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This thesis concerns the evaluation of Marton’s inner bound

for binary input broadcast channel without common message.

This inner bound is the best one for two-receiver broadcast chan-

nel, while the best outer bound is UV outer bound. Recently we

have shown that UV outer bound is not optimal, however the

optimality of Marton’s inner bound is still unknown.

In the first part, we introduce a binary inequality obtained

by Jog and Nair for binary-skew symmetric broadcast channel,

which helps to show for the first time that Marton’s inner bound

is strictly included in UV outer bound. We generalize this in-

equality to be true for arbitrary binary input broadcast channel.

The method applied here is perturbation analysis, which helps
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to characterize the properties of non-trivial cases in the proof.

In the second part, we study a class of broadcast channel

consisting of binary input symmetric-output channels. We show

that whether Marton’s inner bound is strictly included in UV

outer bound is closely related to the more capable partial or-

der, and we find a second example that demonstrates the strict

inclusion.

To evaluate the inner bound beyond the sum-rate, we con-

sider the supporting hyperplanes of the boundary points and

conjecture the binary inequality to a stronger one, where we

utilize the notion of concave envelope. We prove the extended

inequality for certain cases.

The main contribution of the thesis is in the development

of new tools and techniques for evaluating certain achievable

regions as well as for proving certain information inequalities

that are not based on convexity.
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中文摘要

本論文考慮對於二值輸入廣播信道在沒有公共信息要求的

情況下，如何評估 Marton 內界。對於雙用戶廣播信道而言，

該內界是最好的，而最好的外界是 UV 外界。最近我們證明了

UV 外界不是容量區域，但是 Marton 內界是否是容量區域尚

未可知。

在論文的第一部份，我們介紹了一個由 Jog 和 Nair 獲得的

基於二值輸入斜對稱廣播信道的不等式，該不等式被用於首次

證明 Marton 內界嚴格包含在 UV 外界里。我們將該不等式推

廣到任意二值輸入廣播信道。在證明中，我們採用擾動分析的

方法，幫助刻劃了不等式在非平凡情況下的性質。

在第二部份，我們專注于研究輸出對稱的二值輸入廣播信

道。我們證明了 Marton 內界是否嚴格包含于 UV 外界里是與

特定偏序密切相關的，同時找到了另一個嚴格包含的例子。

對於評估內界而不僅僅是其中的總傳輸率，我們考慮邊界

的支撐超平面，然後提出一個猜想，利用凸包的概念推廣了之

前提及的不等式。對於大部份情況，我們證明了該猜想。

本論文的主要貢獻在於，我們拓展了評估特定可達傳輸率

的新工具和方法，同時證明了某些非基於凸性質的不等式。
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Chapter 1

Introduction

Cover [1] introduced the broadcast channel as a communica-

tion model where there are one transmitter and multiple re-

ceivers. The single-letter characterization for capacity region

of broadcast channel is still unknown, except in some scenarios

where there are some partial orders between component chan-

nels. However, we do have some inner bounds and outer bounds

which sandwich the capacity region, and among them Marton’s

inner bound [12] and UV outer bound [14] are the best ones.

It is known through a particular broadcast channel that these

two bounds differ, and only until recently we know that UV

outer bound is not the capacity region [4]. Thus it is interesting

to investigate Marton’s inner bound. While in general this is

difficult, we restrict ourselves to the binary input case.

In the following we will introduce some bounds and partial

1



CHAPTER 1. INTRODUCTION 2

(M1,M2) Encoder
Xn

p(y, z|x)

Y n

Zn

Decoder 1

Decoder 2

M̂1

M̂2

Figure 1.1: Broadcast channel with private messages

orders on broadcast channel. For more details, one may also

refer to Chapter 5,8,9 in [3].

1.1 Broadcast channel and capacity region

For the purpose of this thesis, we focus on the following two-

receiver discrete memoryless broadcast channel with only private

message requirements (Figure 1.1).

Definition 1 ([1]). A broadcast channel consists of an input

alphabet X and output alphabets Y and Z, all of finite sizes,

and a probability transition function p(y, z|x).

A (2nR1, 2nR2, n) code consists of an encoder

xn : [2nR1]× [2nR2]→ X n,

and two decoders

Ŵ1 : Yn → [2nR1],

Ŵ2 : Zn → [2nR2].
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The averaged probability of error P
(n)
e is defined as

P (n)
e = P(M̂1 6= M1 or M̂2 6= M2)

where (M1,M2) is assumed to be uniform over [2nR1]× [2nR2].

A rate pair (R1, R2) is said to be achievable for the broadcast

channel if there exists a sequence of (2nR1, 2nR2, n) codes with

P
(n)
e → 0. The capacity region (CR) of the broadcast channel is

the closure of the set of achievable rate pairs.

The multi-letter characterization of capacity region is the

limit (as n→∞) of the union of rate pairs satisfying

R1 ≤
1

n
I(U ;Y n)

R2 ≤
1

n
I(V ;Zn)

over p(u)p(v)p(xn|u, v). However, this does not help evaluation,

and the single-letter one is still unknown. Instead we have some

inner bounds and outer bounds.

1.2 Inner bounds to capacity region

An inner bound refers to a region in which rate pairs are achiev-

able by some particular coding scheme. Hence an inner bound

is contained in the capacity region. In this section we introduce

some known inner bounds to the capacity region.
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Time-division region (TD) is characterized by the following

set of points

Bound 1 (TD). The following rate pairs are achievable

R1 ≤ α ·max
p(x)

I(X;Y )

R2 ≤ (1− α) ·max
p(x)

I(X;Z)

for all α ∈ [0, 1].

The rates are achieved by transmitting at channel capacity to

one receiver for fraction α of the time, and at channel capacity

to the other one for the remaining fraction.

Randomized time-division region (RTD) corresponds to a

time-division strategy except that the slots for which commu-

nication occurs to one receiver is also drawn from a codebook

which conveys additional information. The rates are character-

ized by

Bound 2 (RTD). The following rate pairs are achievable

R1 ≤ I(W ;Y ) + P(W=0)I(X;Y |W=0)

R2 ≤ I(W ;Z) + P(W=1)I(X;Z|W=1)

R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}+ P(W=0)I(X;Y |W=0)

+ P(W=1)I(X;Z|W=1)

for all p(w, x) over binary W .
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Here W characterizes the slots which distinguish communica-

tion to one receiver over the other. By taking W ∼ Bern(1−α),

and p(x|w) as capacities achieving distributions, RTD reduces

to TD region.

The following Marton’s inner bound (MIB) [12] is the best

known achievable rate region.

Bound 3 (MIB). The following rate pairs are achievable

R1 ≤ I(U,W ;Y )

R2 ≤ I(V,W ;Z)

R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}

+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ),

for all p(w, u, v, x).

Observe that setting U = X, V = ∅ when W = 0 and V = X,

U = ∅ when W = 1 reduces MIB to the RTD region.

The description above already suggests that

TD ⊆ RTD ⊆MIB ⊆ CR

While whether Marton’s inner bound is strictly included in ca-

pacity region is still unknown.
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1.3 Outer bounds to capacity region

An outer bound refers to a region that, any achievable rate pair

must lie in the region. Hence an outer bound contains the ca-

pacity region. In this section we introduce some known outer

bounds to the capacity region.

Körner–Marton outer bound (KMOB) [12] is the following

bound:

Bound 4 (KMOB). The region OY ∩OZ forms an outer bound

to the capacity region, where OY is the union of rate pairs sat-

isfying

R1 ≤ I(U ;Y )

R2 ≤ I(X;Z)

R1 +R2 ≤ I(U ;Y ) + I(X;Z|U)

over p(u, x), and similarly OZ is

R1 ≤ I(X;Y )

R2 ≤ I(V ;Z)

R1 +R2 ≤ I(V ;Z) + I(X;Y |V )

over p(v, x).

The following UV outer bound (UVOB) [14] is the best known

outer bound
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Bound 5 (UVOB). The union of rate pairs satisfying

R1 ≤ I(U ;Y )

R2 ≤ I(V ;Z)

R1 +R2 ≤ I(U ;Y ) + I(X;Z|U)

R1 +R2 ≤ I(V ;Z) + I(X;Y |V )

over p(u, v, x) forms an outer bound to capacity region.

It is clear that UV OB ⊆ OY and UV OB ⊆ OZ , hence

CR ⊆ UV OB ⊆ KMOB

We already know that UV outer bound is not optimal [4]. There

are also some other outer bounds for general broadcast channels,

however we don’t know if they are better than UV outer bound.

1.4 Partial orders

In this section we introduce some partial orders on component

channels of a broadcast channel, where we know the capacity re-

gion. In these partial orders, there is a “stronger” receiver, say

Y , and the capacity region is achieved by superposition cod-
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ing [12], which is

R1 ≤ I(X;Y |V )

R2 ≤ I(V ;Z)

R1 +R2 ≤ I(X;Y )

over p(v, x).

In the following, by receiver Y we also mean the component

channel X → Y . We will not clarify unless necessary. And by

saying X → Y → Z we mean Markov chain.

The following definitions on degraded can be found in Section

5.4 of [3].

Definition 2. Receiver Z is a physically degraded version of Y

if X → Y → Z.

Definition 3. Receiver Z is a statistically degraded version of

Y if there exists a virtual receiver Z̃ such that p(z̃|x) = p(z|x)

and X → Y → Z̃.

Definition 4. Receiver Z is a degraded version of Y if Z is

physically or statistically degraded version of Y .

Since for discrete memoryless broadcast channel, capacity re-

gion only depends on marginals p(y|x) and p(z|x), thus when

refer to degraded case, we use X → Y → Z for simplicity.
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Definition 5 ([11]). Receiver Y is less noisy than Z if for all

p(u, x) we have I(U ;Y ) ≥ I(U ;Z).

Definition 6 ([11]). Receiver Y is more capable than Z if for

all p(x) we have I(X;Y ) ≥ I(X;Z).

Definition 7 ([13]). A class of distributions P = {p(x)} is said

to be a sufficient class for broadcast channel X → (Y, Z), if

for any distribution q(u, v, x) there exists a p(u, v, x) such that

p(x) ∈ P and the following values

I(U ;Y ), I(X;Y |U), I(V ;Y ), I(X;Y |V )

I(U ;Z), I(X;Z|U), I(V ;Z), I(X;Z|V )

are non-decreasing when distributions change from q to p.

Definition 8 ([13]). Receiver Y is essentially less noisy than Z

if there exists a sufficient class P such that whenever p(x) ∈ P ,

for all p(u, x) we have I(U ;Y ) ≥ I(U ;Z).

For the notation, we use
ln
≥,

mc
≥,

eln
≥ to denote the corresponding

relationship, say Y
ln
≥ Z means Y is less noisy than Z.

Remark 1. There are some notes here. (a) A sufficient class is

a set of distributions that are sufficient for evaluating certain

region R. (b) For degraded, less noisy and more capable, the

underlying sufficient class is the whole space of distributions on
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X, that is, a common sufficient class. (c) Thus for essentially

less noisy, it makes sense to consider broadcast channels having

a common sufficient class. (d) Since we are considering region

R, it is natural to say that receivers Z and R are equivalent

under class P , if for any receiver Y such that P is a common

sufficient class for X → (Y, Z) and X → (Y,R), they have the

same region R. (e) Thus one may say that essentially less noisy

is a partial order (under a common sufficient class).

It is clear that

X → Y → Z =⇒ Y
ln
≥ Z =⇒ Y

mc
≥ Z

Y
ln
≥ Z =⇒ Y

eln
≥ Z

However, more capable and essentially less noisy are not com-

parable in general. In Chapter 3 we will show that these two

relationships go in reverse directions for some special receivers,

which is counter intuitive since Y
mc
≥ Z and Y

eln
≥ Z are both say-

ing that Y is “stronger” than Z. Hence these special receivers

can be served as examples where we revise the definitions of

“stronger” receivers.
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Figure 1.2: Binary skew-symmetric broadcast channel (BSSC)

1.5 Examples where inner and outer bounds

differ

It is from the results in [15, 7, 10] that people know Marton’s in-

ner bound is not equal to UV outer bound. The counter example

there is the binary skew-symmetric broadcast channel (BSSC) in

Figure 1.2. They showed that the maximum sum-rates R1 +R2

evaluate to 0.3616, 0.3725, 0.3744 for Marton’s inner bound, UV

outer bound, Körner–Marton outer bound, respectively [5].

The evaluation of sum-rate for Marton’s inner bound utilizes

the following inequality for BSSC

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)} (1.1)

In Chapter 2, we prove this inequality to be true for arbitrary

broadcast channel with binary input X. In Chapter 4, we gener-

alize this inequality further, and make a conjecture which helps

to evaluate Marton’s inner bound for binary input broadcast
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channels. In particular the conjecture is true for BSSC.

Another class of examples is provided in Chapter 3, where

we show that, for a special class of broadcast channels, Marton’s

inner bound coincides with UV outer bound if and only if the re-

ceivers are more capable comparable. By providing a broadcast

channel where the receivers are not more capable comparable,

we find a second example where the two bounds differ (and ac-

tually one can get more examples).

Recently it is shown [4] that UV outer bound is not optimal,

hence it becomes more important to investigate Marton’s inner

bound. By studying examples other than BSSC, we hope that

better understanding can be made on Marton’s inner bound.

To the end of this chapter, some notations and abbreviations

are provided in Table 1.1 for reference.
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Table 1.1: Notation

Notation Meaning

Xn (X1, X2, . . . , Xn)

[n] {1, 2, . . . , n}

Bern(α) Bernoulli distribution

x P(X=0) for binary X

t̄ 1− t

a ∗ b a(1− b) + (1− a)b

h(t) binary entropy function

py|x p(y|x)

puv P(U=u, V=v)

Y
ln

≥ Z Y less noisy than Z

Y
mc

≥ Z Y more capable than Z

Y
eln

≥ Z Y essentially less noisy than Z

C[f ] concave envelope

⊂ strict inclusion

⊆ inclusion

iff if and only if

TD time-division

RTD randomized time-division

MIB Marton’s inner bound

CR capacity region

UVOB UV outer bound

KMOB Körner–Marton outer bound

BSSC binary skew-symmetric broadcast channel

BISO binary input symmetric output



Chapter 2

A binary inequality

The main result of this chapter is the following Theorem 1, which

generalizes (1.1) to be true for every binary input broadcast

channel.

Theorem 1. For Markov chain (U, V ) → X → (Y, Z) with

binary X, the following inequality holds:

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}. (2.1)

To evaluate the sum-rate for Marton’s inner bound, we need

the cardinality bounds from Theorem 2.

Theorem 2 ([14]). It suffices to consider |U| ≤ |X |, |V| ≤ |X |,

and |W| ≤ |X | to achieve the supremum of the sum-rate for

Marton’s inner bound.

Combining Theorem 1 and Theorem 2, Corollary 1 estab-

lishes that the maximum sum-rate given by Marton’s coding

14
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strategy matches that given via the randomized time-division

strategy [14], a much simpler achievable strategy for any binary

input broadcast channel.

Corollary 1. The maximum value of the sum-rate for Marton’s

inner bound for any binary input broadcast channel is given by

max
p(w,x)
{min{I(W ;Y ), I(W ;Z)}

+ P(W=0)I(X;Y |W=0) + P(W=1)I(X;Z|W=1)}

where |W| = 2.

Proof. Let R̄ be the maximum sum-rate obtained by the ran-

domized time-division strategy (Bound 2) and R be that by

Marton’s inner bound (Bound 3). We need to show R = R̄.

Clearly R ≥ R̄ as R̄ is a restriction of the choice of (U, V,W ).

From Theorem 2, to evaluate the Marton’s sum-rate for bi-

nary input broadcast channel it suffices to look at |W| ≤ 2.

Consider a (U, V,W ) that achieves the maximum sum-rate R.

Without loss of generality we consider two cases:

Case 1: I(X;Y |W=w) ≥ I(X;Z|W=w) for w = 0, 1. Clearly

R = min{I(W ;Y ), I(W ;Z)}

+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )
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= min{I(W ;Y ), I(W ;Z)}

+ P(W=0)
(
I(U ;Y |W=0) + I(V ;Z|W=0)− I(U ;V |W=0)

)
+ P(W=1)

(
I(U ;Y |W=1) + I(V ;Z|W=1)− I(U ;V |W=1)

)
(a)

≤ min{I(W ;Y ), I(W ;Z)}

+ P(W=0)I(X;Y |W=0) + P(W=1)I(X;Y |W=1)

≤ min{I(W ;Y ), I(W ;Z)}+ I(X;Y |W ) ≤ I(X;Y ) ≤ R̄

where (a) follows from Theorem 1 and case specification.

Case 2: I(X;Y |W=0) ≥ I(X;Z|W=0) and I(X;Y |W=1) ≤

I(X;Z|W=1). Observe that

R = min{I(W ;Y ), I(W ;Z)}

+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

= min{I(W ;Y ), I(W ;Z)}

+ P(W=0)
(
I(U ;Y |W=0) + I(V ;Z|W=0)− I(U ;V |W=0)

)
+ P(W=1)

(
I(U ;Y |W=1) + I(V ;Z|W=1)− I(U ;V |W=1)

)
(b)

≤ min{I(W ;Y ), I(W ;Z)}

+ P(W=0)I(X;Y |W=0) + P(W=1)I(X;Z|W=1)

≤ R̄,

where (b) follows from Theorem 1 and case specification.

The other two cases follow similarly. Thus R ≤ R̄ and the

proof is completed.
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In the rest part we are going to prove Theorem 1. The idea is

to fix the broadcast channel p(y, z|x) and show that for all fixed

p(x) we have that

max
p(u,v|x)

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}

Denote LHS and RHS as the left-hand side and right-hand

side of the inequality (2.1), respectively, that is

LHS =I(U ;Y ) + I(V ;Z)− I(U ;V )

RHS = max{I(X;Y ), I(X;Z)}

For brevity let

puv = P(U=u, V=v), py|x = p(y|x), pz|x = p(z|x).

Also since the couplings of variables are (U, Y ) and (V, Z), we

use notation

puy = P(U=u, Y=y), pvz = P(V=v, Z=z)

unless they conflict notation puv.

Remark 2. As LHS and RHS are continuous in py|x and pz|x

for any fixed p(u, v, x), it suffices to prove the inequality when

py|x and pz|x are positive.

The following theorem is one of the main results in [7]. For

a self-contained shorter proof, one may see Fact 1 and Claim 1

in [10].
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Theorem 3. To maximize I(U ;Y ) + I(V ;Z)− I(U ;V ) over all

p(u, v|x) such that (U, V )→ X → (Y, Z), it suffices to consider

|U| ≤ |X |, |V| ≤ |X | and X = f(U, V ), a deterministic function

of (U, V ).

Since X is binary, for expressing f , we use the notation: U∧V

(and), U ∨ V (or), U ⊕ V (xor), Ū (not).

The following claim will be used in the proof. We include it

here to avoid messing the main part of the proof.

Claim 1. For broadcast channel X → (Y, Z) with positive tran-

sition probabilities, let function X = f(U, V ) and p.m.f. p(u, v)

maximize LHS. If p(u) > 0 and p(v) > 0 for a pair (u, v), then

p(u, v) > 0.

Proof. The proof uses perturbation to show that we can increase

LHS otherwise. Suppose p(u1, v1) = 0 and p(u1) > 0, p(v1) >

0. Then we must have v2 6= v1 such that p(u1, v2) > 0. Let

f(u1, v2) = x1. Perturbate p at two points

q(u, v, x) =


p(u, v, x)− ε (u, v, x) = (u1, v2, x1)

ε (u, v, x) = (u1, v1, x1)

p(u, v, x) otherwise

Notice that p(x) is maintained. Now for LHS, we have (for
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simplicity we use natural logarithm)

LHS(q)− LHS(p)

= Hq(U, V )−Hq(U, Y )−Hq(V, Z)

−Hp(U, V ) +Hp(U, Y ) +Hp(V, Z)

= ε{− ln ε+ ln pu1v2 +
∑
z

pz|x1 ln
pv1z
pv2z
}+ o(ε)

Observe that the first derivative is positive infinity, hence we

can increase the sum-rate.

The outline of the proof is:

1. We first prove the inequality for some special settings, or

“trivial” cases. (Section 2.1)

2. We show that it suffices to prove for the nontrivial cases

X = U ∧ V and X = U ⊕ V . (Section 2.2)

3. For X = U⊕V , nontrivial maximum of LHS is not achiev-

able when p(u, v) > 0. (Section 2.3)

4. For X = U ∧V , nontrivial maximum of LHS is not achiev-

able when p(u, v) > 0. (Section 2.4)
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2.1 Proof of special settings

Since U → X → Y and V → X → Z are Markov chains, from

data processing inequality, we know

I(U ;Y ) ≤ I(X;Y ), I(U ;Y ) ≤ I(U ;X),

I(V ;Z) ≤ I(X;Z), I(V ;Z) ≤ I(V ;X). (2.2)

With these inequalities, we first prove Theorem 1 for some spe-

cial settings. Denote X ⊥ Y as independence.

SS1: py|0 ≡ py|1. Then X ⊥ Y , thus I(U ;Y ) = I(X;Y ) =

0. From (2.2) and the non-negativity of I(U ;V ) we have

I(V ;Z)− I(U ;V ) ≤ I(X;Z), i.e. Theorem 1 holds. Simi-

larly Theorem 1 holds when pz|0 ≡ pz|1.

SS2: U ⊥ X. Then I(U ;Y ) = I(U ;X) = 0. Again from (2.2)

and the non-negativity of I(U ;V ) Theorem 1 holds. Simi-

larly when V ⊥ X, Theorem 1 also holds.

2.2 Two nontrivial cases

According to Theorem 3, to prove the inequality (2.1), it suffices

to consider X = f(U, V ) with binary U and V . Notice there

are 16 possible functions f , and they can be classified into the

following equivalent (due to relabeling) groups
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G1: X = 0, X = 1

G2: X = U,X = Ū ,X = V,X = V̄

G3: X = U ∧ V,X = Ū ∧ V,X = U ∧ V̄ , X = Ū ∧ V̄

G4: X = U ∨ V,X = Ū ∨ V,X = U ∨ V̄ , X = Ū ∨ V̄

G5: X = U ⊕ V,X = Ū ⊕ V

The reason that these are equivalent groups is that, in each

group, all the cases can be reduced to the first case by using

some bijections. For example, in G3, let the distributions of

(U, V ) be p(u, v) and r(u, v) for X = U ∧ V and X = Ū ∧ V ,

respectively. The bijection is p00 ↔ r10, p01 ↔ r11, p10 ↔ r00,

p11 ↔ r01. Thus, we just need to prove Theorem 1 for the first

function in each group.

Further, notice for the case X = U ∨ V with q(u, v), by

bijection p00 ↔ q11, p01 ↔ q01, p10 ↔ q10, p11 ↔ q00, we can

also use the same proof as for the case X = U ∧ V . That is,

we use the fact that X = U ∨ V ⇔ X̄ = Ū ∧ V̄ to reduce the

proof of the OR case of one channel to the AND case of another

broadcast channel obtained by flipping U , V and X.

So it remains to consider the first cases of groups except G4.

The first two cases are trivial. For X = 0, the theorem is re-

duced to −I(U ;V ) ≤ 0. For X = U , i.e. I(U ;Y ) = I(X;Y ), the
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theorem follows from the data processing inequality, I(V ;Z) ≤

I(V ;U) = I(V ;X) (see (2.2)). Now for cases in G3 and G5,

if p(x) = 0 for some x, then they reduce to G1; if pu = 0 (or

pv = 0) for some u (or v), then they reduce to cases in G1 or

G2. By Claim 1, finally we just need to consider the following

two nontrivial cases:

C3: X = U ∧ V with p(x) > 0 and p(u, v) > 0

C5: X = U ⊕ V with p(x) > 0 and p(u, v) > 0

We are going to prove that there is no nontrivial local maximum

for these two cases.

2.3 Proof of XOR case

Just as in [10] we will consider an additive perturbation, first

for any fixed X = f(U, V ) subject to p(x) > 0 and p(u, v) > 0,

then restricted to X = U ⊕ V .

Consider an additive perturbation q(u, v, x) = p(u, v, x) +

ελ(u, v, x) for some ε ≥ 0. For the notation, λuvx = λ(u, v, x),

pu means the marginal p.m.f. of U given p(u, v, x, y, z), and any

other marginal p.m.f. is similar.

For a valid perturbation, we require that λuvx ≥ 0 if the



CHAPTER 2. A BINARY INEQUALITY 23

corresponding p(u, v, x) is zero, which is

λuvx ≥ 0, if f(u, v) 6= x

Further let us require the perturbation maintains p(x) (hence

H(Y ) and H(Z)), that is∑
uv

λuvx = 0, ∀x ∈ X (2.3)

For any perturbation that satisfies the above conditions at any

local maximum p(u, v, x), it must be true that the first derivative

cannot be positive. This implies that
∑

xuv λuvxCuvx ≤ 0, where

Cuvx = − log puv +
∑
y

py|x log puy +
∑
z

pz|x log pvz

For x ∈ X , choose one pair (ux, vx) such that f(ux, vx) = x.

This is possible since p(x) > 0. From (2.3), we express λuxvxx

using other λuvx variables

λuxvxx = −
∑

uv 6=uxvx

λuvx

Substituting it into
∑

xuv λuvxCuvx ≤ 0, we have∑
xuv:uv 6=uxvx

λuvx(Cuvx − Cuxvxx) ≤ 0

Above holds for any signed {λuvx : f(u, v) = x, (u, v) 6= (ux, vx)}

and any nonnegative {λuvx : f(u, v) 6= x}, it implies

Cuvx = Cuxvxx, if f(u, v) = x

Cuvx ≤ Cuxvxx, if f(u, v) 6= x
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So now we have the following claims:

Claim 2. Let f(u, v) = x, for any (u1, v1) we have Cu1v1x ≤

Cuvx, that is

log
pu1v1
puv
≥
∑
y

py|x log
pu1y
puy

+
∑
z

pz|x log
pv1z
pvz

Claim 3. If f(u1, v1) = f(u2, v2) = x, then

pu1v1pu2v2 ≤ pu1v2pu2v1

where the equality holds iff Cu1v2x = Cu2v1x = Cu1v1x(= Cu2v2x).

Proof. The proof is finished by noticing that Cu1v1x + Cu2v2x ≥

Cu1v2x + Cu2v1x.

Now return to X = U ⊕ V , notice that f(0, 0) = f(1, 1) = 0,

hence by Claim 3 we have for puv that p00p11 ≤ p01p10; also

f(0, 1) = f(1, 0) = 1, hence p00p11 ≥ p01p10. Thus we have

p00p11 = p01p10 (2.4)

By Claim 3, this holds iff C010 = C100 = C000 = C110 and C001 =

C111 = C011 = C101. In particular, C000 = C010 and C001 = C011

imply that

log
p00
p01

=
∑

pz|0 log
p0z
p1z

=
∑

pz|1 log
p0z
p1z

.
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Notice p0z = p00pz|0 + p10pz|1, take a weighted sum, we get

(p00 + p10) log
p00
p01

=
∑

p0z log
p0z
p1z

From above and using K-L divergence, we have

log
p00
p01
≥ log

p00 + p10
p11 + p01

= log
p00
p01

where the last step holds since p00p11 = p01p10. Now that the

K-L divergence inequality is indeed an equality, we require

p00
p01
≡ p0z
p1z

=
p00pz|0 + p10pz|1
p11pz|0 + p01pz|1

From the above we obtain

(p01 − p11)(pz|0 − pz|1) ≡ 0. (2.5)

Similarly from C100 = C110 and C101 = C111, we can obtain

(p10 − p11)(py|0 − py|1) ≡ 0. (2.6)

Now we have two cases

1: py|0 ≡ py|1, or pz|0 ≡ pz|1. In this case the Theorem holds

(special setting SS1).

2: p01 = p11, p10 = p11. Combining this with p00p11 = p01p10

one obtains that puv = 1/4, and as a result U, V and X are

mutually independent. The Theorem holds (special setting

SS2).

If neither of these two cases is satisfied, there would be no local

maxima.
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2.4 Proof of AND case

Similarly we will show that nontrivial local maxima can’t be

achieved when p(x) > 0 and p(u, v) > 0. In this case, P(X=1) =

p11. Now we fix p11 ∈ (0, 1). Take (p10, p01) as the free variables,

with p00 = 1− p11 − p01 − p10. Notice that H(Y ) and H(Z) are

fixed, the local maxima of LHS is the same as that of

J(p10, p01) := H(U, V )−H(U, Y )−H(V, Z)

= −p00 log p00 − p01 log p01 − p10 log p10 − p11 log p11

+
∑

(p00 + p01)py|0 log{(p00 + p01)py|0}

+
∑

(p10py|0 + p11py|1) log{p10py|0 + p11py|1}

+
∑

(p00 + p10)pz|0 log{(p00 + p10)pz|0}

+
∑

(p01pz|0 + p11pz|1) log{p01pz|0 + p11pz|1}.

At any local maximum, the gradient ∇J and Hessian matrix

∇2J must satisfy

∇J = 0, ∇2J � 0,

where ∇2J � 0 denotes that ∇2J is negative semi-definite. We

now compute the gradient and the Hessian to investigate loca-

tions of the local maxima.

1. First Derivative:
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Differentiating with respect to free variables:

∂J

∂p10
= log

p00
p10
−
∑

py|0 log
(p00 + p01)py|0
p10py|0 + p11py|1

∂J

∂p01
= log

p00
p01
−
∑

pz|0 log
(p00 + p10)pz|0
p01pz|0 + p11pz|1

The condition ∇J = 0 implies that

log
p00
p10

=
∑

py|0 log
(p00 + p01)py|0
p10py|0 + p11py|1

(2.7)

log
p00
p01

=
∑

pz|0 log
(p00 + p10)pz|0
p01pz|0 + p11pz|1

. (2.8)

Remark 3. Equalities above are obvious from Claim 2 by notic-

ing that 0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0. This is expected as Claim 2

is a result from first derivative.

Using the concavity of logarithm, we have

p00
p10
≤
∑ (p00 + p01)p

2
y|0

p10py|0 + p11py|1

p00
p01
≤
∑ (p00 + p10)p

2
z|0

p01pz|0 + p11pz|1
(2.9)

where the equalities hold iff (using Remark 2)

py|0 ≡ py|1 · CY , pz|0 ≡ pz|1 · CZ ,

for some constants CY , CZ respectively. However since
∑
py|0 =∑

py|1 = 1 we obtain that CY = 1 (similarly CZ = 1). Thus

equalities hold iff

py|0 ≡ py|1, pz|0 ≡ pz|1. (2.10)



CHAPTER 2. A BINARY INEQUALITY 28

2. Second Derivative:

We now compute the Hessian G = ∇2J , The second deriva-

tives are

G11 =
∂2J

∂p210
= − 1

p00
− 1

p10
+

1

p00 + p01
+
∑ p2y|0

p10py|0 + p11py|1

G12 = G21 = − 1

p00

G22 =
∂2J

∂p201
= − 1

p00
− 1

p01
+

1

p00 + p10
+
∑ p2z|0

p01pz|0 + p11pz|1

As p01 > 0, we have G11 ≤ − 1
p00
− 1

p10
+ 1

p00+p01
+ 1

p10
< 0.

Similarly we have G22 < 0. Since G11 < 0 and G22 < 0, G is

negative semi-definite iff det(G) ≥ 0.

From (2.9) we have

G11 ≥ −
1

p00
− 1

p10
+

1

p00 + p01
+

p00
p10(p00 + p01)

= − p01(p00 + p10)

p00p10(p00 + p01)

And similarly

G22 ≥ −
p10(p00 + p01)

p00p01(p00 + p10)

It is clear that equalities in the above two inequalities hold

iff (2.10) holds.

Since G11, G22 < 0 we have

G11G22 ≤
p01(p00 + p10)

p00p10(p00 + p01)
· p10(p00 + p01)

p00p01(p00 + p10)
=

1

p200
= G2

12,

with equality holding only if (2.10) holds. Thus det(G) ≤ 0.
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When det(G) < 0, there is no local maximum for p(u, v) > 0.

When det(G) = 0, channel parameters satisfy (2.10), and the

inequality is true from the special setting SS1.

This completes the proof of Theorem 1.



Chapter 3

BISO broadcast channel

In this chapter, we focus on a sub-class of binary input broadcast

channels: binary input symmetric output (BISO) [6] broadcast

channels. We study in detail two partial orders: more capable

and essentially less noisy. We establish a slew of results and

some of the interesting ones are summarized below. Notice that

by demonstrating that one channel is more capable than the

other, we indirectly establish its capacity region as the capacity

region for the more capable class is known [2].

• Any BISO channel with capacity C is more capable than

the binary symmetric channel with capacity C. (Corol-

lary 2).

• The binary erasure channel with capacity C is more capable

than any BISO channel with capacity C. (Corollary 3)

30



CHAPTER 3. BISO BROADCAST CHANNEL 31

• Any two BISO channels with the same capacity and whose

outputs have cardinality at most 3, are more capable com-

parable. (Corollary 4)

• For any two BISO channels with same capacity, a receiver

Y is more capable than receiver Z if and only if receiver

Z is essentially less noisy than Y . (They go in reverse

directions.) (Lemma 4)

• Superposition coding region is the capacity region for a

BISO broadcast channel if any one of the channels is ei-

ther a BSC or a BEC. (Corollary 5)

• For two BISO channels with the same capacity, superposi-

tion coding is optimal if and only if the channels are more

capable comparable. (Corollary 6)

• For two BISO channels of same capacity, Marton’s inner

bound differs from UV outer bound [14] unless the channels

are more capable comparable. (Theorem 6)

• We also show that it suffices to consider U → X to be BSC

when we wish to compute the boundary of the superposition

coding region for BISO broadcast channels. (Lemma 7.)

This vastly generalizes a result of Wyner and Ziv [16] for

degraded BSC broadcast channel.
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3.1 BISO channel

Definition 9. A discrete memoryless channel with input alpha-

bet X = {0, 1} and output alphabet Y = {k : −l ≤ k ≤ l} is

said to be binary input symmetric output if

pk := P(Y=k|X=0) = P(Y=− k|X=1),−l ≤ k ≤ l.

By BISO broadcast channel, we mean the component chan-

nels are BISO channels. Binary symmetric channel (BSC) and

Binary erasure channel (BEC) are examples of BISO broadcast

channels.

Remark 4. As k = 0 can be split into 0+ and 0− with equal

probability 1
2p0, we just consider k = ±1, ...,±l and use {pk, p−k :

k = 1, . . . , l} to denote the transition probabilities. Sometimes

shortened to {pk, p−k}k.

Let x = P(X=0). Consider (Q, X̃) such that Q ∼ Bern(12),

and (X̃|Q=0) ∼ Bern(x̄), and (X̃|Q=1) ∼ Bern(x). Now X̃ is

uniformly distributed. Due to channel symmetry we have

I(X;Y ) = I(X̃; Ỹ |Q) ≤ I(X̃; Ỹ ).

Hence uniform input distribution is the capacity achieving dis-

tribution for any BISO channel.

Partition P of an interval [a, b] is a finite sequence of points

{tk}k such that a = t0 < t1 < t2 < . . . < tN = b. A partition
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P is finer than Q if points of partition P contain those of Q. A

common refinement of two partitions P and Q is a new partition

consisting of all the points of P and Q.

Definition 10. For a BISO channel with transition probabilities

{pk, p−k}k, rearrange h( pk
pk+p−k

) in the ascending order and denote

the permutation as π. BISO partition is defined as the partition

of [0, 1] with points tk =
∑k

i=1(pπi + p−πi), and t0 = 0. BISO

curve is defined as the stepwise function f(t) such that f(t) =

h(
pπk

pπk+p−πk
) on (tk−1, tk], and f(0) = 0.

For the channel BSC(p), we have the partition as t0 = 0, t1 =

1 and the curve as f(t) = h(p) on (0, 1]. For the channel

BEC(e), we have the partition as t0 = 0, t1 = 1 − e, t2 = 1,

and the curve as f(t) = 0 on (0, 1− e] and f(t) = 1 on (1− e, 1].

Definition 11. For a BISO channel with BISO curve f(t), the

Lorenz curve F (t) is defined as F (t) =
∫ t
0 f(τ)dτ . (cumulative

curve)

Property 1. Since f(t) ∈ [0, 1] is non-decreasing we have

(1) F (t) is non-negative, piecewise linear, and convex.

(2) The slope of the line segments of F (t) is at most 1.
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By definition of BISO curve, the length of interval (tk−1, tk]

is (pπk + p−πk). Therefore

I(X;Y ) =
∑
k>0

(pk + p−k)h(x ∗ h−1(h(
pk

pk + p−k
)))

−
∑
k>0

(pk + p−k)h(
pk

pk + p−k
) (3.1)

=

∫ 1

0

h(x ∗ h−1(f(τ)))dτ −
∫ 1

0

f(τ)dτ

=

∫ 1

0

h(x ∗ h−1(f(τ)))dτ − F (1)

Thus a finer partition does not change I(X;Y ) and in particular

channel capacity. Indeed capacity, achieved by x = 1
2 , is 1−F (1).

3.2 Partial orders on BISO broadcast channel

3.2.1 More capable comparability

We will establish a sufficient condition in Theorem 4 for deter-

mining whether two BISO channels are comparable using the

more capable partial order. Towards this, the following three

lemmas are needed.

Lemma 1. Given BISO channels X → Y and X → Z with

BISO curves f(t) and g(t), respectively. Let the common refine-

ment of these two BISO partitions be {tk : k = 0, . . . , N̂}, and
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ξk = tk − tk−1. Then

F (ti) =
i∑

k=1

ξkf(tk) ≤
i∑

k=1

ξkg(tk) = G(ti), i = 1, . . . , N̂

if and only if the Lorenz curve F (t) ≤ G(t) for all t ∈ [0, 1].

Proof. The if direction is obvious. For the other direction, we

prove by contradiction. Let t∗ be a point where F (t∗) > G(t∗).

Clearly t∗ ∈ (tj−1, tj) for some j. Since F (tj−1) ≤ G(tj−1), it is

necessary that f(t) > g(t) for t ∈ (tj−1, tj). However integrating

from t∗ to tj, we have that F (tj) > G(tj), which contradicts.

The following lemma is well-known.

Lemma 2 (Lemma 2 in [16]). The function h(x ∗ h−1(y)) is

strictly convex in y. (Key ingredient of Mrs. Gerber’s lemma)

Lemma 3 (Lemma 1 in [9]). Let x1, ..., xl and y1, ..., yl be non-

decreasing sequences of real numbers. Let ξ1, ..., ξl be a sequence

of real numbers such that

l∑
j=k

ξjxj ≥
l∑

j=k

ξjyj, 1 ≤ k ≤ l

with equality for k = 1. Then for any convex function Λ,

l∑
j=1

ξjΛ(xj) ≥
l∑

j=1

ξjΛ(yj).
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Theorem 4. Given BISO channels X → Y and X → Z with

Lorenz curves F (t) and G(t), respectively. Further let F (1) =

G(1), i.e. channels have same capacity. If F (t) ≤ G(t) then Y

is more capable than Z.

Proof. Using Lemma 1 we know that

F (ti) =
i∑

k=1

ξkf(tk) ≤
i∑

k=1

ξkg(tk) = G(ti), i = 1, . . . , N̂

and since F (1) = G(1) we have equality at i = N̂ . Using Lemma

3 and by noticing that f(tk) and g(tk) are both nondecreasing

we have
N̂∑
j=1

ξjΛ(f(tj)) ≥
N̂∑
j=1

ξjΛ(g(tj))

for any convex function Λ. Taking Λ(y) = h(x ∗ h−1(y))− y we

obtain that

N̂∑
j=1

ξjh
(
x ∗ h−1(f(tj))

)
−

N̂∑
j=1

ξjf(tj)

≥
N̂∑
j=1

ξjh
(
x ∗ h−1(g(tj))

)
−

N̂∑
j=1

ξjg(tj).

From (3.1) this is equivalent to

I(X;Y ) ≥ I(X;Z),∀p(x).

Thus the theorem is established.
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For reasons that will be apparent later (Lemma 5) it is useful

to zoom in the subclass of BISO channels that have the same

channel capacity C. For instance BSC(p), with 1 − h(p) = C,

belongs to this class. Similarly for BEC(e) with 1− e = C.

Notation: Let BISO(C) denote an arbitrary BISO channel

that has capacity C. To abuse notation, we denote BSC(C)

and BEC(C) as the binary symmetric channel and the binary

erasure channel with capacity C, respectively.

Corollary 2. BISO(C)
mc
≥ BSC(C).

Proof. From Theorem 4 it suffices that the Lorenz curves satisfy

G(t) ≤ FBSC(t), t ∈ [0, 1]. Observe that G(0) = FBSC(0) = 0,

G(1) = FBSC(1) and that FBSC(t) is the straight-line connecting

0 and FBSC(1). The convexity of Lorenz curve G(t) implies that

G(t) ≤ FBSC(t), t ∈ [0, 1].

Corollary 3. BEC(C)
mc
≥ BISO(C).

Proof. Similar to above it suffices that the Lorenz curves satisfy

FBEC(t) ≤ G(t), t ∈ [0, 1]. FBEC(t) = 0, t ∈ [0, 1− e] and hence

FBEC(t) ≤ G(t), t ∈ [0, 1− e]. Combining FBEC(1) = G(1) and

(comparing slopes) F ′BEC(t) = fBEC(t) = 1 ≥ g(t) = G′(t), t ∈

(1− e, 1], we also have FBEC(t) ≤ G(t), t ∈ [1− e, 1].
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Figure 3.1: Lorenz curves for BISO channels with the same capacity and

output of size 3.

Corollary 4. Two BISO(C) channels whose output alphabet

sizes are at most 3 are always more capable comparable.

Proof. For BISO channel X → Y with transition probabilities

{p−1, p0, p1}, k = 0 is split equally into 0+ and 0−. Thus the

Lorenz curve F (t) contains two sloping lines: one with slope

h(
p0+

p0++p0−
) = 1, and the other not bigger than 1. Given two

Lorenz curves of this kind, F (t) and G(t), with F (1) = G(1),

then either F (t) ≤ G(t) for all t ∈ [0, 1] or F (t) ≥ G(t) for

all t ∈ [0, 1] (Figure 3.1). According to Theorem 4, these two

channels are more capable comparable.

Remark 5. Not all BISO channels with the same capacity are

more capable comparable. A counter example is the following:

Consider BISO channels X → (Y, Z) with transition probabili-
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ties according to:

P(Y=i|X=0) = ai,−2 ≤ i ≤ 2

P(Z=j|X=0) = bj,−2 ≤ j ≤ 2

where a−2 = 0.061, a−1 = a1 = 1
2(1 − 10a−2), a2 = 9a−2 and

b−2 = 0.0634977, b−1 = 1
5(1 − b−2), b1 = 4

5(1 − b−2), b2 = 0.

One can verify that the channels have same capacity, but are

not more capable comparable.

3.2.2 More capable and essentially less noisy

In this section we will establish that these two partial orders,

restricted to BISO channels with capacity C, are inverse of each

other. This is counter-intuitive as more capable and essentially

less noisy are two notions of saying that one receiver is superior

to another receiver.

Below (for a complete argument see Lemma 1 in [13]) we

note that the uniform input distribution forms a sufficient class

for any BISO broadcast channel. Thus in the following when

talking about essentially less noisy, we automatically assume it

is under this sufficient class.

Claim 4. For any BISO broadcast channel, the uniform input

distribution P(X=0) = 1
2 forms a sufficient class.
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Proof. The following construction suffices. Let j, k ∈ {0, 1},

then define p.m.f.

Q(Ũ=(u, j), Ṽ=(v, k), X̃=x)

=


1
2P(U=u, V=v,X=x⊕ j) j = k

0 j 6= k

Lemma 4.

BISO1(C)
mc
≥ BISO2(C) ⇐⇒ BISO2(C)

eln
≥ BISO1(C)

Proof. Assume component channels Y and Z have same capacity

C and Y
mc
≥ Z. When P(X=0) = 1

2 we have for all U such that

U → X → (Y, Z)

I(U ;Y ) = I(X;Y )− I(X;Y |U)

= C − I(X;Y |U)

= I(X;Z)− I(X;Y |U)

= I(U ;Z) + I(X;Z|U)− I(X;Y |U)

≤ I(U ;Z)

where the last inequality follows from Y
mc
≥ Z. From Claim 4,

P(X=0) = 1
2 is a sufficient class of input distribution, by defini-

tion, Z
eln
≥ Y .

Assume Z
eln
≥ Y . The proof follows by contradiction. Sup-

pose there is a value x such that when P(X=0) = x, we have
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I(X;Z)− I(X;Y ) = δ > 0, then consider a U ∼ Bern(12) such

that P(X=0|U=0) = x = P(X=1|U=1). Observe that, from

the symmetry I(X;Z|U) − I(X;Y |U) = δ > 0. However since

P(X=0) = 1
2 , using a similar decomposition we see that

I(U ;Y ) = I(U ;Z) + I(X;Z|U)− I(X;Y |U)

= I(U ;Z) + δ > I(U ;Z)

contradicting the assumption Z
eln
≥ Y .

The following lemma is an immediate consequence of Corol-

laries 2, 3, and Lemma 4.

Lemma 5.

(1) BEC(C)
mc
≥ BISO(C)

mc
≥ BSC(C),

(2) BSC(C)
eln
≥ BISO(C)

eln
≥ BEC(C).

This leads us to one of the main results in this section.

Theorem 5. For any three numbers 0 ≤ C1 ≤ C2 ≤ C3 we have

(1) BEC(C3)
mc
≥ BISO(C2)

mc
≥ BSC(C1),

(2) BSC(C3)
eln
≥ BISO(C2)

eln
≥ BEC(C1).

Proof. Suppose Ca < Cb, then BSC(Ca) and BEC(Ca) are de-

graded versions of BSC(Cb) and BEC(Cb) respectively. Hence
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from Lemma 5 we have

BEC(C3)
mc

≥ BEC(C2)
mc

≥ BISO(C2)
mc

≥ BSC(C2)
mc

≥ BSC(C1)

BSC(C3)
eln

≥ BSC(C2)
eln

≥ BISO(C2)
eln

≥ BEC(C2)
eln

≥ BEC(C1)

The following corollary is immediate.

Corollary 5. Superposition coding region is the capacity region

for a BISO broadcast channel if any one of the channels is either

a BSC or a BEC.

Proof. Superposition coding is optimal both for more capable

comparable channels [2] and for essentially less noisy compara-

ble channels [13]. From Theorem 5, if any one of the channels

is either a BSC or a BEC, then the channels are either more

capable comparable or essentially less noisy comparable.

Remark 6. In [13] the capacity region of a BSC/BEC broadcast

channel was established. Corollary 5 generalizes this result to

only requiring that one of the BISO channels is a BEC or a BSC.

3.3 Comparison of bounds for BISO broad-

cast channel

The following lemma and Lemma 7 in Appendix generalize the

result by Wyner and Ziv [16] for BSC broadcast channels. In [2]
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it was shown that superposition coding is indeed optimal when

the two channels are more capable comparable.

Lemma 6. Consider a two-receiver BISO broadcast channel.

Consider the following region formed by taking the union of rate

pairs (R1, R2) satisfying

R2 ≤ I(U ;Z)

R2 +R1 ≤ I(U ;Z) + I(X;Y |U)

R1 ≤ I(X;Y )

over all p(u, x). Then the same region can be realized by restrict-

ing to a binary U such that U → X ∼ BSC and P(X=0) = 1
2.

Proof. The proof is presented in the Appendix.

Remark 7. For BISO broadcast channels since P(X=0) = 1
2 is

a common sufficient distribution, it can be shown that the UV

outer bound matches the Körner–Marton outer bound.

Consider P(X=0) = 1
2 and U → X ∼ BSC(s1) where s1 =

P(X=1|U=0), similarly let V → X ∼ BSC(s2). Let I(U ;Y ) =

f1(s1), and I(V ;Z) = f2(s2). It is clear from symmetry that

f1(s) = f1(1− s), f2(s) = f2(1− s).

From Lemma 6 it follows that UVOB can be written as the
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union of rate pairs R1, R2 satisfying

R1 ≤ f1(s1)

R2 ≤ f2(s2)

R1 +R2 ≤ f1(s1) + C − f2(s1) (3.2)

R1 +R2 ≤ f2(s2) + C − f1(s2).

for some 0 ≤ s1, s2 ≤ 1
2 .

Let

I = {s ∈ [0, 0.5] : f1(s) > f2(s)}

J = {s ∈ [0, 0.5] : f1(s) < f2(s)}.

The following result relates the equivalence of the various

bounds and their relation to whether the channels are more ca-

pable comparable. (Randomized time division region is the same

as the Marton’s inner bound due to Corollary 1.)

Theorem 6. For a BISO broadcast channel with component

channels BISO1(C) and BISO2(C), the followings are equiv-

alent:

(a) BISO1(C) and BISO2(C) are not more capable comparable

(b) TD ⊂ UV OB

(c) There exists s1 ∈ I, s2 ∈ J such that f1(s1) + f2(s2) > C
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(d) TD ⊂MIB

(e) MIB ⊂ UV OB.

Proof. The proof is presented in the Appendix.

Corollary 6. For a BISO broadcast channel with component

channels having the same capacity, superposition coding is opti-

mal if and only if the channels are more capable comparable.

Proof. If superposition coding region is indeed the capacity re-

gion, then we have R1 + R2 ≤ I(X;Y ) ≤ C. Further since the

two channels have the same capacity, we have the TD region is

optimal. From Theorem 6 we have that the channels are more

capable comparable.

Remark 8. A characterization of when superposition coding is

optimal for two-receiver broadcast channels is open in general. It

is known that superposition coding is optimal when the channels

are either essentially more capable comparable or essentially less

noisy comparable [13] - two incompatible notions. However a

converse statement is still unknown.

Observation 1. From Remark 5 we know that there exists a pair

of channels BISO1(C) and BISO2(C) which are not more ca-

pable comparable. Hence from Theorem 6 we know that the
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capacity region is strictly larger than TD. However, if we re-

place BISO2(C) by BEC(C), a more capable channel, then

the capacity of the broadcast channel formed by BISO1(C) and

BEC(C) is the TD region (Corollary 3). Thus replacing by a

more capable channel can strictly reduce the capacity region.

3.4 A new partial order

We now introduce a natural operational partial order among

broadcast channels.

Definition 12. Receiver Z̃ is a better receiver than Z if the

capacity region of X → (Y, Z̃) contains that of X → (Y, Z) for

every channel X → Y . In other words, if we replace receiver Z

by receiver Z̃ then the capacity region will not decrease.

Remark 9. Note that the capacity region of a broadcast channel

just depends on the marginal distributions X → Y , X → Z,

and hence the definition makes sense.

From Observation 1 we know that a more capable receiver

is not necessarily a better receiver. However we will show that

if Z̃ is a less noisy receiver than Z, then Z̃ is indeed a better

receiver than Z.
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Claim 5. If Z̃ is a less noisy receiver than Z, then Z̃ is a better

receiver than Z.

Proof. The capacity region of a discrete memoryless broadcast

channel has the following n-letter characterization. Consider the

region Rn defined as the union of rate pairs (R1, R2) that satisfy

R1 ≤
1

n
I(U ;Y n)

R2 ≤
1

n
I(V ;Zn)

for some p(u)p(v)p(xn|u, v). It is known that the capacity region

is limnRn. (It is clear that this is achievable, and a converse

follows by setting U = M1 and V = M2 and applying Fano’s

inequality.) Observe for j = n, . . . , 1

I(V ;Zj, Z̃n
j+1) = I(V ;Zj−1, Z̃n

j+1) + I(V ;Zj|Zj−1, Z̃n
j+1)

≤ I(V ;Zj−1, Z̃n
j+1) + I(V ; Z̃j|Zj−1, Z̃n

j+1)

= I(V ;Zj−1, Z̃n
j ).

By taking extreme points of this chain we obtain I(V ;Zn) ≤

I(V ; Z̃n). Claim follows from the expression of the capacity

region stated above.
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Appendix

Proof to Lemma 6

Proof. Let Ũ = (U,Q), where Q ∼ Bern(12) is independent of U

such that

P(X=0|(U,Q)=(u, 0)) = P(X=0|U=u)

P(X=0|(U,Q)=(u, 1)) = 1− P(X=0|U=u)

This induces an X̃ ∼ Bern(12). It is straightforward that

I(Ũ ; Z̃) ≥ I(U ;Z),

I(X̃; Ỹ |Ũ) = I(X;Y |U),

I(X̃; Ỹ ) ≥ I(X;Y ).

Thus for every pair of (U,X), replacing it to (Ũ , X̃) leads to a

larger achievable region. Denote this class of (Ũ , X̃) as Q.

Hence it suffices to maximize over (U,X) inQ. SinceX is uni-

form, the third inequality remains constant. Therefore, to com-

pute the extreme points, we proceed to compute the distribution

(U,X) in Q that maximizes λI(U ;Z) +
(
I(U ;Z) + I(X;Y |U)

)
.

Reformulate it as

(λ+ 1)I(X;Z) + I(X;Y |U)− (λ+ 1)I(X;Z|U).

Let f(p) = I(X;Y )− (λ + 1)I(X;Z), where p = P(X=0). No-

tice that f(p) = f(1 − p), suppose pλ ∈ [0, 12 ] and 1 − pλ max-
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imize f(p). Construct U → X ∼ BSC(pλ), then I(X;Y |U) −

(λ + 1)I(X;Z|U) is maximized; construct U ∼ Bern(12), then

I(X;Z) is maximized since P(X=0) = 1
2 . Notice this construc-

tion falls into class Q, hence finishes the proof.

The same proof can also be used to establish the following

lemma.

Lemma 7. Consider a two-receiver BISO broadcast channel.

Consider the following superposition coding region formed by

taking the union of rate pairs (R1, R2) satisfying

R2 ≤ I(U ;Z)

R2 +R1 ≤ I(U ;Z) + I(X;Y |U)

R2 +R1 ≤ I(X;Y )

over all p(u, x). Then the same region can be realized by restrict-

ing to a binary U such that U → X ∼ BSC and P(X=0) = 1
2.

Proof to Theorem 6

Proof. (a) ⇒ (b): Recalling: Let

I = {s ∈ [0, 0.5] : f1(s) > f2(s)}

J = {s ∈ [0, 0.5] : f1(s) < f2(s)}.
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Since the channels are not more-capable comparable, we know

that there esists s1 ∈ I and s2 ∈ J . Construct Ũ → X, where

Ũ = U ′ ×Q with binary U ′ and Q, and probabilities

P(Ũ=(0, 0)) =
1− ε

2
P(X=0|Ũ=(0, 0)) = 1

P(Ũ=(0, 1)) =
ε

2
P(X=0|Ũ=(0, 1)) = s1

P(Ũ=(1, 0)) =
1− ε

2
P(X=1|Ũ=(1, 0)) = 1

P(Ũ=(1, 1)) =
ε

2
P(X=1|Ũ=(1, 1)) = s1.

Thus, U ′ 7→ X ∼ BSC(0) conditioned on the event Q = 0,

U ′ 7→ X ∼ BSC(1 − s1) conditioned on Q = 1, and further U ′

is independent of Q with P(U ′=0) = 1
2 . We can see that Q is

independent of X and hence of Y, Z; thus I(Q;Y ) = I(Q;Z) =

0. Now

I(Ũ ;Y ) = I(U ′, Q;Y ) = I(U ′;Y |Q) + I(Q;Y )

= I(U ′;Y |Q)

= (1− ε)I(X;Y ) + εI(U ′;Y |Q=1)

= (1− ε)C + εf1(s1).

Similarly, we obtain

I(Ũ ;Z) = (1− ε)C + εf2(s1).
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Thus we have

R1 ≤ (1− ε)C + εf1(s1)

R2 ≤ f2(s2)

R1 +R2 ≤ I(Ũ ;Y ) + I(X;Z|Ũ)

= I(Ũ ;Y ) + I(X;Z)− I(Ũ ;Z)

= (1− ε)C + εf1(s1) + C − [(1− ε)C + εf2(s1)]

= C + ε[f1(s1)− f2(s1)] (> C)

R1 +R2 ≤ I(V ;Z) + I(X;Y |V )

= f2(s2) + C − f1(s2) (> C).

To show that we can have (1 − ε)C + εf1(s1) + f2(s2) > C, we

just need to choose small ε to ensure f2(s2) > ε[C − f1(s1)].

Since this is clearly possible, we have UV OB ⊃ TD.

(b) ⇒ (c): From Equation (3.2), we have the following ex-

pression of the boundary of the outer bound,

R1 ≤ I(U ;Y ) = f1(s1)

R2 ≤ I(V ;Z) = f2(s2)

R1 +R2 ≤ I(U ;Y ) + I(X;Z|U) = f1(s1) + C − f2(s1)

R1 +R2 ≤ I(V ;Z) + I(X;Y |V ) = f2(s2) + C − f1(s2)

Clearly for every s1 ∈ I, s2 ∈ J if f1(s1) + f2(s2) ≤ C then

from above UV OB = TD. However since UV OB ⊃ TD, there
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exists s1 ∈ I, s2 ∈ J such that f1(s1) + f2(s2) > C.

(c) ⇒ (d): In general, TD ⊆ RTD ⊆ MIB. So now it

suffices to show there exists an example where the sum rate of

RTD region is strictly larger than TD region.

We now compute the maximum sum rate of the RTD region.

From Corollary 1 we know that this matches the maximum sum

rate of the MIB region.

Consider an auxiliary channel W → X such that

P(W=0) = a, P(W=1) = 1− a

P(X=0|W=0) = s2, P(X=0|W=1) = s1

where as2 + (1− a)s1 = 1
2 .

It is straightforward to check the following

I(X;Y |W=0) = C − f1(s2), I(X;Y |W=1) = C − f1(s1)

I(X;Z|W=0) = C − f2(s2), I(X;Z|W=1) = C − f2(s1),

I(X;Y ) = I(X;Z) = C.

Then observe that

I(W ;Y ) + P(W=0)I(X;Y |W=0) + P(W=1)I(X;Z|W=1)

= I(X;Y ) + P(W=1)
(
I(X;Z|W=1)− I(X;Y |W=1)

)
= C + (1− a)(f1(s1)− f2(s1))

where the last inequality holds since s1 ∈ I.
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Similarly

I(W ;Z) + P(W=0)I(X;Y |W=0) + P(W=1)I(X;Z|W=1)

= C + a(f2(s2)− f1(s2)).

Therefore the sum rate of RTD (eq. MIB) for this choice of

(W,X) is given by

C + min{(1− a)(f1(s1)− f2(s1)), a(f2(s2)− f1(s2))}. (3.3)

Therefore if (c) is satisfied, i.e. there exists s1 ∈ I, s2 ∈ J ,

then there exists a (W,X) so that equation (3.3) gives a sum

rate strictly larger than C.

Remark 10. A careful reader will notice that the above argument

only requires s1 ∈ I, s2 ∈ J and does not even require f1(s1) +

f2(s2) > C. But existence of any sa ∈ I, sb ∈ J will imply that

(a) holds and hence (c) holds.

(d)⇒ (e): Since TD ⊂MIB, to compute the maximum sum

rate of MIB it suffices to maximize over s1 ∈ I, s2 ∈ J, 0 < a < 1

the term

C + min{(1− a)(f1(s1)− f2(s1)), a(f2(s2)− f1(s2))}.

Consider any triple s1 ∈ I, s2 ∈ J, 0 < a < 1. Pick any ε > 0

small enough (will show later how small we require it).
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Define (U,X) = (Q,U1, X) where P(Q=0) = 1 − a + ε, and

P(Q=1) = a−ε; and U1 7→ X ∼ BSC(s1) conditioned on Q = 0,

and U1 7→ X ∼ BSC(0) conditioned on Q = 1. Further take

P(U1=0) = P(U1=1) = 1
2 . Observe that this induces P(X=0) =

P(X=1) = 1
2 .

Similarly define (V,X) = (Q′, V1, X) where P(Q′=0) = a+ ε,

P(Q′=1) = 1 − a − ε; and V1 7→ X ∼ BSC(s2) conditioned on

Q′ = 0, and V1 7→ X ∼ BSC(0) conditioned on Q′ = 1. Further

take P(V1=0) = P(V1=1) = 1
2 . Observe that this also induces

P(X=0) = P(X=1) = 1
2 .

Since the distribution of X is consistent there exists a triple

(U, V,X) with the same pairwise marginals (U,X) and (V,X)

as described earlier. With this choice, UVOB reduces to

R1 ≤ I(U ;Y ) = (1− a+ ε)f1(s1) + (a− ε)C

R2 ≤ I(V ;Z) = (a+ ε)f2(s2) + (1− a− ε)C

R1 +R2 ≤ I(U ;Y ) + I(X;Z|U)

= C + (1− a+ ε)(f1(s1)− f2(s1))

R1 +R2 ≤ I(V ;Z) + I(X;Y |V )

= C + (a+ ε)(f2(s2)− f1(s2)).

Clearly the maximum sum rate of the above region is mini-
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mum of the terms

C + (1− a+ ε)(f1(s1)− f2(s1)), C + (a+ ε)(f2(s2)− f1(s2)),

(1− 2ε)C + (1− a+ ε)f1(s1) + (a+ ε)f2(s2)

We pick ε > 0 to satisfy

(1− 2ε)C + (1− a+ ε)f1(s1) + (a+ ε)f2(s2)

> C + (1− a)(f1(s1)− f2(s1))

⇐⇒ (1− a)f2(s1) + af2(s2) > ε(2C − f1(s1)− f2(s2)),

and

af1(s2) + (1− a)f2(s1) > ε(2C − f1(s1)− f2(s2)),

then the maximum sum rate of the UVOB expression will be

strictly bigger than that of MIB region. Since this is possible for

every s1 ∈ I, s2 ∈ J, 0 < a < 1, the maximum sum rate of UVOB

is strictly larger than that of MIB. Therefore UV OB ⊃ MIB

or (e) holds.

(e)⇒ (a): Since MIB ⊂ UV OB clearly implies the channels

are not more capable comparable. This is because when the

channels are more capable comparable we know from [2] that

superposition coding is optimal and thatMIB = CR = UV OB.
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Extended binary inequality

Marton’s inner bound refers to union of rate pairs satisfying

R1 ≤ I(U,W ;Y )

R2 ≤ I(V,W ;Z)

R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}

+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ),

for all p(w, u, v, x).

To evaluate the sum-rate, the following inequality helps

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}

However to evaluate the inner bound, we need a bit more.

Since Marton’s inner bound is a convex region, for the bound-

ary points, we consider optimizing the supporting hyperplanes.

Notice that the sum-rate constraint is always effective, for α ≥ 1

56
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we seek to maximize the following

(α− 1)I(U,W ;Y ) + min{I(W ;Y ), I(W ;Z)}

+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

= (α− 1)I(W ;Y ) + min{I(W ;Y ), I(W ;Z)}

+ αI(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

One may guess the following inequality holds for all α ≥ 1

αI(U ;Y ) + I(V ;Z)− I(U ;V )

≤ max{αI(X;Y ), I(X;Z)} (4.1)

It can be shown that this inequality holds for BSSC. However

this inequality is not true for AND case and a counter example

is provided in [8].

For the other cases, we can prove this inequality using similar

way to the proof in Chapter 2. We just state the proof for XOR

case in the following section. One may refer to Section 2.3 for

notations and Chapter 2 for more details.

4.1 Proof of XOR case

We will show that XOR case cannot attain non-trivial local max-

imum for the left hand side of (4.1).
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Consider an additive perturbation q(u, v, x) = p(u, v, x) +

ελ(u, v, x) for some ε ≥ 0. For a valid perturbation, we require

λuvx ≥ 0 if p(u, v, x) = 0, which is

λuvx ≥ 0, if f(u, v) 6= x

Further let the perturbation maintains p(x), that is∑
uv

λuvx = 0, ∀x ∈ X

For any perturbation that satisfies the above conditions at any

local maximum p(u, v, x), it must be true that the first derivative

cannot be positive. This implies that
∑

xuv λuvxCuvx ≤ 0, where

Cuvx = −(α−1) log pu−log puv+α
∑
y

py|x log puy+
∑
z

pz|x log pvz

Express λuxvxx in the term of other λuvx variables, that is

λuxvxx = −
∑

uv 6=uxvx

λuvx

and substituting into
∑

xuv λuvxCuvx ≤ 0, we have∑
xuv:uv 6=uxvx

λuvx(Cuvx − Cuxvxx) ≤ 0

Above holds for any signed {λuvx : f(u, v) = x, (u, v) 6= (ux, vx)}

and any nonnegative {λuvx : f(u, v) 6= x}, it implies

Cuvx = Cuxvxx, if f(u, v) = x

Cuvx ≤ Cuxvxx, if f(u, v) 6= x

So now we have the following claims:
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Claim 6. Let f(u, v) = x, for any (u1, v1) we have Cu1v1x ≤

Cuvx, that is

(α− 1) log
pu1
pu

+ log
pu1v1
puv
≥ α

∑
y

py|x log
pu1y
puy

+
∑
z

pz|x log
pv1z
pvz

Claim 7. If f(u1, v1) = f(u2, v2) = x, then

pu1v1pu2v2 ≤ pu1v2pu2v1

where the equality holds iff Cu1v2x = Cu2v1x = Cu1v1x(= Cu2v2x).

Proof. The proof is finished by noticing that Cu1v1x + Cu2v2x ≥

Cu1v2x + Cu2v1x.

Now for XOR case, f(0, 0) = f(1, 1) = 0, hence from Claim 7

we have p00p11 ≤ p01p10; also f(0, 1) = f(1, 0) = 1, hence

p00p11 ≥ p01p10. Thus we have

p00p11 = p01p10

and by Claim 7, this holds iff C010 = C100 = C000 = C110 and

C001 = C111 = C011 = C101. In particular, C000 = C010 and

C001 = C011 imply that

log
p00
p01

=
∑

pz|0 log
p0z
p1z

=
∑

pz|1 log
p0z
p1z

.

Notice p0z = p00pz|0 + p10pz|1, take a weighted sum, we get

(p00 + p10) log
p00
p01

=
∑

p0z log
p0z
p1z



CHAPTER 4. EXTENDED BINARY INEQUALITY 60

From above and using K-L divergence, we have

log
p00
p01
≥ log

p00 + p10
p11 + p01

= log
p00
p01

where the last step holds since p00p11 = p01p10. Now that the

K-L divergence inequality is indeed an equality, we require

p00
p01
≡ p0z
p1z

=
p00pz|0 + p10pz|1
p11pz|0 + p01pz|1

From the above we obtain

(p01 − p11)(pz|0 − pz|1) ≡ 0.

Similarly from C100 = C110 and C101 = C111, we can obtain

(p10 − p11)(py|0 − py|1) ≡ 0.

Now we have two cases

1: py|0 ≡ py|1, or pz|0 ≡ pz|1. In this case the Theorem holds

(similar to special setting SS1).

2: p01 = p11, p10 = p11. Combining this with p00p11 = p01p10

one obtains that puv = 1/4, and as a result U, V and X are

mutually independent. The Theorem holds (similar to special

setting SS2).

If neither of these two cases is satisfied, there would be no local

maximum.
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4.2 A conjecture on extending the inequality

We propose a conjecture on the binary inequality. To this end

we need the notion of concave envelope.

Definition 13. The concave envelope of f(x) is defined as

C[f ] = inf{g(x) : g ≥ f and g is concave}

If we are considering a functional defined on the space of prob-

ability distributions with finite alphabets, say f(X) = I(X;Y ),

since the space is a convex set with finite dimensions, one can

argue from Fenchel–Eggleston–Caratheodory that

C[f ](X) = max
p(u|x),|U|≤|X |

I(X;Y |U)

Conjecture 1. For (U, V )→ X → (Y, Z), the following

αI(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ C[max{αI(X;Y ), I(X;Z)}]

holds for all α ≥ 1 and p(u, v, x) over binary X.

Remark 11. As stated earlier, one only need to prove this con-

jecture when AND case achieves the maximum of left hand side.
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Conclusion

In Chapter 2, an information theoretic inequality is established

for binary input broadcast channels. And it can be used to

show that the sum-rate given by Marton’s inner bound is equiv-

alent to that given by randomized time-division strategy. In the

proof, we borrow and generalize the perturbation method used

by Gohari and Ananthram.

In Chapter 3, we look at more capable and essentially less

noisy partial orders in BISO broadcast channels. We establish

the capacity regions for a class of them and also show some

other results related to the evaluations of various bounds. Some

of the results are contrary to popular intuition and hence BISO

broadcast channels can serve as a simple class from which we can

improve our understanding of various relations. We hope that

some of the results presented can invoke a careful rethinking of
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those notions of dominance between receivers.

In Chapter 4, we make a conjecture which extends the binary

inequality proved in Chapter 2. This conjecture can help evalu-

ate Marton’s inner bound for binary input broadcast channels.
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