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Abstract—In this article, we resolve open problem 8.2 in [1].
We show that superposition coding is sub-optimal for a three
receiver broadcast channel with two message sets (M0,M1)
where two of the three receivers need to decode messages
(M0,M1) while the remaining one just needs to decode the
message M0.

INTRODUCTION

Background

In a classical paper, by characterizing image-sizes of sets

under two noisy channels, Korner and Marton [2] established

that superposition coding achieves the capacity region for

a two-receiver broadcast channel with degraded message

sets, i.e. one of the receivers wants to decode one message

and the other wants to decode both the messages. The

characterization of the image sizes of sets under three noisy

channels, remains a central unsolved problem (open problem

2 in [3]).

In [4] it was shown that superposition coding region was

strictly sub-optimal for a three receiver broadcast channel

with two message sets (M0,M1) where one of the three

receivers, say Y , needs to decode messages (M0,M1) while

the remaining two receivers, Z, Ẑ , only need to decode the

message M0. This was done through an indirect decoding

idea which is presented in Section 8.2 of [1]. The basic

idea of indirect decoding is to split the private message into

(potentially) three parts; one each to help the receivers Z
and Ẑ and the rest as a private message. Receivers Z and Ẑ
utilize the parts of the private message to aid in recovering

the common message M0. There are also alternate ways to

look at this scheme which do not explicitly need this indirect

decoding but use a case based decoding analysis.

The setting we are considering here is different (like a

dual): here, we have two receivers, say Y, Ŷ , that need to

decode messages (M0,M1) while the remaining receiver,

Z , needs to only decode the message M0. In this case, the

splitting idea of before does not improve on superposition

coding region, and indeed the former intuition suggests that

superposition coding may be optimal. In [5], the authors pre-

sented a channel where superposition coding is optimal and

developed a tailor-made converse using novel arguments.

Preliminary numerical simulations indicated a sub-additivity,

which would then imply optimality of superposition coding

region, which was conjectured by one of the authors in [6].

The result here, as a corollary, also disproves the conjecture.

Owing to the lack of evidence that the superposition

coding region can be improved or of ideas on how to

improve the superposition coding region, determining the

optimality of superposition coding region is stated as open

problem (8.2) in [1].

In this paper, we show that superposition coding region is

strictly sub-optimal for this class by exhibiting a particular

channel where the two-letter extension of superposition

coding region improves on the single-letter region. It is

hoped that by further examining this counter-example or

similar counterexamples, one may get a better understanding

behind the sub-optimality of superposition coding region,

and of the interplay between the image sizes of sets under

three noisy channels. Further, the computation of the su-

perposition coding region as well as the two-letter region

contains ideas, some developed recently in similar contexts

by the authors, that may be of independent interest.

Problem Setting

A sender X , who has access to two independent messages

(M0,M1), uniformly distributed over sets [1 : 2nR0 ] ×
[1 : 2nR1 ], wishes to encode the message into a sequence

Xn, which is then transmitted over a discrete memoryless

broadcast channel, W⊗n(y, ŷ, z|x). Three receivers which

receive sequences Y n, Ŷ n, Zn, respectively, wish to decode

messages (M0,M1), (M0,M1), and M0. The setting is

depicted in Figure 1.

The following region is achievable.

Bound 1 (Superposition coding achievable region). The

union of the set of rate pairs (R0, R1) satisfying

R0 ≤ I(U ;Z)

R0 +R1 ≤ I(U ;Z) + min{I(X ;Y |U), I(X ; Ŷ |U)}

R0 +R1 ≤ min{I(X ;Y ), I(X ; Ŷ )}
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Ŷ n

Zn

Dec1

Dec2

Dec3

(M†
0 ,M

†
1 )

(M̂0, M̂1)

M̃0

Fig. 1. Three receiver broadcast channel with two degraded message sets

where the union is taken over all pairs of random variables

(U,X) such that |U| ≤ |X | + 2 and U → X → (Y, Ŷ , Z)
forms a Markov chain is achievable.

The main result of this paper is that the above region can

be strictly smaller than the capacity region.

I. STRICT SUB-OPTIMALITY OF THE SUPERPOSITION

CODING INNER BOUND

The example that shows the strict sub-optimality is a

reversely degraded multi-level broadcast erasure channel,

belonging to the class depicted in Figure 2.
Denote the erasure probability of each sub-channel by

Xa → Ya : BEC(ea), Xb → Yb : BEC(eb)

Xa → Ŷa : BEC(êa), Xb → Ŷb : BEC(êb)

Xa → Za : BEC(fa), Xb → Zb : BEC(fb).

The order of channels in Figure 2 implies that êa ≥ fa ≥ ea
and eb ≥ fb ≥ êb.
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Fig. 2. Product broadcast erasure channel

One of the key contributions of this paper is the technique

of computation of the superposition inner bound for this

class of channels (product broadcast erasure channels).

Proposition 1. For the broadcast channel in Figure 2, it

suffices to consider uniform distribution on X = (Xa, Xb)
to obtain the superposition coding region (Bound 1).

Proof. This is basically a symmetrization argument á la the

one in [7]. The argument is also presented in a slightly

more general fashion that is required for the proof of the

proposition, in that the number of product components can

be larger than 2.
Let π be either of the two permutations of {0, 1}.

By an abuse of notation, let π also denote the induced
permutation of {0, E, 1} by mapping E to E. Then note
for any generic symmetric erasure channel as in Figure
2, W (Y = π(y)|X = π(x)) = W (Y = y|X = x).
Now consider a product erasure channel structure where
the inputs are x1, ..., xk and let the corresponding outputs
be y1, .., yk. Given any probability distribution p(x1, ..., xk),
let p(y1, .., yk) denote the induced output distribution. Let
π1, ..., πk be any set of permutations of {0, 1}; and let
r(x1, .., xk) = p(π1(x1), ..., πk(xk)) denote an induced
input distribution. Then note that the induced output dis-
tribution is given by

r(y1, ..., yk) =
∑

x1,..,xk

r(x1, .., xk)
k
∏

i=1

Wi(yi|xi)

(a)
=

∑

x1,..,xk

r(x1, .., xk)

k
∏

i=1

Wi(πi(yi)|πi(xi))

=
∑

x1,..,xk

p(π1(x1), .., πk(xk))
k
∏

i=1

Wi(πi(yi)|πi(xi))

= p(π1(y1), ..., π1(yk)).

In the above, (a) follows from the symmetry of the

component channels. Thus the output probability vector

r(y) is just a permutation of the original probability vector

p(y), and hence entropy of Y1, .., Yk remains unchanged.

Given a joint distribution p(u, x1, .., xk) (or on

(U,Xa, Xb) as is this case), let Q denote a uniform

random variable distributed over [1 : 2k]. Identify with

each Q a unique collection of permutations πq
1 , .., π

q
k.

(for instance, using the binary representation). Define

Ũ = (Q,U) and consider a joint distribution defined as

follows:

r((q, u), x1, .., xk) =
1

2k
p(u, πq

1(x1), ..., π
q
k(xk)).

Note that the induced distributions on (X1, .., Xk) is

uniform and that

r(x1, .., xk|(q, u)) = p(πq
1(x1), ..., π

q
k(xk)|u)

r(y1, .., yk|(q, u)) = p(πq
1(y1), ..., π

q
k(yk)|u)

where the second equality follows the argument presented

earlier.
Hence note the following inequalities for any collection

of outputs of symmetric channels

Hp(Y1, .., Yk)
(a)

≤ Hr(Y1, .., Yk)

Hp(Y1, .., Yk|U)
(b)
= Hr(Y1, .., Yk|U,Q)

Hp(Y1, .., Yk|X1, .., Xk, U)
(b)
= Hr(Y1, .., Yk|X1, ..., Xk, U,Q),

where (a) follows since uniform input distribution maxi-

mizes entropy for symmetric erasure channels, and equalities

denoted by (b) is due to the fact that permutations of

probability vectors do not change its entropy. Thus every

term occurring in the superposition coding region is non-

decreasing by virtue of this symmetrization using Q, which

induces a uniform distribution on X .



The following corollary is immediate.

Corollary 1. Superposition coding region for the product

broadcast erasure channel in Fig 2 is the intersection of

{(R0, R1)|R0 + R1 < min(CY , CŶ
)} and the region S

defined as the union of the set of rate pairs (R0, R1)
satisfying

R0 < I(U ;Z)

R0 +R1 < I(U ;Z) + min{I(X ;Y |U), I(X ; Ŷ |U)}

where the union is taken over all pairs of random variables

(U,X) such that |U| ≤ |X |+2, U → X → (Y, Ŷ , Z) forms

a Markov chain, and X = (Xa, Xb) is uniformly distributed.

CY = 1 − ea + 1 − eb and C
Ŷ

= 1 − êa + 1 − êb are the

capacities for channels W (y|x) and W (ŷ|x).

Thus the key difficulty in computation of the superposi-

tion coding region is reduced to computation of region S.

Proposition 2. For any λ > 1, SH
S
λ := max

S
(λR0 +R1) is

given by

λCZ + min
α∈[0,1]

max
p(x)

{

αI(X ;Y ) + ᾱI(X ; Ŷ )− λI(X ;Z)
}

,

where CZ is the capacity for channel W (z|x).

Proof. We know that it suffices to consider X to be uni-

formly distributed. Thus max
S

(λR0 +R1) is given by

max
p(u|x)

(

λI(U ;Z) + min{I(X ;Y |U), I(X ; Ŷ |U)}
)

,

where X is uniform.
An immediate application of min-max result, Corollary 2

in [8], yields that

max
p(u|x)

(

λI(U ;Z) + min{I(X;Y |U), I(X; Ŷ |U)}
)

= min
α∈[0,1]

max
p(u|x)

(

λI(U ;Z) + αI(X;Y |U) + (1− α)I(X; Ŷ |U)
)

.

Noting that I(U ;Z) = I(X ;Z) − I(X ;Z|U) = CZ −
I(X ;Z|U) (since uniform X achieves CZ ), we re-write the

above as

min
α∈[0,1]

max
p(u|x)

(

λI(U ;Z) + αI(X ;Y |U) + (1 − α)I(X ; Ŷ |U)
)

= min
α∈[0,1]

max
p(u|x)

(

λCZ + αI(X ;Y |U) + (1 − α)I(X ; Ŷ |U)

− λI(X ;Z|U)
)

= λCZ + min
α∈[0,1]

max
p(x)

{

αI(X ;Y ) + ᾱI(X ; Ŷ )− λI(X ;Z)
}

.

The last equality follows by applying the symmetrization

argument to the constant U where p(x|u) is the distribu-

tion that maximizes the quantity αI(X ;Y ) + ᾱI(X ; Ŷ ) −
λI(X ;Z).

Remark 1. Note that the above two propositions regarding

computation of superposition coding region for product

broadcast channels apply to all symmetric (appropriately

defined) channels and does not depend on the fact that

the symmetric channel under consideration is an erasure

channel. The next proposition on the other hand uses the

erasure nature of the component channels.

The following lemma should be well-known but is pro-

vided here for completeness.

Lemma 1. Consider a product erasure channel mapping
X1, .., Xk to Y1, .., Yk with erasure probabilities ǫ1, ..., ǫk.
Then

I(X1, ..., Xk;Y1, ..., Yk) =
∑

S⊆[1:k]





∏

i∈S

(1− ǫi)
∏

j /∈S

ǫj



H(XS),

where XS = (Xi : i ∈ S).

Proof. The proof is a simple exercise by induction on k,
for instance, and is briefly outlined below. Observe that
k = 1 is immediate. Note that I(X1, ..., Xk;Y1, ..., Yk) =
I(X1, ..., Xk−1;Y1, ..., Yk−1) + I(Xk;Yk|Y1, , , Yk−1). A
simple calculation yields that

I(Xk;Yk|Y1, ..., Yk−1)

=
∑

S1⊆[1:k−1]





∏

i∈S1

(1− ǫi)
∏

j /∈S1

ǫj



 (1− ǫk)H(Xk|XS1
).

Combining this term with induction hypothesis completes

the proof.

Remark 2. Combining Proposition 2 with Lemma 1 shows

that computation of the superposition coding region for

a product erasure broadcast channel reduces to computa-

tion of the maximum of a linear combination of entropic-

vectors, a subset of R2k−1 generated by subsets of k binary

random variables. When k = 2, for every α ∈ [0, 1],
we wish to maximize a linear combination of the vector

[H(Xa), H(Xb), H(Xa, Xb)], where the co-efficients are

determined using Proposition 2 and Lemma 1. Note Xa and

Xb are binary random variables.

A specific example

There are many examples (though each one takes a fair bit

of computer search) where two-letter superposition coding

region beats the single-letter superposition coding region.

However, below we produce a concrete example where using

the machinery developed above we are able to explicitly

demonstrate the gap between 1-letter and 2-letter regions.

Theorem 1. For the three receiver broadcast channel with

parameters

ea = 1/2 êa = 1 fa = 17/22

eb = 1/2 êb = 0 fb = 9/34

the non-trivial boundary (i.e. excluding axis) of the S.C

region is determined by the two lines:

R0 +R1 = 1 and
11

10
R0 +R1 =

18

17
.

The non-trivial boundary of the 2-letter S.C. region is

determined by the two lines:

R0 +R1 = 1 and
484

435
R0 +R1 =

528

493
.



Proof. From Corollary 1, and CY = C
Ŷ
= 1, the line R0+

R1 = 1 is immediate. To compute the S.C region (1-letter

or 2-letter) it remains to compute the region S.

Computation of the 1-letter region.

For the 1-letter (usual) S.C. region, we first show that any

(R0, R1) ∈ S satisfies

11

10
R0 +R1 ≤

18

17
.

Since CZ = (1− fa) + (1− fb) =
180
187 , from Proposition 2

(taking α = 1
2 ), the inequality above will follow if we show

that

1

2
I(X ;Y ) +

1

2
I(X ; Ŷ )−

11

10
I(X ;Z) ≤ 0 ∀p(x).

Here X = (Xa, Xb), Y = (Ya, Yb), Ŷ = (Ŷa, Ŷb) and Z =
(Za, Zb). Expanding the left hand side using Lemma 1 and

substituting our choices of erasures yields

1

2
I(X ;Y ) +

1

2
I(X ; Ŷ )−

11

10
I(X ;Z) = −

1

17
H(Xb|Xa),

implying the upper bound.

Next we show that the intersection of the two lines R0 +
R1 = 1 and 11

10R0 +R1 = 18
17 belongs to the super-position

coding region (completing the characterization).
Let U be a ternary random variable such that P(U =

0) = 13/34, P(U = 1) = 7/34, P(U = 2) = 14/34.
Conditionals are given by:

(Xa, Xb)|(U = 0) = (0, 0)

(Xa, Xb)|(U = 1) = (M, 0)

(Xa, Xb)|(U = 2) = (M,M),

where M is an unbiased binary random variable. Let Q be

a random variable that symmetrizes the distribution of X (in

the sense of the proof of Proposition 1) and let Ũ = (U,Q).
Substituting (Ũ ,X) into Bound 1 yields:

R0 ≤ I(Ũ ;Za, Zb) =
10

17

R0 +R1 ≤ min{I(Xa, Xb;Y |Ũ), I(Xa, Xb; Ŷa, Ŷb|Ũ)}

+ I(Ũ ;Za, Zb) = 1

R0 +R1 ≤ min{I(Xa, Xb;Y ), I(Xa, Xb; Ŷa, Ŷb)} = 1.

Thus (R0, R1) = (1017 ,
7
17 ) lying at the intersection of the

two lines R0 + R1 = 1 and 11
10R0 + R1 = 18

17 belongs

to the superposition coding region. This establishes the

superposition coding region.

Computation of the 2-letter region.

The proof mimics the 1-letter case. We first show that any

(R0, R1) ∈ S2 satisfies

484

435
R0 +R1 ≤

528

493
.

Since CZ = (1 − fa) + (1 − fb) = 180
187 = 528×435

493×484 , from

Proposition 2 (taking α = 88
174 ), the inequality above will

follow if we show that

88

174
I(X ;Y ) +

86

174
I(X ; Ŷ )−

484

435
I(X ;Z) ≤ 0 ∀p(x).

In the above, X = (Xa1, Xb1, Xa2, Xb2) and similarly for
others. Expanding the left hand side using Lemma 1 and
substituting our choices of erasures yields

−
17

174
I(Xb1;Xb2)−

19

2958

(

I(Xb1;Xb2|Xa1) + I(Xb1;Xb2|Xa2)
)

−
2

29
I(Xa1;Xa2|Xb1Xb2)−

2543

50286
I(Xb1;Xb2|Xa1Xa2)

−
35

493

(

H(Xb1|Xa1
Xa2Xb2) +H(Xb2|Xa1

Xb1Xa2)
)

−
1

174

(

I(Xa1;Xb1|Xa2) + I(Xa1;Xb2|Xa2)

+ I(Xa2;Xb1|Xa1) + I(Xa2;Xb2|Xa1)
)

−
1

174

(

I(Xa1;Xb1|Xa2Xb2) + I(Xa1;Xb2|Xa2Xb1)

+ I(Xa2;Xb1|Xa1Xb2) + I(Xa2;Xb2|Xa1Xb1)
)

,

which is term-by-term upper bounded by zero, implying

the bound 484
435R0 +R1 ≤ 528

493 .
Let U be a ternary random variable such that P(U =

0) = 20/119, P(U = 1) = 88/119, P(U = 2) = 11/119.
Conditionals are given by:

(Xa1, Xb1, Xa2, Xb2)|(U = 0) = (0, 0, 0, 0)

(Xa1, Xb1, Xa2, Xb2)|(U = 1) = (M1,M1,M1, 0)

(Xa1, Xb1, Xa2, Xb2)|(U = 2) = (M1, 0,M2, 0),

where M1 and M2 are two independent unbiased binary
random variables. Let Q be a random variable that sym-
metrizes the distribution of X (in the sense of the proof of

Proposition 1) and let Ũ = (U,Q). Substituting (Ũ ,X) into
the normalized two-letter version of Bound 1 yields:

R0 ≤
1

2
I(Ũ ;Z) =

75

119

R0 +R1 ≤
1

2

(

I(Ũ ;Z) + min{I(X;Y |Ũ), I(X; Ŷ |Ũ)}
)

= 1

R0 +R1 ≤
1

2
min{I(X;Y ), I(X; Ŷ } = 1,

where X = (Xa1, Xb1, Xa2, Xb2) and similarly for others.

Thus (R0, R1) = ( 75
119 ,

44
119 ) lying at the intersection of the

two lines R0 + R1 = 1 and 484
435R0 + R1 = 528

493 belongs to

the two-letter superposition coding region. This establishes

Theorem 1.

44
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17

75
119
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Fig. 3. Plots of the 1-letter and 2-letter superposition coding regions

Figure 3 shows the intersection points of the two lines

that constitute the 1-letter and 2-letter superposition coding



regions. The red line-segments indicates the 2-letter super-

position coding region and the blue line-segments indicates

the one-letter superposition coding region.

DISCUSSION

The strict sub-optimality of the superposition coding

region for this message setting is shown by demonstrating

a channel for which the 2-letter superposition coding region

strictly outperforms the 1-letter region. In this sense, the

technique is similar to the one employed for showing the

strict sub-optimality of the Han-Kobayashi achievable region

for the interference channel [9]. However, there are some

important differences that perhaps make the analysis in this

setting more interesting.

Firstly, we are able to completely characterize the 2-

letter superposition coding region. This boils down to finding

choices of λ and α that make a certain linear combination

of entropies of subsets of binary random variables negative

for all probability distributions. This remains true even for

higher letter computations. Hence there is a reasonable

chance of being able to evaluate higher letter superposition

coding regions and obtaining intuition as to the time-

correlation in the optimizing distributions to see if it admits

an alternate interpretation, yielding new achievability ideas.

Towards this end, notice that the optimizing distributions

(that yield the non-trivial corner point along the R0+R1 = 1
line in the counterexample) have optimizers where the same

X is transmitted across the parallel channels. Further in the

2-letter scheme, the same X is even transmitted across two

consecutive-time slots, for some choices of U . This shows

that superposition coding does not fully exploit the spatial

and temporal diversity provided by the different channels to

Y and Ŷ . Hidden in the optimizers should be some hint as

to how best to exploit the missing diversity gains.

Secondly, using sub-modularity of entropy and the idea

behind testing Shannon-type inequalities, one can get upper

bounds on the critical λ, the slope of the capacity region

around (R0, R1) = (CZ , 0). Even in the two-letter case

(where the four variables Xa1, Xb1, Xa2, Xb2 involved are

binary) restricting oneself to Shannon-type inequalities and

maximizing the linear combination could have resulted in

an non-entropic extreme point [10]. This would have led to

an outer bound to the 2-letter superposition coding region.

Luckily for us, the extreme point in the region calculations

using sub-modularity (Shannon-type) constraints turns out

to be achievable; thus yielding a precise characterization

of the 2-letter superposition coding region. One interesting

question that is worth pursuing is whether this phenomenon

continues to hold for higher letter computations as well.

If so, would it be possible to make a well-informed guess

of the structure of the optimizing distributions for higher

letters. The simplicity of the expressions in this case and the

rather vast literature about Shannon-type and non-Shannon

type inequalities make the questions mentioned above an

interesting and well motivated pursuit.

CONCLUSION

In this paper we show that superposition coding region

is strictly sub-optimal for a three receiver broadcast channel

with two degraded message sets; where two of the receivers

need to decode both the messages, while the third receiver

only needs to decode a common message. This solves open

problem 8.2 in [1]. It also disproves a factorization conjec-

ture, hypothesized by one of the authors in [6]. The key

idea is to show that the 2-letter region strictly outperforms

the 1-letter region and the main technical contribution is

the bag of ideas (some of them developed by the authors

previously) used in the evaluation of these regions for the

channels. As a consequence, this opens interesting avenues

for further exploration into new achievable schemes for this

simple setting.
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