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An Outer Bound to the Capacity Region of the
Broadcast Channel
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Abstract— An outer bound to the capacity region of
the two-receiver discrete memoryless broadcast channel is
given. The outer bound is tight for all cases where the
capacity region is known. When specialized to the case
of no common information, this outer bound is contained
in the Körner-Marton outer bound. This containment is
shown to be strict for the binary skew-symmetric broadcast
channel. Thus, this outer bound is in general tighter than
all other known outer bounds.

Index Terms— broadcast channel, capacity, outer bound

1. INTRODUCTION

We consider a discrete memoryless (DM) broad-
cast channel where the sender wishes to communi-
cate common as well as separate messages to two
receivers [3]. Formally, the channel consists of an input
alphabetX , output alphabetsY andZ, and a probability
transition functionp(y, z|x). A ((2nR0 , 2nR1 , 2nR2), n)
code for this channel consists of (i) three messages
(M0,M1,M2) uniformly distributed over[1, 2nR0 ] ×
[1, 2nR1 ] × [1, 2nR2 ], (ii) an encoder that assigns a
codeword xn(m0,m1,m2), for each message triplet
(m0,m1,m2) ∈ [1, 2nR0 ]×[1, 2nR1 ]×[1, 2nR2 ], and (iii)
two decoders, one that maps each receivedyn sequence
into an estimate(m̂0, m̂1) ∈ [1, 2nR0 ] × [1, 2nR1 ] and
another that maps each receivedzn sequence into an
estimate( ˆ̂m0, m̂2) ∈ [1, 2nR0 ] × [1, 2nR2 ].

The probability of error is defined as

P (n)
e = P(M̂0 6= M0 or ˆ̂

M0 6= M0 or M̂1 6= M1

or M̂2 6= M2).

A rate tuple(R0, R1, R2) is said to be achievable if there
exists a sequence of((2nR0 , 2nR1 , 2nR2), n) codes with
P

(n)
e → 0. The capacity region of the broadcast channel

is the closure of the set of achievable rates.
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The capacity region for this channel is known only for
some classes, including the degraded [2], [7], [1], less
noisy[10], more capable[6], deterministic[11], [13] and
semi-deterministic channels[8]. Additionally, general in-
ner bounds by Cover [4], van der Meulen [15] and Mar-
ton [12] and outer bounds by K̈orner and Marton [12]
and Sato [14] have been established. Furthermore, the
Körner and Marton [12] outer bound was found to be
tight for all cases where capacity is known.

In this paper we introduce an outer bound on the
capacity region of the DM broadcast channel based on
results in [6] and show that it is strictly tighter than
existing outer bounds. The outer bound is presented
in the next section. In Section 3, the outer bound is
specialized to the case of no common information. In
Section 3-C, it is shown that that when there is no
common information, our outer bound is contained in
the Körner-Marton bound and in Section 4 it is shown
that this containment is strict.

2. OUTER BOUND

The following is an outer bound to the capacity region
of the two-receiver DM broadcast channel.

Theorem 2.1:The set of rate triples(R0, R1, R2)
satisfying

R0 ≤ min{I(W ;Y ), I(W ;Z)},
R0 + R1 ≤ I(U,W ;Y ),

R0 + R2 ≤ I(V,W ;Z),

R0 + R1 + R2 ≤ I(U,W ;Y ) + I(V ;Z|U,W ),

R0 + R1 + R2 ≤ I(V,W ;Z) + I(U ;Y |V,W ),

for some joint distribution of the formp(u, v, w, x) =
p(u)p(v)p(w|u, v)p(x|u, v, w) constitutes an outer
bound to the capacity region for the DM broadcast
channel.

Proof: The arguments are essentially the same as
those used in the converse proof for the more capable



broadcast channel class [6]. Observe that

nR0 = H(M0)

= H(M0|Y n) + I(M0;Y
n)

(a)

≤ nλ0n +

n
∑

i=1

(

H(Yi|Y i−1) − H(Yi|M0, Y
i−1)

)

(b)

≤ nλ0n +

n
∑

i=1

(

H(Yi) − H(Yi|M0, Y
i−1, Zn

i+1)
)

,

where (a) follows by Fano’s inequality and (b) follows
from the fact that conditioning decreases entropy. Now
defining the random variableWi = (M0, Y

i−1, Zn
i+1),

we obtain

nR0 ≤ nλ0n +

n
∑

i=1

(H(Yi) − H(Yi|Wi))

= nλ0n +
n

∑

i=1

I(Yi;Wi).

(2.1)

In a similar fashion observe that

nR0 = H(M0)

= H(M0|Zn) + I(M0;Z
n)

≤ nλ1n +
n

∑

i=1

(

H(Zi|Zn
i+1) − H(Zi|M0, Z

n
i+1)

)

≤ nλ1n +
n

∑

i=1

(

H(Zi) − H(Zi|M0, Y
i−1, Zn

i+1)
)

= nλ1n +

n
∑

i=1

I(Zi;Wi).

(2.2)
Now, consider

n(R0 + R1)

= H(M0,M1)

= H(M0,M1|Y n) + I(M0,M1;Y
n)

≤ nλ2n +

n
∑

i=1

(

H(Yi|Y i−1) − H(Yi|M0,M1, Y
i−1)

)

≤ nλ2n +
n

∑

i=1

(

H(Yi) − H(Yi|M0,M1, Y
i−1, Zn

i+1)
)

≤ nλ2n +
n

∑

i=1

I(Yi;Ui,Wi),

(2.3)
where we define the random variableUi = M1 for all i.

In a similar fashion

n(R0 + R2) ≤ nλ3n +

n
∑

i=1

I(Zi;Vi,Wi), (2.4)

whereVi = M2 for all i.

Lastly, consider

n(R0 + R1 + R2)

= H(M0,M1,M2)

= H(M0,M1) + H(M2|M0,M1)

≤ nλ4n + I(M0,M1;Y
n) + I(M2;Z

n|M0,M1)

= nλ4n +

n
∑

i=1

I(M0,M1;Yi|Y i−1)

+

n
∑

i=1

I(M2;Zi|M0,M1, Z
n
i+1).

(2.5)

Note that
n

∑

i=1

I(M0,M1;Yi|Y i−1)

≤
n

∑

i=1

I(M0,M1, Y
i−1;Yi)

=
n

∑

i=1

I(M0,M1, Y
i−1, Zn

i+1;Yi)

−
n

∑

i=1

I(Zn
i+1;Yi|M0,M1, Y

i−1).

(2.6)

And further,

n
∑

i=1

I(M2;Zi|M0,M1, Z
n
i+1)

≤
n

∑

i=1

I(M2, Y
i−1;Zi|M0,M1, Z

n
i+1)

=

n
∑

i=1

I(Y i−1;Zi|M0,M1, Z
n
i+1)

+

n
∑

i=1

I(M2;Zi|M0,M1, Z
n
i+1, Y

i−1).

(2.7)

Combining equations (2.5), (2.6), (2.7), we obtain

n(R0 + R1 + R2)

≤ nλ4n +
n

∑

i=1

I(M0,M1, Y
i−1, Zn

i+1;Yi)

−
n

∑

i=1

I(Zn
i+1;Yi|M0,M1, Y

i−1)

+

n
∑

i=1

I(Y i−1;Zi|M0,M1, Z
n
i+1)

+

n
∑

i=1

I(M2;Zi|M0,M1, Z
n
i+1, Y

i−1)
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(d)
= nλ4n +

n
∑

i=1

I(M0,M1, Y
i−1, Zn

i+1;Yi)

+

n
∑

i=1

I(M2;Zi|M0,M1, Z
n
i+1, Y

i−1)

= nλ4n +

n
∑

i=1

(I(Ui,Wi;Yi) + I(Vi;Zi|Ui,Wi)) .

(2.8)
The equality (d) follows from the well known Csiszar
identity (see Lemma 7 in [5]):

n
∑

i=1

I(Yi−1;Zi|Zn
i+1) =

n
∑

i=1

I(Zn
i+1;Yi|Yi−1).

In a very similar fashion, we can also obtain

n(R0 + R1 + R2)

≤ nλ5n +
n

∑

i=1

(I(Vi,Wi;Zi) + I(Ui;Yi|Vi,Wi)) .

(2.9)
Define the time sharing random variableQ to

be independent ofM0,M1,M2,X
n, Y n, Zn, and uni-

formly distributed over{1, 2, .., n} and defineW =
(Q,WQ), U = UQ, V = VQ, X = XQ, Y = YQ, Z =
ZQ.

Clearly we have

nR0 ≤ nλ0n +

n
∑

i=1

I(Wi;Yi)

= nλ0n + nI(W ;Y |Q)

≤ nλ0n + nI(W ;Y ).

(2.10)

Similarly,

nR0 ≤ nλ1n + nI(W ;Z)

n(R0 + R1) ≤ nλ2n + nI(U,W ;Y )

n(R0 + R2) ≤ nλ3n + nI(V,W ;Z).

(2.11)

Further,

n(R0 + R1 + R2)

≤ nλ4n +

n
∑

i=1

(I(Ui,Wi;Yi) + I(Vi;Zi|Ui,Wi))

= nλ4n + nI(U,W ;Y |Q) + nI(V ;Z|U,W,Q)

= nλ4n + nI(U,W ;Y |Q) + nI(V ;Z|U,W )

≤ nλ4n + nI(U,W ;Y ) + nI(V ;Z|U,W ),
(2.12)

and similarly

n(R0 + R1 + R2)

≤ nλ5n + nI(V,W ;Z) + nI(U ;Y |V,W ).

The independence of the messagesM1 and M2 im-
plies the independence of the auxiliary random variables
U andV as specified.

Since the probability of error is assumed to tend to
zero,λ0n, λ1n, λ2n, λ3n, λ4n, andλ5n also tend to zero
asn → ∞. This completes the proof.

3. OUTER BOUND WITH NO COMMON INFORMATION

Note that the outer bound given in Theorem 2.1
immediately leads to the following outer bound for the
case when there is no common information, i.e.,R0 = 0.

The set of all rate pairs(R1, R2) satisfying

R1 ≤ I(U,W ;Y ),

R2 ≤ I(V,W ;Z),

R1 + R2 ≤ I(U,W ;Y ) + I(V ;Z|U,W )

R1 + R2 ≤ I(V,W ;Z) + I(U ;Y |V,W ),

(3.1)

for some joint distribution of the formp(u, v, w, x) =
p(u)p(v)p(w|u, v)p(x|u, v, w) constitutes an outer
bound on the capacity of the DM broadcast channel
with no common information.

The following theorem gives apossiblyweaker outer
bound that we consider for the rest of the paper.

Theorem 3.1:Consider the DM broadcast channel
with no common information. The set of rate pairs
(R1, R2) satisfying

R1 ≤ I(U ;Y ),

R2 ≤ I(V ;Z),

R1 + R2 ≤ I(U ;Y ) + I(V ;Z|U),

R1 + R2 ≤ I(V ;Z) + I(U ;Y |V ),

for some choice of joint distributionsp(u, v, x) =
p(u, v)p(x|u, v) constitutes an outer bound to the capac-
ity region for the DM broadcast channel with no common
information.

Proof: This follows by redefiningU as(U,W ) and
V as (V,W ) in equation (3.1).

In the following subsections we prove results that aid
in the evaluation of the above outer bound.

A. X Deterministic Function ofU, V suffices

Denote byC the outer bound in Theorem 3.1 and
let Cd be the same bound but withX restricted to be
a deterministic function ofU, V , i.e. P(X = x|U =
u, V = v) ∈ {0, 1} for all (u, v, x). We now show that
these two bounds are identical.

Lemma 3.2:C = Cd.
Before we prove this lemma, note that it suffices to

show thatC ⊂ Cd. Our method of proof is as follows: For

3



every p(u, v), p(x|u, v) we will construct random vari-
ablesU∗, V ∗,X∗ whereX∗ is a deterministic function
of U∗, V ∗ such that the region described byU∗, V ∗,X∗

will contain the region described byU, V,W .

Let P(U = u, V = v) = puv and P(X = x|U =
u, V = v) = δx

uv ∈ {0, 1}. Without loss of generality,
assume thatX = {0, 1, ..,m − 1}. Now, construct ran-
dom variablesU∗, V ∗ having cardinalitiesm‖U‖,m‖V ‖
as follows: Split each valueu taken byU into m values
u0, . . . , um−1 and each valuev taken byV into m values
v0, . . . , vm−1. Let

P(U∗ = ui, V
∗ = vj)

=
1

m
P(U = u, V = v,X = (i − j)m),

P(X∗ = k|U∗ = ui, V
∗ = vj)

=

{

1 if k = (i − j)m

0 otherwise,

(3.2)

where(l)m is the remainder ofl/m (the mod opera-
tion).

We will need the following facts.

Lemma 3.3:The following hold:

(i) P(U∗ = ui) = 1
m

P(U = u) for 0 ≤ i ≤ m − 1.
(ii) P(V ∗ = vi) = 1

m
P(V = v) for 0 ≤ i ≤ m − 1.

(iii) P(X∗ = k|U∗ = ui) = P(X = k|U = u) for
0 ≤ k, i ≤ m − 1.

(iv) P(X∗ = k|V ∗ = vi) = P(X = k|V = v) for
0 ≤ k, i ≤ m − 1.

Proof: Observe that

P(U∗ = ui)

=
∑

v∈V

m
∑

j=1

P(U∗ = ui, V
∗ = vj)

=
∑

v∈V

m
∑

j=1

1

m
P(U = u, V = v,X = (i − j)m)

=
∑

v∈V

1

m
P(U = u, V = v)

=
1

m
P(U = u).

Proof of (ii) follows similarly. To show (iii), consider

P(X∗ = k|U∗ = ui)

=
∑

v∈V

m
∑

j=1

P(X∗ = k, V ∗ = vj |U∗ = ui)

(a)
=

∑

v∈V

P(X∗ = k, V ∗ = v(i−k)m
|U∗ = ui)

=
∑

v∈V

P(V ∗ = v(i−k)m
|U∗ = ui)

=
∑

v∈V

1

m

P(X = k, V = v, U = u)

P (U∗ = ui)

(b)
=

∑

v∈V

P(X = k, V = v|U = u)

= P(X = k|U = u),

where(a) follows from the fact that the rest of the terms
are zero by construction and(b) follows from (i) using
the fact thatP(U∗ = ui) = 1

m
P(U = u). The proof of

(iv) follows similarly.
The following corollary follows from the above

lemma, the fact thatX∗ is a deterministic function
of (U∗, V ∗), and the fact that(U∗, V ∗) → X∗ →
(Y ∗, Z∗), (U, V ) → X → (Y,Z) form Markov chains
with p(y∗, z∗|x∗) = p(y, z|x). The proofs are straight-
forward and are therefore omitted.

Corollary 3.4: The following hold:

(i) P (X∗ = i) = P (X = i) for 0 ≤ i ≤ m − 1.
(ii) H(Y ∗|U∗) = H(Y |U).

(iii) H(Z∗|U∗) = H(Z|U).
(iv) H(Y ∗|V ∗) = H(Y |V ).
(v) H(Z∗|V ∗) = H(Z|V ).

(vi) H(Y ∗|U∗, V ∗) = H(Y ∗|X∗)
= H(Y |X) ≤ H(Y |U, V ).

(vii) H(Z∗|U∗, V ∗) = H(Z∗|X∗)
= H(Z|X) ≤ H(Z|U, V ).

We are now ready to prove Lemma 3.2
Proof of Lemma 3.2:Corollary 3.4 implies that

I(U ;Y ) = I(U∗;Y ∗),

I(V ;Z) = I(V ∗;Z∗),

I(U ;Y |V ) ≤ I(U∗;Y ∗|V ∗),

I(V ;Z|U) ≤ I(V ∗;Z∗|U∗),

I(X;Y |V ) = I(X∗;Y ∗|V ∗),

I(X;Z|U) = I(X∗;Z∗|U∗).

(3.3)

ThusC ⊂ Cd, which completes the proof of Lemma 3.2.

Thus the outer bound in Theorem 3.1 can be re-
expressed as follows.
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Lemma 3.5:The set of rate pairs satisfying

R1 ≤ I(U ;Y ),

R2 ≤ I(V ;Z),

R1 + R2 ≤ I(U ;Y ) + I(X;Z|U),

R1 + R2 ≤ I(V ;Z) + I(X;Y |V ),

for some distributionp(u, v, x) = p(u, v)p(x|u, v),
wherep(x|u, v) ∈ {0, 1}, constitute an outer bound on
the DM broadcast channel with no common information.

Remark 3.6:Note that the constraintp(x|u, v) ∈
{0, 1} while useful for evaluating the region, can
be removed from the definition, since as before, for
any (U, V,X) one can construct random variables
(U∗, V ∗,X∗) according to equation (3.2) and by equa-
tion (3.3), the region(R1, R2) evaluated using(U, V,X)
is identical to that evaluated using(U∗, V ∗,X∗).

B. Cardinality bounds onU and V

We now establish bounds on the cardinality ofU and
V . From Remark 3.6, we know thatp(x|u, v) can be
arbitrary.

Fact 3.7: Given p(u), p(x|u), p(v), p(x|v), if p(x) is
consistent, i.e.,

∑

u∈U

p(X = x|u)p(u) =
∑

v∈V

p(X = x|v)p(v)

for every x ∈ X , then there existp(u, v) and p(x|u, v)
that are consistent withp(u), p(x|u), p(v), p(x|v).

Remark 3.8:A canonical way to generate such a joint
triple is to generateX according top(x) and then
generateU, V conditionally independent ofX according
to p(u|x) andp(v|x).

Now for any U→X→(Y,Z), using standard argu-
ments from [1], there exists a(U∗,X∗) with ‖U∗‖ ≤
‖X‖ + 2, such that I(U ;Y ) = I(U∗;Y ∗) and
I(X;Z|U) = I(X∗;Z∗|U∗). Similarly, there exists a
V ∗ with ‖V ∗‖ ≤ ‖X‖ + 2, such thatI(V ;Z) =
I(V ∗;Z∗) andI(X;Y |V ) = I(X∗;Y ∗|V ∗). From Fact
3.7, it follows that there exists a triple(U∗, V ∗,X∗)
consistent with the pairs(U∗,X∗) and (V ∗,X∗). Thus
we can assume that‖U‖ ≤ ‖X‖+2, ‖V ‖ ≤ ‖X‖+2.

C. Comparison to K̈orner-Marton outer bound

The outer bound of K̈orner and Marton [12] is given
by O = Oy ∩ Oz, whereOy is the set of rate pairs
(R1, R2) satisfying

R1 ≤ I(X;Y ),

R2 ≤ I(V ;Z),

R1 + R2 ≤ I(V ;Z) + I(X;Y |V ),

for some distributionp(v)p(x|v), andOz is the set of
rate pairs(R1, R2) satisfying

R2 ≤ I(X;Z),

R1 ≤ I(U ;Y ),

R1 + R2 ≤ I(U ;Y ) + I(X;Z|V ),

for some distributionp(u)p(x|u).
From Lemma 3.5, it is clear thatC ⊂ Oy andC ⊂ Oz.

Hence
C ⊂ O = Oy ∩ Oz

and C is in general contained in the Körner-Marton
outer bound. In the following section, we show that
the containment is strict for thebinary skew-symmetric
broadcast channel.

4. BINARY SKEW-SYMMETRIC CHANNEL

Consider the Binary Skew-Symmetric Channel
(BSSC) shown in Figure 1, which was studied by Hajek
and Pursley [9]. For the rest of the paper we assume
that p = 1

2 , though a similar analysis can be carried out
for any other choice ofp.

X

Y

Z

p

p

1 − p

1 − p 0

0

0

1

1

1

Fig. 1. Binary Skew Symmetric Channel

In [9], the Cover-van der Meulen achievable rate
region for the DM broadcast channel,D, was evalu-
ated for the Binary Skew-Symmetric broadcast channel
(BSSC) with private messages only. The resulting coding
scheme has the following intuitive interpretation, which
we denote byrandomized time-sharing. Observe that
if X = 0 is sent, it is received error free byZ, but
completely noisy byY . Conversely, ifX = 1 is sent, it is
received error free byY , but completely noisy byZ. This
suggests that a time-sharing scheme, where transmission
time is divided between the two user before communi-
cation commences, is optimal. It turned out that higher
rates can be achieved by performing randomized time-
sharing, instead. This is done via acommon information
random variableW , which specifies the locations of the
symbols in the received sequence corresponding to each
user’sprivate message. Each receiver first decodesW to
find out which part of the received sequence corresponds
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to its private message, then proceeds to decode its
private message. Using standard random coding and joint
typicality decoding arguments, it is can be shown that
any (R1, R2) satisfying the conditions

R1 ≤ min{I(W ;Y ), I(W ;Z)}
+ P(W = 0)I(X;Y |W = 0),

R2 ≤ min{I(W ;Y ), I(W ;Z)}
+ P(W = 1)I(X;Z|W = 1),

R1 + R2 ≤ min{I(W ;Y ), I(W ;Z)}
+ P(W = 0)I(X;Y |W = 0)

+ P(W = 1)I(X;Z|W = 1),

for somep(w)p(x|w), is achievable.
The line segment joining (R1, R2) =

(0.2411.., 0.1204..) to (R1, R2) = (0.1204.., 0.2411..)
is achieved by the following choice of(W,X). Let
α = 0.5 −

√
105/30 ≈ 0.1584, then

P(W = 0) = P(W = 1) = 0.5,

P(X = 0|W = 0) = α,

P(X = 1|W = 1) = α.

It is not difficult to see that the line segment join-
ing (R1, R2) = (0.2411.., 0.1204..) and (R1, R2) =
(0.1204.., 0.2411..) lies on the boundary of this region.
Note that on this line segmentR1 + R2 = 0.3616....

We now show that the regionC, described by the outer
bound, is strictly larger than the Cover-van der Meulen
region D and strictly smaller than the K̈orner-Marton
outer bound.

Claim 4.1: The line segment connecting(R1, R2) =
(0.2280.., 0.1431..) to (R1, R2) = (0.1431.., 0.2280..)
lies on the boundary ofC.

Proof: Note that from Lemma 3.5, the sum rate is
bounded by

R1 + R2 ≤ 1

2
(I(U ;Y ) + I(X;Z|U))

+
1

2
(I(V ;Z) + I(X;Y |V )).

We proceed to maximize the RHS of the above inequality
overp(u, v, x). Assume that(Uo, Vo,Xo) maximizes the
sum rate and let

Rm =
1

2
(I(Uo;Yo) + I(Xo;Zo|Uo))

+
1

2
(I(Vo;Zo) + I(Xo;Yo|Vo)).

Consider a triple(U ′, V ′,X) with U ′ = V,V ′ = U , such

that

P(U ′ = u′, V ′ = v′)

= P(Uo = v′, Vo = u′),

P(X = x|U ′ = u′, V ′ = v′)

= P(X = 1 − x|Uo = v′, Vo = u′).

(4.1)

By the symmetry of the channel,

I(U ′;Y ′) = I(Vo;Zo),

I(V ′;Z ′) = I(Uo;Yo),

I(X ′;Z ′|U ′) = I(Xo;Yo|Vo),

I(X ′;Y ′|V ′) = I(Xo;Zo|Uo).

Therefore,

Rm =
1

2
(I(U ′;Y ′) + I(X ′;Z ′|U ′))

+
1

2
(I(V ′;Z ′) + I(X ′;Y ′|V ′)).

Let Q ∈ {1, 2} be an independent random variable that
takes values 1 or 2 with equal probability and define
U∗ = (Ũ , Q) andV ∗ = (Ṽ , Q) as (Q = 1, Ũ , Ṽ ,X) ∼
(Uo, Vo,X) and (Q = 2, Ũ , Ṽ ,X) ∼ (U ′, V ′,X),
respectively. Then

P(X = x|Ũ = u, Ṽ = v,Q = 1)

= P(X = x|Uo = u, Vo = v),

P(X = x|Ũ = u, Ṽ = v,Q = 2)

= P(X ′ = x|U ′ = u, V ′ = v).

Observe that

I(X∗;Y ∗|V ∗)

=
1

2
(I(Xo;Yo|Vo) + I(X ′;Y ′|V ′)),

I(U∗;Y ∗)

= H(Y ∗) − H(Y ∗|U∗)

= H(Y ∗) − 1

2
(H(Yo|Uo) + H(Y ′|U ′)

(a)

≥ 1

2
(H(Yo) + H(Y ′)) − 1

2
(H(Yo|Uo) + H(Y ′|U ′))

=
1

2
(I(Uo;Yo) + I(U ′;Y ′)),

where (a) follows by the concavity of the entropy
function.

Similarly

I(X∗;Z∗|U∗) =
1

2
(I(Xo;Zo|Uo) + I(X ′;Z ′|U ′)),

I(V ∗;Z∗) ≥ 1

2
(I(Vo;Zo) + I(V ′;Z ′)).
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Therefore,

Rm ≤ I(U∗;Y )+I(X;Z|U∗)+I(V ∗;Z)+I(X;Y |V ∗).

Now, by the construction of(U∗, V ∗,X∗), P(X∗ =
1) = 0.5. Thus to computeRm, it suffices to consider
X such thatP(X = 1) = 0.5.

Using standard optimization techniques, it is not
difficult to see that the following(U,X) and (V,X)
maximize the termsI(U ;Y )+I(X;Z|U) andI(V ;Z)+
I(X;Y |V ), respectively, subject toP(X = 1) = 0.5.
As before, letα = 0.5 −

√
105/30 ≈ 0.1584. Then a

set of maximizing pairsP(U,X) and P(V,X) can be
described by

P(U = 0) =
0.5

1 − α
, P(U = 1) =

0.5 − α

1 − α
,

P(X = 1|U = 0) = α, P(X = 1|U = 1) = 1,

P(V = 0) =
0.5

1 − α
, P(V = 1) =

0.5 − α

1 − α
,

P(X = 0|V = 0) = α, P(X = 0|V = 1) = 1.

Substituting these values, we obtain

R1 + R2 ≤ 1

2
(I(U ;Y ) + I(X;Z|U))

+ ≤ 1

2
(I(V ;Z) + I(X;Y |V ))

≤ 0.3711...

We now show that this bound on the sum rate is tight.
As before, letα = 0.5−

√
105/30 ≈ 0.1584. Consider

the following (U, V,X)

P(U = 0, V = 0) =
α

1 − α
,

P(X = 1|U = 0, V = 0) = 0.5,

P(U = 0, V = 1) =
0.5 − α

1 − α
,

P(X = 1|U = 0, V = 1) = 0,

P(U = 1, V = 0) =
0.5 − α

1 − α
,

P(X = 1|U = 1, V = 0) = 1.

The region evaluated by this(U, V,X) is given by all
rate pairs(R1, R2) satisfying

R1 ≤ I(U ;Y ) = 0.2280..,

R2 ≤ I(V ;Z) = 0.2280..,

R1 + R2 ≤ I(U ;Y ) + I(X;Z|U) = 0.3711...

R1 + R2 ≤ I(V ;Z) + I(X;Y |V ) = 0.3711...

(4.2)

Thus the line segment joining(R1, R2) =
(0.2280.., 0.1431..) to (R1, R2) = (0.1431.., 0.2280..)
lies on the boundary ofC.

The line segment joining (R1, R2) =
(0.2280.., 0.1431..) to (R1, R2) = (0.1431.., 0.2280..)
that lies on the boundary ofC is strictly outside the
line segment joining(R1, R2) = (0.2411.., 0.1204..)
to (R1, R2) = (0.1204.., 0.2411..) that lies on the
boundary of the Cover-van der Meulen regionD [9].

Consider the following random variables(U,X).

P(U = 0) = 0.6372,

P(U = 1) = 0.3628,

P(X = 1|U = 0) = 0.2465,

P(X = 1|U = 1) = 1.

For this pair I(U ;Y ) = 0.18616.. and I(X;Z|U) =
0.18614... Hence the point(R1, R2) = (0.1861, 0.1861)
lies inside the regionOy. By symmetry, the same point
lies insideOz and hence it lies insideOy ∩ Oz, the
Körner-Marton outer bound. Note thatR1 + R2 =
0.3722 > 0.3711.. and therefore this point lies outside
C.

5. CONCLUSION

We presented a new outer bound on the capacity
region of the DM broadcast channel (Theorem 2.1),
which is tight for all special cases where capacity is
known. We then specialized the bound to the case of no
common information (see (3.1)). Considering the weaker
version of this bound given in Theorem 3.1, we showed
that our general outer bound is strictly smaller than the
Körner-Marton for the BSS channel. The outer bound in
Theorem 3.1, however, is strictly larger than the Cover-
van der Meulen region for this channel. We suspect that
in general the outer bound in (3.1) is strictly tighter than
that in Theorem 3.1. We have not been able to verify
this for the BSS due to the complexity of evaluating
(3.1). Finally, it would be interesting to show that our
new outer bound is tight for some new class of broadcast
channels that may perhaps include the BSSC.
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