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Abstract—In this paper we show that superposition coding
is not optimal for three-receiver more capable channels. The
optimality of superposition coding region has been open for
k-receiver (k ≥ 3) more capable broadcast channel. The main
contribution is in identifying a counterexample to demonstrate
that superposition coding is sub-optimal. We also compute
the capacity region for the counter example. On the other
hand, we show that the sum-capacity for a k-receiver more
capable broadcast channel is obtained by transmitting all the
information to the most capable receiver.

I. INTRODUCTION

Broadcast channel models a basic communication sce-
nario where a single sender X wishes to communicate
possibly different messages to multiple receivers Y1, ..., Yk

over a noisy medium. For details of previous results on this
problem the readers are encouraged to refer to Chapters 5,
8, and 9 of [1]. This paper addresses an open question in the
book (open problem 5.2), and we show that superposition
coding technique (the main material presented in Chapter 5)
is not optimal for the three-receiver more capable channel.
Determining the capacity region of a two-receiver discrete

memoryless broadcast channel continues to remain open as
one of the most fundamental unsolved problems in this
field; yet, there has been remarkable success when there
is an ordering between the decoding capabilities of the
receivers. The first such ordering is the degraded broadcast
channel[3] where X → Y1 → · · ·Yk forms a Markov chain,
and the optimality of superposition coding was established
by Bergmans[2] and Gallager[6]. Two progressively less
stringent orderings[8] called less noisy and more capable
were introduced by Korner and Marton. The optimality of
the superposition coding scheme for these classes for the
two-receiver case were established in [8], [5], respectively.
The optimality of superposition coding for three-receiver
less noisy broadcast channels was established in [10]. Our
results here show that superposition coding is not optimal
for three-receiver more capable channels. This represents
the first instance where an ordering on the decodability of
the receivers is established, yet superposition coding is not
optimal.
It has been shown in [7] that the more-capable ordering

is a much weaker ordering than less noisy ordering. In
particular it was shown that if one substitutes a receiver
(in a two-receiver broadcast channel) by a more-capable
receiver then the capacity region could strictly decrease (!).
Further it was also shown that such a phenomenon would

not occur for less noisy ordering. Hence our result should
not come as very surprising. However, based on the work in
[7], a natural instinct for beating the superposition coding’s
achievable region would be to show that the maximum
sum-rate achieved by superposition coding region is strictly
smaller than the sum-rate capacity. This fails because, as
we show later, the sum-rate capacity can be achieved by
transmitting only to the best receiver. Furthermore, since
the capacity region would indeed reduce to the time-division
region when all the channels have the same point-to-point
capacity, which is the class studied in [7], we cannot
conclude in a straightforward manner from the results in
[7] that superposition coding is sub-optimal. Therefore, even
though this work is based on one of the authors’ insights in
[7], the counterexample is nevertheless interesting.

Definition 1. A receiver Y1 is said to be more capable than
receiver Y2 if the following holds: for every ε-error channel
codebook1 of size 2nR from sender X to Y2, there exists an
ε′-error channel codebook of size 2n(R−δ) from sender X
to Y1 where δ, ε′ → 0 as ε → 0.

Remark: This is essentially equivalent to saying that Y1

could decode any codebook that Y2 could decode.
Korner and Marton[8] showed that the above definition is

equivalent to the following:

Definition 2. A receiver Y1 is said to be more capa-
ble than receiver Y2 if the following holds: I(X ;Y1) ≥
I(X ;Y2), ∀p(x).

El Gamal[5] showed that superposition coding is optimal,
i.e. achieves the capacity region, for any two-receiver more
capable broadcast channel. Note that the definition of more
capable induces a partial ordering among the receivers (or
equivalently probability transition matrices), hence we are
assuming here that the three receivers satisfy an induced
more capable ordering.

Definition 3. A three-receiver more capable channel con-
sists of a single sender X and three receivers Y1, Y2 and
Y3 such that the mutual information I(X ;Y1), I(X ;Y2) and
I(X ;Y3) satisfies I(X ;Y1) ≥ I(X ;Y2) ≥ I(X ;Y3) for any
fixed distribution p(x) on X .

First we state(without the standard proof) the superposi-
1An ε-error codebook of size 2nR consists of a set of codewords xn(m),

m ∈ [1 : 2nR] and disjoint decoding regions B(m) ∈ Yn
2 such that

P(yn2 /∈ B(m)|xn(m) is transmitted) < ε, ∀m.



tion coding region for the three receiver broadcast channel.
We select the natural order induced by the more capable
ordering for superposition coding.
Theorem 1. The following set, S, obtained by taking the
union of all non-negative rate triples (R1, R2, R3) satisfying

R3 ≤ I(U3;Y3)

R2 +R3 ≤ I(U2;Y2|U3) + I(U3;Y3)

R2 +R3 ≤ I(U2, U3;Y2)

R1 +R2 +R3 ≤ I(X;Y1|U2, U3) + I(U2; Y2|U3) + I(U3;Y3)

R1 +R2 +R3 ≤ I(X;Y1|U2, U3) + I(U2, U3;Y2)

R1 +R2 +R3 ≤ I(X;Y1|U3) + I(U3; Y3)

R1 +R2 +R3 ≤ I(X;Y1)

over all pairs of random variables (U2, U3) such that
(U2, U3) → X → (Y1, Y2, Y3) forms a Markov chain is
achievable for the private-messages-only case. We call this
region the superposition coding region.

Superposition coding yields the optimal sum-rate.

Theorem 2. Any set of achievable rates R1, . . . , Rk for a
k-receiver more capable channel must satisfy

R1 +R2 + · · ·+Rk ≤ max
p(x)

I(X ;Y1). (1)

Proof: We will prove the theorem for three-receiver
more capable channels, the proof for more receivers shall
follow with similar steps. Note that
n(R1 +R2 +R3)− nεn

≤ I(M1; Y
n
11) + I(M2;Y

n
21|M1) + I(M3;Y

n
31|M2,M1)

≤ I(M1; Y
n
11) + I(M2;Y

n
21|M1) +

n
∑

i=1

I(Xi;Y3i|M2,M1, Y
i−1
31 )

= I(M1; Y
n
11) +

n
∑

i=1

I(Xi;Y3i|M2,M1, Y
n

2i+1, Y
i−1
31 )

+
n
∑

i=1

I(Y n
2i+1; Y3i|M2,M1, Y

i−1
31 ) +

n
∑

i=1

I(M2;Y2i|M1, Y
n

2i+1)

(a)
= I(M1;Y

n
11) +

n
∑

i=1

I(Xi;Y3i|M2,M1, Y
n

2i+1, Y
i−1
31 )

+
n
∑

i=1

I(Y i−1
31 ;Y2i|M2,M1, Y

n
2i+1) +

n
∑

i=1

I(M2;Y2i|M1, Y
n

2i+1)

= I(M1; Y
n
1 ) +

n
∑

i=1

I(Xi;Y3i|M2,M1, Y
n

2i+1, Y
i−1
31 )

+
n
∑

i=1

I(M2, Y
i−1
31 ;Y2i|M1, Y

n
2i+1)

(b)

≤ I(M1;Y
n
1 ) +

n
∑

i=1

I(Xi;Y2i|M2,M1, Y
n

2i+1, Y
i−1
31 )

+
n
∑

i=1

I(M2, Y
i−1
31 ;Y2i|M1, Y

n
2i+1)

= I(M1; Y
n
11) +

n
∑

i=1

I(Xi;Y2i|M1, Y
n

2i+1) (2)

(c)
=

n
∑

i=1

(

I(Xi;Y2i|M1, Y
n

2i+1, Y
i−1
11 ) + I(M1, Y

n
2i+1;Y1i|Y

i−1
11 )

)

(3)

(d)

≤
n
∑

i=1

(

I(Xi;Y1i|M1, Y
n

2i+1, Y
i−1
11 ) + I(M1, Y

n
2i+1;Y1i|Y

i−1
11 )

)

=
n
∑

i=1

I(Xi;Y1i|Y
i−1
11 ) ≤ nmax

p(x)
I(X;Y1)

As εn → 0 when n → ∞, we have

R1 +R2 +R3 ≤ max
p(x)

I(X ;Y1),

which, as we mentioned before, is achieved by transmitting
only to the best receiver with superposition coding. In the
above chain of inequalities we have used Fano’s inequality,
chain-rule for mutual information, data-processing inequal-
ity, Csiszar-sum lemma (equalities (a),(c)) (reproduced be-
low) and the more capable ordering (inequalities (b),(d)).
The data-processing inequalities used above come from the
following Markov chain

(Y i−1
11 , Y

n
2i+1, Y

i−1
31 ,M1,M2,M3) → Xi → (Y1i, Y2i, Y3i).

Furthermore, noting the similarity of the second inequality
and (2), a k-receiver proof could be generated by eliminating
one receiver at a time.
Lemma 1. (Csiszar-sum Lemma) For any p(U, yn11, yn21) we
have

n
∑

i=1

I(Y i−1
11 ;Y2i|U, Y

n
2i+1) =

n
∑

i=1

I(Y n
2i+1;Y1i|U, Y

i−1
11 ).

Originally presented in [4], this is one of the most com-
monly used identities to derive outer bounds and converses
for discrete memoryless broadcast channels.

II. THE SUB-OPTIMALITY OF SUPERPOSITION CODING
Theorem 2 implies that it is not possible to beat the sum-

rate. What we could try is to beat the achievable region
along some other directions, which is what we will do in
the counter example.
We consider a DM-BC with X ∈ {0, 1}, Y1 ∈ {0, 1, e},

Y2 ∈ {0, 1, e}, and Y3 ∈ {0, 1}, where the channel from
X to Y1, Y2 and Y3 are BEC(ε1), BEC(ε2) and BSC(p),
respectively (see Figure 1). Let p ∈ [0, 1

2 ], ε1 = 4p(1 − p)
and ε2 = H(p), then from [9] we know that this is a three-
receiver more capable channel.
In fact, for this particular case, Y1 is also less noisy than

Y3 and Y2 is a degraded version of Y1. However Y2 is
only more capable than Y3. Let C denote the true (as yet
unknown) capacity region and S denote the superposition
coding region.
Suppose the private message rates are R1, R2 and R3 for

receivers Y1, Y2 and Y3, respectively. We try to maximize
the following equation

T = max
(R1,R2,R3)∈C

R1

1− ε1
+

R2 +R3

1− ε2
.

Lemma 2. For all (R1, R2, R3) ∈ S we have
R1

1− ε1
+

R2 +R3

1− ε2
≤ 1.

Proof: Note that if (R1, R2, R3) ∈ S is in the achiev-
able region, then so is (R1, R

′
2, 0), where R′

2 = R2 + R3.
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Fig. 1. 3-receiver more capable channel: ε1 = 4p(1− p), ε2 = H(p)

One can see this by plugging the choice into the region
in Theorem 1. However the channel X → Y1 → Y2 is a
degraded broadcast channel consisting of two BEC’s and its
capacity region consists of all non-negative pairs (R1, R2)
satisfying

R1

1− ε1
+

R2

1− ε2
≤ 1.

This well-known fact holds since for any U → X →
(Y1, Y2) we have I(U ;Y2) = (1 − ε2)I(U ;X) and
I(X ;Y1|U) = (1 − ε1)H(X |U) which can be obtained by
routine manipulations. Hence
I(X;Y1|U)

1− ε1
+

I(U ;Y2)
1− ε2

= H(X|U) + I(U ;X) = H(X) ≤ 1.

Lemma 2 implies that T ≤ 1 if superposition coding were
optimal.
Beating superposition coding region: Next, we will show

that one can actually achieve T > 1. Instead of treating
Y2 as the second best receiver, we ignore Y2 completely;
i.e. it does not need to decode any message. This way
the channel is transformed into a two-receiver less noisy
broadcast channel with receivers Y1, Y3. Using superposition
coding on this two-receiver channel, we can achieve R1 =
I(X ;Y1|U), R3 = I(U ;Y3) for any U → X → (Y1, Y3).
Hence

T ≥ max
U→X1→(Y1,Y2,Y3)

I(X;Y1|U)
(1− ε1)

+
I(U ;Y3)
1− ε2

= max
U→X1→(Y1,Y2,Y3)

I(X;Y1|U)
(1− ε1)

+
I(U ;Y3)
1−H(p)

.

Let U → X be a BSC with crossover probability s, 0 <
s < 1

2 . Further, let P (U = 0) = 1
2 . We have,

T ≥
I(X;Y1|U)

1− ε1
+

I(U ;Y3)
1−H(p)

=
(1− ε1)H(s)

1− ε1
+

1−H(s ∗ p)
1−H(p)

= H(s) +
1−H(s ∗ p)
1−H(p)

. (4)

By setting p and s to 1
10 , we see that

T ≥ H(s) +
1−H(s ∗ p)

1−H(p)

= H(0.1) +
1−H(0.18)
1−H(0.1)

≥ 1.07.

Therefore, superposition coding region is not optimal for
the three-receiver more capable channel.
A. An achievable rate region for the three-receiver more
capable broadcast channel
Since the sum-capacity is bounded by what one can

transmit to the receiver Y1, a natural guess would be to allow
the Y1 to decode all the messages. Now, one can employ
Marton’s binning scheme to transmit non-nested messages
to receivers Y2 and Y3.
Theorem 3. Consider a three receiver more capable broad-
cast channel with Y1 being the most capable receiver and
Y3 the least. Then any rate triple (R1, R2, R3) satisfying
R2 ≤ I(U2,W ;Y2)

R3 ≤ I(U3,W ;Y3)

R2 +R3 ≤ min{I(W ;Y2), I(W ;Y3)}+ I(U2;Y2|W )

+ I(U3;Y3|W )− I(U2;U3|W )

R1 +R2 +R3 ≤ I(X;Y1)

R1 +R2 +R3 ≤ I(U2,W ;Y2) + I(X;Y1|U2,W )

R1 +R2 +R3 ≤ I(U3,W ;Y3) + I(X;Y1|U3,W )

R1 +R2 +R3 ≤ min{I(W ;Y2), I(W ;Y3)}+ I(U2;Y2|W )

+ I(U3;Y3|W ) + I(X;Y1|U2, U3,W )− I(U2;U3|W )

R1 + 2R2 + 2R3 ≤ I(U2,W ;Y2) + I(U3,W ;Y3)

+ I(X;Y1|W )− I(U2;U3|W )

2R1 + 2R2 + 2R3 ≤ I(U2,W ;Y2) + I(U3,W ;Y3)

+ I(X;Y1|U2, U3,W ) + I(X;Y1|W )− I(U2;U3|W )

is achievable for any (W,U2, U3) → X → (Y1, Y2, Y3).

Proof: The proof follows standard techniques of ran-
dom binning, superposition coding, and jointly typical de-
coding. Receiver Y2 decodes Un

2 ,W
n, receiver Y3 decodes

Un
3 ,W

n, and receiver Y1 decodes Wn, Un
2 , U

n
3 , X

n. The
analysis is routine and straightforward (but messy) and
hence is omitted.
Remark 1. A constraint

0 ≤ I(U2;Y2|W ) + I(U3;Y3|W )− I(U2;U3|W )

is obtained during the process of Fourier-Motzkin Elimina-
tion, but it is easy to see that this condition is redundant to
the computation of the region.
In the event where Y1 is less noisy than both Y2 and Y3

pairwise(as in the counter example), the achievable region
in Theorem 3 reduces to
R1 +R2 +R3 ≤ min{I(W ;Y2), I(W ;Y3)}+ I(U2;Y2|W )

+ I(U3;Y3|W ) + I(X;Y1|U2, U3,W )− I(U2;U3|W )

R2 +R3 ≤ min{I(W ;Y2), I(W ;Y3)}+ I(U2;Y2|W )

+ I(U3;Y3|W )− I(U2;U3|W ) (5)
R2 ≤ I(U2,W ;Y2)

R3 ≤ I(U3,W ;Y3)
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Also, since Y3 is essentially less noisy[9] than Y2 in
the counter example, by symmetrization argument2 we can
further assume P(X = 0) = 1

2 , and hence I(U2,W ;Y3) ≥
I(U2,W ;Y2). Therefore we can set W̃ = (U2,W ), Ũ2 =
∅, Ũ3 = U3 to obtain the following achievable region:
Theorem 4. For the channel depicted in 1, the union of rate
triples (R1, R2, R3) satisfying

R1 +R2 +R3 ≤ I(W̃ ; Y2) + I(Ũ3;Y3|W̃ ) + I(X;Y1|Ũ3, W̃ )

R2 +R3 ≤ I(W̃ ; Y2) + I(Ũ3;Y3|W̃ )

R2 ≤ I(Ũ3,W ;Y2)

over all (W̃ , Ũ3) → X → (Y1, Y2, Y3) is achievable.

This is just superposition coding by treating Y3 as the
second best receiver. We will prove in the next section that
this is indeed the capacity region for the counterexample.

B. The capacity region of the counterexample

In this section we show that the region presented in Theo-
rem 4 is indeed the capacity region for the counterexample.
Note that it suffices to just show a converse to Theorem 4

to establish the capacity region. The arguments are reason-
ably routine once the identifications of the auxiliaries have
been made:
Identify Ũ3i = (M3, Y

i−1
11 ) and W̃i = (M2, Y

n
3i+1, Y

i−1
21 ).

Observe that

n(R1 +R2 +R3)− nεn

≤ I(M2; Y
n
21) + I(M3;Y

n
31|M2) + I(M1;Y

n
11|M2,M3)

=
n
∑

i=1

I(M1;Y1i|M2,M3, Y
i−1
11 ) + I(M3;Y

n
31|M2) + I(M2;Y

n
21)

≤ I(M2; Y
n
21) +

n
∑

i=1

(

I(M1;Y1i|M2,M3, Y
n

3i+1, Y
i−1
11 )

+ I(Y n
3i+1;Y1i|M2,M3, Y

i−1
11 ) + I(M3;Y3i|Y

n
3i+1,M2)

)

(a)
= I(M2;Y

n
21) +

n
∑

i=1

(

I(M1; Y1i|M2,M3, Y
n

3i+1, Y
i−1
11 )

+ I(M3, Y
i−1
11 ;Y3i|Y

n
3i+1,M2)

)

≤
n
∑

i=1

I(M2;Y2i|Y
i−1
21 ) + I(M3, Y

i−1
11 ;Y3i|Y

n
3i+1,M2, Y

i−1
21 )

+ I(Y i−1
21 ;Y3i|Y

n
3i+1,M2) + I(M1;Y1i|M2,M3, Y

n
3i+1, Y

i−1
11 )

(b)
=

n
∑

i=1

I(Y n
3i+1,M2;Y2i|Y

i−1
21 ) + I(M1;Y1i|M2,M3, Y

n
3i+1, Y

i−1
11 )

+ I(M3, Y
i−1
11 ;Y3i|Y

n
3i+1,M2, Y

i−1
21 )

≤
n
∑

i=1

I(Y n
3i+1, Y

i−1
21 ,M2;Y2i) + I(Xi;Y1i|M2,M3, Y

n
3i+1, Y

i−1
11 )

+ I(M2, Y
i−1
11 ;Y3i|Y

n
3i+1,M2, Y

i−1
21 )

2Symmetrization argument can be found in [9], [11], [7] or in Chapter
5 of [1]. The main purpose of this argument is to show that points on the
boundary for a binary input symmetric output channels can be computed
using distributions that satisfy P(X = 0) = 1

2 .

(c)
=

n
∑

i=1

I(Y n
3i+1, Y

i−1
21 ,M2;Y2i)

+ I(M2, Y
i−1
11 ;Y3i|Y

n
3i+1,M2, Y

i−1
21 )

+ I(Xi;Y1i|M2,M3, Y
n

3i+1, Y
i−1
11 , Y

i−1
21 )

=
n
∑

i=1

I(Xi;Y1i|Ũ3i, W̃i) + I(Ũ3i;Y3i|W̃i) + I(W̃i; Y2i).

In the above the usual toolset: Fano’s inequality, Csiszar
sum-lemma (steps (a), (b)), data-processing inequality, and
chain rule of mutual information. All the data processing
inequalities come from the following Markov chain:

(M1,M2,M3, Y
n

3i+1, Y
i−1
11 , Y

i−1
21 ) → Xi → (Y1i, Y2i, Y3i).

The equality (c) comes from the fact that Y2 is a degraded
version3 of Y1 and hence

Y
i−1
21 → Y

i−1
11 → (M1,M2,M3, Y

n
3i+1, Xi, Y1i, Y2i, Y3i)

is Markov. Finally in the usual manner, let Q be an
independent random variable distributed uniformly in [1 : n]
and set W̃ = (W̃Q, Q), Ũ3 = Ũ3Q, X = XQ.
The other inequalities follow a similar line (but is simpler)

of reasoning. Observe that

n(R2 +R3)− nεn

≤ I(M2;Y
n
21) + I(M3;Y

n
31|M2)

=
n
∑

i=1

I(M2;Y2i|Y
i−1
21 ) + I(M3;Y3i|M2, Y

n
3i+1)

≤
n
∑

i=1

I(M2;Y2i|Y
i−1
21 ) + I(Y i−1

21 ;Y3i|M2, Y
n

3i+1)

+ I(M3; Y3i|M2, Y
n

3i+1, Y
i−1
21 )

=
n
∑

i=1

I(M2, Y
n

3i+1;Y2i|Y
i−1
21 ) + I(M3;Y3i|M2, Y

n
3i+1, Y

i−1
21 )

≤
n
∑

i=1

I(M2, Y
n

3i+1, Y
i−1
21 ;Y2i) + I(M3, Y

i−1
11 ;Y3i|M2, Y

n
3i+1, Y

i−1
21 )

=
n
∑

i=1

I(W̃i;Y2i) + I(Ũ3i;Y3i|W̃i).

The last inequality (on R2) is very straightforward with this
identification and is omitted. This completes the proof for
the capacity region of the channel in Figure 1.
Remark 2. It may appear a bit strange to see that even
though superposition coding in the natural more-capable
ordering (i.e. Y1 better than Y2 better than Y3) is suboptimal,
a re-ordering of the receivers, i.e. (i.e. Y1 better than Y3

better than Y2) could make superposition coding optimal
again. But of course, this is a carefully chosen counter-
example and hence the peculiar situation. It is natural to ask
whether there exists a three-receiver more capable broadcast
channel where superposition coding is not optimal with
either ordering. We will show such an example (a minor
perturbation of the example in Figure 1) in the next section.

3Since capacity region depends only on the marginals p(y1|x), p(y2|x)
and p(y3|x), we can assume without loss of generality that Y2 is a
physically degraded version of Y1 in the example in Figure 1.
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C. A modified counterexample
Consider the same channel as in Figure 1. Set ε1 = 4 ∗

(0.1) ∗ 0.9 = 0.36, ε2 = H(0.1). Slightly change the value
of p from 0.1 to 0.11. Clearly since the new receiver Y3

is a degraded version of the old receiver Y3 (which was
BSC(0.1)), this setting is still a three-receiver more capable
channel. As before, we try to maximize

T = max
(R1,R2,R3)∈C

R1

1− ε1
+

R2 +R3

1− ε2
.

If superposition coding in the more capable ordering were
optimal, then again the same arguments would imply that
T ≤ 1. However, if we ignore Y2 again and use superpo-
sition coding between receivers Y1 and Y3, we can obtain,
taking U → X to be BSC(0.1) with uniform distribution,

T ≥
I(X;Y1|U)

1− ε1
+

I(U ;Y3)
1− ε2

= H(0.1) +
1−H(0.11 ∗ 0.1)

1−H(0.1)

≥ 1.039.

Hence, superposition coding in the more capable ordering
is not optimal.
To show that superposition coding in the Y1, Y3, Y2 or-

dering is not optimal, we can maximize

T = max
(R1,R2,R3)∈C

R2 +R3.

If superposition coding in Y1, Y3, Y2 ordering were optimal,
this would be the same as maximizing R3, whose maximum
is 1 − H(0.11) ≈ 0.501. On the other hand, by just
transmitting to receiver Y2 we can obtain R2 = 1 − ε2 =
1 − H(0.1) ≥ 0.531. Thus superposition coding in the
Y1, Y3, Y2 order is also not optimal for this modified counter
example.
Remark 3. The converse in the last section continues to hold
for this modified setting. However, since Y3 is no longer an
essentially less noisy receiver than Y2, the achievability of
the region depicted by Theorem 4 fails to hold.
A natural guess for the capacity region in this modified

counterexample would be given by the constraints in Equa-
tions (5).

III. CONCLUSION
In this paper, we showed that superposition coding does

not achieve the capacity region for a three-receiver broadcast
channel. In fact, we presented a counterexample where
capacity could be achieved by treating the least capable
receiver as the intermediate receiver and the intermediately-
capable receiver the worst receiver. The main purpose of
this counterexample is to show that more capable is a very
weak ordering that does not preserve the nested decoding
properties a less noisy ordering would, at least in the three
receiver case. Then we produced a modified counterexample
to show that superposition coding (in whatever order one
wishes) cannot yield the capacity region for general three-
receiver more capable broadcast channels.

On the other hand, we showed that one can achieve the
sum-rate capacity for any k-receiver more capable channel
by just transmitting to the best receiver. Motivated by this
result we presented certain achievable regions for the three-
receiver more capable broadcast channels.
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