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Abstract— An outer bound to the capacity region of The capacity region for this channel is known only for
the two-receiver discrete memoryless broadcast channel is some classes, including the degraded [2], [7], [1], less
given. The outer bound is tight for all cases where the 4i5v110] more capable[6], deterministic[11], [13] and
capacity region is known. When specialized to the case semi-deterministic channels[8]. Additionally, general i
of no common information, this outer bound is contained : Y, 9
in the Korner-Marton outer bound. This containment is Ner bounds by Cover [4], van der Meulen [15] and Mar-
shown to be strict for the binary skew-symmetric broadcast  ton [12] and outer bounds by dfner and Marton [12]
channel. Thus, this outer bound is in general tighter than and Sato [14] have been established. Furthermore, the
all other known outer bounds. Korner and Marton [12] outer bound was found to be

Index Terms— broadcast channel, capacity, outer bound tight for all cases where capacity is known.

In this paper we introduce an outer bound on the
capacity region of the DM broadcast channel based on
1. INTRODUCTION results in [6] and show that it is strictly tighter than

Wi id di | DM) b existing outer bounds. The outer bound is presented
e consider a discrete memoryless (DM) roaqh the next section. In Section 3, the outer bound is

cast channel where }lhe sender wishes to COmnmglﬁecialized to the case of no common information. In
cate common as well as separate messages 10 WQ.ion 3-C, it is shown that that when there is no

receivers [3]. Formally, the channel consists of ar,'_inp%mmon information, our outer bound is contained in
alphabet, output alphabety’ and 2, and a probability the Korner-Marton bound and in Section 4 it is shown

transition functionp(y, z[x). A (2", 2", 272),n) o i’ containment is strict,
code for this channel consists of (i) three messages

(Mo, My, M5) uniformly distributed over|[1,2"f0] x
[1,27F1] x [1,2"F2], (i) an encoder that assigns a
codeword =" (mg, my,msy), for each message triplet 2. OUTER BOUND
(mo,m1,mso) € [1,27F0]x[1,2"] x [1,272], and (jii)
two decoders, one that maps each receiyedequence The following is an outer bound to the capacity region
into an estimate(rig, 7y ) € [1,2"70] x [1,2"F1] and Of the two-receiver DM broadcast channel.
another that maps each received sequence into an Theorem 2.1:The set of rate triples(Ry, R1, R2)
estimate(myg, 1) € [1,270] x [1,2772], satisfying

The probability of error is defined as
. N . Ry < min{I(W;Y),I(W; Z)},
P = P(My # My or My # My or M, # M,

. R0+R1SI(U7W,Y)7
or My # Ma). Ro+ Ry < I(V,W; Z),
A rate tuple(Ry, R1, R,) is said to be achievable if there ~ Ro + R1+ R < I(U,W;Y) + I(V; Z|U, W),
exists a sequence ¢f2nfo 2nf onk2) ) codes with Ro+ Ry + Ry < I(V,W; 2Z) + I(U; Y|V, W),
P™ 0. The capacity region of the broadcast channel
is the closure of the set of achievable rates. for some joint distribution of the formp(u, v, w,z) =

The material in this paper was presented in part at the Irtiera p(u)p(v)p(w|u, ”)p(f”‘”i“ Y w). constitutes an  outer
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broadcast channel class [6]. Observe that Lastly, consider

nRy = H(Mo) TL(RQ + R1 + RQ)
:H(MO\Y”)+I(MO;Y”) = H(Moy, My, M)
() . = H(My, My) + H(Mz|My, M)

< nAon + H(Y;[y™h Y;| My, Yt
0 Z | H¥i[Mo, Y1) < nap + I(My, My; Y™) + I(My; Z"| Mo, My)

< Aon M,, Y=t z» - .
e +Z Yo f0) = ndin + Y I(Mo, M3 Y|Y'™")
where (a) foIIows by Fano’s inequality and (b) follows lﬁl (2.5)
from the fact that conditioning decreases entropy Now + Z[(MQ; Zi|Mo, My, Z]',4).
defining the random variabl®/; = (M, Y~ Zﬁrl) i—1
we obtain

Note that

Ry < n\on + H(Y;) — HY;|W; " .
nityg = NAQ Z( ( ) ( | )) ZI(M()?M];Y;L‘Yz_l)

= (2.1) P
= nAon + I(Y; W5). n o
! ; o <> I(My, My, YR YY)
In a similar fashion observe that —t (2.6)
nRy = H(M,) =Y (Mo, My, Y™, Z7 13 Y5)
= H(M0|Z”) + I(My; Z™) =t

= > L2} Vil Mo, My, Y1),

i=1

< nA + Z (Zi| Z7y1) — H(Zi| Mo, Z}4))

And further,

< nAi, + Z H(Z; \MO,YZ ! Zzn+1)) n
ZI(MQ;ZZ'\MthZ;h)
= n/\ln +ZI(Z7;W1) = n
i=1 2.2) <Y I(My, Y'Y 25| Mo, My, Z7 )
Now, consider —t (2.7)
TL(RQ+R1) :ZI(Yi71§Zi|MOaM17ZZL+1)
= H(My, M) =t
= H(M, M1|Y”) + I(Mo, My;Y™) + Y I(My; Zi| Mo, My, Z74,, Y1),

. =1
< nan +Z (Yi|Y™1) — H(Yi| Mo, My, Y1) N _ _
Combining equations (2.5), (2.6), (2.7), we obtain

<n)\2n+z Y|M03M17Yi717Zin+l)) TL(R0+R1+R2)
< ndap + > I(Mo, My, Y"1, Z7 13 Y5)
< ndgn + ZI(Yi; Ui, W), i=1
i=1 n ,
(2.3) = (2} Yi| Mo, My, Y
where we define the random varialile = M, for all i. i=1

n

In a similar fashion il n
+ Y IV Zi| Mo, My, Zy )

n
n(Ro + Ro) < ndsn + Y 1(ZsVi, Ws),  (2.4) =1
i=1 -
+ I(Msy; Z;| My, My, Z% 1, Y
whereV; = M, for all . 1:21 (Ma; Zi| Mo, My, Z]', 4 )



D i+ S I(Mo, My, Y, 22155
=1

+ ) I(Mg; Zi| Mo, My, 27, YY)
=1

= nan + Z (Us, Wis Yy) + 1(Vi; Zi|Us, W) -
(2.8)

The equality (d) follows from the well known Csiszar

identity (see Lemma 7 in [5]):

n n

Y I ZZE,) =Y N2 YY)

i=1 =1
In a very similar fashion, we can also obtain

(Ro + R+ Rg)

< nAsp + Z (Vi, Wi Zi) + 1(U3; Y| Vi, W3)) -

(2.9)
Define the time sharing random variabl@ to
be independent of\ly, My, My, X™ Y™ Z™ and uni-
formly distributed over{1,2,..,n} and defineWW =
QW),U=Uqg, V=Vo, X=Xq,Y=Yy Z=
Zg.
Clearly we have

nRy < non + »_ I(Wi;Y;)

=1 (2.10)
= nAon + nI(W;Y1Q)

< nXop + nI(W; Y)
Similarly,
nRo < nAy, +nl(W; Z)

n(Ro + R1) < ndan +0l(U,W;Y)  (2.11)
n(Ro + RQ) < nA3, + TLI(‘/, W, Z)

Further,
(Ro + R + RQ)

< nhap + Z (Us, Wis Yy) + 1(Vi; Zi| U, W)

=nlgy, + nI( UW;Y|Q)+nI(V; Z|UW,Q)
=ngy +nIl(UW;Y|Q) +nl(V; Z|U W)
< nhgy +nI(UWSY) +nl(V; Z|U W),
(2.12)
and similarly
n(Ro + R + Rg)
<ndsp +nl(V,W;2Z) +nl(U;Y|V,W).

The independence of the messadds and My im-
plies the independence of the auxiliary random variables
U andV as specified.

Since the probability of error is assumed to tend to
Zero, A\on, AMn, A\on, A3n, Aan, and s, also tend to zero
asn — oo. This completes the proof.

]

3. OUTER BOUND WITH NO COMMON INFORMATION

Note that the outer bound given in Theorem 2.1
immediately leads to the following outer bound for the
case when there is no common information, if&,,= 0.

The set of all rate pairéR;, Ry) satisfying

R, < I(UW;Y),

Ry < I(V,W; 2),
Ri+ Ry < I(UW;Y) + I(V; Z|U, W)
Ry+ Ry < I(V,W; 2) + I(U; Y|V, W),

for some joint distribution of the formp(u, v, w,x) =
p(uw)p(v)p(w|u, v)p(x|u,v,w) constitutes an outer
bound on the capacity of the DM broadcast channel
with no common information.

The following theorem gives possiblyweaker outer
bound that we consider for the rest of the paper.

Theorem 3.1:Consider the DM broadcast channel
with no common information. The set of rate pairs
(R, R») satisfying

Ry < I(U;Y)
Ry <I(V; 2),
Ryt Ry < I(U:Y) + 1(V: Z|U),
Ri+ R < I(V; Z) + I(U; Y|V),

for some choice of joint distribution®(u,v,z) =
p(u, v)p(z|u, v) constitutes an outer bound to the capac-
ity region for the DM broadcast channel with no common
information.
Proof: This follows by redefinind’ as(U, W) and

V as(V,W) in equation (3.1). [ ]

In the following subsections we prove results that aid
in the evaluation of the above outer bound.

(3.1)

)

)

A. X Deterministic Function ot/, V' suffices

Denote byC the outer bound in Theorem 3.1 and
let C; be the same bound but with restricted to be
a deterministic function o, V, i.e. P(X = z|U =
u,V =wv) € {0,1} for all (u,v,z). We now show that
these two bounds are identical.

Lemma 3.2:.C = C,.

Before we prove this lemma, note that it suffices to
show thatC C C,. Our method of proof is as follows: For



every p(u,v), p(z|u,v) we will construct random vari-
ablesU*, V* X* where X* is a deterministic function
of U*, V* such that the region described by, VV*, X*
will contain the region described by, V, W.

Let P(U = u,V = v) = pyp, andP(X = z|U =
u,V =wv) =%, € {0,1}. Without loss of generality,
assume tha’ = {0,1,..,,m — 1}. Now, construct ran-
dom variable€/*, V* having cardinalitiesn||U||, m||V ||
as follows: Split each value taken byU into m values
ug, - . ., U;,—1 and each value taken byl into m values

V-, Um—1. LEL

P(U*:ui,V*:vj)
1
—PU=u, v, (i = J)m)
= k|U* = u,-,V* = ’Uj)
(1 k== )m
1 0 otherwise,

P(X (3.2)

where(l),, is the remainder of/m (the mod opera-
tion).

We will need the following facts.

Lemma 3.3:The following hold:

() PU*=u;)=LPU =u)for0<i<m-—1.
(i) P(V* =v;) = LP(V=v)for0<i<m-—1.
(i) P(X* = k|U* = w) = P(X = kU = u) for

0<k,i<m-—1.
(V) P(X* = k|V* = v;) = P(X = k|V = v) for
0<k,i<m-—1.
Proof: Observe that
= ZZP(U* :ui,V* :’Uj)
veV j=1
:ZiiP(Uzu V=0,X=(—-j)m)
v m bl m
veY j=1
1
= Z—P(U:u,V:v)
m
veY
— P =)
= - = U

Proof of (ii) follows similarly. To show (iii), consider

P(X* = kU = u)

=Y Y PX* =k V" =0|U" =)
veY j=1

WSTP(XT =k, V= v, U = )
veY

= P(V* =ik, U =u)
veY
UGV U* - UZ)

USSP =k, V =0|U =)
veY

=P(X =k|U = u),

where(a) follows from the fact that the rest of the terms
are zero by construction ard) follows from (i) using
the fact thatP(U* = u;) = LP(U = u). The proof of
(iv) follows similarly. [ ]

The following corollary follows from the above
lemma, the fact thatX* is a deterministic function
of (U*,V*), and the fact tha{U*,V*) — X* —
(Y*,Z2*),(U,V) - X — (Y, Z) form Markov chains
with p(y*, z*|z*) = p(y, z|z). The proofs are straight-
forward and are therefore omitted.

Corollary 3.4: The following hold:

() P(X*=i)=P(X =4) for 0<i<m-—1.
(i) H(Y*|U*)= H(Y|U).

(i) H(z*|U*) = H(Z|U).

(v) HY*|V*)=H(Y|V).

) H(Z*|V*) = H(Z|V).

i) H(Y*|U*,V*) = H(Y*|X*)

= H(Y|X) < HY|U,V).

(i) H(Z*|U*,V*) = H(Z*|X*)

=H(Z|X)<H(Z|U,V).
We are now ready to prove Lemma 3.2
Proof of Lemma 3.200ro|lary 3.4 implies that

1) - 1)
KUYV SISy,
10V5 ZU) < 10V 2°[U°), |
I0GY|V) = (XY V™),

I(X: Z|U) = I(X*; Z*|U™").

ThusC cC C4, which completes the proof of Lemma 3.2.

Thus the outer bound in Theorem 3.1 can be re-
expressed as follows.



Lemma 3.5:The set of rate pairs satisfying for some distributionp(v)p(x|v), and O, is the set of

R < I(U;Y), rate pairs(R;, R2) satisfying
Ry, <I(V;Z), Ry <I(X;2),
Ri+ R < I(U;Y)+ I(X; Z|U), Ry < I(U;Y),
Ri+ Ry <I(V;2)+ I(X;Y|V), Ri+ Ry <I(U;Y)+ I(X; Z|V),
for some distributionp(u,v,z) = p(u,v)p(z|u,v), for some distributionp(u)p(z|u).

wherep(z|u,v) € {0,1}, constitute an outer bound on  From Lemma 3.5, it is clear thatc O, andC C O.,.
the DM broadcast channel with no common informatiordence

Remark 3.6:Note that the constrainp(x|u,v) € CcO=0,n0,
{0,1} while useful for evaluating the region, can
be removed from the definition, since as before, fgnd C is in general contained in the dfner-Marton
any (U7‘/7X) one can construct random Var|ab|e§uter bound. In the fO”OW|ng SeCt|0n we show that
(U*,V*, X*) according to equation (3.2) and by equa'me containment is strict for thiinary skew-symmetric
tion (3.3), the regio{ R, , R,) evaluated usingU, V, X) ~broadcast channel.
is identical to that evaluated usir@™, V*, X*).

4. BINARY SKEW-SYMMETRIC CHANNEL

B. Cardinality bounds ot/ and V' Consider the Binary Skew-Symmetric Channel

We now establish bounds on the cardinalityléfand (BSSC) shown in Figure 1, which was studied by Hajek
V. From Remark 3.6, we know that(x|u,v) can be and Pursley [9]. For the rest of the paper we assume
arbitrary. thatp = 5 though a similar analysis can be carried out

Fact 3.7: Given p(u) p(x[u), p(v), p(zfo), it p(x) is ~for any other choice o,
consistent, i.e.,

3 p(X = wu)p(u) = 3 p(X = 2lv)p(v)
ueU veY
for everyx € X, then there exisp(u,v) and p(z|u,v)
that are consistent with(u), p(z|u), p(v), p(x|v).

Remark 3.8:A canonical way to generate such a joint
triple is to generateX according top(x) and then
generatd/, V' conditionally independent ok according Fig. 1.
to p(ulz) andp(v]z).

Now for any U—X—(Y, Z), using standard argu-

Binary Skew Symmetric Channel

ments from [1], there exists &7*, X*) with ||U*| < In [9], the Cover-van der Meulen achievable rate
|X|| + 2, such thatI(U;Y) = I(U*;Y*) and region for the DM broadcast channel, was evalu-

I(X;Z|U) = I(X*; Z*|U*). Similarly, there exists a ated for the Binary Skew-Symmetric broadcast channel
V* with ||[V*]| < || X| + 2, such thatl(V;Zz) = (BSSC)with private messages only. The resulting coding

I(V* Z*) and I(X;Y|V) = I(X*; Y*|V*). From Fact scheme has the following intuitive interpretation, which
3.7, it follows that there exists a triple/*, V*, X*) Wwe denote byrandomized time-sharingObserve that
consistent with the pairéU/*, X*) and (V*, X*). Thus if X = 0 is sent, it is received error free by, but
we can assume thiU|| < || X||+2, ||[V] < ||X||+2. completely noisy by". Conversely, ifX = 1 is sent, itis
received error free by, but completely noisy by. This
suggests that a time-sharing scheme, where transmission
time is divided between the two user before communi-
X - cation commences, is optimal. It turned out that higher
by O = 0, N O;, where O, is the set of rate pairs a5 can be achieved by performing randomized time-
(R1, Ry) satisfying sharing, instead. This is done vizammon information

Ry < I(X:;Y), random variablé?’, which specifies the locations of the

Ro < I(V:2) symbols in the received sequence corresponding to each

2 > 3 9 N . . .
user'sprivate messageEach receiver first decodég to

Ry + Ry <I(V; Z) + I(X;Y[V), find out which part of the received sequence corresponds

C. Comparison to Krner-Marton outer bound
The outer bound of Brner and Marton [12] is given



to its private message, then proceeds to decode titst

private message. Using standard random coding and joint P(U' =/, V' =)
typicality decoding arguments, it is can be shown that ’ , ,
any (R1, Ry) satisfying the conditions =PU, =v,V, =u),

4.1
P(X =z|U =, V' =) @1

Ry <m1n{I( Y),I(W;Z2)} —P(X =1—2|U, =0, V, = o).
(W O)I(X; Y|W =0 By the symmetry of the channel
Ry < mln{I(W,Y),I( Z)} '
P(W = 1)I(X; Z|W =1), IULY') = 1(Vo; Z,),
Ri+ Ry < mm{I(W,Y),I( Z)} I(V';2") = I(Us; Yo),
P(W = 0)I(X; Y|W—O) I(X"; Z’\U)=I(XO;YO\VO),
P(W = 1)I(X; Z|W = 1), I(XB Y|V = 1(Xo; Zo|Us).

for somep(w)p(z|w), is achievable. Therefore,

The line segment joining (R;, R2) = 1 1o 1. o
(0.2411..,0.1204..) to (R, R2) = (0.1204..,0.2411..) Fm = 2(I(U )+ IX5Z00)

is achieved by the following choice ofiV, X). Let 1[ LN (XYY
a = 0.5 -1/105/30 ~ 0.1584, then Jr2( (V55.27) + H(X5Y7VE)).

Let @ € {1,2} be an independent random variable that
PW=0)=P(W =1)=05, takes values 1 or 2 with equal probability and define
P(X =0[W =0) =a, U* = (U,Q) andV* = (V,Q) as(Q = 1,U,V, X) ~
PX=1W=1)=a. Uy, Vo, X) and (Q = 2,U,V,X) ~ (U, V', X),
respectively. Then
It is not difficult to see that the line segment join- . _
ing (Ri,Rs) = (0.2411..,0.1204..) and (Ry, Ro) = PX=2lU=uV=00Q=1)

(0.1204..,0.2411..) lies on the boundary of this region. =PX =z[U, =u,V, =),
Note that on this line segmeit; + Ry = 0.3616.... PX=zlU=uV=0Q=2)
We now show that the regiafy described by the outer —P(X' = 2|U' = u, V' = ).

bound, is strictly larger than the Cover-van der Meulen
region D and strictly smaller than the d¢ner-Marton Observe that

outer bound. I(X*Y*V*)
Claim 4.1: The line segment connecting;, Rs) = 1
(0.2280..,0.1431..) to (Ry, Ry) = (0.1431..,0.2280..) = S U(Xo3 Yo[ Vo) + I(X":Y'[VT)),

lies on the boundary of.
Proof: Note that from Lemma 3.5, the sum rate is/(U™;Y™)

bounded by — H(Y*) - HY*|U")
* 1 ! !
Ri+Ry < %(I(U;Y) (X Z|U)) = HY") = S (Ho|Uo) + HY'|U)
iz ey, 2 L)+ HO) - L) - HO )
1

We proceed to maximize the RHS of the above inequality — ( (Uo; Yo) + I(U";Y")),
overp(u, v, x). Assume thatU,, V,, X,) maximizes the

sum rate and let where (a) follows by the concavity of the entropy

function.
| 19
Ron = 5(I(Us3 Vo) + (X3 Zo|U)) Similarly
* R |TTH _]‘ . Al
+%(I<vo;zo>+z(xo;yo|vo>>. I(X 27|U") = S (I(Xo3 Zo|Uo) + 1(X'; Z'|U")),
1
wooE) s T . 1. 7l )
Consider a tripléU, V', X) with 14’ — V.1’ — 14, such I(V*2") > 5 (I(Voi Zo) + 1(V'; 2'))



Therefore,
R, <I(USY)+I(X; Z\U+I(VS Z2)+1(X; Y V).

Now, by the construction ofU*, V*, X*), P(X* =

1) = 0.5. Thus to computeR,,, it suffices to consider t

X such thatP(X =1) = 0.5.

Using standard optimization techniques,
difficult to see that the following(U, X) and (V, X)
maximize the term$(U; Y)+I1(X; Z|U) andI(V; Z)+
I(X;Y|V), respectively, subject t&(X = 1) = 0.5.
As before, leta = 0.5 — 1/105/30 ~ 0.1584. Then a
set of maximizing pairs?(U, X) and P(V, X) can be
described by

0.5 0.5 —«
= P = =
PU=0)=—, PU=1)==—2,
P(X =1|U =0) = q, PX=1U=1)=1,
0.5 05—«
P = = P —
V=0="  PV=1==2,
P(X=0|V=0)=a, PX=0V=1=1

Substituting these values, we obtain
1
Ry + Ry < 5(1(U§Y) +1(X; Z|U))

L < 1( (Vi Z) + [(X: Y|V))
<0.3711...

it is not

The line segment joining (Ri, R2) =
(0.2280..,0.1431..) to (Ry, Ry) = (0.1431..,0.2280..)
that lies on the boundary af is strictly outside the
line segment joining(R;, R2) = (0.2411..,0.1204..)
0 (Ri,Rs) = (0.1204..,0.2411..) that lies on the
boundary of the Cover-van der Meulen regibn[9].
Consider the following random variablé¥, X).

P(U = 0) = 0.6372,

P(U =1) = 0.3628,
P(X = 1|U = 0) = 0.2465,
P(X=1U=1)=1.

For this pairI(U;Y) = 0.18616.. and I(X; Z|U) =
0.18614... Hence the poin{R;, R2) = (0.1861,0.1861)
lies inside the regior®,. By symmetry, the same point
lies inside O, and hence it lies insid&®, N O, the
Korner-Marton outer bound. Note that; + R, =
0.3722 > 0.3711.. and therefore this point lies outside
C.

5. CONCLUSION

We presented a new outer bound on the capacity
region of the DM broadcast channel (Theorem 2.1),
which is tight for all special cases where capacity is
known. We then specialized the bound to the case of no
common information (see (3.1)). Considering the weaker

We now show that this bound on the sum rate is tightversion of this bound given in Theorem 3.1, we showed
As before, letx = 0.5—1/105/30 ~ 0.1584. Consider that our general outer bound is strictly smaller than the

the following (U, V, X)

«
P = = =
(U=0,V=0) —a
P(X=1U=0,V=0) = 0.5,
0.5 —«
P = :1 =
U=0v=1 = =1,
PX=1U=0,V=1) = 0,
0.5 —«
PU=1V=0) = ———,
PX=1U=1,V=0) = 1.
The region evaluated by th{g/, V, X)) is given by all

rate pairs(R;, Ry) satisfying
Ry < I(U;Y) = 0.2280..,
Ry < I(V;Z) = 0.2280..,
Ri+ Ry < I(U;Y)+ I(X; Z|U) = 0.3711...
R+ Ry <I(V;Z)+ I(X;Y|V)=0.3711...

4.2)

Thus the line segment joining(R;, R2)
(0.2280..,0.1431..) to (Ry, Ry) = (0.1431..,0.2280..
lies on the boundary of.

m

Korner-Marton for the BSS channel. The outer bound in
Theorem 3.1, however, is strictly larger than the Cover-
van der Meulen region for this channel. We suspect that
in general the outer bound in (3.1) is strictly tighter than
that in Theorem 3.1. We have not been able to verify
this for the BSS due to the complexity of evaluating
(3.1). Finally, it would be interesting to show that our
new outer bound is tight for some new class of broadcast
channels that may perhaps include the BSSC.

REFERENCES

[1] R F Ahlswede and J &rner. Source coding with side information
and a converse for degraded broadcast chann®&g&E Trans.
Info. Theory IT-21(6):629-637, November, 1975.

[2] P F Bergmans. Coding theorem for broadcast channels with
degraded componentdEEE Trans. Info. TheoryT-15:197-207,
March, 1973.

[3] T Cover. Broadcast channeliEEE Trans. Info. TheoryT-18:2—
14, January, 1972.

[4] T Cover. An acheivable rate region for the broadcast oean
IEEE Trans. Info. TheorylT-21:399-404, July, 1975.

[5] | Csizar and J Krner. Broadcast channels with confidential
messagesEEE Trans. Info. TheoryT-24:339-348, May, 1978.

[6] A El Gamal. The capacity of a class of broadcast chaniEEE
Trans. Info. TheoryIT-25:166-169, March, 1979.



[7]
8

[0

[20]

[11]

[12]

[13]
[14]

[15]

R G Gallager. Capacity and coding for degraded broadca&thandra Nair Chandra Nair is a Post-Doctoral researcher with the
channels.Probl. Peredac. Inform.10(3):3-14, 1974. theory group at Microsoft Research, Redmond. He obtainedPhi3
S | Gelfand and M S Pinsker. Capacity of a broadcast cHannffom the Electrical Engineering Department at Stanford ©rsity
with one deterministic component.Probl. Inform. Transm. in June 2005. He obtained the Bachelor's degree in ElettEca
16(1):17-25, Jan. - Mar., 1980. gineering from |IT, Madras. His research interests are iscrdite
B Hajek and M Pursley. Evaluation of an achievable raggae optimization problems arising in Electrical Engineering &amputer
for the broadcast channelEEE Trans. Info. TheorylT-25:36— Science, algorithm design, networking and information thedle
46, January, 1979. has received the Stanford and Microsoft Graduate Fellques{2000-
J Kérner and K Marton. A source network problem involving the2004, 2005) for his graduate studies, and he was awardedhilipsP
comparison of two channels iTrans. Colloguim Inform. Theory, and Siemens(India) Prizes in 1999 for his undergraduateeauad
Keszthely, HungaryAuguts, 1975. performance.

K Marton. The capacity region of deterministic broadcas

channels.Trans. Int. Symp. Inform. Theqr§977. , , , , )

K Marton. A coding theorem for the discrete memorylesé\Pbas El Gamal Abbas El Gamal (S'71-M'73-SM'83-F'00) received
broadcast channellEEE Trans. Info. TheorylT-25:306-311, his B.Sc. degree in Electrical Engineering from Cairo Ursity in

May, 1979. 1972, the M.S. in Statistics and the PhD in Electrical Engiirgy
M S Pinsker. Capacity of noiseless broadcast chanrfisbl. from Stanford in 1977 and 1978, respectively. From 1978 t8019
Pered. Inform. 14(2):28-334, Apr.- Jun., 1978. he was an Assistant Professor of Electrical Engineering $€.UHe

H Sato. An outer bound to the capacity region of broatica@s been on the Stanford faculty since 1981, where he isrtlyre

channels.|EEE Trans. Info. TheorylT-24:374-377, May, 1978. Professor of Electrical Engineering and the Director ofltifermation

E van der Meulen. Random coding theorems for the discrefyStems Laboratory. He was on leave from Stanford from 198988

memoryless broadcast channdEEE Trans. Info. Theory!T- first as Director of LS| Logic Research Lab, then as cofouratedt

21:180-190, March, 1975. Chief Scientist of Actel Corporation. In 1990 he co-foundgiticon
Architects, which was later acquired by Synopsys. His neteaas
spanned several areas, including information theory, aligmaging,
and integrated circuit design and design automation. He htmred
or coauthored over 150 papers and 25 patents in these areas.



