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Abstract of thesis enti t led: 

On the Tightness of Inner and Outer Bounds for Broadcast 

Channels w i t h Three and More Receivers 

Submit ted by W A N G , Zizhou 

for the degree of Doctor of Philosophy 

at The Chinese Universi ty of Hong Kong in June 2010 

This thesis focused on a fundamental problem of network i i i for-

Illation theory called broadcast channel, which models the com-

municat ion f rom a single sender to mul t ip le receivers (say, f rom 

a cellular tower to cell phone users in i ts coverage area). The 

goal is to determine the set of achievable coirinmnicatiori data 

rates, so each receiver can decode the messages i t requires w i t h 

h igh fidelity. From a purely theoretical standpoint, however, 

this problem of characterizing the feasible rate region (capacity 

region) had stumped researchers for over three decades. 

The main contr ibut ions in this thesis consist of the fol lowing 

three parts: 

The first par t studied the existing inner and outer bounds 



to the capacity region for 3-receiver broadcast clianiiels w i th 2-

degraded message sets, in an attempt to find the deficiencies 

w i th the current techniques of establishing the bounds. We pro-

duced a simple example where we were able to expl ici t ly evaluate 

these bounds to show that they are indeed different. For a class 

of channels where the bounds differ, we used a, new argument to 

show that the inner boi ind is t ight and outer bound is weak. 

The second part considered a broadcast channel consisting of 

k receivers tha t lie in a less noisy sequence. The capacity region 

for this scenario had been unknown since the mid 1970s, when 

k > 3. We solved this open problem for the case k = 3. Indeed 

we proved that superposition coding is optimal for a class of 

broadcast channels w i t h a sequence of less noisy receivers. This 

class contains the A; 二 3 case, thus resolving its capacity region. 

The last part considered a A:-receiver broadcast channel wi th 

two i inmatcl ied degraded components, and degraded message 

sets where receiver s G {1, • • • ，k] requires messages (M,” … ’ 

MK). We established the capacity region for this class of broad-

cast channels by showing that superposition coding is optimal. 

In the process of proving the acliievability, we showed a general 

superposition coding region for any broadcast channels w i th de-

graded message requirement. 

Ill 
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摘要 

本論文研究課題是網絡信息論中的廣播信道，即模擬一個基站到多個手機用戶之間的通信， 

其目標是確定在該網絡中可以實現的最大信息傳輸速度（即信道容量)，明確目前應用的通 

信技術可能的提升空間。雖然很多研究者經過了三十余年的努力，但這個看似簡單的理論問 

題迄今為止仍未得到完全解決。 

本論文的主要貢獻由以下三個部分組成： 

第一部分的研究模型是由三個接收機組成的廣播信道並帶有降級信息集合的耍求。具 

體來說該類信息傳送機制是：接收機1和2需要解調出所有的信息而接收器3只需要解調 

公共的信息。在該模型下我們提出了一個簡單的信道並在該信道上成功的確定了現有容量 

區域上下界的具體差值。對於一類滿足容量區域上下界不同的信道，我們證明出其信道容量 

正是容量區域的下界。 

第二部分的研究模型是由k個接收機組成的廣播信道並且接收機按照抗噪能力排序。 

該類信道的容量問題即使對於簡單的由3個接收機組成的廣播信道自70年代中期以來就 

一直未能得到解決。我們在該模型下定義了一類新的廣播信道並得出了其信道容量。由於 

上面提及的3個接收器組成的廣播信道是此類新的信道的特例，由此信道容量問題得以解 

決。 

第三部分的研究模型是由k個接收機組成的廣播積信道並帶有降級信息集合的要求。 

我們解決了該類信道的容量問題並在證明該類信道信息傳輸速度的可實現性過程中，推導得 

出廣義信道容量區域的下界。 
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Chapter 

Introduction 

The demand for higher data rate over wireless networks has in-

creased dramatical ly pr imar i ly due to two facts: first, the den-

sity of wireless users has grown several-fold; and second, the 

data demand per user has gone up considerably. Since wire-

less bandwidth is a l imited, scarce, and expensive resource, one 

of the fundamental design challenges in comrminication is to 

devise strategies to maximize the throughput (data rate) in a 

given scenario. To this end, i t is also cri t ical for one to know 

the fundamental l imi ts of communication in the scenario. 

There used to be a dichotomy between the rates for practical 

comrrmnication scenarios and the fundamental l imits of comiiiu-

nicat ion as the lat ter was in most ceases infeasible to implement. 

However, remarkable advances in technology (both hardware 

and algorithms) over the past decade has significantly closed 



the gap between practical algorithms and fundarnental l imits. 

This has rekindled the interest in multiuser informat ion theory. 

Unlike point-to-point communication, most fundamental coni-

rnimicatiori problems in multiuser setting remain unsolved and 

there is no general theory yet. A very important setting is the 

so called broadcast channel, which models comniunication f rom 

a single sender to mult ip le receivers (say, f rom a cellular tower 

to cell phone users in its coverage area). The characterization 

of the opt imal rates, even for the case of two receivers, has been 

a long standing open problem. Moreover, almost al l available 

tools and techniques siicli as superposition coding and raiicloin 

binning date back to the 1970s and early 1980s. Thus to com-

pute the fundamental coninninication l imits one has to develop 

new techniques and understand opt imal strategies, which then 

can be incorporated into practical implementations. 

As an at tempt to understand the f i indamental l imi ts of reli-

able cornmunication, the present thesis studies the best known 

inner and outer bounds for broadcast channels. Here the quan-

t i t y of interest is to enlarge the available set of conimuii icatioi i 

strategies in large networks as well as to establish t ight char-

acterizations of achievable rates, i.e. capacity region, for some 

new classes of broadcast channels w i th 3 or more receivers. 



1.1 Background 

1.1.1 Point-to-point communication 

In his celebrated work, Shannon[24] proved two basic theorems 

regarding "point - to-point " communications, which forms the ba-

sis of single-user informat ion theory. 

• Source coding theorem: The maximum compression rate of 

a stat ionary ergodic source sequence that can be success-

fu l ly reconstructed at a receiver is equal to the entropy rate 

of the source. 

• Channel coding theorem: The maximum rate at which one 

can t ransmit information reliably throxigh a noisy discrete 

memory less channel is equal to the capacity of the channel. 

Given the source statistics in source coding, i t is easy to com-

pute the entropy rate of the source. Similarly, the channel tran-

sit ion mat r i x yields the capacity of the channel. Thus the fun-

damental l imi ts of a single user communication system serve as 

benchmarks to compare the performance of any feasible coni-

mui i icat ion strategy. The recent advances in coding techniques 

using better algorithms, higher processing power, etc, have al-

most achieved the fundamental l imi ts in implementation. 



1.1.2 Multiuser information theory 

The field of multiuser information theory was again started by 

Shannon[23], though his original problem of a two-way corn-

niunication channel remains unsolved. Anv multiuser network 

should consist of at least one of the following two components: 

a sender t ransmi t t ing (intentionally or unintentional ly) to mul-

t iple receivers, or a receiver hearing (wi t t ing ly or unwi t t ingly) 

from l imi t ip le senders. 

• Manv transmitters, one receiver: Conimonlv referred to as 
、j -J 

the mult ip le access cha,nn.el (MAC) , which models com-

rmii i ication f rom many senders to a single receivers (say, 

from cell phone users to a common cellular tower). The 

capacity region of M A C is one of the few multi-user sce-

narios where one has a complete characterization of the 

capacity [1] [2] [14]. The capacity region in the M A C has a 

close connection to the niax-flow inin-cut bounds in graph 

theory and the maximum information flow is indeed given 

by the m in imum cut inequalities. 

• One transmitters, many receivers: Coniinonly referred to 

as the broadcast channel (BC) [4], which models comrmirii-

cation f rom a single sender to the mult ip le receivers (say, 



f rom a cellular tower to cell phone users in its coverage 

area). The characterization of the capacity, even for the 

case of two receivers, is st i l l open. 

1.1.3 Broadcast channel 

Cover [4] introduced the not ion of a broadcast channel where one 

sender t ransmits in format ion to niul t ip le receivers. Form ally, a 

A;-receiver broadcast channel consists of an input alphabet A, 

and ou tpu t alphabets 3^1,…，34 and a probabi l i ty t ransi t ion 

funct ion p { y u . . • , . 你 A ((2”』o’ 2 ' 〜 • ‘ ， c o d e for 

a broadcast channel w i t h common informat ion consists of the 

following: 

1. A common message set Wo : {1,…，2"私」} and k priva,te 

message sets Wk = { 1 , • • • ，2'厂乙•^""‘知}; 

2. Messages (M,(), W i . …，W ^ ) are independent of eadi other 

and are un i fo rmly distr ibuted over (Wq, W i , • • • re-

spectivel}'； 

3. A n encoder maps each message tuple (M,o, W i , …，W ^ ) into 

a codeword X " G 

4. k decoders: decoder at receiver Yi , i e { 1 , … . k } , i.e. g]: 

y p -—> W{) X Wi maps the received sequence y? G into 



•A. A 

an estimate message pair (Wq, W-i) G Wo x W) 

The probabil i ty of error is defined as the probabil i ty that 

the decoded message is not equal to the transmit ted message, 

1.e., 

P 产 = P ( { g i i y r ) (Wo. W i ) } u . . . u + (Wo, w , ) } ) 

A rate tuple (Rq, - -. , RK) is said to be achievable for the 

broadcast channel if there exists a sequence of ((2,讽)’ 2"凡丨,…， 

2,"i4)，.12) codes w i th — 0. The capacity region of the broad-

cast channel is defined as the closure of the set of achievable 

rates. However the characterization of the capacity region, even 

for the k — 2 case, is sti l l open. 

The capacity region was known for some special cases such as 

degraded broadcast channel[3] [10], less no isy[ l l ] , more capable[8 

essentially less noisy[17], and essentially more capable[17] etc. 

I t was sliowii t i l at superposition coding strategy proposed by 

Cover[4] is indeed opt imal here. The best known achievable 

strategy for general 2-receiver broadcast channels by Marton[15 

combines the ideas of superposition coding and random bin-

ning. A n outer bound by Komer and Marton|15] was the best 

known outer bound for over two decades. Recently Nair and El 

GarnaHlDl introduced a new outer bound and showed that i t is 



str ict ly better than Korner-Martoi i outer bound for the binary 

skew-symmetric channel (BSSC)[19]. Following this work, a se-

ries of outer bounds [16] [13] were reported to the capacity region 

of the broadcast channels. However i t is sti l l unknown whether 

any of these outer bounds is str ict ly better than Nair-El Gamal 

outer bound. 

1.2 Previous work on broadcast channel with 

degraded message sets 

Consider a 2-receiver broadcast channel w i th messages (Afi, M2) 

where the message M2 is required by both receivers and message 

M l is only required by receiver Yi. This means that the messages 

required by the receivers are degraded. This scenario was studied 

by Koriier and Marton[12] and they showed the opt imal i ty of 

superposition coding region!4] that is the union of rate pairs 

(B i , i?,2) satisfying 

R2 < /(�/; >2) 

III + R'l < Hx： Vi) (1.1) 

Ri + R2 < I {X: Fi U) + I{U: ¥2) 

for some p(u)p(x\u)p(yi, y2\x). More recently, some investiga-

tions were made to the degraded message set problem w i th 3 and 

7 



more receivers [6] [22] [18]. The capacity regions for some classes 

of broadcast channels w i th 3 and more receivers were established 

in[6] [22] [20] by showing that the straightforward extension of 

the superposition coding region is op t ima l In [18], Nair and El 

Ganial introduced an idea called indirect decoding and showed 

that the straightforward, extension of the superposition coding 

region is siiboptimaL However the new achievable regions ob-

tained by indirect decoding become quite complex even for the 

simple case of 3 receivers (Y1A2, Ys) w i th 2 degraded message 

sets where the message Mo is required by all receivers and mes-

sage M l is only required by receivers 11. So a natural question 

is the following, 

Could one make progress on some new classes of broadcast 

channels where the achievable region gi/ven by indirect decoding 

coincides with that given by superposition coding ？ 

1.3 Previous work on broadcast channel with 

less noisy sequence 

Korner and Mar ton [ l l ] introduced a class of 2~receiver broadcast 

channels called less noisy broadcast channel where a receiver Y] 

is said to be less noisy than receiver Y2 i f 1(11: Yi) > I{U\ Y2) 



holds for all U such that U —> X —̂  (Vi, Y2) forms a Markov 

chain (we denote this part ial order less noisy relationship by 

Y\ 匕 y^)- Tl ie capacity region for this scenario was established 

(Proposition 3 in [11]) to be the union of rate pairs 

satisfying 

Ri<I{X:Y,\U) 

R2<I(U:Y2) 

for some p{ti.)p{x\u)p{yi, y2\x). The capacity region of A:-receiver 

less noisy broadcast channel, i.e. Yi ^ ¥ 2 h - • - h Yk, however, 

is unknown when k > 3. Thus an open issue is: 

Is it possible to solve the capacity region for k-receiver less 

noisy broadcast channel when k > 3? 

1.4 Thesis organization 

In this thesis, we aim at providing answers to the two fundamen-

ta l issues mentioned in the previous sections. Here is a, summary 

of results established in this thesis. 

• For a class of broadcast channels shown in Figure 2.1 we 

provide the explicit expression of the bounds.(Section 2.3 

and 2.4) 



• For a class of broadcast channels shown in Figure 2.1 we 

establish tha t the inner bound is t ight and outer bound is 

weak. (Sect ion 2.5) 

• We prove tha t superposition coding is opt imal for a class of 

broadcast channels w i t h a sequence of less noisy receivers. 

This class contains the 3~receiver less noisy broadcast chan-

nel, thus resolving its capacity region.(Section 3.1) 

• We show a general superposition coding achievable region 

for fc-receiver broadcast channels w i t h degraded message 

requirement. (Section 4.1) 

• For a A:-receiver broadcast channel w i t h two ui i i i iatched de-

graded components，and degraded message sets where re-

ceiver Ys, s G { 1 , …， k } requires messages ( M j , . . • , M̂；), 

we establish tha t superposition coding is indeed opt imal. 

(Section 4.1) 

• End of chapter. 

10 



Chapter 2 

3-receiver BC with degraded 
message sets 

In this chapter we consider a broadcast channel w i th 3 receivers 

and 2 messages (Mo, M ] ) where two of the three receivers need 

to decode messages (M(), M i ) while the remaining one just needs 

to decode the message Mq. The capacity region for this class 

of broadcast channels is an open problem and the best known 

inner and outer bounds are presented below. 

2.1 Existing bounds 

We obtain the following inner bound using superposition coding. 

Bound 1. The union of the following set of rate pairs (./?.(), Ri) 

11 



satisfying 

i?i < mhi{IiX;Yi\U)J{X;Y2\U)} 

B.o + Ri<mm{I(X:Y,)JiX:Y2)} 

over all pairs of random variables (�/, X) such that U X 

(Fi, Y'2, I3) forms a Markov chain constitutes an inner bound to 

the capacity region. 

We obtain the following outer bound in a similar fashion as 

the tradit ional outer bounds obtained for the 2-receiver broad-

cast channels [8, 15. 19 . 
. / i , 

Bound 2. The union over the set of rate pairs (Rq, Ri) soMsfy-

i^o + i?! < m i i i { / ( [ 7 i ; l 3 ) + / ( X ; y i | f / i ) , 

i?.o + i?4 < m i n { / ( X ; y i ) , / ( X ; F 2 ) } 

over all possible choices of random variables (Ui, U2, X) such 

that ([/] , U2) X (Ki, Y2, F3) forms a Markov chain consti-

tutes an outer hound for this scenario. 

12 



The identif ication Uu = (M,), and Ihi = 

suffices to obtain this outer bound. 

Remark 1. It is also possible to include the constraint 

into the outer bound. However, it is quite straightforward to 

show that the region obtained by adding this inequality is iden-

tical to the hound we preseiitexi. 

Bounds 1 and 2 are t ight in all of the followiiig special cases, 

• Receiver is a less noisy receiver than and ¥2 is a less 

noisy receiver than I3 [6, 18], 

• yjj is a deterministic function of X , 

• Yi is a more capable receiver than Y2 (or vice-versa), 

• I3 is a more capable receiver than Y2 (or l^i ). 

The last two cases are very straightforward and the proof is 

omitted. When I3 is a deterministic function of X , note that 

i t is not diff icult to show that the following region is obtained 

by taking the convex closure of the regions given by setting (?;) 

>3 and (ii) U = 0 in Bound 1. 

Ro < H(Vs) 

13 



This clearly forms an outer bound and thus gives the capacity 

region. 

2.2 A class of channels 

X 
V2 

V3 

Figure 2.1: A class of 3-receiver broadcast channels 

One class of channels that does not fall into anv of the above 

cases is the following channel shown in Figure 2.1 below. The 

channel X —> (y i , Y2) represents a BSSC channel and the chan-

nel X 一 I3 represents a binary symmetric (BSC) w i t h crossover 

probabil i ty p, w i th 0 < p < 

Remark 2. An interesting observation is the use of BSSC to 

obtain a class of broadcast channels where, as we shall see, the 

14 



inner and outer bounds do not match and the inner- bound is in 

fact tight. 

2.3 Evaluation of the inner bound 

In the evaluation of the inner bound, we divide the range 0 < 

p < ^ into two regions, 0 < p < Pmax and p 賺 < p < where 

pmax 6 [0, is the unique solution of 

/ 1 \ 1 
1 一 hip) 二 h ！;J j - 2' 

i.e. the value of p at which capacity of the BSC matches the 

term maxp(..p) m i n { / ( X ; l i ) , I{X: Y2))-. The numerical value of 

Prnax ~ 0.184. 

2.3.1 Evaluation of the inner bound, 0 < p < pmax 

In the region 0 < p < 外臓 i t is straightforward to see that 

the inner bound reduces to the following region (obtained via a 

t ime-division between the two auxil iary channels: ( i) U = 0 and 

(ii) U = X, and in each case, setting P ( X = 0) = 0.5), 

m 1 
V4； 2 

i?.o -f < h 

which dear ly matches the outer bound (Bound 2). Thus for 

( ) S _P ：^ Pmax ~ 0.184, the inner and outer bounds match and 

thus give the capacity region. 

15 



2.3.2 Evaluation of the inner bound, p蘭 , < P < k 

Let U = {1, 2’ …，m} and let ^ i) = u,, and P ( X = 0|f / 

I) = Si. Further, let 

h{x) = — Iog2 X — (1 — .t) logo(1 — x) 

denote the b inaiy entropy function. 

Using these notations we have, 

= - P) + (1 — Si)p)) 
i 

— 劝 . — p ) + (1- -
i 

/ ( 足 叫 [ / ) : (警）— 

i i 
1 — s. I{X;Y2\U) = — h 识（1 —街 

i i 

Define U = {1,2, . . , m } x {1 ,2 } , P(U = (?：, 1)) = f, P(.X = 

0\U = [1,1)) = su P ( & 二（％2)) = f , and P ( X = 0\U = 

(z, 2)) = 1 — s.j. This induces an X w i th 二 0) = I t is 

16 



straightforward to see the following: 

liX; Yi\U) = I(X: Y2\U) = ^(/(X; li|f/) + I{X; Y2\U)) 

>mm{I{X;Y,\UlIiX-y2\U)} 

liX: Yi) = I{X: >2) > liHX; Yi) + I(X: Y2)) 

From this i t follows that for every U replacing U by U leads 

to a larger achievable region. Hence to evaluate Bound 1, i t 

suffices to maximize over all auxil iary random variables of tlie 

form U defined by: U = {1, 2，…，rn] x {1, 2}, P(L' = ( ‘ 1)) 二 學， 

P(X = 0|[ / = (z, 1)) - P{U - (?.,2)) - f ’ and F{X - 0[U 二 

(2’2)) = 1 - S ” 
Under this notat ion we have the following expression for the 

rate region given in Bound 1, 

Ro<I(U:Ys) 

= " ( 全 ） - + (1 — 

i 
Rx <mhi{IiX:Y,\U)J{X-Y2\U)} 

E Ui f , ,Si 1 — s,； \ 1 
I i 卜 I 肩 丁 ) ) - ？ 

Rq + Ri < min{I(X:Yi),I(X;y2)} 
1 1 - h ( - ) 

、！乂 2 

Using the symmetry of the function h(x) 二 h(l — x) we note 



that 

h(s,{l — p) + (1 — s,}p) 二 h{(l — Si)(l — p) + s,p) 

and thus the above region is constant under the transformation 

Si 一 1 — Si, imply ing we can restrict Si to take values only in 

0 < 5, < I . 

Before we proceed to determine the boundary of this region, 

we prove the following lemma. 

2.3.3 A n inequality for a class of functions 

Lemma 1. Let f(x) and g{:i:) be two non-negatvve and strictly 

increasmg functions that are differe.ritiable m the region q: G 

xi, X2]. Further assume that ^^^ is a decreasing function, 

where /⑴ (X ) and g � � denote the derivoMves o f the function. 

Given any % 0 < u < 1，let Xint be uniquely defined according to 

= ufixi) + (1 — u)f{x2). Then the following holds, 

gi^ird) < U9(xi) + (1 — u)g{x2). 

Proof. We:havei/,(/Oi.„/;)—/(:ri)) 二 (1 一 u}[f(x2) - 八工.—)),and 

we wish to show that yig(xi .at)--gix i)) < i l - i i ) { g { x 2 ) ~gixiru))-

Since all the terms are positive, this reduces to showing 

f ( X i n t ) - f i x i ) 〉 f { X ' 2 ) — f{Xir>t) 

gi^int) - gixi) 一 g{x2) - g�Xird) 
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However, this is immediate as shown below. 

From the fact that 丨 i s a decreasing function, we have 

£广 g�(x)dx — g�(X滅）二 f二 g � � ( h : 

• 
Repeated applications of Lemma 1 leads to the following 

corollary - potential ly of independent interest. 

Corollary 1. Let f{x) and g{x) be two non-negative o/nd strictly 

increasing functions that are differmiMable in the region x 6 

Further assume that :(“;((::�; is a decreasing function. 

where as 

before /�（:r) and g�(x) denote the derivatives of the 

function. Given any ih > 0, ^^ Ui 二 1, and t/i E [xi, X2], let Xint 

he uniquely defined according to /(x—) = Xli • Then the 

following holds 
gixint) < y^/iiig{:yi). 

i 

2.3.4 Determining the boundary rate pairs 

We use Corollary 1 to determine the boundary of the region. We 

make the following identifications, let f(x) : /?,(署）十"(宇）—L 

and g{x) — h{x{l — p) + (1 — x)p). Observe that f{x) and g(x) 

are increasing differentiable functions in the region [〇， 
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Claim 1. For ~ < p < the ratio of the derivatives 

decreasing June Hon. 

/⑴⑷ IS a 

The proof of this fact is found in Appendix. A. 

(Numerical simulations indicate that this is true for pmin < 

p < I for :p撤n ^ 0.05, but for the purposes of establishing the 

inner bound clearly this region of p suffices, as | < p,謹：^ 

0.184). 

Proposition 1, For | < p < the function 屯[y) = 0 < 

y < — 1, is convex in y. 

The proof of this proposition is given in Appendix B. This is 

verv similar to Mrs. Gerber's lemma [251, 
“ L J 

Now let s.̂ nt be defined according to 

M^ini \ I 7 /1 — -Sint 
-TT-j + h(-
2 2 

U,i M 奢 ) + M 
\
 \

 -
N
 

i
 

s
 

I
 2
 

1
 

Then from Corollary 1，for < p < | we have 

--Y.uMs.il+a-s,)p) 
i 

< "(丢)—H^intO- -P) + (1 — Sint)P)-

This implies that the optimal auxil iary channel U 一 X is a 

BSC w i th a cross™over probabil i ty s and P ( [ / = 0) = Thus 

for prnax < P < the boundary is characterized by the pair of 
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points of the form. 

\

/

 
、
 

p
 s
 

s
 I
 

I
 1
 

1
 

y

 
、
 

+
 

I
 

1
 

/

\
 

s
 

/
—
\
 

i
 

1
 

二
 

= m in 
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(2.1) 

M 去 ) - 臺 碑 ( 1 1 ) + ( 1 - 咖 ) 

for 0 < s < The second term in R i comes from tak ing into 

account the sum rate constraint, 

Ro + Ri < ~~ ‘ 

A simple calculat ion shows tha t for 'p。< p < | one can 

ignore the sum rate constraint, where p() = ^^^ ~ 0.211. This 

Po corresponds to the smallest value of p where the convex region 

characterized by the pairs 

Ro = 1 — h{s(l -p) + (1 — s)p), 

历 : K 命 ' ( ¥ ) - 1 ) . 

has a slope of —1 at the point (Rq, i?.j) = (O, h(J^)—去). 

Therefore the inner bound lias three different expressions: 

• 0 < p < PRNAX'' tliG iniier bound reduces to Rq 十 R\ < 

Ml) — h 

• 'prnax < < Po'- the i i i i ie i boui id is given by equation (2.1) 

where al l inequalit ies are necessary, 
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• Po < P < I： the inner bound is characterized by pair of 

points of the form 

—(,+/辟-1). 

2.4 Evaluation of the outer bound 

The evaluation of the outer bound (i.e. Bound 2) follows roughly 

similar lines to that of Bound 1, Firstly, we show that we can 

restrict ourselves to p(;r) such that P ( X = 0) = | and Bound 2 

reduces to the union of rate pairs satisfying 

Bound 3. 

Ru < /(t/ i： 

over all (f/i, X) such that 二 0) = | and U\ 一 JiT 一 

(Fi, Y2. Y'i) forms a Markov chain. 

Then we wi l l show that the boundary of Bound 3 can be 

realized by binary U:i and 0 < s! < s‘2 二 1, where P ( X = 0\Ui = 

i ) = Si, i £ (1,2) (i.e. the opt imal auxil iary channel Ui —> X 

is a Z channel), thus providing an explicit expression of Bound 

22 



2. However since we are interested in the fact that the bounds 

differ, so f inally we wi l l show that the boundary of Bound 2 

yields a str ict ly larger region than Bound 1. 

R e m a r k 3. Restricting to P ( X = 0) — | it is clear that the 

region described by Bound 3 is at least as large as the one de-

scribed by Bound 2. For the reverse direction, given a U'l one 

can construct a U2 by setting P(f/2 == i) = P(f/i = i) and 

P{X - 0|"2 = i) 1 - P ( X = 0\Ui = i) and the region 

described in Bound 2 by this triple {Ui, U2, X) will match the re-

gion in Bound 3. Note that the existence of the triple (Ui. U2, X) 

is guaranteed by the consistency of distribution of X in (f/i, X) 

and {U21 X). For instance, one can first generate X and then 

generate Ui and U2 condiUonally independent of X. 

2.4.1 Restricting the marginal distribution of X 

Gi ven any tr iple of random variables (L,i, U2, X), we construct a 

related t r ip le of random variables (L,i, U2, X) w i th P ( X =())=： 

I, such that the rate pairs described by [Ui, U2. X) dominate 

the rate pairs described by {Ui, U2, X). Further for this tr iple 

{Ui, IJ2, X) the region described by Bounds 2 and 3 are identical. 

Consider an independent binary random variable W such that 

F{W = 0) = i . Now set ^ iMo = j\W = 0) = P( [ / | = 

23 



I, Ih = j) and F{Ui = jM2 = i\W = 1) - P ( f / i = lAh = j ) . 

Further set P ( X = {)\Ui ^ iM^ = j, = 0) = F{X = 0| f / i = 

i, U2 = 3) and P(.X = = j, D2 = '1,1'F = 1) 二 1 — P ( X = 

0|[/ i = = j). Now, define Ui = (W, Ui), U2 (WM2) and 

X to be the induced distr ibution on X. I t is straightforward to 

check the following, 

P ( 1 - 0 ) = 
1
 

m i ^ n ) i m n ) 

1 
= -{I{X:y\\Ui)-^I{X:Y2\U2)) 

I{X:Y:)=I(X:Y2) 

1 

2min{/(X;:Ki.)，./(_X;iy}. 

This coristriiction establishes that we can restrict ourselves to 

P ( X = Q) - i . 
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2.4.2 Optimal auxiliary channel 

For the evaluation of Bound 2 one needs to take the union of 

the following rate pairs satisfying 

Ri<I{X:y\\lh) 

over all ( f / i , X ) such that P{X = 0) = | and Ih — X 一 

(1^1, I3) forms a Markov chain. 

Let Ux = {1,2,…，m}, P([ / ! = ？.) 二 m arid F(X = ()|C/i = 

i ) = Si such that Y l i UiS'i = L Under this notation we have, 

Rq < == 1 - > j i M s i * 

. s : 卜 . 1 

i 

R o ^ R i < f 3 = h { ^ ) - ^ . (2.2) 

The following theorem provides an explicit expression of the 

boundary of Bound 2. 

Theorem 1. For a class of broadcast channels, as shown in 

Figure 2.1. the boundary of Bound 2 is realized by binary U\， 

and furiher 0 < si < S2 — 1 (i.e. the optimal auxiliary channel 

Ui X is a Z channel). 
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Before we proceed to prove this theorem, we present and 

prove some preliminary results. 

Let Jix) = log a ⑷ = - J ( x * p ) ， 刚 = - “ 饮 二 ) , 

jix) = —J { f ) and < 5 ( x ) = - "忠二 (尸 ,U n d e r this notat ion we 

prove the following Claims 2 and 3. 

Claim 2. For 0 < 5 < 52, the ratio 忍丨二忠;is a strictly decrpMS-

ing function o f t , i E [5, 5-2 • 

The proof is given in Appendix C. 

Claim 3. For 0 < s < s^, the ratio .i>s a strictly increasing 

function and is a strictly decreasing funciion. 

The proof is given in Appendix D. 

We are now ready to prove Theorem 1. Our technique of proof 

is similar to the Kariish-Kii l in-Tucker ( K K T ) conditions for the 

occurrence of a local inaxinia/minima, and could possibly be 

transformed directly into K K T conditions. Essentially, for any 

III •—» X not satisfying our theorem, we wi l l produce a valid 

perturbation direction in which all the quantities of interest to 

lis remain non-decreasing (in fact at least one of them wi l l be 

str ict ly increasing). Hence the only valid points on the boi皿 iaiy 

have to satisfy the theorem. 
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Proof. Wi thou t loss of generality, we can assume that any (u,:, si) 

satisfy 0 < S] < S2 < • • • < Sk < 1-

Consider any (ui, s,；) that contains a particular class of (ui , U2, si, 6*2) 

such that 0 < Ui 4-112 < 1 and 0 < si < S2 < I：, in fact, we wi l l 

perturb W], U2, Si, .S2 such that we keep ui + 'im constant. We 

rewrite region (2,2) wi th constraints Y^- UiSi = ^ and ^ • Ui = 1 

as follows 

fi = 1 — uih{si - U2HS2 * _P) — ^ uMsi * p) 
i>3 

/2 二 Uih( U2h{j) + ( 脊 ) ^ 

？: >3 “ 

h = Ul^l + U2S2 + > UrS, 

f'i = Ul + U2 

i>3 

Ui — 1 
r>3 

The part ia l derivatives of the four functions wi th respect to 
Ul, U2, .s'l, S2 wi l l lead to the following matr ix 

-h(Si *p) — h[s2 * p) — (1 — 2p) Jisx — (1 - 2p) J{s2 * p) 

h.w hm ij(^) i j ( f ] 
Si 8-2 1 1 

1 1 0 0 

So if we can show for some £1, £2, £3 and >4 such that 

••h{>>i * p) - h{s2 * p) (1...••. 2p),/(,Si */)) -••(l ...... '2ij)J{s2 * p) 

Kf] h{f) 

好2 

Jif) 
ei 

£3 
£：4 

> 0 
> 0 

0 

0 
(2.3) 
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then there exists a perturbation direction such that the first 
two terms ’f\ and f2 are str ict ly increasing while the remaining 
terms /a and /"i keep unchanged. Elementary manipulations of 
(2.3): setting Coll = Coll - Col/1, ColS = ColS — ColA, and 
then setting Coll = Coll — {si --- S2)CoIA one can see that it 
suffices to show that the determinant of 

h(S.2 * p) — /M'.S'i * p) — (1 — 2p)(.S2 — Si )’/(S2 * p) (1 — '2j}){ J(s2 * p) - J(Si 
hif) — hif) +1 (.2 -约 y(警） UAf) — J(警)） 

is non-zero. Indeed we wi l l show 

J{SL * P) - J{S2 * P) < J(F) 

( 1 — 勿 — 片 , ） -TTZTTl ^n-T) 
(2.4) 

(1 —2p)(,S‘2—.Si) V。」“ i(S2-5i) 

Recalling the definitions, a{x) = — 13(x) = - ^rfSiift^S'^ ( 1 — 

7 ( x ) = — J ( f ) and = -"(i仏—"》)，(2.4) reduces to showing 

咖 ） - 冲 1) 7 ⑷ - i j s i ) . 1 
⑷ _ 〈 ^ 

From Claim 2, one can see that (2.5) holds as Si 一 S2 and 

hence we have 
Q：⑴⑷< 7 ⑴ ⑷ 

⑴(s) M l ) ⑷ 

Since all the terms involved in the above inequality are positive, 

(2.5) reduces to showing 

From F K G inequality [9], we see that i t suffices to show that 
d⑴⑷ 

28 
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。⑴ 
and ]:“((:、) is a str ict ly decreasing function. However, this is 

immediate as shown in Claim 3. 

Conclusion 1: There is no U such that ’s‘i < 52 < … < 办 < 1 

lie on the boundary for k > 2. 

Remark 4. It ts also possible to include the case si = 0, how-

ever) it is straightforward to show that the rmult obtained by 

substituting Si = 0 with corresponding £3 > 0 (Note that this is 

the only valid direction) into (2.3) is identical to the conclusion 

we presented. 

Thus either: 

1. Ui 二 U2 = I , and si 二 0, S2 = 1 which corresponds to the 

point on the boundary Rq = min { l - h(p), "(i) — ,丑1 = 

0. Or 

2. u.i 4- .11:2 ~ 1, and 0 < si < S2 = 1. 

Combining the above analysis wi th conclusion 1，we see that 

i t suffices to consider binary Ui and 0 < ,s'i < S2 = 1 (i.e. the 

opt imal auxil iary channel UI — X is a Z channel) to characterize 

the boundarv of Bound 2. • 
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2.4.3 Comparison with the inner bound 

To show that Bound 2 gives a larger region, let 

P( f / i - 1) = ti, P ( f / i = 2) = 1 - u, 

P ( X = 0|^7i = 1) = L F(X = 0\Ui = 2) = s. 

where 5' = ()i二‘ for 0 < u < 0.5. Substituting this choice into 

Bound 3. we obtain the boundary Region A given by, 

Bi) < 1 — (1 — u)h(s * p) — uh{p), 

g 1 
Ri < ( 1 — u)h {-) -...... - + u, 

i ? o " f i ? i 」 M 去 ) - 去 . 

As i l l Bound 1, the sum rate constraint R。+ R i < h ④ — | 

can be ignored in Region A for Pm < p < | where pm ^ 0.2384 

solves 

= I —.臺log (臺). 

Figure 2.2 plots Region A and Bound 1 for p = Observe 

that Region A is str ict ly larger than Bound 1, and hence Bounds 

1 and 2 do not match for the sccmario shown in Figure 2.1. This 

implies the following corollary. 

Corollary 2. There exists a class of channels, given in Figure 

2.1, for which Bounds 1 and 2 do not match. 
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Figure 2.2; Comparing Boniid 1 and Region A for p = j 

2.5 Revisiting the outer bound 

Theorem 2. The capacity region of the broadcast channel in 

Figure 2.1 is the set of rate pairs [Rq, R{) satisfying 

A ) < . / ( t / ; >3 ) 

Ri < mm{I{X: Yi\U)j:{X: Y2\U)} 

RO + /?i < n i i n { / ( X ; YI), I{X: ¥2)} 

over all pairs of random variables (f/, X) such that U — X — 

Proof. Let tt : {(), 1} h {0,1}; 7r(0) 二 1,7r(l) = 0. 

Consider an e-codebook , 1 < ？n。< 2"•^知,1 < ？77.i < 

2"丑、An„，mi C C C,no [ where the disjoint 

sets Amo’m.” 召mu，mi，Cmo represent the decoding maps. From the 
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skew symmetry of the channels X --> (F i , Y2) and the symme-

t r y in channel X — la , i t is clear tha t j , 1 < m() < 

2«fl〜 l < m , < 2 ' ' 讽 M B . 一 ) C 3^r,7r(Ano.mJ C ；y?,7r(C爪。）C 

34!} represents a val id e-codebook as well. 

From these two codes, construct a pseudo-codebook (w i th 

error bounded by | + a) and size ‘2̂讯、> x 2"尺1+1 as follows: The 

codewords are indexed by ；r二丨(叫where h = 0,1. W h e n b = 0 

the c o d e w o r d《；…〜 "=：工 J k叫 and when b = L we have 

(爪 16二” = 71"(:1；工()，爪1). The decoding maps for this codebook 

are created as follows: I f y"' 6 乂门兀(召m汽 .m〒 ) t l ien the re-

ceiver chooses one of the two message pairs (rriQ, rn\), (m.Q, rnj) 

wi th equal probabi l i ty. Otherwise i t picks the message pair cor-

responding to the unique set or tha t i t belongs 

to. A simi lar decoding strategy applies for receivers I 2 and I3 

as well. 

T l ie key feature is the symmetry of the codebook. I f x " G C 

then 7r{x"-) G C and corresponds to the same message Mq. 

Now observe tha t JYfAfo, < H ( M o , M i , b \ y T ) < 1 + 

H { M q , M i \ Y { \ 6) = 1 + n人Ro + Therefore we obta in the 

same outer bound (Bound 2) using Faiio's inequal i ty and iden-

t i f icat ion of the auxi l iary random variables as before. 

In par t icu lar , the identif ications of the auxi l iary random vari-

32 



ables remain the following, 

Uu = [Mo, n/ti). = (M:)， 

Now for the skew-symmetric channels and a symmetric codo 

book. observe that 

P A(/。二 mo, = y ^ . y u U = V i m . 不 = 而 

二 P (Mo 二 rno, X ^ = ；r?, ̂ r ' = 二 約;Vi 
cV\xi 

P 
1—1 

( M ) 二 mo, x r =对)Ylnnj =鄉 二 ：̂: 

X J | P{Yik = yik\Xk 二 T.k) 
k=r4+l 

.X' I J — 1 
n 

k'-^i+l 
n 

m+i. 

= P [M, 二 rno, y^r 二 兀("[”，niU = ^ f e n V i ) . ^ 二 兀fe)). 

Here (a) follows from the discrete rriemoryless property of 

the channel; and (b) follows from ( i) symmetry of the code, (u) 

symmetry of the channel X. — Y^ w i th respect to 7r(.)’ and (iii) 
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the skew symmetry between receivers 11,12 i.e. 

P(F2 = = 7t(x)) = P O l = ijIX = x): 

and (c) is a consequence of 7r(-) being a bijection. 

Therefore the random variables (Ui, X�and {U2, X) are iden-

t ical up to re-kibeling. Since tl ie mutual information and en-

tropy do not depend on the labeling, i t follows that 

I{Ui:Y^) = iaJ2:Y,) 

I{X:Y2\Ui} = I(X:Y2\U2). 

Therefore we obtain the following revised outer bound. 

Bound 4. The union over the set of rate pairs (Rq, Ri) satisfy-

ing 

Ro < I{Ui： Y,) 

Ro + Ri < min{/([;i； Ya) + I{X: Yi\Ui), 

Ro + Ri < mm{ , / (X ; 11), / ( X ; l o ) } 

over all possible choices of random variables {Uu X) such that 

Ui 一 X — {Yi, >2, Yz) forms a Markov chain constitutes an 

outer bound f(n�this channel 

I t is straightforward to see (using the boundaxy points) that 

Bound 4 matches Bound 1 and forms the capacity region. • 
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Remark 5. This technique 

skew-symmetric channels as 

exists. 

of proof can be 

well, i.e one for 

extended to other 

which such a 7r(.) 

• End of chapter. 
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Chapter 3 

A>receiver less noisy BC 

111 this chapter, we consider a discrete memory less broadcast 

channel w i th k receivers Fi, • • •， 

Definition 1. /I receiver Y^ is said to be less noisy[11] than 

receiver Yt if I{U: Y,) > I(lJ : Yt) for all U — X — (1；, 1^). 

We denote this relationship (partial-order) by Y^ h 

Remark 6. Observe that this partial order only depends on 

marginal disfribuUons \x) and p{yt |;i；). 

Definition 2. A k-receiver broadcast channel is said to belong to 

class C if there exists k — 1 virtual receivers Vi,…,Vk-i satisfying: 

• X Vi ... Vk--i forms a Markov chain and 

• The following ''interleaved'' less noisy condition holds: 

(3.1) 

36 



Tins class contains some interesting sequences of less noisy 

receivers as mentioned below. 

1. A sequence of degraded receivers, i.e. X 一 —…— 

set V； = 十 1 , 

2. A sequence of “nested" less noisy receivers, i.e. 1 二’ ^ iXs+i 

， … s e t = (1^+1，…’似 

3. A 3-receiver less noisy sequence, i.e. ^ Y2 h 3̂； set 

- = n. 

We present a couple of results before we prove the capacity 

region for the class C w i th private message requirements. 

Fact 1. Prom the dejinition of less noisy scena/no, by condition-

ing on U2, it follows that whenever (Ui, U^) X (y^, Yt) 

forms a Markov chain 

I { U i : n U 2 ) < I {UuY,\U2}. (3.2) 

Lemma 2. If a receiver t Yt then} 

whenever (U, Ysj) — Xp 一 (Ytp, forms a Markov 

chain for 1 < p < i — I. 

^ The notation Ŷ  ^̂  denotes (Yt,p-. Yu)-
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而—1 , •、Vkd, Via, '‘ •，Vk-ij ：” 

k-i 

ykA^{)v(:vi,i\xi) p{v V, 
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Proof. For all p such that 1 < p < i 1, observe that 

^ , IL丨)+1(Xs.y, ^sAIfA Yli ,)二〜) 

— u v P / ( Y 

where the inequality follows from (3.2) as ([/, , l ^ i ) 

Xp — V^.p) forms a Markov chain for 1 < p < ？. — 1. • 

Lemma 3. For any broadcast channel belonging to class C, the 

following Markov chain 

V V? M, 

holds for I < s < k — 1: (set Vq = X). 

Proof. From Remark 6 we have that the less noisy ordering only 

depends on the marginals. Hence the probabil i ty distr ibution 

p{x'\ y'l, • • ‘ , '(ju, t ' l , • • , can be factorized as 

P(工 

i=i 
n 

n
 



where the first inequality is due to the fact that the channel is 

D M C wi thout feedback, the second follows from the assumptions 

that the less noisy scenario depends on the marginal distribu-

tions, and the last follows from the Markov chain X —> Vi 一 

•，• — Then given this structure, we have 

— r 口 ? v . . , 片 , A 4 . ’ . ， i i 4 

is Markov. • 

3.1 Main result 

Theorem 3. For any broadcast channel belonging to class C with 

independent message reqiiirerrients, the capacity region is the set 

of rate tuples R],..,, Rk satisfying 

Rs<I(Us;Ys\Us+i), l<s<k 

where Ui = X, Uk+i : 0 and the sequence Uk Uk- i 

U2 — X — , Y k ) forms a Markov chain. 

3.2 Proof of Theorem 3 

The achievability is straightforward using superposition coding 

and jo in t ly typical decoding. We shall refer the reader to [5] for 

details. Since Yg >： Yj, s < j < k, the receiver successively 
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decodes messages M j (equivalently the sequences Uf) f rom j == k 

to j : s. Each step is correct w i th high probabi l i ty since 

R] 二 I[aj;Y�\U�+^) - e. 

when s < j < k. Therefore the rate tuples given in Theorem 3 

are indeed achievable. 

Now we show the converse. Let M^^ i = (风 + 1 ’ …，Mk). Using 

Fa.no's irieqiial.itv. observe that for 1 < s < k 
丄 . — — 

ncr 

i
.
.
 

/
 

/
V
 

^
 >
 

V
.
 

4
 A
 

A
,
 A.
 

/
—
\
 /

—
\
 

/
 /
 

/
—
\
 

/
—
V
 

地 1 ) ) +几q 

(c) 

,1; A么].)—/(IWr] ; y y Mtl ) ) + ?扰n 

: ( 现 ’ v ^ L ， - m^-. 】、dMi_:i)) + 
1 

= > ： m s . V ^ L I；〜 I + 

ne;, 
i=l 
n 

= y " I iUs、i ;〜队+-i, i) ne. 
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where Uss ~ {^^s- Here the inequalities (a) and {h) 

follows f rom Lei i ima 2 and the less noisy condit ion Vs-i h Xs 匕 

V^. The equality (c) follows from the Lemma 3. 

Define Q to be a mi i form raiidoiri variable taking values in 

{ 1 , n ] and independent of all other random variables. As 

usual, we set US = (US^Q, Q) and A' = XQ. Since X — Vj 

… 一 Vk- i is a Markov chain i t follows that Uk — Uk—i 

> U2 —̂  X forms a Markov chain as well 

the proof of the convei-se. 

This completes 

• End of chapter. 
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Chapter 4 

Product of two unmatched BC 
with k receivers and degraded 
message sets 

The product of two unmatched A:-receiver degraded broadcast 

channels is defined as a broadcast channel、；,/pi j j i, • • • , 

^^ X … X where 

= = (4.1) 

p(yu • •-，挑:l工）=p{:y\\^) • • •p(:yk\yk-\)p{yk\^) • •'P(S'ilfe) 

This channel was ini t ia l ly studied by Poltyrev[21] for the k ~ 
一 一 一 .〜. 〜 . - 〜 

2 case where the subchannels X —> l i —> 1,2 and X Y2 Yi 

form Markov chains. Unlike the classical degraded broadcast 

channel[4], the overall channel is non-degraded since the order 

of degradation is different across the subchannels. Poltyrev[21 
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established the capacity region for the k •= 2 case w i t h private 

message requirements. The result was subsequently generalized 

by E]1 Gamal [7] for the same case w i th general message require-

ments (i.e. a common message intended for both receivers and 

a private message intended for each receiver). Extending the El 

Gamal's result to more than two receivers has been a long stand-

ing open problem. Given this dismal situation, one may make 

progress by studying the problem wi th degraded message sets 

where the idea of superposition coding turns out to be transpar-

ent . M o t i v a t e d by this, we study the channel defined in (4.1) 

w i t h degraded message sets where receiver .s G { 1 , …； k ] re-

quires messages (M:s,…，Mk)- The main questions we consider 

are the following: 

• W h a t is the achievable rate region for this channel? 

• Is this region optimal? 

In this chapter we establish t ight characterization of the su-

perposit ion coding region for the channel defined in (4.1) w i th 

degraded message sets (Theorem 5). The acliievability part is 

a consequence of the general superposition coding region estab-

lished in Theorem 4 for any broadcast channels w i th degraded 

message sets, while in the converse we follow a rather standard 
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iriforination-theoretical argmnent by making use of degraded 

conditions. 

4.1 Statement of results 

Theorem 4. For a k-recewer hrvadcast channel with degraded 

message sets where the receiver y,, s € {!,••• . k} requires mes-

sages {Ms, • • • , Mk), the following rate tuples Ri, • • • , Rk are 

achievable using superposition coding. 

+ • • • + i(Un.....—+ 

ivher-e (ii,.,. , ii] G Is = {Oi,…，ii} : s = < i � < • 

k, 1 < I < A-} and the sequence Uk 一…—Uo 一 U.i 

(Yi, •. • , Yk) forms a Markov chain. 

< k < 

二 X — 

Theorem 5. For the product of two unmatched k-receiver de-

graded broadcast channels (defined in (4.1) j with degraded mes-

sage sets whera the receiver Yg, s G {1, • • • , k} requires messages 

(Afc,., • • • , Mk), the capacity region is actually the superposition 

coding region and the region can be further simplified to the 
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union of rate tuples ， • ’ • , B4. satisfying 

J>S 

Ri < I{Us;Z\Us-,l) + … + /(队十"-2; Z+l'-2\Us 

+ ; Ys+i'-i) + I{X: Ys+j'-

where the sequences 

l<l! <k- s + 

(4.2) 

Uk 

X k — 

n (4.3) 

form Markov chains. 

Remark 7. Observe that for the k = 2 case, the capacity region 

is the union of rate pairs satisfying 

R2 < I{IJ\ Y^-rliX:^ 

+ 十 nu,, Y2) + i{x； %) 

for some p{u)p{x\u)p(x)p{yi. y2\x) • This can be derived directly 

from [7] and also coincides with the region given by (1.1) with 

the setting U' 二 {U.X),X' = 二 and Y^ = 
一 一 〜 — 一 一 • 〜 

(¥'2, ¥'2) luhere U — X — Yi Y^ and X Y2 Yi are 
‘ — — 

Markov and further X is independent of {U, X). 
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4.2 Proof of Theorem 4 

The proof of achievability follows f rom superposition coding and 

jo in t ly typ ica l decoding. Let Xg = ‘ •. , ii} ： s 二 i ] < < 

< i i < k , \ < l < Further let 

As = mm ( m ; I 队）讽…)+ Y„)) 
.r二 1 

Define a sequence {Bk , B k - i , … , B j } such tha t Bp = m i n ( 没 

for all 5 G { 1 , … , k } to guarantee positive rate tuples R i ,…，Rk-

We wi l l show that the fol lowing corner points 

Rp = Bp - ^ R, - ^ (4.4) 
J>Prl 

are achievable for some e > 0. 

Code generation： F ix p(.u,k)p{uk—i 卜 处 ) . . . . Generate 丑& 

二 independent codewords UJ^lrrik). m-k G {1, 2, • - • , 
11 

according to f l p{uk,i)' For each UJ^inik), generate 2 '作私” ] = 
7=~1 

2 n { B k - i - R k - ^ ) indepeiKient codewords UJ!_^{rnk： nik—i), rrik-^i € 
n 

{1, • • • ’2"风，一1} according to Yl (^^；)). Subsequently 
‘ ‘ 7： = 1 . ‘ ‘ 

for each codeword (【《；(爪fc,. •、•爪p+i))，2 < P < k — 2, gener-
_ n{BpV： Rj-w) 

ate 2"』p = 2 边十i independent codewords … ， m 
n 

nip G {1,2, • • • , 丑a c c o r d i n g to JJ 树Up,“w奸i,,;(rr‘ . •.，rnp+i)). 

Final ly for each codeword { p狄 r r i k , … , r r i ' i ) ) , generate = 
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E 均—§) , 、 
2 independent codewords • • • , nii), jjii G 

n 
{ 1 , 2 , • • • , 2打及 1} according to Yl .••，爪2))-

Encoding: To send the messages (m!., m-2,…,m.k) E [1, 2汉兄' X 

1, X . - • X [1, , the sender sends X " (mi, r n � ,…， 

Decoding and analysis of error probability: For 1 < p < fc, the 

receiver Yp declares that (rrik, ‘ • - , is sent i f i t is the unique 

rate tuple such tha t Y^^ is jo in t ly typical w i t h the sequences 

{UJ^ in i k ) ,…，U》ik ,…，m, , ) ) , i.e. {UJ!(m,),…，…， 

rrip), Yp) G I f there are none such tuple or more t l ian one 

tuple, an error is declared. Wi thou t loss of generality, we assume 

that a message tuple (爪人,,nik-i ； . . . , nip) = ( 1 , 1 , … ， 1 ) is sent. 

We first define the event 

五 肌 二 … ’ U�Lk,…，�,Y；) e 

Then the possible error events can be classified into the following 

two groups: 

• The received codewords are not jo in t ly typical w i th the 

t ransmit ted sequences, i .e.五5j, . - ‘ i . 

• There exist some (m.k, • • • , nip) + ( 1 , … , 1 ) such that the 

codeword . •. , nip) is jo in t ly typical w i t h Y^'. 
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Thus we can bound the probabil i ty of decoding error at re-

ceiver p as 

，m.fc-

+ + E p(芯 1 

nip^l 
d.rrir 

Now by the LLN, the first term F{BJ\ 0 as 11, —̂  oo. 

Further by the packing lemma we have that for all a such that 

R,<I{Up:Yp\L 

二肌；狐+1) 

Uk) 

(4.5) 

where [4+1 = 0- Observe that 

5：场二 :E馬— 5：战 
：円) 

二 Bp 一 Ba-rl + 

< m i n { / l i , …， 

2<i+-1 2P 

Ap} — .irim{.4.i. An, 

Obviously (4.5) holds i f m i n { A i , 

Thus i t reduces to showing 

i r i in {A i , A2 , . . . , -Ap} — min{.4j. 

Ap} < m i n { A p + i ’ …，人十 i } 

Aa+l} < IiUp:Yp\Ua+l 
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Let min{.4p+i, • • • ， A h - i } = 人 + i . Obviously p < q < a. Ob-

serve tha t 

miii{.4i,.42.-…,Ap] - min{.4p+i, - • • , Aa+i} 

< Ap —义<7+1 

J 二 丄 

— iniri + 厂）y 己 + 

J"…I 
1-1 

-. rnin K力i) + E [々 ，；【〜•k) 队；】A)) 
{u,i2，…什 i ‘ 

3•.-”丄 

=HUp\Yp\Uqi-i) 

where the last inequal i ty follows f rom the fol lowing fact 

〔4+1) 

Thus the receiver Yp decodes the intended messages w i t h arbi-

t raxi ly small probabi l i ty of error and hence (4.4) is achievable. 
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4.3 Proof of Theorem 5 

4.3.1 Achievability 

From Theorem 4 i t is st ra ight forward to see tha t given any dis 

t r i bu t i on p{ui, • • • , Uk) satisfying Uk — U2 —> Ui = X 
一 — 〜 ’ ' 〜 

(Fi , • • • , Yk) and JC — (Fi , • • • the fo l lowing rate tuples 

, jRk are achievable. 

Y^ Rj < I(Us： + + … + “ n—1.队） 
j>s 

+ /(%：?；》+ / ( 叉 ; ( 4 . 6 ) 

where {'“，…，i-i} e l s = { { i i， . . . , i i } : s = i i < (2 < ' • ' < k < 

kA < I < k}. 

Therefore to show that the region described by (4.6) w i t h 

the Markov condi t ion (4.3) is equivalent to the region defined by 

(4.2) i t suffices to show tha t al l inequalit ies are redundant except 

for the case when ？:] = ’s, ‘ + ! : ip + 1 for al l p G {1, 2, • • • J — 1}. 

Indeed we w i l l show 

+ … + /(L'、i+"—2; ......2队+" 1) 

where i\ = s, ii 二 f ] + 厂一1. Th is would be established by 
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proving the following inequality 

for all p e { 1 , 2 , … . , 1 - 1 } . 

However this is immediate as shown below. 

I t is t r i v ia l true i f ip+i = ip + 1. Now let ip+i = ip + q, where 

q > 2. Observe that 

Q-1 

E ：吼士 f 州）—.,([〜;只JK…） 

q-i _ 一 

< 

<I{lJ 

< 0. 

•̂ip+g-i L'i >+q, I
 

2
 

I
 a

 
+
 

a
 

I
I
 

1
 

f
 

.十.
 

where the first equality follows from the fact that HUi^,： 

HUi,； - m 。 f y 认,—J — / ( [ V i ; and 

the last inequality follows from the fact that Uî +̂q —» 

只p+(’—i forms a Mai'kov chain. Thus completes the proof of 

acliievabilitv. 
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4.3.2 Converse 

We now show the converse. Indeed we wish to show tha t given 

any sequence of ((2"凡’…，2"凡)，n, P^) code w i t h 一 0, the 

rate tuples R ] , • • • , Rk must satisfy (4.2) w i t h the Markov con-

d i t ion (4.3). 

Let M 》 = ( 风 ， F u r t h e r let t / j , = { M ^ ^ Y J ' ^ ) . Using 
Faiio's inequality, observe tha t for I' > 2, 

n 
.i>s 

+ -1 ‘ -1,1' -1,1) + 
s+l/ 

E 啊 巧 : 

Note that . 

：丨.略小】1 

s+l'-2 n 

二 E 
n 

) + Y 1 "A么".....1' W-... i，， i^-u) 

i二 1 

s+l'-2 n 
= E Em,. 

(4.7) 

彷 、 i w j f ] . ， + E 1，巧;i .-..i’i; 
j二 1 

n 
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And further. 

s+l' 

E 八 均 ; 绍 I 彷 , + 耶 1 ; ......liK. 

•\rn 
^s+1. 

< +丨, 

十 H^'^s+i'-v ^s+r-

^ s+U-

•n 

Y： Mk \rn -s^n 
s+r-l'' s+U-2.^ s^l' 

Y s+l'-： (4.8) 

Mlv- Y： 

Vn . yn 

wliere the first inequality follows from the fact that for all p G 
1
 

f
l
v
 

—3} we have 

二 聊 + 鳴 ， . 

十 i 1 • 

4. /(M.+p+i 

"̂̂ s+p-U; ”s%’l I ̂ '̂ s+p+l, ŝ+pd ) 

ŝ+p+1,1 
vn . v"' i i\,rk ‘“•‘ ^s+jJ-l,!' ^s+pM'^^s+p+l - ^s+p, 

1 , 1 ! , ^s'TP1 ’ 1) 

V" . vn i n f A: v" 
‘ • ， s + p -

、〜％+ l,ll-^i+p十2，1,1) 

’ … ， ； ^J+p+1,11 Af£f>p+2， 

,l) 

-p+l, 
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n 

Combining equations (4.7) and (4.8) we obtain for 
,S'+/'-2 n 11 

> 2 

For 1. i t reduces to show the converse of 

However this is immediate by similarly using Fa no's inequal-
•
 
1
 

ne.., 

j>s 

ne；. 

< 

ne. 

ncr 
i—1 i=l 

Define Q to be a uni form random variable tak ing values in 

{1, . . . n } and independent of all other random variables. As 

usua l we set U^ 二（f/s々 ,Q)，Ĵ  = Xq, 1； = Ys，q and Ys 二 Xs，q. 

This completes the proof of the converse. 

• End of chapter. 
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Chapter 5 

Summary 

In this thesis we have considered some very interesting open 

problems in the area of broadcast channel, in an attempt to 

understand the fundamental l imi ts of this network. The main 

objective is to ident i fy a new class of multi-user network based 

solutions to improve the existing bounds as well as to establish 

the capacity region for some new classes of broadcast channels. 

We have identif ied a simple example where we are able to ex-

p l ic i t ly evaluate the best known inner and outer bounds to show 

that the bounds do not match for a class of 3~receiver broadcast 

channels w i t h 2 degraded message sets. Due to the diff iculty 

in expl ic i t ly evaluating the bounds no such example was known 

previously. We have further shown that for a class of broadcast 

channels wliere the bounds differ, the inner bound is t ight and 

outer bound is weak. This makes us better understand the de-
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ficiencies w i th the current techniques of establishing the outer 

bound. 

We have also established the capacity region for a class of 

broadcast channels w i th a sequence of less noisy receivers. This 

generalizes the result about the optirnality of superposition cod-

ing for 人:-receiver degraded broadcast channels. Indeed the opti-

rnality of the superposition coding has been unkriowii for k{> 3)-

receiver less noisv broadcast channel since the mid 1970s. Our 

result have established the optirnality of superposition coding 

for the case k = 3, as i t can be shown to be in the new class we 

defined. 

In addit ion we have solved the capacity region of the product 

of A;-receiver degraded broadcast channel w i th degraded mes-

sage sets where receiver Yg, s G { 1 , … , k } requires messages 

( M s , . . . 5 Mk). In the process of proving the achievability, we 

showed a general superposition coding region for k~receiver broad-

cast, channels w i th degraded message requirement. 

In suriiniary, we have provided promising answers to the two 

open questions we set out to answer in the introduct ion part of 

this thesis: 

Question： Could one make progress on some new classes of 
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hj-QQ,(least channels where the achievable region given by indirect 

decoding coincides with that given by superposition coding? 

Some classes of broadcast channels studied in this thesis showed 

that one can make significant progress on the scenario where the 

idea of superposition coding yields the best known achievable 

region scheme. The idea of this coding strategy turns out to 

be transparent and seems to be opt imal for the channels w i th 

general degraded messages requirement. 

Question： Is it possible to solve the capacity region of k(> 3)-

receiver less noisy broadcast channel is the straightforward ex-

tension of Korner and Martoii result? 

I t is possible but one has to find new ideas to solve the capac-

i ty region for this class of broadcast channels. For instance, the 

capacity of the case k = 3 was solved by using the idea of vir tual 

receivers in the identification of the converse. However the cliar-

acterization of capacity region is st i l l open for k{> 4)-receiver 

less noisy broadcast channel. 

• End of chapter. 
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Appendix A 

Proof of Claim 

In this section we show that when ^ < p < the rat io 仏[二j is 

a decreasing function of x, x € [0, Recalling the definitions. 

f{x) = /?,(署)+ — 1, and g{x) = h{x^p). As f{x) and g{x) 

are str ict ly increasing in x G [0, i t suffices to show that 

- 雨 ’ I • ) 

where f � [ x ) , g�(je) denote the second derivatives of the func-

tion. 

Let J{x) 二 log ^ and U(x) — x(l — .t). Using this notation 

and substi tut ing for the derivatives, (A . l ) reduces to showing 

1 — 2r> : -J L _ . • . � 
冲 f/(f)卞 

Now observe that as x - both J{x^'p) arid J ( | ) - J ( ^ ) 

tend to zero and all other terms remain positive. Thus we have 
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an equality at x = To show the inequality for x G [0, i t 

suffices to prove that the derivative of the left hand side (L.H. S.) 

of (A.2) is smaller than derivative of the right hand side (R.H.S.) 

of (A‘2). 

The derivative of the L.H.S. is given by 

d-x 1 — 2p 
Let us define B.(x) to be the derivative of the R.H.S., i.e. 

jr/X \ 十 
R{x). 

f/(f) T 

We wish to show that 

—1 十 J{x * — 2(x * pY) < .R(x), (A.3) 

for all i < p < i and x G [0. i ] . Given any x E fO, i l , observe 
O — r — I ! 11 ' iJ ' 

that J(.T * ]>)(1 — 2(x * p)) is a decreasing function of p for 0 < 

p < Thus establishing (A.3) for p =長 suffices. 

Let S{x) 二 —1 + J{x * i ) ( l — 2{x * }.)). Figure A . l plots S{x) 

and R{x). 

Thus we have S(x) < R{x) for 0 < .x < This completes 

the proof of Claim 1. 

• End of chapter. 
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RW s(xK 

\ 

Figure A.l: Comparing R{x) and S{x) 
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办 2 (/(!)(/ 

舞 ) / ⑴ W ( g � � — / ⑵ ⑷ 、 

(/⑴⑷)3 / ⑴ ⑷ 人 

Since both / ⑴ > 0 and g⑴(：？̂  > 0 for .t G (O,!)，it wi l l 

suffice to establish that the term in brackets is > 0 for | < p < 

However, this is immediate as shown in Claim 1. 
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Appendix B 

Proof of Proposition 1 

In this section we show that > G, for Q < y < 2h(~) 一 1 and 

I < P < As f(x) is a str ict ly increasing function in x G [0,去], 

thus we can define x —- / . — G [0，金]unambiguously. Observe 

that 

i U ⑷ = " � ( / — I � ) 
dy u) / � ( / •%)) 

Thus 

g�[f—1 � ) / � ( 厂 1 ⑷ ） - g � ir'ijj))产 U—Hy)) 

3
 

1
 

”
广
 

.

.
、

/
 /

—
\
 

\—-/
 }
 

H
 ̂

 



• End of chapter, 
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Appendix C 

Proof of Claim 2 

III this section we show that when 0 < p < the ratio 

is a str ict ly decreasing in t G [s, 6*2], where j(x) — - J ( | ) and 

Q'{x) — J(x * p). 

Let F{sA,p) == l n ( J ( | ) — J(臺)）—ln(J(s * p) — J ( / ; *p ) ) , we 

wish to show 

t d) - ^ E k _ < n 
d t � ' "P�—广丄 d'r f -^dr 

Js卿⑴‘ Js U—严 

where U ix) = a;(l — x). Since all the terms are positive, this 
f/f 义1 

reduces to showing that the ratio【/(”!“ is a str ict ly increasing 

in ” e (0,1). 

Let K{v,p) = l n ( | ) + l i i ( l — f ) — ln(t ' — ln ( l — v * p), we 

wish to show that 
d T" \ 1 1 /]. l~2p ^ r� 

[ A = — — 了 > 0 

a v V 2 — V + p 1 — '6' * p 
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Further let GOv.p) = tz^ - observe that 
V " / v̂ p 1“••••V 水p 

冬卵 ( 1 . . . . . . .；广 ) 
op V * p 1 — V * p (v * p)-

(1 — t) * p)2 

I f 0 < V < I , then 暴G(t’，p) < 0 and we have 

V 1 — V V 2 — V 

I f • < V < 1, then 悬 > 0 and we have 

1 1 

dp 

1 
二 0 < 

V 2 — t! 

Thus ^ K i v > 0 for V G (0,1). This completes the proof 

of Claim 2. 

• End of chapter. 
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Appendix D 

Proof of Claim 3 

In this section we show that when 0 < 5 < 52, the ratio jrjiT^ is 

a str ict ly increasing function and J⑴{二丨 is a str ict ly decreasing 

function, where 0{s) = — ( 二 , 7 ⑷ = — J ( f ) and 5{s] 

- " ( ‘ ) ‘ 」 : 》 ) . A s all the terms j3(s), 7(5) and S{s) are strict ly 

increasing in s G (0. S2L it suffices to show that 

⑴ ( s ) 〉 

and 
7(2) (S) < (^’⑵(s) 

(D. l ) 

(D.2) 
7 ⑴ ⑷ 啊 s ) 

Substi tut ing the derivatives, (D . l ) arid (D.2) reduce to show-

ing, 

厂‘2 

(s * p ) ( l — s * p) / ( J{s * p) — J(t * p))dt 

> (1 - - |)厂(J(臺)—Ji^)dt (D.3) 
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4 ) ̂  
2 S- +，S'2(丄一s. 

(D.5) 

J(s * p) — Jit * p) t—s J[s * p) 一 J{t * p) 
(S * p)( l — 5 * p) 

二（1 一 2p)s( l 一 f ) 

and hence (D.3) is established. 

For (D.4), i t reduces to showing 

for s <t < Given any t € [6', .S2], observe that s + s^il — s) > 
2(t~ ^ suffices. 

Clearly this holds for R > i . For 0<R<\ 

s-\-t{l~s). Thus establishing log2 + > 

Let R = 

we have log2(l + 2i?.) > 2R > f ^ and hence establishes (D.5), 

• End of chapter. 
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(D.4) 

2{t 一 s)(U s + -5-2 — SS2 

respectively. 

However, both are immediate as shown below. 

From Claim 2 that the ratio 氣“ is a str ict ly decreas-

ing in t e [s'； 6'2j, we have 
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