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This thesis concerns the evaluation of Marton’s inner bound
for binary input broadcast channel without common message.
This inner bound is the best one for two-receiver broadcast chan-
nel, while the best outer bound is UV outer bound. Recently we
have shown that UV outer bound is not optimal, however the
optimality of Marton’s inner bound is still unknown.

In the first part, we introduce a binary inequality obtained
by Jog and Nair for binary-skew symmetric broadcast channel,
which helps to show for the first time that Marton’s inner bound
is strictly included in UV outer bound. We generalize this in-
equality to be true for arbitrary binary input broadcast channel.

The method applied here is perturbation analysis, which helps



to characterize the properties of non-trivial cases in the proof.

In the second part, we study a class of broadcast channel
consisting of binary input symmetric-output channels. We show
that whether Marton’s inner bound is strictly included in UV
outer bound is closely related to the more capable partial or-
der, and we find a second example that demonstrates the strict
inclusion.

To evaluate the inner bound beyond the sum-rate, we con-
sider the supporting hyperplanes of the boundary points and
conjecture the binary inequality to a stronger one, where we
utilize the notion of concave envelope. We prove the extended
inequality for certain cases.

The main contribution of the thesis is in the development
of new tools and techniques for evaluating certain achievable
regions as well as for proving certain information inequalities

that are not based on convexity.
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Chapter 1

Introduction

Cover [1] introduced the broadcast channel as a communica-
tion model where there are one transmitter and multiple re-
ceivers. The single-letter characterization for capacity region
of broadcast channel is still unknown, except in some scenarios
where there are some partial orders between component chan-
nels. However, we do have some inner bounds and outer bounds
which sandwich the capacity region, and among them Marton’s
inner bound [12] and UV outer bound [I4] are the best ones.
It is known through a particular broadcast channel that these
two bounds differ, and only until recently we know that UV
outer bound is not the capacity region [4]. Thus it is interesting
to investigate Marton’s inner bound. While in general this is
difficult, we restrict ourselves to the binary input case.

In the following we will introduce some bounds and partial
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yn .
Decoder 1 — M,

XTL
(M, My)—Encoder p(y, z|z)

A .
Decoder 2— M,

Figure 1.1: Broadcast channel with private messages

orders on broadcast channel. For more details, one may also

refer to Chapter 5,8,9 in [3].

1.1 Broadcast channel and capacity region

For the purpose of this thesis, we focus on the following two-
receiver discrete memoryless broadcast channel with only private

message requirements (Figure [1.1)).

Definition 1 ([I]). A broadcast channel consists of an input
alphabet X and output alphabets ) and Z, all of finite sizes,

and a probability transition function p(y, z|x).
A (27 272 n) code consists of an encoder
g [2M] X [27Fe]) — A
and two decoders
Wi Y — 20,

Wy 1 27 — [2F2],
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The averaged probability of error Pe(n) is defined as

P(n) = P(Ml 7& M1 or Mg 7£ Mg)

€

where (M, M,) is assumed to be uniform over [27%1] x [27F2],
A rate pair (Ry, Ry) is said to be achievable for the broadcast
channel if there exists a sequence of (2"%1 272 n) codes with
P™ = 0. The capacity region (CR) of the broadcast channel is
the closure of the set of achievable rate pairs.
The multi-letter characterization of capacity region is the

limit (as n — o0o) of the union of rate pairs satisfying

p—

Ry < —I(U;Y")

—_3

Ry < —I(V; 2")

S

over p(u)p(v)p(z"|u,v). However, this does not help evaluation,
and the single-letter one is still unknown. Instead we have some

inner bounds and outer bounds.

1.2 Inner bounds to capacity region

An inner bound refers to a region in which rate pairs are achiev-
able by some particular coding scheme. Hence an inner bound
is contained in the capacity region. In this section we introduce

some known inner bounds to the capacity region.
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Time-division region (TD) is characterized by the following

set of points

Bound 1 (TD). The following rate pairs are achievable

Ry Soz-m(aicl(X;Y)
p(x

Ry <(1—a) maxI(X;Z2)

p(x)

for all o € [0, 1].

The rates are achieved by transmitting at channel capacity to
one receiver for fraction « of the time, and at channel capacity
to the other one for the remaining fraction.

Randomized time-division region (RTD) corresponds to a
time-division strategy except that the slots for which commu-
nication occurs to one receiver is also drawn from a codebook
which conveys additional information. The rates are character-

ized by
Bound 2 (RTD). The following rate pairs are achievable
Ri < I(W;Y) + P(W=0)I(X;Y|W=0)
Ry < I(W;Z)+P(W=1)I(X; Z|W=1)
Ri+ Ry <min{I(W;Y), I(W;Z)} + PW=0)I(X;Y|W=0)

+P(W=1)I(X; Z|W=1)

for all p(w, x) over binary W.
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Here W characterizes the slots which distinguish communica-
tion to one receiver over the other. By taking W ~ Bern(1—a),
and p(z|w) as capacities achieving distributions, RTD reduces
to TD region.

The following Marton’s inner bound (MIB) [12] is the best

known achievable rate region.

Bound 3 (MIB). The following rate pairs are achievable

Ry < I(U,W;Y)
Ry < I(V,W; 2)
Ry + Ry < min{I(W;Y),I(W; 2)}
+ (U Y|W) + I(V; Z|W) — I(U; VW),

for all p(w,u,v,x).

Observe that setting U = X,V = when W =0and V = X,
U = () when W = 1 reduces MIB to the RTD region.

The description above already suggests that
TDCRTDCMIBCCR

While whether Marton’s inner bound is strictly included in ca-

pacity region is still unknown.
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1.3 QOwuter bounds to capacity region

An outer bound refers to a region that, any achievable rate pair
must lie in the region. Hence an outer bound contains the ca-
pacity region. In this section we introduce some known outer
bounds to the capacity region.

Korner-Marton outer bound (KMOB) [12] is the following
bound:

Bound 4 (KMOB). The region Oy N Oy forms an outer bound

to the capacity region, where Oy is the union of rate pairs sat-
1sfying
R, <I(U;Y)
Ry < I(X; Z)
Ri+ R <I(U;Y)+ I(X; Z|U)
over p(u,x), and similarly Oz is
Ry < I(X3Y)
Ry < I(V; Z)
R+ R <I(V;Z)+1(X;Y]|V)
over p(v, x).

The following UV outer bound (UVOB) [14] is the best known

outer bound
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Bound 5 (UVOB). The union of rate pairs satisfying

R, < I(U;Y)

Ry < I(V; Z)
R+ Ry < I(U;Y) + I(X; Z|U)
Ri+ R <I(V;2)+ I(X;Y|V)

over p(u,v,z) forms an outer bound to capacity region.

It is clear that UVOB C Oy and UVOB C Oy, hence
CRCUVOBC KMOB

We already know that UV outer bound is not optimal [4]. There
are also some other outer bounds for general broadcast channels,

however we don’t know if they are better than UV outer bound.

1.4 Partial orders

In this section we introduce some partial orders on component
channels of a broadcast channel, where we know the capacity re-
gion. In these partial orders, there is a “stronger” receiver, say

Y, and the capacity region is achieved by superposition cod-
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ing [12], which is

Ry < I(X;Y[|V)
Ri + Rs S[(X,Y)

over p(v, ).

In the following, by receiver Y we also mean the component
channel X — Y. We will not clarify unless necessary. And by
saying X — Y — Z we mean Markov chain.

The following definitions on degraded can be found in Section

5.4 of [3].

Definition 2. Receiver Z is a physically degraded version of Y
it X Y — Z.

Definition 3. Receiver Z is a statistically degraded version of
Y if there exists a virtual receiver Z such that p(Z|z) = p(z|x)

and X =Y — 7.

Definition 4. Receiver Z is a degraded version of Y if Z is

physically or statistically degraded version of Y.

Since for discrete memoryless broadcast channel, capacity re-
gion only depends on marginals p(y|z) and p(z|x), thus when

refer to degraded case, we use X — Y — Z for simplicity.
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Definition 5 ([I1]). Receiver Y is less noisy than Z if for all
p(u, x) we have I(U;Y) > I(U; Z).

Definition 6 ([I1]). Receiver Y is more capable than Z if for
all p(z) we have I[(X;Y) > I(X; Z).

Definition 7 ([I3]). A class of distributions P = {p(z)} is said
to be a sufficient class for broadcast channel X — (Y, Z2), if
for any distribution ¢(u, v, z) there exists a p(u, v, z) such that

p(z) € P and the following values

(U Y), I(X;Y|U), I(V;Y), [(X;Y|V)

I(U; 2),1(X; 2|U), I(V; Z), 1(X; Z|V)
are non-decreasing when distributions change from ¢ to p.

Definition 8 ([13]). Receiver Y is essentially less noisy than Z
if there exists a sufficient class P such that whenever p(z) € P,
for all p(u, z) we have I(U;Y) > I(U; Z).

In mc eln
For the notation, we use >, >, > to denote the corresponding

In
relationship, say Y > Z means Y is less noisy than Z.

Remark 1. There are some notes here. (a) A sufficient class is
a set of distributions that are sufficient for evaluating certain
region R. (b) For degraded, less noisy and more capable, the

underlying sufficient class is the whole space of distributions on
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X, that is, a common sufficient class. (c¢) Thus for essentially
less noisy, it makes sense to consider broadcast channels having
a common sufficient class. (d) Since we are considering region
R, it is natural to say that receivers Z and R are equivalent
under class P, if for any receiver Y such that P is a common
sufficient class for X — (Y, Z) and X — (Y, R), they have the
same region R. (e) Thus one may say that essentially less noisy

is a partial order (under a common sufficient class).

It is clear that

In mc
XY~/ =Y>/ =Y >/

eln

In
Y >/ = Y >/

However, more capable and essentially less noisy are not com-
parable in general. In Chapter [3| we will show that these two
relationships go in reverse directions for some special receivers,
which is counter intuitive since Y ng Zand Y eg Z are both say-
ing that Y is “stronger” than Z. Hence these special receivers
can be served as examples where we revise the definitions of

“stronger” receivers.
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Figure 1.2: Binary skew-symmetric broadcast channel (BSSC)

1.5 Examples where inner and outer bounds

differ

It is from the results in [I5], [7, 0] that people know Marton’s in-
ner bound is not equal to UV outer bound. The counter example
there is the binary skew-symmetric broadcast channel (BSSC) in
Figure [I.2] They showed that the maximum sum-rates Ry + Ry
evaluate to 0.3616, 0.3725, 0.3744 for Marton’s inner bound, UV
outer bound, Kérner-Marton outer bound, respectively [5].
The evaluation of sum-rate for Marton’s inner bound utilizes

the following inequality for BSSC
IU;Y)+ 1(V;2) = I(U; V) <max{I(X;Y),I[(X;Z)} (1.1)

In Chapter [2, we prove this inequality to be true for arbitrary
broadcast channel with binary input X. In Chapter [4], we gener-
alize this inequality further, and make a conjecture which helps

to evaluate Marton’s inner bound for binary input broadcast
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channels. In particular the conjecture is true for BSSC.

Another class of examples is provided in Chapter [3| where
we show that, for a special class of broadcast channels, Marton’s
inner bound coincides with UV outer bound if and only if the re-
ceivers are more capable comparable. By providing a broadcast
channel where the receivers are not more capable comparable,
we find a second example where the two bounds differ (and ac-
tually one can get more examples).

Recently it is shown [4] that UV outer bound is not optimal,
hence it becomes more important to investigate Marton’s inner
bound. By studying examples other than BSSC, we hope that
better understanding can be made on Marton’s inner bound.

To the end of this chapter, some notations and abbreviations

are provided in Table [I.1] for reference.
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Table 1.1: Notation

Notation | Meaning

X" (X1, Xoy ..o, X)

[n] {1,2,...,n}

Bern(a) | Bernoulli distribution

x P(X=0) for binary X

t 1—t

ax*b a(l—=>b)+ (1 —a)b

h(t) binary entropy function

Dy|z p(ylx)

Duw P(U=u,V=v)

Y lzn A Y less noisy than Z

Y ”g A Y more capable than Z

Y dzn Z | 'Y essentially less noisy than Z
C[f] concave envelope

C strict inclusion

C inclusion

iff if and only if

TD time-division

RTD randomized time-division

MIB Marton’s inner bound

CR capacity region

UvOB UV outer bound

KMOB | Kérner-Marton outer bound
BSSC binary skew-symmetric broadcast channel
BISO binary input symmetric output

13



Chapter 2
A binary inequality

The main result of this chapter is the following Theorem[l], which
generalizes (1.1)) to be true for every binary input broadcast

channel.

Theorem 1. For Markov chain (U,V) — X — (Y, Z) with

binary X, the following inequality holds:
HU;Y)+ 1(V;2) = 1(U; V) <max{I(X;Y),[(X;2)}. (2.1)

To evaluate the sum-rate for Marton’s inner bound, we need

the cardinality bounds from Theorem [2]

Theorem 2 ([14]). It suffices to consider [U| < |X|, |V| < |X],
and [W| < |X| to achieve the supremum of the sum-rate for

Marton’s inner bound.
Combining Theorem [I] and Theorem [2, Corollary [1] estab-
lishes that the maximum sum-rate given by Marton’s coding

14



CHAPTER 2. A BINARY INEQUALITY 15

strategy matches that given via the randomized time-division
strategy [14], a much simpler achievable strategy for any binary

input broadcast channel.

Corollary 1. The mazimum value of the sum-rate for Marton’s
inner bound for any binary input broadcast channel is given by

max { min{I(W;Y), I[(W; Z)}

p(w,z)

+PW=0)I(X;Y|W=0)+P(W=1)I(X; Z|W=1)}
where [W| = 2.

Proof. Let R be the maximum sum-rate obtained by the ran-
domized time-division strategy (Bound and R be that by
Marton’s inner bound (Bound . We need to show R = R.
Clearly R > R as R is a restriction of the choice of (U, V,W).
From Theorem [2] to evaluate the Marton’s sum-rate for bi-
nary input broadcast channel it suffices to look at |[W| < 2.
Consider a (U,V, W) that achieves the maximum sum-rate R.

Without loss of generality we consider two cases:

Case 1: [(X;Y|[W=w) > I(X; Z|W=w) for w =0, 1. Clearly

R =min{I(W;Y),I[(W;Z2)}
+IUY|W) + I(V; Z|W) — L(U; VW)
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= min{/(W;Y), [(W; Z)}
+P(W=0)(L(U; Y|W=0) + I(V; ZIW=0) — [(U; V|W=0))
+P(W=1)(I(U;Y|W=1)+ I(V; Z|W=1) — [(U; V|W=1))
< wmin{I(W:Y). 10V 2))
+P(W=0)I(X;Y|W=0) + P(W=1)I(X;Y|W=1)
<min{I(W;Y),IW; 2)}+ I[(X;YIW)<I(X;Y)<R
where (a) follows from Theorem |I| and case specification.
Case 2: 1(X;Y|W=0) > I[(X;Z|W=0) and [(X;Y|W=1) <
I(X; Z][W=1). Observe that
R=min{I(W;Y), I(W;Z)}
+I(U;Y|W)+1(V; Z|W) - [(U; V|W)
= min{J/(W;Y), [(W; Z)}
+ P(W=0)(I(U;Y|W=0) + I(V; Z|lW=0) — I(U; V|W=0))
+P(W=1)(I(U;Y|W=1)+ I(V; Z|W=1) — [(U; V|W=1))
< min{I(W:Y). I(W:2))
+P(W=0)I(X;Y|W=0)+ P(W=1)I(X; Z|W=1)
<R
where (b) follows from Theorem |I| and case specification.

The other two cases follow similarly. Thus R < R and the

proof is completed. ]
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In the rest part we are going to prove Theorem [I] The idea is
to fix the broadcast channel p(y, z|z) and show that for all fixed

p(x) we have that

max [(U;Y)+1(V;2)—1(U;V) <max{I(X;Y),[(X;2)}

p(u,vfz)

Denote LHS and RHS as the left-hand side and right-hand
side of the inequality (2.1]), respectively, that is
LHS =1(U;Y)+ I(V;Z) - I(U;V)
RHS =max{I(X;Y),[(X;2)}

For brevity let

Puv = P(U:u7 V:U)y Pylz = p(y\x), Pzlz = p(Z‘I’)

Also since the couplings of variables are (U,Y) and (V, Z), we

use notation
puy = P(U:u’ Y:y)) p’UZ = P(V:'U, Z:Z)

unless they conflict notation py,.

Remark 2. As LHS and RHS are continuous in p,, and p.,
for any fixed p(u,v,x), it suffices to prove the inequality when
Pyle and p.|, are positive.

The following theorem is one of the main results in [7]. For

a self-contained shorter proof, one may see Fact 1 and Claim 1

in [10].
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Theorem 3. To mazximize I(U;Y )+ 1(V;Z)—I(U;V) over all
p(u,v|z) such that (U, V) — X — (Y, Z), it suffices to consider
Ul < |X1], V| < |X| and X = f(U,V), a deterministic function
of (U, V).

Since X is binary, for expressing f, we use the notation: UAV
(and), U V'V (or), U@V (xor), U (not).
The following claim will be used in the proof. We include it

here to avoid messing the main part of the proof.

Claim 1. For broadcast channel X — (Y, Z) with positive tran-
sition probabilities, let function X = f(U, V) and p.m.f. p(u,v)
maximize LHS. If p(u) > 0 and p(v) > 0 for a pair (u,v), then
p(u,v) > 0.

Proof. The proof uses perturbation to show that we can increase
LHS otherwise. Suppose p(ui,v1) = 0 and p(uy) > 0, p(vy) >
0. Then we must have vy # vy such that p(uy,vy) > 0. Let

f(u1,v9) = x1. Perturbate p at two points

(
p(u,v,2) —e  (u,v,2) = (ug, v, 1)

q(u,v,2) = q ¢ (u,v,z) = (uy, vy, 1)

p(u, v, x) otherwise
\

Notice that p(z) is maintained. Now for LHS, we have (for
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simplicity we use natural logarithm)

LHS(q) — LHS(p)
— H(U,V) — H(U,Y) — H,(V, Z)
— H,(U,V)+ H,(U,Y)+ H,(V, Z)

=e{—Ine+ Inpy., + sz|x1 In ]]Zvlz} + o(€)
z

Vo Z

Observe that the first derivative is positive infinity, hence we

can increase the sum-rate. ]
The outline of the proof is:

1. We first prove the inequality for some special settings, or

“trivial” cases. (Section [2.1))

2. We show that it suffices to prove for the nontrivial cases

X=UAV and X =U ® V. (Section 2.2)

3. For X = U&®V, nontrivial maximum of LH S is not achiev-

able when p(u,v) > 0. (Section

4. For X = U AV, nontrivial maximum of LH S is not achiev-

able when p(u,v) > 0. (Section
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2.1 Proof of special settings

Since U - X — Y and V — X — Z are Markov chains, from

data processing inequality, we know

IU;Y) < I(X;Y), I(U;Y)<I(U;X),
I(V;2) < 1(X;2), 1(V;Z) <I(V; X). (2:2)

With these inequalities, we first prove Theorem [1| for some spe-

cial settings. Denote X 1 Y as independence.

SS1: pyo = pyi- Then X L Y, thus I(U;Y) = I(X;Y) =
0. From (2.2) and the non-negativity of I(U;V) we have
I(V;2Z) - I(U;V) < I(X; Z), i.e. Theorem [1] holds. Simi-

larly Theorem [I] holds when p.jg = p.;.

SS2: U L X. Then I(U;Y) = I(U; X) = 0. Again from ({2.2))
and the non-negativity of I(U; V') Theorem [1] holds. Simi-
larly when V' L X, Theorem [I] also holds.

2.2 Two nontrivial cases

According to Theorem [3], to prove the inequality (2.1), it suffices
to consider X = f(U,V) with binary U and V. Notice there
are 16 possible functions f, and they can be classified into the

following equivalent (due to relabeling) groups
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Gi: X=0,X=1

Gy X=UX=U,X=V,X=V

Gy: X=UANV,X=UANV,X=UAV,X=UAV

Gu X=UVV,X=UVV,X=UVV,X=UVV

G X=UoV,X=UV

The reason that these are equivalent groups is that, in each
group, all the cases can be reduced to the first case by using
some bijections. For example, in Gj3, let the distributions of
(U, V) be p(u,v) and r(u,v) for X = UAV and X = UAV,
respectively. The bijection is pgy <> 710, Po1 <> T11, P10 <> 700,
p11 <> ro1. Thus, we just need to prove Theorem [I] for the first
function in each group.

Further, notice for the case X = U V V with q(u,v), by
bijection poy <> qi1, Po1 <> o1, P10 € G0, P11 <> Goo, WE can
also use the same proof as for the case X = U A V. That is,
we use the fact that X = UV V & X = U AV to reduce the
proof of the OR case of one channel to the AND case of another
broadcast channel obtained by flipping U, V and X.

So it remains to consider the first cases of groups except Gjy.

The first two cases are trivial. For X = 0, the theorem is re-

duced to —I(U;V) <0. For X = U, ie. I(U;Y)=I1(X;Y), the
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theorem follows from the data processing inequality, I(V; Z) <
I(V;U) = I(V; X) (see (2.2)). Now for cases in G3 and Gf,
if p(z) = 0 for some z, then they reduce to Gy; if p, = 0 (or
py = 0) for some u (or v), then they reduce to cases in G or
Go. By Claim [I] finally we just need to consider the following

two nontrivial cases:
Cs3: X =U AV with p(z) > 0 and p(u,v) >0
Cs: X =U @V with p(z) > 0 and p(u,v) >0

We are going to prove that there is no nontrivial local maximum

for these two cases.

2.3 Proof of XOR case

Just as in [10] we will consider an additive perturbation, first
for any fixed X = f(U, V) subject to p(z) > 0 and p(u,v) > 0,
then restricted to X =U @ V.

Consider an additive perturbation ¢(u,v,z) = p(u,v,z) +
eA(u,v,x) for some ¢ > 0. For the notation, Ay = A(u,v,x),
p., means the marginal p.m.f. of U given p(u, v, z,y, z), and any

other marginal p.m.f. is similar.

For a valid perturbation, we require that \,,, > 0 if the
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corresponding p(u, v, x) is zero, which is
Awz > 0, if f(u,v) #x

Further let us require the perturbation maintains p(z) (hence

H(Y) and H(Z)), that is
d A =0, VzeX (2.3)

For any perturbation that satisfies the above conditions at any

local maximum p(u, v, x), it must be true that the first derivative

cannot be positive. This implies that > Ay,:Cupe < 0, where

TUuv

Cuve = — logpuv + Zpy|x logpuy + sz|x logpvz
Yy z

For x € X, choose one pair (u;,v,) such that f(u,,v,) = x.
This is possible since p(z) > 0. From (2.3), we express Ay, »
using other \,,, variables

Aumvmm - Z )\uva:

UVFEUL Vg

Substituting it into > Au:Cuve < 0, we have

Tuv

Z )\uvx(cuvx - Cuwvwm) S 0

TUVUVF ULV,

Above holds for any signed { Ay @ f(u,v) =z, (u,v) # (U, v2)}
and any nonnegative { Ay, : f(u,v) # x}, it implies

Cuvm - Cumvmxn if f(ua U) =T

C’U/U.TJ S CUIU;E$7 if f(u7 v) # x
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So now we have the following claims:

Claim 2. Let f(u,v) = z, for any (ui,v1) we have Cy oy <
Cuvz, that is

log 24 > 3" log ];“”’ + ) pualog Z;“Z

uv U vz
y y z

Claim 3. If f(uy,v1) = f(ug,v2) = x, then

Puyor Pugvs < PugvsPuguy

where the equality holds iff Cy vyr = Cupriz = Cuyviz(= Cuyvgz) -

Proof. The proof is finished by noticing that Cy 4,0 + Cupryr >
Cul’ng + CUQ’Ull" D

Now return to X = U @&V, notice that f(0,0) = f(1,1) =0,
hence by Claim [3| we have for p,, that popir < poipio; also
f(0,1) = f(1,0) = 1, hence poop11 > po1p1o. Thus we have

PooP11 = Po1P10 (2.4)

By Claim [3] this holds iff Cy19 = C1o0 = Cooo = C110 and Cpo1 =
Ci11 = Cp11 = Chp1. In particular, Cypg = Chip and Cygr = Cor1

imply that

Poo pOz
log = Dpao log == pq log =
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Notice po. = poop-jo + P1op2)1, take a weighted sum, we get

(oo + P10 108; — Z Poz log —

From above and using K-L dlvergence, we have

Poo Poo + P10, Poo
log— > log ———— = log —
Po1 P11 + Po1 Dot

where the last step holds since pyop11 = poip1o. Now that the

K-L divergence inequality is indeed an equality, we require

Poo _ Po= _ PooPzjo T P1oPz|1

Do Piz PuiP:jo + PoiP:1
From the above we obtain

(Po1 — pll)(pz|0 pz|1) = 0. (2.5)

Slmllarly from 0100 = 0110 and 0101 = 0111, we can obtain

(P10 — pn)(pym - pyu) = 0. (2.6)
Now we have two cases

L: pyo = pPyp, OF Pojo = p.pi- In this case the Theorem holds
(special setting SS1).

2: por = pu, pro = pn. Combining this with peop11 = poip1o
one obtains that p,, = 1/4, and as a result U,V and X are

mutually independent. The Theorem holds (special setting
SS2).
If neither of these two cases is satisfied, there would be no local

maxima.
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2.4 Proof of AND case

Similarly we will show that nontrivial local maxima can’t be
achieved when p(z) > 0 and p(u,v) > 0. In this case, P(X=1) =
p11- Now we fix py; € (0,1). Take (p1g, po1) as the free variables,
with poo = 1 — p11 — po1 — p1o- Notice that H(Y) and H(Z) are

fixed, the local maxima of LHS is the same as that of

J(pro,po1) == HU,V)—-H(U,Y)—-H(V,Z)
= —poo log poo — po11og po1 — piolog pio — p11log pn

+ ) (poo + po1)pypo log{ (poo + po1)pyp}

Poo + P10)P=jo log{ (poo + P10)p-j0}

2.

(

+ Z(plopym + pupyn) log{piopyjo + Pr11by; }
(

+ Z(pmpzm + p11p.) log{po1p-jo + P11 }-

At any local maximum, the gradient VJ and Hessian matrix

V2J must satisfy
VJ=0, V?J=0,

where V2J =< 0 denotes that V2J is negative semi-definite. We
now compute the gradient and the Hessian to investigate loca-
tions of the local maxima.

1. First Derivative:
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Differentiating with respect to free variables:

oJ poo Z pyolog (Poo + Po1)Pylo
8p10 p10py|o + PPy
oJ +
— Jog 20 szml (Poo + P10)P=0
Opo1 Po1Pz|o T P11Pz)1
The condition V.J = 0 implies that
Doo (Poo + Po1)Pylo
log — Dylo 10g (2.7)
Z v plopym + Priby
]900 (Poo + P10)P=(0

pmpz\o + pupsn

Remark 3. Equalities above are obvious from Claim [2| by notic-
ing that 0 A0 =0A1=1A0=0. This is expected as Claim

is a result from first derivative.

Using the concavity of logarithm, we have

Poo Z (Poo +p01)p§|0
Pio D10Pyjo + P11Py|1
Poo _ Z (poo +p10)p§|0
por Po1Pzjo T+ P11Pz)1

(2.9)
where the equalities hold iff (using Remark
Pyjo = Py - Cy, DPzl0 = P21 - Cz,

for some constants Cy, C'z respectively. However since > Dylo =
> Py1 = 1 we obtain that Cy = 1 (similarly Cz = 1). Thus

equalities hold iff

Dylo = Pyl1,  Pzo = Pz)1- (2.10)
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2. Second Derivative:

We now compute the Hessian G = V2J, The second deriva-

tives are
02.J 11 1 P
LI/ S S S
Ipy Poo P10 Poo 1 Po1 P1oPyjo + P11Py|1

1
G2 =Gy =——
Poo
02.J 11 1 P’
G22=—2=————+——|—Z A0
Ipisy Poo  Por  Poo + Pio Do1Pzj0 T P11Pz)1

1 1 _ 1 1
As po1 > 0, we have G; < e o T e+ e < 0.

Similarly we have G < 0. Since Gj; < 0 and Go < 0, G is
negative semi-definite iff det(G) > 0.
From (2.9)) we have

1 1 1
Gp>—-——+ + b
Poo Pio DPoo+Ppoi Pio(poo + por)

Po1(Poo + P1o)
PooP10(Poo + Po1)

And similarly
p1o(poo + po1)
PooPo1(Poo + P1o)
It is clear that equalities in the above two inequalities hold

iff (2.10) holds.

Since G111, G < 0 we have

Goy > —

Poi(poo+p10)  po@eotpn) 1 a2
PooP10(Poo + Po1)  PooPo1 (Poo + Pro) p(z)o .

with equality holding only if (2.10]) holds. Thus det(G) < 0.

G11Gy <
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When det(G) < 0, there is no local maximum for p(u,v) > 0.
When det(G) = 0, channel parameters satisfy (2.10]), and the
inequality is true from the special setting SS1.

This completes the proof of Theorem [I]



Chapter 3

BISO broadcast channel

In this chapter, we focus on a sub-class of binary input broadcast
channels: binary input symmetric output (BISO) [6] broadcast
channels. We study in detail two partial orders: more capable
and essentially less noisy. We establish a slew of results and
some of the interesting ones are summarized below. Notice that
by demonstrating that one channel is more capable than the
other, we indirectly establish its capacity region as the capacity

region for the more capable class is known [2].

e Any BISO channel with capacity C' is more capable than

the binary symmetric channel with capacity C. (Corol-
lary [2)).

e The binary erasure channel with capacity C' is more capable

than any BISO channel with capacity C. (Corollary

30
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e Any two BISO channels with the same capacity and whose

outputs have cardinality at most 3, are more capable com-

parable. (Corollary

e For any two BISO channels with same capacity, a receiver
Y is more capable than receiver Z if and only if receiver

Z is essentially less noisy than Y. (They go in reverse

directions.) (Lemma

e Superposition coding region is the capacity region for a
BISO broadcast channel if any one of the channels is ei-

ther a BSC or a BEC. (Corollary

e For two BISO channels with the same capacity, superposi-
tion coding is optimal if and only if the channels are more

capable comparable. (Corollary @

e For two BISO channels of same capacity, Marton’s inner
bound differs from UV outer bound [14] unless the channels

are more capable comparable. (Theorem @

e We also show that it suffices to consider U — X to be BSC
when we wish to compute the boundary of the superposition
coding region for BISO broadcast channels. (Lemma [7])
This vastly generalizes a result of Wyner and Ziv [16] for
degraded BSC broadcast channel.
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3.1 BISO channel

Definition 9. A discrete memoryless channel with input alpha-
bet X = {0,1} and output alphabet Y = {k: =l < k <[} is

said to be binary input symmetric output if
pr = P(Y=k|X=0)=P(Y=—Fk|X=1), -l <k <L

By BISO broadcast channel, we mean the component chan-
nels are BISO channels. Binary symmetric channel (BSC) and
Binary erasure channel (BEC) are examples of BISO broadcast

channels.

Remark 4. As k = 0 can be split into 07 and 0~ with equal
probability %po, we just consider k = +1, ..., £ and use {py, p_y :
k =1,...,1} to denote the transition probabilities. Sometimes
shortened to {pg, p_x }-

Let = P(X=0). Consider (Q, X) such that Q ~ Bern(3),
and (X|Q=0) ~ Bern(z), and (X|Q=1) ~ Bern(z). Now X is

uniformly distributed. Due to channel symmetry we have
I(X;Y)=1(X;Y|Q) < I(X;Y).

Hence uniform input distribution is the capacity achieving dis-
tribution for any BISO channel.
Partition P of an interval [a, b] is a finite sequence of points

{tr}r such that a =ty < t; <ty < ... <ty = b. A partition
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P is finer than @ if points of partition P contain those of (). A
common refinement of two partitions P and () is a new partition

consisting of all the points of P and Q.

Definition 10. For a BISO channel with transition probabilities

{pr, p—i }k, rearrange h(—L2—) in the ascending order and denote

p+p

the permutation as w. BISO partition is defined as the partition
of [0,1] with points ¢, = Zle(pm + p_r), and to = 0. BISO
curve is defined as the stepwise function f(¢) such that f(t) =
h(=—"—) on (tj_1, 1), and f(0) =

Py HD—r

For the channel BSC(p), we have the partition as tg = 0,¢, =
1 and the curve as f(t) = h(p) on (0,1]. For the channel
BEC(e), we have the partition as tg = 0,y = 1 —e,ty = 1,
and the curve as f(f) =0 on (0,1 —e¢] and f(t) =1 on (1—e,1].
Definition 11. For a BISO channel with BISO curve f(t), the

Lorenz curve F(t) is defined as F'(t fo 7)d7. (cumulative

curve)
Property 1. Since f(t) € [0,1] is non-decreasing we have
(1) F(t) is non-negative, piecewise linear, and conver.

(2) The slope of the line segments of F(t) is at most 1.
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By definition of BISO curve, the length of interval (t;_1, tx]

is (pr, + p—nr,). Therefore

Pk
=D ot ph(—"—) (3.1)
=0 Pk T P—k

B / W+ b (F(r)dr — F(1)

Thus a finer partition does not change /(X;Y’) and in particular

channel capacity. Indeed capacity, achieved by x = %, is 1—F(1).

3.2 Partial orders on BISO broadcast channel

3.2.1 More capable comparability

We will establish a sufficient condition in Theorem [ for deter-
mining whether two BISO channels are comparable using the
more capable partial order. Towards this, the following three

lemmas are needed.

Lemma 1. Giwen BISO channels X — Y and X — Z with
BISO curves f(t) and g(t), respectively. Let the common refine-
ment of these two BISO partitions be {t; : k = 0,.. .,N}, and
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fk = Ifk — tk—l- Then

F(t) = &f(tr) <) &Golty) =G(t), i=1,...,N
k=1 k=1
if and only if the Lorenz curve F(t) < G(t) for all t € [0, 1].

Proof. The if direction is obvious. For the other direction, we
prove by contradiction. Let t* be a point where F'(t*) > G(t*).
Clearly t* € (tj_1,t;) for some j. Since F'(t;_1) < G(t;_1), it is
necessary that f(t) > g(t) for t € (¢;_1,¢;). However integrating
from t* to ¢;, we have that F'(¢;) > G(t;), which contradicts. [

The following lemma is well-known.

Lemma 2 (Lemma 2 in [16]). The function h(z * h™1(y)) is

strictly convex in y. (Key ingredient of Mrs. Gerber’s lemma)

Lemma 3 (Lemma 1 in [9]). Let xy,...,z; and v, ..., y; be non-
decreasing sequences of real numbers. Let &1, ...,& be a sequence

of real numbers such that

z z
ijxj > ijyj, 1<k<I
=k =k

with equality for k = 1. Then for any convexr function A,

l

l
> EM()) > Z &iA(Y;))-

J=1
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Theorem 4. Given BISO channels X — Y and X — Z with
Lorenz curves F(t) and G(t), respectively. Further let F(1) =
G(1), i.e. channels have same capacity. If F(t) < G(t) then Y

18 more capable than Z.

Proof. Using Lemma [I] we know that
=N afte) <> agts) =Gt), i=1,....N
k=1 k=1

and since F(1) = G(1) we have equality at i = N. Using Lemma
and by noticing that f(t;) and g(tx) are both nondecreasing
we have ) )

N N
D GAS(E) =D EA(t))

j=1 j=1
for any convex function A. Taking A(y) = h(z * h™1(y)) — y we

obtain that

N
Zgj (v %h! Z
) —
ZZQ (zxn! Zé}g
j=1

From (3.1]) this is equivalent to
I(X;Y) > I(X; Z),Vp().

Thus the theorem is established. ]
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For reasons that will be apparent later (Lemma [5)) it is useful
to zoom in the subclass of BISO channels that have the same
channel capacity C. For instance BSC(p), with 1 — h(p) = C,
belongs to this class. Similarly for BEC(e) with 1 —e = C.

Notation: Let BISO(C') denote an arbitrary BISO channel
that has capacity C. To abuse notation, we denote BSC(C)
and BEC(C') as the binary symmetric channel and the binary

erasure channel with capacity C, respectively.
Corollary 2. BISO(C) > BSC(C).

Proof. From Theorem {4]it suffices that the Lorenz curves satisfy
G(t) < Fpsc(t),t € [0,1]. Observe that G(0) = Fpsc(0) = 0,
G(1) = Fpsc(1) and that Fgge(t) is the straight-line connecting
0 and Fpgc(1). The convexity of Lorenz curve G(t) implies that
G(t) < Fpse(t),t € [0,1]. O

Corollary 3. BEC(C) > BISO(C).

Proof. Similar to above it suffices that the Lorenz curves satisty
Fppo(t) < G(t),t € 0,1]. Fppe(t) =0,t € [0,1 — e] and hence
Fppo(t) < G(t),t € [0,1 —e]. Combining Fppc(1) = G(1) and
(comparing slopes) Fppo(t) = ferc(t) =1 > g(t) = G'(t),t €
(1 — e, 1], we also have Fppc(t) < G(t),t € [1 —e, 1]. O
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Y. Z of size 3

1l —— 1) ||
-0 Git)

08

06

Lorenz Cunies

04}

02f

.....
,,,,,

T | 1 I 1 1 1 1
01 02 03 04 05 06 07 08 089 1
t

Figure 3.1: Lorenz curves for BISO channels with the same capacity and

output of size 3.

Corollary 4. Two BISO(C) channels whose output alphabet

sizes are at most 3 are always more capable comparable.

Proof. For BISO channel X — Y with transition probabilities
{p_1,p0,p1}, k = 0 is split equally into 0T and 0~. Thus the

Lorenz curve F(t) contains two sloping lines: one with slope

( Do+
Po++Po—

Lorenz curves of this kind, F'(t) and G(t), with F(1) = G(1),

) = 1, and the other not bigger than 1. Given two

then either F(t) < G(t) for all t € [0,1] or F(t) > G(t) for
all ¢ € [0,1] (Figure 3.1)). According to Theorem [, these two

channels are more capable comparable. ]

Remark 5. Not all BISO channels with the same capacity are
more capable comparable. A counter example is the following:

Consider BISO channels X — (Y, Z) with transition probabili-
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ties according to:

P(Y =i X=0) = a;, -2 < i < 2

P(Z=j|X=0) = b;,~2 < j <2

where a_o = 0.061, a_1 = a; = %(1 — 10a_3), as = 9a_» and
by = 0.0634977, b_y = (1 —b_), by = (1 — b_y), by = 0.
One can verify that the channels have same capacity, but are

not more capable comparable.

3.2.2 More capable and essentially less noisy

In this section we will establish that these two partial orders,
restricted to BISO channels with capacity C', are tnverse of each
other. This is counter-intuitive as more capable and essentially
less noisy are two notions of saying that one receiver is superior
to another receiver.

Below (for a complete argument see Lemma 1 in [I3]) we
note that the uniform input distribution forms a sufficient class
for any BISO broadcast channel. Thus in the following when
talking about essentially less noisy, we automatically assume it

is under this sufficient class.

Claim 4. For any BISO broadcast channel, the uniform input

distribution P(X=0) = 1 forms a sufficient class.
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Proof. The following construction suffices. Let j, k € {0, 1},

then define p.m.f.

QU=(u,j), f/:(v, k), X:x)
%P(U:u,V:v,X:x ®j) j=k
0 j#k
Lemma 4.

mce eln
BISO,(C) > BISO.(C) <= BISO.(C) > BISO;(C)

Proof. Assume component channels Y and Z have same capacity
C and Y ”g Z. When P(X=0) = 5 we have for all U such that
U—-X— (Y, 2)
H(U;Y)=1(X;Y)-I(X;Y]|U)
=C—-I1(X;Y|U)

I(X;2)—-1(X;Y|U)

[(U; 2) + 1(X; Z|U) — I(X;Y|U)

IA

1(U; Z)

where the last inequality follows from Y ﬂg Z. From Claim ,

P(X=0) = 1 is a sufficient class of input distribution, by defini-
eln
tion, Z > Y.
eln

Assume Z > Y. The proof follows by contradiction. Sup-

pose there is a value x such that when P(X=0) = z, we have
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I[(X;Z) — I(X;Y) =6 > 0, then consider a U ~ Bern(3) such
that P(X=0|U=0) = © = P(X=1|U=1). Observe that, from
the symmetry I(X; Z|U) — I[(X;Y|U) = 6 > 0. However since
P(X=0) = 3, using a similar decomposition we see that
[(U:Y) = I(U; Z) + I(X; Z|U) — [(X;Y|U)
= [(U;Z)+0 > 1(U; 2)

eln

contradicting the assumption Z > Y. ]

The following lemma is an immediate consequence of Corol-

laries 2| B, and Lemma [4
Lemma 5.
(1) BEC(C) > BISO(C) > BSC(C),
(2) BSC(C) > BISO(C) S BEC(C).

This leads us to one of the main results in this section.
Theorem 5. For any three numbers 0 < C7 < Cy < C5 we have
(1) BEC(Cy) > BISO(Cy) > BSC(CY),

eln eln
(2) BSC(C3) > BISO(Cy) > BEC(Cy).

Proof. Suppose C, < C, then BSC(C,) and BEC(C,) are de-
graded versions of BSC(Cy) and BEC(Cy) respectively. Hence
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from Lemma [B we have

BEC(Cy) > BEC(Cy) > BISO(Cy) > BSC(Cy) > BSC(Ch)

eln eln eln eln
BSC(Cy) > BSC(Cy) > BISO(Cy) > BEC(Cy) > BEC(C)) O
The following corollary is immediate.

Corollary 5. Superposition coding region is the capacity region
for a BISO broadcast channel if any one of the channels is either

a BSC or a BEC.

Proof. Superposition coding is optimal both for more capable
comparable channels [2] and for essentially less noisy compara-
ble channels [13]. From Theorem [5| if any one of the channels
is either a BSC or a BEC, then the channels are either more

capable comparable or essentially less noisy comparable. ]

Remark 6. In [13] the capacity region of a BSC/BEC broadcast
channel was established. Corollary 5| generalizes this result to

only requiring that one of the BISO channels is a BEC or a BSC.

3.3 Comparison of bounds for BISO broad-

cast channel

The following lemma and Lemma [7| in Appendix generalize the
result by Wyner and Ziv [16] for BSC broadcast channels. In [2]
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it was shown that superposition coding is indeed optimal when

the two channels are more capable comparable.

Lemma 6. Consider a two-receiver BISO broadcast channel.
Consider the following region formed by taking the union of rate

pairs (Ry, Ro) satisfying

R+ R < I(U; Z)+ I(X;Y|U)
R < I(X;Y)

over all p(u,x). Then the same region can be realized by restrict-

ing to a binary U such that U — X ~ BSC and P(X=0) = .
Proof. The proof is presented in the Appendix. [

Remark 7. For BISO broadcast channels since P(X=0) = 1 is
a common sufficient distribution, it can be shown that the UV

outer bound matches the Korner—Marton outer bound.

Consider P(X=0) =  and U — X ~ BSC(s;) where s, —
P(X=1|U=0), similarly let V — X ~ BSC(sy). Let I(U;Y) =
fi(s1), and I(V; Z) = fa(ss). It is clear from symmetry that
fi(s) = fi(1 = s), fa(s) = fo(1 = 5).

From Lemma [6] it follows that UVOB can be written as the
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union of rate pairs Ry, Ry satisfying

Ry < fi(s1)

Ry < fo(s9)
Ri+ Ry < fis1) + C — fa(s1) (3.2)
Ry + Ry < fa(s2) + C — fi(s2).

for some 0 < 51, 59 < %

Let
I'={s€[0,0.5]: fi(s) > fa(s)}
J={s€[0,0.5] : fi(s) < fa(s)}.

The following result relates the equivalence of the various
bounds and their relation to whether the channels are more ca-
pable comparable. (Randomized time division region is the same

as the Marton’s inner bound due to Corollary [1])

Theorem 6. For a BISO broadcast channel with component
channels BISO1(C) and BISOy(C), the followings are equiv-

alent:
(a) BISO1(C) and BISO5(C) are not more capable comparable
(b) TD C UVOB

(¢) There exists sy € 1, s9 € J such that fi(s1) + fa(se) > C



CHAPTER 3. BISO BROADCAST CHANNEL 45
(d) TD C MIB

(e) MIB C UVOB.

Proof. The proof is presented in the Appendix. H

Corollary 6. For a BISO broadcast channel with component
channels having the same capacity, superposition coding s opti-

mal if and only if the channels are more capable comparable.

Proof. If superposition coding region is indeed the capacity re-
gion, then we have R; + Ry < I(X;Y) < C. Further since the
two channels have the same capacity, we have the TD region is
optimal. From Theorem [ we have that the channels are more

capable comparable. ]

Remark 8. A characterization of when superposition coding is
optimal for two-receiver broadcast channels is open in general. It
is known that superposition coding is optimal when the channels
are either essentially more capable comparable or essentially less
noisy comparable [13] - two incompatible notions. However a

converse statement is still unknown.

Observation 1. From Remark [5| we know that there exists a pair
of channels BISO;(C) and BISOy(C) which are not more ca-

pable comparable. Hence from Theorem [6| we know that the
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capacity region is strictly larger than TD. However, if we re-
place BISOy(C) by BEC(C), a more capable channel, then
the capacity of the broadcast channel formed by BISO;(C') and
BEC(C) is the TD region (Corollary [3)). Thus replacing by a

more capable channel can strictly reduce the capacity region.

3.4 A new partial order

We now introduce a natural operational partial order among

broadcast channels.

Definition 12. Receiver Z is a better receiver than Z if the
capacity region of X — (Y, Z) contains that of X — (Y, Z) for
every channel X — Y. In other words, if we replace receiver Z

by receiver Z then the capacity region will not decrease.

Remark 9. Note that the capacity region of a broadcast channel
just depends on the marginal distributions X — Y, X — Z,

and hence the definition makes sense.

From Observation [1] we know that a more capable receiver
is not necessarily a better receiver. However we will show that
if Z is a less noisy receiver than Z, then Z is indeed a better

receiver than Z.
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Claim 5. If Z is a less noisy receiver than Z, then Z is a better

receiver than Z.

Proof. The capacity region of a discrete memoryless broadcast
channel has the following n-letter characterization. Consider the

region R,, defined as the union of rate pairs (R, R2) that satisfy

—

Ry < —I(U;Y")

_S

R2 S —I(V; Zn)

S

for some p(u)p(v)p(z"™|u,v). It is known that the capacity region
is lim, R,. (It is clear that this is achievable, and a converse
follows by setting U = M; and V = M, and applying Fano’s

inequality.) Observe for j =n,... 1

I(V; 20, Z}0) = IV, 27 23 + 1V 2,1 2771 Z3)

IA

(v, 2=t zn

j+1) + ](Vv Zj’Zj_17 Z;’:—l)

. 7i—1 n
I(\V; 2z’ ,Zj ).

By taking extreme points of this chain we obtain I(V;Z") <
I(V;Z"). Claim follows from the expression of the capacity

region stated above. ]
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Appendix

Proof to Lemma

Proof. Let U = (U, Q), where Q ~ Bern(%) is independent of U
such that
P(X=0|(U, Q)=(u,0)) = P(X=0[U=u)
P(X=0|(U, Q)=(u, 1)) = 1 — P(X=0|U/=u)
This induces an X ~ Bern(3). It is straightforward that
I(U;2) > I(U; Z),
I(X;Y|U) = I(X;Y|U),
I(X;Y)>I(X:;Y).
Thus for every pair of (U, X), replacing it to (U, X) leads to a
larger achievable region. Denote this class of (U, X) as Q.
Hence it suffices to maximize over (U, X ) in Q. Since X is uni-

form, the third inequality remains constant. Therefore, to com-

pute the extreme points, we proceed to compute the distribution
(U, X) in Q that maximizes A\I(U; Z) + (I(U; Z) + I(X; Y |U)).
Reformulate it as

A+D)I(X;2)+ 1(X;Y|U)— (A + DI(X; Z|0).

Let f(p) = 1(X;Y) — (A+ 1)I(X; Z), where p = P(X=0). No-
tice that f(p) = f(1 — p), suppose p, € |0, %] and 1 — p, max-
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imize f(p). Construct U — X ~ BSC(p,), then I(X;Y|U) —
(A + 1)I(X; Z|U) is maximized; construct U ~ Bern(3), then
I(X; Z) is maximized since P(X=0) = 1. Notice this construc-

tion falls into class @, hence finishes the proof. ]

The same proof can also be used to establish the following

lemma.

Lemma 7. Consider a two-receiver BISO broadcast channel.
Consider the following superposition coding region formed by
taking the union of rate pairs (Ry, Ry) satisfying
Ry < 1(U; Z)
Ro+ Ry <I(U; Z)+ I(X;Y|U)
Ry + Ry < I(X;Y)

over all p(u,x). Then the same region can be realized by restrict-

ing to a binary U such that U — X ~ BSC and P(X=0) = 3.

Proof to Theorem [6]
Proof. (a) = (b): Recalling: Let

I ={s€]0,0.5]: fi(s) > fo(s)}
J={s€0,0.5]: fi(s) < fa(s)}.
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Since the channels are not more-capable comparable, we know
that there esists s; € I and sy € J. Construct U — X, where

U = U’ x Q with binary U’ and (), and probabilities

1—e¢

P(U=(0,0)) = 5 P(X=0|U=(0,0)) =1
P(U=(0,1)) = % P(X=0|0=(0,1)) = s,
P(T=(1,0)) = 1;5 P(X=1|0=(1,0)) = 1
P(U=(1,1)) = % P(X=1|T=(1,1)) = 5.

Thus, U — X ~ BSC(0) conditioned on the event Q = 0,
U — X ~ BSC(1 — s1) conditioned on @) = 1, and further U’
is independent of @ with P(U’'=0) = 1. We can see that @ is
independent of X and hence of Y, Z; thus I(Q;Y) = [(Q; Z) =

0. Now

(U;Y) = I(U,Q;Y) = (U Y|Q) + 1(Q;Y)
= 1(U';YQ)

(1—e)(X;Y)+el(U;Y|Q=1)

(1 —¢)C +efi(s1).

Similarly, we obtain

I(U; Z) = (1 —€)C +efa(s1).
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Thus we have

Ry < (1—¢)C +efi(s)
Ry < fo(s2)
Ri+ Ry < I(U;Y)+ I(X; Z|U)
= I(U;Y)+ 1(X;2) - I(U; 2)
= (1—&)CHefi(s1) +C —[(1 —e)C +cfas1)]
=C+elfils) — fa(s1)] (> 0)
Ri+R <I(V;2)+1(X;Y|V)
= fa(s2) + C = fi(s2) (>C).

To show that we can have (1 —€)C + €f1(s1) + fa(s2) > C, we
just need to choose small € to ensure fy(s2) > ¢[C — fi(s1)].
Since this is clearly possible, we have UVOB D T'D.

(b) = (c): From Equation (3.2]), we have the following ex-

pression of the boundary of the outer bound,

Ry < I(U;Y) = fi(s1)

Ry < I(V3 Z) = [fa(s2)
Ry + Ry < I(U;Y) + 1(X; Z|U) = fi(s1) + C = fa(s1)
R+ Ro < I(V: Z) 4 I(X:Y|V) = falsa) + C — Fu(s)

Clearly for every s; € I,s9 € J if fi(s1) + fa(s2) < C then
from above UVOB = T'D. However since UVOB D T D, there
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exists s1 € I, s € J such that fi(s1) + fa(s2) > C.

(¢) = (d): In general, TD C RTD C MIB. So now it
suffices to show there exists an example where the sum rate of
RTD region is strictly larger than TD region.

We now compute the maximum sum rate of the RTD region.
From Corollary [1| we know that this matches the maximum sum
rate of the MIB region.

Consider an auxiliary channel W — X such that
PW=0)=a, PW=1l)=1-a
P(X=0|W=0) = 5o, P(X=0|W=1)=g¢
where ass + (1 — a)s; = 3.
It is straightforward to check the following
I(X;Y|W=0) = C — fi(ss), I(X;Y|W=1) = C — fi(s1)
[(X, Z|W:O) =(C — fg(Sg), [(X, Z|W:1> =C — fg(Sl),
I(X;Y)=1(X;2)=C.
Then observe that
IW;Y)+P(W=0)I(X;Y|W=0)+P(W=1)I(X; Z|W=1)
= I(X;Y)+P(W=1)(I(X; Z]W=1) — [(X;Y|W=1))
=C+ (1 =a)(fi(s1) — fa(s1))

where the last inequality holds since s; € I.



CHAPTER 3. BISO BROADCAST CHANNEL 53
Similarly

[(W: Z) + P(W=0)I(X; Y |W=0) + P(W=1)I(X; Z|W=1)
= C + a(fa(s2) — fi(s2))-

Therefore the sum rate of RTD (eq. MIB) for this choice of
(W, X) is given by

C + min{(1 — a)(fi(s1) — fa(s1)), a(fa(s2) — fi(s2))}. (3.3)

Therefore if (c) is satisfied, i.e. there exists sy € I,s9 € J,

then there exists a (W, X) so that equation gives a sum
rate strictly larger than C.
Remark 10. A careful reader will notice that the above argument
only requires s; € I, s € J and does not even require fi(s1) +
fa(s2) > C. But existence of any s, € I, s, € J will imply that
(a) holds and hence (c) holds.

(d) = (e): Since T'D C MIB, to compute the maximum sum
rate of MIB it suffices to maximize over s; € I,s9 € J,0<a < 1

the term

C + min{(1 — a)(fi(s1) — fa(s1)), a(fa(s2) — fi(s2))}-

Consider any triple sy € I,s9 € J,0 < a < 1. Pick any € > 0

small enough (will show later how small we require it).
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Define (U, X) = (Q,U;, X) where P(Q=0) =1 — a + ¢, and
P(Q=1) = a—e;and U; — X ~ BSC(s1) conditioned on @) = 0,
and Uy — X ~ BSC(0) conditioned on @) = 1. Further take
P(U;=0) = P(U;=1) = 5. Observe that this induces P(X=0) =
P(X=1) = 1.

Similarly define (V, X) = (Q’, V4, X)) where P(Q'=0) = a+¢,
P(Q'=1)=1—a—¢; and V} = X ~ BSC(s9) conditioned on
Q' =0, and V; —» X ~ BSC(0) conditioned on )" = 1. Further
take P(V,=0) = P(V;=1) = 1. Observe that this also induces
P(X=0) = P(X=1) = 1.

|

Since the distribution of X is consistent there exists a triple
(U,V,X) with the same pairwise marginals (U, X) and (V, X)
as described earlier. With this choice, UVOB reduces to

Ry <I(U;Y) =(1—a+e)fi(s1) + (a—¢)C
Ro < I(V: 2) = (a+ &) falss) + (1 —a— £)C
R+ Ry < I(U:Y) + I(X: Z|U)
= C+ (1 —a+e)(fils1) — fals1))
Ri+ R <I(V;2)+ I(X;Y]|V)

= C+ (a+¢e)(fa(s2) = fi(s2))-

Clearly the maximum sum rate of the above region is mini-
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mum of the terms

C+ (1 —a+e)(fi(s1) — fals1)), C+(a+e)(fals2) — fi(s2)),
(1—=26)C+ (1 —a+e)fi(s1) + (a+¢)fas2)

We pick € > 0 to satisty

(1-26)C+ (1 —a+e)fi(s1) + (a+e)fas2)
> C+ (1 —a)(fi(s1) — fas1))
< (1—a)fa(s1) +afa(s2) > e(2C — fi(s1) — fa(s2)),

and

afi(se) + (1 =a)fa(s1) > e(2C = fi(s1) = fals2)),

then the maximum sum rate of the UVOB expression will be
strictly bigger than that of MIB region. Since this is possible for
every s1 € I,s9 € J,0 < a < 1, the maximum sum rate of UVOB
is strictly larger than that of MIB. Therefore UVOB D MIB
or (e) holds.

(e) = (a): Since MIB C UV OB clearly implies the channels
are not more capable comparable. This is because when the
channels are more capable comparable we know from [2] that
superposition coding is optimal and that MIB = CR = UV OB.

]
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Extended binary inequality

Marton’s inner bound refers to union of rate pairs satisfying

Ry < I(U,W;Y)
Ry < I(V,W; 2)
Ry + Ry <min{I(W;Y), I(W;Z)}
U Y|W) + I(V: ZIW) = (U VW),

for all p(w, u,v,x).

To evaluate the sum-rate, the following inequality helps
HU;Y)+1(V;2)=1I(U; V) <max{I(X;Y),[(X;Z)}

However to evaluate the inner bound, we need a bit more.
Since Marton’s inner bound is a convex region, for the bound-
ary points, we consider optimizing the supporting hyperplanes.

Notice that the sum-rate constraint is always effective, for ao > 1

56
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we seek to maximize the following

(o — VI(U,W;Y) + min{I(W;Y), [(W; Z)}
+ (U, Y|W) + I(V; Z|W) — I(U; VW)

= (o = DI(W;Y) + min{I(W;Y), [(W; Z)}
+al(U;Y|W) + I(V; Z|W) — I(U; VW)

One may guess the following inequality holds for all a > 1

al(U;Y)+ IV Z) = 1(U; V)
< max{al(X;Y),I(X;2)} (4.1)

It can be shown that this inequality holds for BSSC. However
this inequality is not true for AND case and a counter example
is provided in [§].

For the other cases, we can prove this inequality using similar
way to the proof in Chapter 2 We just state the proof for XOR
case in the following section. One may refer to Section for

notations and Chapter 2| for more details.

4.1 Proof of XOR case

We will show that XOR case cannot attain non-trivial local max-

imum for the left hand side of (4.1)).
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Consider an additive perturbation q(u,v,z) = p(u,v,x) +
eA(u, v, x) for some ¢ > 0. For a valid perturbation, we require

Awvz > 0 if p(u, v, x) = 0, which is
Awz > 0, if f(u,v) #x
Further let the perturbation maintains p(x), that is
> Auw =0, VreX

For any perturbation that satisfies the above conditions at any
local maximum p(u, v, z), it must be true that the first derivative

cannot be positive. This implies that > Ay:Cupe < 0, where

UV

Cuvx = _(04_1) 1ngu_10gpuv+a Zpy|x logpuy+z Pz|x logpvz

Yy z

Express Ay, .,. in the term of other \,,, variables, that is

Auzvgg:c - - Z Auvx

UVFE U Vg

and substituting into > Ay:Cuor < 0, we have

Zuv

Z Auvx(cuvx - Cuzvzx) S 0

TUVUVFE UL Uy

Above holds for any signed { Ay @ f(u,v) =z, (u,v) # (U, vz)}
and any nonnegative { A, : f(u,v) # x}, it implies

Cuvm - Cumvmxn if f(ua U) =T

C’U/U.TJ < CU$U$$7 if f(u7 /U) # x

So now we have the following claims:
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Claim 6. Let f(u,v) = z, for any (ui,v1) we have Cy oy <
Cuvz, that is

(a — 1) log 2 +1og P > o mex log 2% 4 szm log 22
Pu Puv ) Puy B vz

Claim 7. If f(u1,v1) = f(ug,v9) = x, then

pulvlpuzw S pu102puz’01
where the equality holds iff Cy vye = Cupryz = Cuyviz(= Cuyvgz) -

Proof. The proof is finished by noticing that Cy 0 + Cupryr >
Culvgx + C’U,Q’Ull" D

Now for XOR case, f(0,0) = f(1,1) = 0, hence from Claim [7]
we have poopir < poipro; also f(0,1) = f(1,0) = 1, hence
PoopP11 = poipro- Thus we have

PooP11 = Po1P10

and by Claim , this holds iff Cy19 = Cio90 = Cooo = Chip and
COOl — 0111 = COll = 0101. In particular, COOO = C()l() and

C()()l = COll imply that

Poo
log = => pao log == pan 1og o

Notice po. = poop-jo + P1op-|1, take a weighted sum, we get

Poz
(Poo + P10 log — Z Po= 1og i
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From above and using K-L divergence, we have

log Poo > log Poo T Po + P = log Poo

Po1 P11 + Por Dot

where the last step holds since pyopi1 = po1pio-

60

Now that the

K-L divergence inequality is indeed an equality, we require

@ — Poz  PooPzlo +p10p2|1
Poi1  Piz  PuiP:jo + PoiP:1

From the above we obtain

(p()l - pll)(pz|0 - pz|1) =0.

Similarly from Cjo9 = C119 and Chog1 = Ch11, we can obtain

0.

(P10 — p11)(py|o - pyu)

Now we have two cases

L: pylo = Pyj1, OF Pzjo = po1- In this case the Theorem holds

(similar to special setting SS1).

2: po1 = p11, P10 = pn- Combining this with pepi1 = poipio

one obtains that p,, = 1/4, and as a result U,V and X are

mutually independent. The Theorem holds (similar to special

setting SS2).

If neither of these two cases is satisfied, there would be no local

maximum.
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4.2 A conjecture on extending the inequality

We propose a conjecture on the binary inequality. To this end

we need the notion of concave envelope.

Definition 13. The concave envelope of f(x) is defined as
¢[f] = inf{g(x) : ¢ > f and g is concave}

If we are considering a functional defined on the space of prob-
ability distributions with finite alphabets, say f(X) = I(X;Y),
since the space is a convex set with finite dimensions, one can

argue from Fenchel-Eggleston—Caratheodory that

HAX) = sy [ YIO)

Conjecture 1. For (U, V) — X — (Y, Z), the following
al(U;Y)+ IV Z2) — 1(U; V) < €max{al(X;Y), I(X; 2)}]
holds for all « > 1 and p(u,v,x) over binary X.

Remark 11. As stated earlier, one only need to prove this con-

jecture when AND case achieves the maximum of left hand side.
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Conclusion

In Chapter [2, an information theoretic inequality is established
for binary input broadcast channels. And it can be used to
show that the sum-rate given by Marton’s inner bound is equiv-
alent to that given by randomized time-division strategy. In the
proof, we borrow and generalize the perturbation method used
by Gohari and Ananthram.

In Chapter [3, we look at more capable and essentially less
noisy partial orders in BISO broadcast channels. We establish
the capacity regions for a class of them and also show some
other results related to the evaluations of various bounds. Some
of the results are contrary to popular intuition and hence BISO
broadcast channels can serve as a simple class from which we can
improve our understanding of various relations. We hope that

some of the results presented can invoke a careful rethinking of

62
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those notions of dominance between receivers.
In Chapter [, we make a conjecture which extends the binary
inequality proved in Chapter [2 This conjecture can help evalu-

ate Marton’s inner bound for binary input broadcast channels.
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