaviours of concave envelops. In Gaussian settings, optimality of Gaussian signalling is still an interesting topic to study which may reveal more properties about differential entropy of Gaussian random variables.

Bibliography

[1] E. Abbe and L. Zheng. Coding along hermite polynomials for gaussian noise channels. In Information Theory, 2009. ISIT 2009. IEEE International Symposium on, pages 1644-1648, June 2009.
[2] V. Annapureddy and V. Veeravalli. Gaussian interference networks: Sum capacity in the low-interference regime and new outer bounds on the capacity region. Information Theory, IEEE Transactions on, 55(7):3032-3050, july 2009.
[3] A. Carleial. A case where interference does not reduce capacity (corresp.). IEEE Transactions on Information Theory, 21(5):569570, Sep 1975.
[4] H.-F. Chong, M. Motani, H. K. Garg, and H. E. Gamal. On the han-kobayashi region for the interference channel. IEEE Transactions on Information Theory, 54(7):3188-3194, 2008.
[5] M. COSTA and C. NAIR. Gaussian z-interference channel: Around the corner.
[6] M. H. Costa. On the gaussian interference channel. Information Theory, IEEE Transactions on, 31(5):607-615, 1985.
[7] M. H. Costa and A. El Gamal. The capacity region of the discrete memoryless interference channel with strong interference. IEEE Transactions on Information Theory, 33(5):710-711, 1987.
[8] A. El Gamal and M. Costa. The capacity region of a class of deterministic interference channels (corresp.). Information Theory, IEEE Transactions on, 28(2):343-346, 1982.
[9] A. El Gamal and Y.-H. Kim. Network Information Theory. Cambridge University Press, 2012.
[10] R. Etkin, D. Tse, and H. Wang. Gaussian interference channel capacity to within one bit. Information Theory, IEEE Transactions on, 54(12):5534-5562, dec. 2008.
[11] T. Han and K. Kobayashi. A new achievable rate region for the interference channel. Information Theory, IEEE Transactions on, 27(1):49-60, jan 1981.
[12] S. Liu, C. Nair, and L. Xia. Very weak interference channels, 2014. available at http://chandra.ie.cuhk.edu.hk/pub/papers/manuscripts/VWIC.pdf.
[13] A. Motahari and A. Khandani. Capacity bounds for the gaussian interference channel. Information Theory, IEEE Transactions on, 55(2):620-643, feb. 2009.
[14] C. Nair, L. Xia, and M. Yazdanpanah. Sub-optimality of hankobayashi achievable region for interference channels. In Information Theory (ISIT), 2015 IEEE International Symposium on, pages 2416-2420, June 2015.
[15] Y. Polyanskiy and Y. Wu. Wasserstein continuity of entropy and outer bounds for interference channels. CoRR, abs/1504.04419, 2015.
[16] O. Rioul. Information theoretic proofs of entropy power inequalities. Information Theory, IEEE Transactions on, 57(1):33-55, 2011.
[17] H. Sato. On the capacity region of a discrete two-user channel for strong interference (corresp.). Information Theory, IEEE Transactions on, 24(3):377-379, may 1978.
[18] X. Shang, G. Kramer, and B. Chen. A new outer bound and the noisy-interference sum-rate capacity for gaussian interference channels. Information Theory, IEEE Transactions on, 55(2):689 -699 , feb. 2009.
[19] E. Telatar and D. Tse. Bounds on the capacity region of a class of interference channels. In 2007 IEEE International Symposium on Information Theory, pages 2871-2874, June 2007.

