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The capacity region of the two-receiver Gaussian
vector broadcast channel with private and common

messages
Yanlin Geng, Member, IEEE, and Chandra Nair, Member, IEEE

Abstract—A novel method for establishing the optimality of
Gaussian auxiliary random variables in multiterminal informa-
tion theory problems is developed. This method is then employed
to show that Marton’s inner bound achieves the capacity region of
the two-receiver Gaussian vector broadcast channel with private
and common messages.

Index Terms—multiuser channels, channel capacity, Gaussian
distribution optimality

I. INTRODUCTION

Channels with additive Gaussian noise are a commonly used
model in wireless communications. Computing the capacity
regions or bounds on the capacity regions for these classes
of channels is of wide interest. Bounds on capacity regions
or capacity regions themselves are oftentimes represented
using auxiliary random variables and evaluations of these
bounds (or regions) reduce to optimization problems and
computation of the “extremal” auxiliary random variables. In
several instances involving Gaussian noise, it turns out that the
extremal (optimal) auxiliaries are Gaussian random variables.
However proving the optimality of Gaussian distributions is
usually cumbersome; almost always invoking the entropy-
power-inequality (EPI), or some recent variations using only
some elements from its proof.

In the following sections we develop a novel way of proving
the optimality of Gaussian input distributions for additive
Gaussian noise channels. There are many potential straight-
forward applications of this new approach which will yield
new results as well as recover the earlier results in a simple
manner. As an illustration of this technique we will recover
some existing results and then demonstrate its effectiveness by
obtaining the capacity region of a well-studied problem that
had resisted solution using traditional techniques: the capacity
region of the vector Gaussian channel with both private and
common messages.

For the two-receiver Gaussian vector broadcast channel with
private messages, the capacity region was established [1] by
showing that a certain pair of inner and outer bounds yield
identical regions. This argument, though effective, could not
be generalized to compute the capacity region of the vector
Gaussian channel with both private and common messages.
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A. Definitions

Broadcast channel [2] refers to a communication scenario
where a single sender, usually denoted by X , wishes to
communicate independent messages (M0,M1,M2) to two
receivers Y1, Y2. The goal of the communication scheme is
to enable receiver Y1 to recover the messages (M0,M1) and
receiver Y2 to recover the messages (M0,M2); both events
being required to occur with high probability. For introduction
to the broadcast channel problem and a summary of known
work one may refer to Chapters 5, 8, and 9 in [3].

A broadcast channel is characterized by a probability tran-
sition matrix q(y1, y2|x). The following broadcast channel is
referred to as the Gaussian vector broadcast channel

Y1 = G1X + Z1

Y2 = G2X + Z2.

In the above X,Z1,Z2 ∈ Rt are mutually independent1

random vectors, G1, G2 ∈ Rt×t are channel gain matrices,
and noises Z1,Z2 are Gaussian distributed random vectors.

Remark 1. We make the following assumptions regarding
channel gain matrices and noise covariances.

1) We will assume that all our channel gain matrices are in-
vertible. The reason for this assumption is the following:
we are working with inner and outer bounds to capacity
regions represented in terms of mutual information be-
tween the channel inputs (or auxiliary random variables)
and the channel outputs. The mutual information terms,
and hence the inner and outer bounds, are continuous
functions of the channel gain matrices. We establish
capacity regions by showing that the inner and outer
bounds coincide. Since the set of all invertible matrices
form a dense set, by continuity of the bounds, the inner
and outer bounds will coincide for all channel gain
matrices.

2) We also assume that all the Gaussian noise vectors
are N (0, I) for the following reason. The mean of the
Gaussian noise does not affect the capacity region. If
the covariance matrix is invertible, then one can multiply
by another invertible matrix to transform the covariance
matrix to the identity matrix. On the other hand, if the

1One can relax the mutual independence to the following assumption: X is
independent of Z1 and X is independent of Z2. Since the capacity region of
a broadcast channel depends only on the marginal distributions q1(y1|x) and
q2(y2|x) (see [3]) the assumption of mutual independence is not restrictive
for the purpose of characterizing the capacity region.
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covariance matrix is non-invertible, then by a suitable
linear transformation, one can get a noise-less channel
which has infinite capacity; an uninteresting scenario.

A product broadcast channel, consisting of a sender
(X1,X2) and two receivers (Y11,Y12) and (Y21,Y22), is
a broadcast channel whose transition probability has the form
q1(y11,y21|x1)×q2(y12,y22|x2). A Gaussian vector product
broadcast channel can be represented as[

Y11

Y12

]
=

[
G11 0

0 G12

] [
X1

X2

]
+

[
Z11

Z12

]
,[

Y21

Y22

]
=

[
G21 0

0 G22

] [
X1

X2

]
+

[
Z21

Z22

]
.

In the above Z11,Z12,Z21,Z22 ∼ N (0, I) are i.i.d.; and they
are also independent of (X1,X2).

A two-letter version of a (broadcast) channel is a product
(broadcast) channel where the components are identical, i.e.
q1(·|·) = q2(·|·).

Organization of the paper
In the remainder of this section, we will establish some ele-

mentary mathematical results that we will call upon in the rest
of the paper. In general there are three ideas employed in this
paper: (i) the use of a two-letter channel to identify that the
optimizing distributions are Gaussians, (ii) the factorization of
concave envelopes that relates a function on a product channel
to its counterparts in the component channels, and (iii) the use
of a min-max interchange to deal with a linearized expression.
The second and third ideas had been partly developed in the
context of discrete memoryless broadcast channels [4].

We present our first idea using the well studied problem
of maximizing mutual information in Section II-A. We then
present the second idea in Section II-B, the results of which
will be used to give an alternate proof of the capacity region
for the private messages case. The arguments are then gen-
eralized in Section II-C, and the results there will be used
to determine the capacity region of the case with private and
common messages. The capacity regions will be established
in Section III and here we will also incorporate the min-max
idea that was alluded to earlier.

Since we are working with continuous alphabets, our ap-
proach involves some mathematical technicalities that need to
be taken care of; we defer these arguments to the Appendices.
These arguments in the Appendices are stated in a general
manner so as to enable future applications of these ideas by
invoking the results directly. We also illustrate an adaptation
of our technique to the vector Gaussian wiretap setting in
Appendix III.

B. A couple of mathematical preliminaries
We present some elementary results regarding additive

Gaussian channels which will be useful later.

Proposition 1. Consider the following two-letter Gaussian
product channel

Y1 = GX1 + Z1,

Y2 = GX2 + Z2,

where Z1 and Z2 are independent and distributed as N (0, I).
Define

Xθ1 =
1√
2

(X1 + X2), Xθ2 =
1√
2

(X1 −X2),

Yθ1 =
1√
2

(Y1 + Y2), Yθ2 =
1√
2

(Y1 −Y2).

Then I(X1,X2; Y1,Y2) = I(Xθ1 ,Xθ2 ; Yθ1 ,Yθ2).

Proof. Since the linear transformations involved here amount
to multiplication by a unitary matrix, we have h(Yθ1 ,Yθ2) =
h(Y1,Y2) and h(Yθ1 ,Yθ2 |Xθ1 ,Xθ2) = h(Zθ1 ,Zθ2) =
h(Z1,Z2) = h(Y1,Y2|X1,X2) where Zθ1 = 1√

2
(Z1 + Z2),

Zθ2 = 1√
2
(Z1 − Z2). An alternate proof is to observe that

mutual information is preserved under bijective transforma-
tions.

Remark 2. An interesting consequence of additive noise
having a Gaussian distribution is that Zθ1 and Zθ2 are again
independent and distributed according to N (0, I). Hence
(Yθ1 ,Yθ2) can be regarded as the output of the same product
channel when the input is distributed according to (Xθ1 ,Xθ2).
This observation is peculiar to additive Gaussian noise chan-
nels.

Proposition 2. In Gaussian vector product broadcast channels
with invertible channel gain matrices, the random variables
Y11 and Y22 are independent if and only if X1 and X2 are
independent.

Proof. Here we prove the non-trivial direction. Suppose Y11

and Y22 are independent. We know that Y11 = G11X1 +Z11

and Y22 = G22X2 + Z22 where Z11,Z22 are mutually
independent and independent of the pair X1,X2. Taking
characteristic functions we see that

E
(
ei(t1·Y11+t2·Y22)

)
= E

(
eit1·Y11

)
E
(
eit2·Y22

)
= E

(
eit1·Z11

)
E
(
eit1·G11X1

)
E
(
eit2·G22X2

)
E
(
eit2·Z22

)
.

The first equality uses the independence between Y11 and
Y22; the second equality uses the independence between Z11

and X1, and the independence between Z22 and X2.
On the other hand, since Z11,Z22 are mutually independent

and independent of the pair X1,X2 we have

E
(
ei(t1·Y11+t2·Y22)

)
= E

(
eit1·Z11

)
E
(
ei(t1·G11X1+t2·G22X2)

)
E
(
eit2·Z22

)
.

Since E
(
eit1·Z11

)
,E
(
eit2·Z22

)
> 0 ∀t1, t2 we have that

E
(
ei(t1·G11X1+t2·G22X2)

)
= E

(
eit1·G11X1

)
E
(
eit2·G22X2

)
.

Hence, by the uniqueness of the characteristic functions,
G11X1 and G22X2 are independent; and since G11 and G22

are invertible, X1 and X2 are independent.
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II. OPTIMALITY OF GAUSSIAN VIA FACTORIZATION OF
CONCAVE ENVELOPES

We devise a new technique to show that Gaussian distribu-
tions achieve the maximum value of an optimization problem,
subject to a covariance constraint. The technique developed
here allows us to obtain new results as well as greatly simplify
the proofs of existing results. Loosely speaking, we develop
a machinery that can map the traditional single letterization
arguments into proofs of optimality of Gaussian distributions.

The main idea behind the approach is to show that if a
certain X (centered to have zero mean) achieves the maximum
value of an optimization problem, then so does 1√

2
(X1 +X2)

and 1√
2
(X1−X2); where X1,X2 are two i.i.d. copies of X. To

show this, we go to the two-letter version of the channel, use a
factorization property of the function involved (this is related
to the traditional single letterization arguments), and then use
Proposition 1 to move from the pair X1,X2 to 1√

2
(X1 +

X2). Further we will show that 1√
2
(X1 + X2) and 1√

2
(X1 −

X2) have to be independent as well, which forces the initial
distribution to be Gaussian (see Theorem 3 and Corollary 3
in Appendix I-A). Alternately, one can repeat the averaging
procedure inductively and use the Central Limit Theorem to
conclude that a Gaussian distribution achieves the maximum.

Remark 3. In all the optimization problems considered in this
paper, we assume that the maximizers are centered to have
zero-mean. This zero-mean assumption is a consequence of
mutual information being unchanged by centering. Since we
employ an upper bound on the input covariance matrix note
that centering only decreases E(XXT ) and thus the centered
variables remain feasible and do not change the objective
function value.

Remark 4. The remarkable similarity of the structure of
the arguments that follow for the three optimization problems
considered in this section for which we show the optimality
of Gaussian distributions is worth noting. In particular the first
example, though trivial, contains some of the key elements.

A. Example 1: Mutual information

Consider an additive Gaussian noise channel q(y|x) given
by Y = GX + Z, where G ∈ Rt×t is invertible and Z ∼
N (0, I) is independent of X. Given a positive semi-definite
matrix K � 0, consider the following optimization problem:

Vq(K) := sup
X:E(XXT )�K

I(X; Y).

Consider a product channel q1(y1|x1) × q2(y2|x2). The
inequality in the proposition below may be called the factor-
ization property of mutual information.

Proposition 3. The following inequality holds for product
channels

I(X1,X2; Y1,Y2) ≤ I(X1; Y1) + I(X2; Y2).

Further, for a product Gaussian noise channel, if a pair of
random variables (X1∗,X2∗) achieves equality above then
X1∗ and X2∗ must be independent.

Proof. Observe that

I(X1,X2; Y1,Y2) = h(Y1,Y2)− h(Y1,Y2|X1,X2)

(a)
= h(Y1,Y2)− h(Y1|X1)− h(Y2|X2)

= I(X1; Y1) + I(X2; Y2)− I(Y1; Y2)

where equality (a) is true since the channel has a product
form. Further, if equality holds then Y1∗ and Y2∗ must be
independent, which from Proposition 2 implies that X1∗ and
X2∗ are independent.

Proposition 4. Let p∗(x) be a zero mean distribution that
attains2 Vq(K) and let (X1,X2) ∼ p∗(x1)p∗(x2). Then the
following random variables Xθ1 = 1√

2
(X1 + X2), Xθ2 =

1√
2
(X1 −X2) are independent and also attain Vq(K).

Proof. Let Yθ1 = 1√
2
(Y1 + Y2), Yθ2 = 1√

2
(Y1 − Y2).

Consider the two-letter product channel q(y1|x1)× q(y2|x2)
and observe that

2Vq(K)
(a)
= I(X1; Y1) + I(X2; Y2)

(b)
= I(X1,X2; Y1,Y2)

(c)
= I(Xθ1 ,Xθ2 ; Yθ1 ,Yθ2)

(d)

≤ I(Xθ1 ; Yθ1) + I(Xθ2 ; Yθ2)

(e)

≤ Vq(K) + Vq(K) = 2Vq(K).

Here (a) holds since p∗(x) achieves Vq(K); (b) holds since
X1 and X2 are independent and the channel has a product
form; (c) is a consequence of Proposition 1; and (d) follows
from Proposition 3. Finally (e) follows from the definition of
Vq(K) since the channels pYθ1

|Xθ1
and pYθ2

|Xθ2
are the same

as pY|X (Remark (2)) and

E(Xθ1X
T
θ1) = E(Xθ2X

T
θ2) =

1

2

(
E(X1X

T
1 ) + E(X2X

T
2 )
)
� K.

Since the extremes match, all inequalities must be equalities.
Hence (d) must be an equality, which implies from Proposition
3 that Xθ1 and Xθ2 are independent. The equality (e) implies
I(Xθ1 ; Yθ1) = I(Xθ2 ; Yθ2) = Vq(K) as desired.

From the above propositions we get an alternate proof of
this well known result:

Proposition 5. Vq(K) is attained when (and only when) the
input X is distributed as N (0,K).

Proof. Using Proposition 4 we have shown that any zero mean
maximizer X ∼ p∗(x) that attains Vq(K) has the following
property: If X1 and X2 are i.i.d. copies each distributed
according to p∗(x), then X1 + X2 and X1 − X2 are also
independent. Thus from Theorem 3 and Corollary 3 (Appendix
I-A) we have that X ∼ N (0,K∗) for some K∗ � K.
Using the monotonicity of the log | · | function we deduce that
K∗ = K, thus establishing the uniqueness of the maximizer.

Alternately, one could also use the following approach: For
any zero mean maximizer X, Proposition 4 implies that the

2The proof of the existence of a maximizer can be inferred from Proposi-
tion 17, Theorem 4, and Proposition 18 in Appendix II-A.
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corresponding 1√
2
(X1+X2) also achieves the maximum. Pro-

ceeding by induction, we can use the Central Limit Theorem to
deduce that a Gaussian distribution is also a maximizer. (In this
regard see the arguments in Appendix IV.) There is a subtle
difference between the arguments however; the former one
ensures the uniqueness of the maximizer to be Gaussian while
the latter one only yields that Gaussian is a maximizer.

Remark 5. In the examples that follow we do not have any
such monotonicity. Hence, the techniques we introduce will
only establish that the optimizing distributions are Gaussian,
which is sufficient for establishing a computable characteriza-
tion of the capacity region. Additional properties of the maxi-
mizer may be inferred using standard optimization techniques.

B. Example 2: Difference of mutual informations

Consider a broadcast channel q(y1,y2|x). For λ > 1 let
the following function of p(x) be defined by

sqλ(X) := I(X; Y1)− λI(X; Y2).

For (V,X) such that V → X→ (Y1,Y2) is a Markov chain,
let sqλ(X|V ) := I(X; Y1|V )− λI(X; Y2|V ).

Further define the upper concave envelope3 of sqλ(X) as

Sq
λ(X) := C(sqλ(X)).

It is a straightforward exercise to see that

C(sqλ(X)) = sup
p(v|x):

V→X→(Y1,Y2)

I(X; Y1|V )− λI(X; Y2|V )

= sup
p(v|x):

V→X→(Y1,Y2)

sqλ(X|V ).

We define Sq
λ(X|V ) :=

∑
v p(v)Sq

λ(X|V = v) for V (with a
finite alphabet) and its natural extension for an arbitrary V .

Remark 6. Since Sq
λ(X) is concave in p(x) we have

Sq
λ(X|V ) ≤ Sq

λ(X) by Jensen’s inequality. One may also
note that if W → V → X is Markov, then Sq

λ(X|W,V ) =
Sq
λ(X|V ) because p(x|w, v) = p(x|v).

For a product broadcast channel q1(y11,y21|x1) ×
q2(y12,y22|x2) we define, in a similar fashion as above,

sq1×q2

λ (X1,X2) := I(X1,X2; Y11,Y12)

− λI(X1,X2; Y21,Y22).

We also define the quantities sq1×q2

λ (X1,X2|V ),
Sq1×q2

λ (X1,X2) and Sq1×q2

λ (X1,X2|V ) similarly. The
inequality in the following proposition is referred to as the
factorization of Sq1×q2

λ (X1,X2).

3The upper concave envelope of a function f(x) is the smallest concave
function g(x) such that g(x) ≥ f(x),∀x. In particular g(x) can be expressed
as g(x) = supp(x):E(X)=x E(f(X)).

Proposition 6. The following inequalities holds for product
broadcast channels

Sq1×q2

λ (X1,X2) ≤ Sq1

λ (X1|Y22) + Sq2

λ (X2|Y11)

≤ Sq1

λ (X1) + Sq2

λ (X2).

Further, for a Gaussian product broadcast channel, if a
particular triple (V∗,X1∗,X2∗) satisfies

sq1×q2

λ (X1∗,X2∗|V∗) = Sq1×q2

λ (X1∗,X2∗)

= Sq1

λ (X1∗) + Sq2

λ (X2∗),

then all of the following must be true:
1) X1∗ and X2∗ are conditionally independent given V∗,
2) Sq1

λ (X1∗) = sq1

λ (X1∗|V∗),
3) Sq2

λ (X2∗) = sq2

λ (X2∗|V∗).

Proof. For any (V,X1,X2) such that V → (X1,X2) →
(Y11,Y12,Y21,Y22) is Markov, observe

sq1×q2
λ (X1,X2|V )

= I(X1,X2;Y11,Y12|V )

− λI(X1,X2;Y21,Y22|V )

= I(X1,X2;Y11|V ) + I(X1,X2;Y12|V,Y11)

− λI(X1,X2;Y22|V )− λI(X1,X2;Y21|V,Y22)

(a)
= I(X1;Y11|V ) + I(X2;Y12|V,Y11)

− λI(X2;Y22|V )− λI(X1;Y21|V,Y22)

(b)
= I(X1;Y11|V,Y22) + I(X2;Y12|V,Y11)

− λI(X2;Y22|V,Y11)− λI(X1;Y21|V,Y22)

− (λ− 1)I(Y11;Y22|V )

(c)

≤ Sq1
λ (X1|Y22) + Sq2

λ (X2|Y11)− (λ− 1)I(Y11;Y22|V )

(d)

≤ Sq1
λ (X1) + Sq2

λ (X2)− (λ− 1)I(Y11;Y22|V )

(e)

≤ Sq1
λ (X1) + Sq2

λ (X2).

Here (a) and (b) hold since given V we have the Markov
chain (Y11,Y21)→ X1 → X2 → (Y12,Y22) for the product
broadcast channel; (c) follows from the definition of Sq

λ(·|·)
and the Markov chains (V,Y22) → X1 → (Y11,Y21) and
(V,Y11) → X2 → (Y12,Y22); (d) holds since Sq

λ(X) is
concave in p(x); finally λ > 1 implies (e). Thus, by noticing
(c) and (e) above, we have

sup
p(v|x1,x2):

V→(X1,X2)→(Y1,Y2)

sq1×q2

λ (X1,X2|V )

= Sq1×q2

λ (X1,X2)

≤ Sq1

λ (X1|Y22) + Sq2

λ (X2|Y11)

≤ Sq1

λ (X1) + Sq2

λ (X2).

In a Gaussian product broadcast channel if (V∗,X1∗,X2∗)
satisfies the given equality condition, then inequalities
(c), (d) and (e) are tight. Since λ > 1 we must have
I(Y11∗; Y22∗|V∗) = 0, i.e. Y11∗ and Y22∗ are conditionally
independent given V∗. By Proposition 2, X1∗ and X2∗ are
conditionally independent given V∗. Hence, using (c), (d) and
(e) we obtain
Sq1
λ (X1∗) = I(X1∗;Y11∗|V∗,Y22∗)− λI(X1∗;Y21∗|V∗,Y22∗)

= I(X1∗;Y11∗|V∗)− λI(X1∗;Y21∗|V∗),
Sq2
λ (X2∗) = I(X2∗;Y12∗|V∗,Y11∗)− λI(X2∗;Y22∗|V∗,Y11∗)

= I(X2∗;Y12∗|V∗)− λI(X2∗;Y22∗|V∗).
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This completes the proof.

1) Maximizing the concave envelope subject to a covari-
ance constraint: Consider a Gaussian vector broadcast channel
q(y1,y2|x). For K � 0, define

Vq
λ(K) := sup

X:E(XXT )�K
Sq
λ(X).

From the definition of Sq
λ(X) it is clear that

Vq
λ(K) = sup

(V,X):E(XXT )�K
V→X→(Y1,Y2)

sqλ(X|V ).

Proposition 7. There is a pair of random variables (V∗,X∗)

with |V∗| ≤ t(t+1)
2 + 1 and E(X∗X

T
∗ ) � K such that

Vq
λ(K) = sqλ(X∗|V∗).

Further, we can assume that the conditional law of X∗|(V∗ =
v∗) has zero mean for every v∗.

Proof. The existence of a maximizer and the cardinality
bound on V∗ is established in Appendix II-A. The centering
conditioned on each V∗ = v∗ does not change the mutual
information terms and hence sqλ(X∗|V∗) remains unchanged.
Note that the centering continues to satisfy the covariance
constraint.

The goal of this section is to show that a single Gaussian
distribution achieves Vq

λ(K), i.e. we can take V∗ to be trivial
and X∗ ∼ N (0,K∗), K∗ � K.

Remark 7. This result is known and was first shown by Liu
and Viswanath [5] using perturbation based techniques. We
re-derive the result here to illustrate our technique and then
our final result, a more involved example, in the next section
is new.

Proposition 8. Let (V∗,X∗) ∼ p∗(v,x) attain Vq
λ(K), with

|V| = m ≤ t(t+1)
2 + 1; and let Xv denote a centered

random variable (zero mean) distributed according to the
conditional distribution p∗(x|V = v). Let (V1, V2,X1,X2) ∼
p∗(v1,x1)p∗(v2,x2) be two i.i.d. copies of p∗(v,x). Define

Ṽ = (V1, V2), Xθ1 |
(
Ṽ = (v1, v2)

)
∼ 1√

2
(Xv1 + Xv2) ,

Xθ2 |
(
Ṽ = (v1, v2)

)
∼ 1√

2
(Xv1 −Xv2) .

In the above we take Xv1 and Xv2 to be independent random
variables. Then the following hold:

1) Xθ1 and Xθ2 are conditionally independent given Ṽ ,
2) Vq

λ(K) = sqλ(Xθ1 |Ṽ ),
3) Vq

λ(K) = sqλ(Xθ2 |Ṽ ).

Proof. Let Kv := E(XvX
T
v ). Consider the two-letter broad-

cast channel q(y11,y21|x1)× q(y12,y22|x2). We have

2Vq
λ(K)

(a)
= sqλ(X1|V1) + sqλ(X2|V2)

(b)
= sq×q

λ (X1,X2|V1, V2)

(c)
= sq×q

λ (Xθ1 ,Xθ2 |Ṽ )

(d)

≤ Sq×q
λ (Xθ1 ,Xθ2)

(e)

≤ Sq
λ(Xθ1) + Sq

λ(Xθ2)

(f)

≤ Vq
λ(K) + Vq

λ(K) = 2Vq
λ(K).

Here (a) holds because p∗(v,x) achieves Vλ(K); (b) holds
because (V1,X1) and (V2,X2) are independent; (c) is a
consequence of Proposition 1; (d) follows from the definition;
(e) is a consequence of Proposition 6; finally (f) follows from
the definition of Vq

λ(K) by noticing

E(Xθ1X
T
θ1) = E(Xθ2X

T
θ2)

=
∑
v1,v2

p∗(v1)p∗(v2) · 1

2
(Kv1 +Kv2)

=

m∑
v=1

p∗(v)Kv � K.

Since the extremes match, all inequalities must be equalities.
Notice (d) being an equality means that p(ṽ|xθ1 ,xθ2) achieves
Sq×q
λ (Xθ1 ,Xθ2). From Proposition 6, (d) and (e) being equal-

ities implies that Xθ1 and Xθ2 are conditionally independent
given Ṽ , p(ṽ|xθ1) achieves Sq

λ(Xθ1), and p(ṽ|xθ2) achieves
Sq
λ(Xθ2). Finally from (f) we know Sq

λ(Xθ1) = Vq
λ(K) =

Sq
λ(Xθ2).

As a consequence, for any pair (v1, v2), Xv1 + Xv2 and
Xv1 − Xv2 are independent. Combined with the fact that
Xv1 and Xv2 are independent zero mean random variables,
Corollary 3 in Appendix I-A implies that Xv1 and Xv2 are
Gaussians with the same covariance matrix. Since (v1, v2) is
arbitrary, all Gaussians Xvi have the same covariance matrix,
say K∗. Clearly K∗ � K. Let X∗ ∼ N (0,K∗). Then

Vq
λ(K) =

m∑
i=1

p∗(vi)s
q
λ(Xvi) =

m∑
i=1

p∗(vi)s
q
λ(X∗) = sqλ(X∗).

Hence we obtain the following theorem (originally established
in [5]).

Theorem 1. There exists X∗ ∼ N (0,K∗), K∗ � K such
that Vq

λ(K) = sqλ(X∗). Further the zero mean maximizer is
unique.

Proof. The existence is clear from the preceding argument
and here, we only comment on the uniqueness. First we show
that if a zero mean random variable X is a maximizer, that is
Vq
λ(K) = sqλ(X), it must be Gaussian. Let X1 and X2 be two

i.i.d. copies of X. Applying Proposition 8 (take V to be the
trivial random variable), we obtain that X1 +X2 and X1−X2

are also independent. Hence, from Corollary 3, X must be a
Gaussian. Suppose Vq

λ(K) has two Gaussian maximizers, say
G1 ∼ N (0,K1) and G2 ∼ N (0,K2) such that K1,K2 � K
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and K1 6= K2. Consider random variables (V,X) such that V
is binary (say uniformly distributed), X|(V = 1) ∼ N (0,K1)
and X|(V = 2) ∼ N (0,K2). Then note that (V,X) also
attains Vq

λ(K) and satisfies the covariance constraint. Now
from Proposition 8, taking v1 = 1 and v2 = 2, we obtain that
G1 + G2 is independent of G1 −G2, clearly impossible as
K1 6= K2 (see Corollary 3).

Remark 8. Notice that we never used the precise form
of Sq

λ(X) but just the implications of Proposition 6. In the
next section we will define a new concave envelope that
also satisfies a condition similar to Proposition 6, and then
establish the optimality of Gaussian distributions. In general,
the Gaussian optimality can be established if one shows the
factorization property (as mentioned earlier, this is related
to the single-letterization arguments), the existence of the
maximizer (in this regard see the arguments in Appendix II),
and the invariance of the expressions with respect to the
rotation operations (usually a consequence of the additive
Gaussian noise model).

The following corollary will be useful later.

Corollary 1. If X ∼ N (0,K) then there exists a decom-
position of X into X∗ ∼ N (0,K∗) and an independent
random variable X′ ∼ N (0,K − K∗), K∗ � K such that
Sq
λ(X) = sqλ(X∗) = Vq

λ(K). Further, this decomposition (i.e.
the corresponding covariance matrix K∗) is unique.

Proof. From Theorem 1, there exists X∗ ∼ N (0,K∗), K∗ �
K such that sqλ(X∗) = Vq

λ(K). Let X′ ∼ N (0,K − K∗)
be independent of X∗, and X = X′ + X∗. By definition,
Sq
λ(X) ≤ Vq

λ(K). On the other hand since X|(X′ = x′) ∼
X∗+x′ we have sqλ(X|X′) = sqλ(X∗). From the Markov chain
X′ → X→ (Y1,Y2) we obtain

Sq
λ(X) = sup

V :V→X→(Y1,Y2)

sqλ(X|V )

≥ sqλ(X|X′) = sqλ(X∗) = Vq
λ(K).

The uniqueness is a direct consequence of Theorem 1. This
finishes the proof.

C. Example 3: A new extremal inequality

The function we considered in the previous section can be
used to determine the capacity region of the Gaussian vector
broadcast channel with only private messages (see Section
III-A). The function we consider in this section will enable us
to determine the capacity region of Gaussian vector broadcast
channel with common message as well as private messages
(see Section III-B).

Consider a broadcast channel q(y1,y2|x). For λ =
(λ0, λ1, λ2), where λi > 0, i = 0, 1, 2, λ2 > λ1, α ∈ [0, 1] and
ᾱ := 1 − α, consider the following function of p(x) defined
by

tqλ(X) := −λ0αI(X;Y1) + (λ2 − λ0ᾱ)I(X;Y2) + λ1S
q
λ2
λ1

(X),

where Sq
λ(X) is defined in Section II-B. As before, we define

some terms based on tqλ(X). For (W,X) such that W → X→

(Y1,Y2) is Markov, let

tqλ(X|W ) :=− λ0αI(X; Y1|W ) + (λ2 − λ0ᾱ)I(X; Y2|W )

+ λ1S
q
λ2
λ1

(X|W ).

Further define the upper concave envelope of tqλ(X) as

Tq
λ(X) := C(tqλ(X)).

It is easy to see that

C(tqλ(X))

= sup
W :W→X→(Y1,Y2)

λ0αI(X; Y1|W ) + λ1S
q
λ2
λ1

(X|W )

+(λ2 − λ0ᾱ)I(X; Y2|W )

= sup
W :W→X→(Y1,Y2)

tqλ(X|W ).

We also define Tq
λ(X|U) :=

∑
u p(u)Tq

λ(X|U = u) for finite
U and its natural extension for arbitrary U .

For a product broadcast channel q1(y11,y21|x1) ×
q2(y12,y22|x2) we define

tq1×q2

λ (X1,X2)

:= −λ0αI(X1,X2; Y11,Y12)

+ (λ2 − λ0ᾱ)I(X1,X2; Y21,Y22) + λ1S
q1×q2
λ2
λ1

(X1,X2),

and also the terms tq1×q2

λ (X1,X2|W ), Tq1×q2

λ (X1,X2) and
Tq1×q2

λ (X1,X2|W ). The inequality in the following proposi-
tion is referred to as the factorization of Tq1×q2

λ (X1,X2).

Proposition 9. When λ0 > λ2 the following inequality holds
for product broadcast channels

Tq1×q2

λ (X1,X2) ≤ Tq1

λ (X1|Y22) + Tq2

λ (X2|Y11)

≤ Tq1

λ (X1) + Tq2

λ (X2).

Further, for a Gaussian product broadcast channel, if a
particular triple (W∗,X1∗,X2∗) satisfies

tq1×q2

λ (X1∗,X2∗|W∗) = Tq1×q2

λ (X1∗,X2∗)

= Tq1

λ (X1∗) + Tq2

λ (X2∗),

then all of the following must be true:

1) X1∗ and X2∗ are conditionally independent given W∗,
2) Tq1

λ (X1∗) = tq1

λ (X1∗|W∗),
3) Tq2

λ (X2∗) = tq2

λ (X2∗|W∗).

Proof. For any Markov chain W → (X1,X2) →
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(Y11,Y12,Y21,Y22), observe

tq1×q2
λ (X1,X2|W )

= −λ0αI(X1,X2;Y11,Y12|W )

+ (λ2 − λ0ᾱ)I(X1,X2;Y21,Y22|W ) + λ1S
q1×q2
λ2
λ1

(X1,X2|W )

(a)
= −λ0α

(
I(X1;Y11|W,Y22) + I(X2;Y12|W,Y11)

)
+ (λ2 − λ0ᾱ)

(
I(X2;Y22|W,Y11) + I(X1;Y21|W,Y22)

)
− (λ0 − λ2)I(Y11;Y22|W ) + λ1S

q1×q2
λ2
λ1

(X1,X2|W )

(b)

≤ −λ0α
(
I(X1;Y11|W,Y22) + I(X2;Y12|W,Y11)

)
+ (λ2 − λ0ᾱ)

(
I(X2;Y22|W,Y11) + I(X1;Y21|W,Y22)

)
− (λ0 − λ2)I(Y11;Y22|W )

+ λ1S
q1
λ2
λ1

(X1|W,Y22) + λ1S
q2
λ2
λ1

(X2|W,Y11)

(c)

≤ Tq1
λ (X1|Y22) + Tq2

λ (X2|Y11)− (λ0 − λ2)I(Y11;Y22|W )

(d)

≤ Tq1
λ (X1) + Tq2

λ (X2)− (λ0 − λ2)I(Y11;Y22|W )

(e)

≤ Tq1
λ (X1) + Tq2

λ (X2).

Here (a) is similar to step (b) in the proof of Proposition 6
since W → (X1,X2) → (Y11,Y12,Y21,Y22) is Markov;
(b) is from Proposition 6 by the definition of Sq

λ(·|·) and that
W → (X1,X2) → (Y11,Y12,Y21,Y22) is Markov; (c) is
due to the Markov chains (W,Y22)→ X1 → (Y11,Y21) and
(W,Y11) → X2 → (Y12,Y22); (d) is due to the concavity
of Tq

λ(·).
Now for (W∗,X1∗,X2∗), since the end-to-end equality

holds, from λ0 > λ2 and (e) we have I(Y11∗; Y22∗|W∗) = 0.
By Proposition 2 we have that X1∗ and X2∗ are condition-
ally independent given W∗, which implies the Markov chain
(Y11∗,Y21∗) → X1∗ → W∗ → X2∗ → (Y12∗,Y22∗). Now
using the equality observe that

Tq1
λ (X1∗)

= −λ0αI(X1∗;Y11∗|W∗,Y22∗)

+ (λ2 − λ0ᾱ)I(X1∗;Y21∗|W∗,Y22∗) + λ1S
q1
λ2
λ1

(X1∗|W∗,Y22∗)

(e)
= −λ0αI(X1∗;Y11∗|W∗) + (λ2 − λ0ᾱ)I(X1∗;Y21∗|W∗)

+ λ1S
q1
λ2
λ1

(X1∗|W∗,Y22∗)

(f)
= −λ0αI(X1∗;Y11∗|W∗) + (λ2 − λ0ᾱ)I(X1∗;Y21∗|W∗)

+ λ1S
q1
λ2
λ1

(X1∗|W∗),

where (e) is from the Markov chain Y22∗ → W∗ →
X1∗ → (Y11∗,Y21∗) and (f) is from the Markov chain
Y22∗ → W∗ → X1∗. Similar result holds for X2∗. This
completes the proof.

For K � 0, define

V̂q
λ(K) := sup

X:E(XXT )�K
Tq
λ(X).

Proposition 10. There exists a pair (W∗,X∗) with |W∗| ≤
t(t+1)

2 + 1 and E(X∗X
T
∗ ) � K such that

V̂q
λ(K) = tqλ(X∗|W∗).

Further, we can assume that the conditional law of X∗|(W∗ =
w∗) has zero mean for every w∗.

Proof. The existence of a maximizer and the cardinality
bound on W∗ are established in Appendix II-B. The centering
argument works as before.

Proposition 11. Let (W∗,X∗) ∼ p∗(w,x) attain V̂q
λ(K),

with |W| = m ≤ t(t+1)
2 + 1; and let Xw denote a zero

mean random variable distributed according to the condi-
tional distribution p∗(x|W = w). Let (W1,W2,X1,X2) ∼
p∗(w1,x1)p∗(w2,x2) be two i.i.d. copies of p∗(w, x). Define

W̃ = (W1,W2), Xθ1 |
(
W̃ = (w1, w2)

)
∼ 1√

2
(Xw1 + Xw2),

Xθ2 |
(
W̃ = (w1, w2)

)
∼ 1√

2
(Xw1 −Xw2).

In the above we take Xw1
and Xw2

to be independent random
variables. Then the following hold:

1) Xθ1 and Xθ2 are conditionally independent given W̃ ,
2) V̂q

λ(K) = tqλ(Xθ1 |W̃ ),
3) V̂q

λ(K) = tqλ(Xθ2 |W̃ ).

Proof. The proof mirrors that of Proposition 8. Let
Kw = E(XwXT

w). Consider a two-letter broadcast channel
q(y11,y21|x1)× q(y12,y22|x2). We have

2V̂q
λ(K)

(a)
= tqλ(X1|W1) + tqλ(X2|W2)

(b)
= tq×q

λ (X1,X2|W1,W2)

(c)
= tq×q

λ (Xθ1 ,Xθ2 |W̃ )

(d)

≤ Tq×q
λ (Xθ1 ,Xθ2)

(e)

≤ Tq
λ(Xθ1) + Tq

λ(Xθ2)

(f)

≤ V̂q
λ(K) + V̂q

λ(K) = 2V̂q
λ(K).

Here (a) comes because p∗(w,x) achieves V̂q
λ(K); (b) be-

cause (W1,X1) and (W2,X2) are independent; (c) is a conse-
quence of Proposition 1; (e) is a consequence of Proposition 9;
and (f) follows from the definition of V̂q

λ(K) by noticing that

E(Xθ1X
T
θ1) = E(Xθ2X

T
θ2)

=
∑
w1,w2

p∗(w1)p∗(w2) · 1

2
(Kw1 +Kw2)

=

m∑
w=1

p∗(w)Kw � K.

Since extremes of the chain of inequalities match, all inequali-
ties must be equalities. Notice (d) being an equality means that
p(w̃|xθ1 ,xθ2) achieves Tq×q

λ (Xθ1 ,Xθ2). Now from Proposi-
tion 9, (d) and (e) being equalities implies that Xθ1 and Xθ2

are conditionally independent given W̃ , p(w̃|xθ1) achieves
Tq
λ(Xθ1), and p(w̃|xθ2) achieves Tq

λ(Xθ2). Finally from (f)
we know Tq

λ(Xθ1) = V̂q
λ(K) = Tq

λ(Xθ2).

As a consequence, for any fixed (w1, w2), Xw1
+ Xw2

and
Xw1
−Xw2

are independent. Combined with the fact that Xw1

and Xw2 are independent zero mean random variables, from
Corollary 3 in Appendix I-A, we obtain that Xw1

and Xw2
are

Gaussians with the same covariance matrix. Since (w1, w2) is
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arbitrary, all Gaussians Xwi have the same covariance matrix,
say K∗. Clearly K∗ � K. Let X∗ ∼ N (0,K∗). Then

V̂q
λ(K) =

m∑
i=1

p∗(wi)t
q
λ(Xwi) =

m∑
i=1

p∗(wi)t
q
λ(X∗) = tqλ(X∗).

Hence we obtain the following theorem. The proof of unique-
ness is just as that in Theorem 1.

Theorem 2. There exists X∗ ∼ N (0,K∗), K∗ � K such
that V̂q

λ(K) = tqλ(X∗). Further the zero mean maximizer is
unique.

Corollary 2. If X ∼ N (0,K) then there exists a decom-
position into X1∗ ∼ N (0,K1) and an independent random
variable X2∗ ∼ N (0,K2), K1 + K2 = K∗ � K such that
Tq
λ(X) = tqλ(X1∗ + X2∗) = V̂q

λ(K) and Sq
λ2
λ1

(X1∗ + X2∗) =

sqλ2
λ1

(X1∗) = Vq
λ2
λ1

(K1 +K2). Further, this decomposition (i.e.

the corresponding covariance matrices) is unique.

Proof. From Theorem 2, there exists X∗ ∼ N (0,K∗), K∗ �
K such that tqλ(X∗) = V̂q

λ(K). Now let X′ ∼ N (0,K −K∗)
be independent of X∗, and let X = X′ + X∗. Thus X ∼
N (0,K). By definition Tq

λ(X) ≤ V̂q
λ(K). On the other hand

since X|(X′ = x′) ∼ X∗ + x′ we have tqλ(X|X′) = tqλ(X∗).
From Markov chain X′ → X→ (Y1,Y2) we obtain

Tq
λ(X) = sup

W :W→X→(Y1,Y2)

tqλ(X|W )

≥ tqλ(X|X′) = tqλ(X∗) = V̂q
λ(K).

Now by Corollary 1, it is possible to split X∗ into independent
X1∗ and X2∗, such that Sq

λ2
λ1

(X1∗ + X2∗) = sqλ2
λ1

(X1∗) =

Vq
λ2
λ1

(K1 +K2), is possible by Corollary 1. Further uniqueness

of the covariance matrices is a consequence of Theorem 2 and
Corollary 1.

III. TWO CAPACITY REGIONS

A. Gaussian vector broadcast channel with private messages

Consider a Gaussian vector broadcast channel q(y1,y2|x)
with only private messages. We will show, using the results
from Section II-B, that an inner bound (Bound 2) to the
capacity region matches an outer bound (Bound 1) to the
capacity region under this setting. The proof will also show
that Gaussian random variables suffice to characterize the
capacity region, thus making the capacity region computable.

Consider the Körner-Marton outer bound [6] and Marton’s
inner bound [6] to the capacity region, C, of the broadcast
channel.

Bound 1. The union of rate pairs (R1, R2) satisfying

R2 ≤ I(V ;Y2)

R1 ≤ I(X;Y1)

R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V )

over all V → X → (Y1, Y2) forms an outer bound to the
broadcast channel.

Denote this region as O.

Bound 2. The convex closure of the union of rate pairs
(R1, R2) satisfying

R2 ≤ I(V ;Y2)

R1 ≤ I(U ;Y1)

R1 +R2 ≤ I(U ;Y1) + I(V ;Y2)− I(U ;V )

over all (U, V )→ X → (Y1, Y2) forms an inner bound to the
broadcast channel.

Denote this region as I. This inner bound is obtained by
taking the convex closure of the achievable region obtained
using Theorem 2 in [6] by taking W = ∅. One is allowed to
take the convex closure since any point in the interior of the
convex closure can be obtained via time-sharing.

One can adapt these inner and outer bounds to the addi-
tive Gaussian setting by introducing a power constraint, i.e.
tr(E(XXT )) ≤ P . Instead here we impose a covariance
constraint E(XXT ) � K and denote IK , CK ,OK to be the
corresponding inner bound, capacity region, and outer bound.
If one determines the capacity region under a covariance
constraint, then the capacity region under the trace constraint
can be obtained by taking the union over all the covariance
matrices satisfying the trace constraint. By definition, we have
IK ⊆ CK ⊆ OK . We now wish to show that OK ⊆ IK .
We will show this inclusion using the supporting hyperplanes
characterization of closed convex sets.

A closed and bounded convex set can be characterized by
the intersection of its supporting hyperplanes. The regions
IK ,OK are closed and bounded subsets in the first quadrant.
Clearly the following hyperplanes

R1 ≥ 0, R1 ≤ max
X:E(XXT )�K

I(X; Y1) =: CK1 ,

R2 ≥ 0, R2 ≤ max
X:E(XXT )�K

I(X; Y2) =: CK2

are supporting hyperplanes to IK and OK . Further the points
(CK1 , 0) and (0, CK2 ) lie on the boundary of IK as well as
that of OK . Therefore to show that the regions coincide, it
suffices to show, for λ1, λ2 > 0, that

max
(R1,R2)∈OK

λ1R1 + λ2R2 ≤ max
(R1,R2)∈IK

λ1R1 + λ2R2.

In the rest of this section we will show that, for λ > 1,
(equivalently taking λ2 > λ1 above)

max
(R1,R2)∈OK

R1 + λR2 ≤ max
(R1,R2)∈IK

R1 + λR2.

The case for λ < 1 is dealt with similarly by interchanging
roles of Y1 and Y2.

Remark 9. To show the λ = 1 case, observe that the function

C(λ) := max
(R1,R2)∈C

R1 + λR2

is convex and bounded in λ when λ ∈ (0, 2) (more generally,
any bounded open interval containing 1 would suffice) which
implies that C(λ) is continuous in λ at λ = 1 (see Proposition
17, Chapter 5 [7]). Thus characterizing C(λ) for all λ > 1
would also characterize C(λ) at λ = 1.
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Thus Marton’s inner bound and Körner-Marton’s outer
bound will match under a covariance constraint.

Observe that

max
(R1,R2)∈OK

R1 + λR2

(a)

≤ sup
V→X→(Y1,Y2)

E(XXT )�K

λI(V ; Y2) + I(X; Y1|V )

= sup
V→X→(Y1,Y2)

E(XXT )�K

λI(X; Y2) + I(X; Y1|V )− λI(X; Y2|V )

≤ sup
X:E(XXT )�K

λI(X; Y2)

+ sup
V→X→(Y1,Y2)

E(XXT )�K

I(X; Y1|V )− λI(X; Y2|V )

(b)
= sup

X:E(XXT )�K
λI(X; Y2) + Vq

λ(K).

Here (a) is obtained using two constraints in the outer bound,
namely R2 ≤ I(V ; Y2) and R1 + R2 ≤ I(V ; Y2) +
I(X; Y1|V ) and (b) is from the definition of Vq

λ(K).
From Corollary 1, we know that there exists X∗ ∼
N (0,K∗), K∗ � K such that Vq

λ(K) = sqλ(X∗). Now
let V∗ ∼ N (0,K − K∗) be independent of X∗ and let
X = V∗ + X∗. Thus X ∼ N (0,K) maximizes λI(X; Y2)
(subject to the covariance constraint) and

I(X;Y1|V∗)− λI(X;Y2|V∗) = sqλ(X|V∗) = sqλ(X∗) = Vq
λ(K).

Hence

max
(R1,R2)∈OK

R1 + λR2 ≤ λI(V∗; Y2) + I(X; Y1|V∗).

Proposition 12 (Dirty paper coding). Let X = V∗ + X∗ and
V∗, X∗ be independent Gaussians with covariances K −K∗,
K∗ respectively for some 0 � K∗ � K. Let Y1 = G1X+Z1,
where Z1 ∼ N (0, I) is independent of (V∗,X∗). Set U∗ =
X∗ +AV∗ where A = K∗G

T
1 (G1K∗G

T
1 + I)−1; then

I(X; Y1|V∗) = I(U∗; Y1)− I(U∗;V∗).

Proof. This well-known identification (see Chapter 9.5 of [3])
stems from the celebrated paper [8].

Now using U∗ as in the above proposition, we obtain

max
(R1,R2)∈OK

R1 + λR2 ≤ λI(V∗;Y2) + I(X;Y1|V∗)

= λI(V∗;Y2) + I(U∗;Y1)− I(U∗;V∗).

According to Marton’s inner bound, since (U∗, V∗)→ X→
(Y1,Y2) is Markov and E(XXT ) � K, the rate pair R2 =
I(V∗; Y2), R1 = I(U∗; Y1)−I(U∗;V∗) belongs to IK . Hence

max
(R1,R2)∈OK

R1 + λR2 ≤ λI(V∗;Y2) + I(U∗;Y1)− I(U∗;V∗)

≤ max
(R1,R2)∈IK

R1 + λR2.

Thus the inner and outer bounds match for vector Gaussian
product channels establishing its capacity region. Further ob-
serve that equality (hence the extreme points of the capacity
region) can be obtained using Gaussian distributions, thus
making the region computable.

B. Gaussian vector broadcast channel with common message

Consider a Gaussian vector broadcast channel q(y1,y2|x)
with common and private message requirements. Let Ĉ denote
the capacity region. As in Section III-A we establish the
capacity region by showing that a certain outer bound and a
certain inner bound to the capacity region match. In particular,
we consider the UVW outer bound [9] and Marton’s inner
bound ( [6], see the guided exercise 10.(c) in page 391 of [10])
to the capacity region of the broadcast channel with private
and common messages. Further we show that extreme points
are achievable using auxiliaries that are jointly Gaussian and
hence the regions are computable.

Bound 3 (UVW outer bound). The union of rate triples
(R0, R1, R2) satisfying

R0 ≤ min{I(W ;Y1), I(W ;Y2)}
R0 +R1 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(U ;Y1|W )

R0 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(V ;Y2|W )

R0 +R1 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(V ;Y2|W )

+ I(X;Y1|V,W )

R0 +R1 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(U ;Y1|W )

+ I(X;Y2|U,W )

over all (U, V,W )→ X → (Y1, Y2) forms an outer bound to
the broadcast channel.

Denote this region as Ô.

Bound 4 (Marton’s inner bound). The union of rate pairs
(R1, R2) satisfying

R0 ≤ min{I(W ;Y1), I(W ;Y2)}
R0 +R1 ≤ I(U,W ;Y1)

R0 +R2 ≤ I(V,W ;Y2)

R0 +R1 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}
+ I(U ;Y1|W ) + I(V ;Y2|W )− I(U ;V |W )

over all (U, V,W )→ X → (Y1, Y2) forms an inner bound to
the broadcast channel.

Denote this region as Î.
Given a covariance constraint E(XXT ) � K, let ĈK ,

ÔK , and ÎK denote the capacity region, outer bound, and
the inner bound for a Gaussian broadcast channel computed
under this input constraint. Given the supporting hyperplanes
characterization of bounded and closed convex sets, using a
similar reasoning as in Section III-A, it suffices to characterize
max(R0,R1,R2)∈ĈK λ0R0 + λ1R1 + λ2R2 for λ0, λ1, λ2 > 0.
Without loss of generality, we can assume λ2 > λ1 since the
case λ2 < λ1 can be dealt with similarly by interchanging
Y1 and Y2, and the case λ2 = λ1 follows via a continuity
argument as discussed in Remark (9). We further Proposition
that it suffices to restrict ourselves to the case λ0 > λ2. This
is due to the following elementary observation: If a rate triple
(R0, R1, R2) belongs to Ĉ then so does the triple (0, R1, R2 +
R0). This inference is immediate by treating the common
message to be part of the private message to receiver Y2. Now
since λ0R0 + λ1R1 + λ2R2 ≤ 0 ·R0 + λ1R1 + λ2(R2 +R0)
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we have

max
(R0,R1,R2)∈ĈK

λ0R0 + λ1R1 + λ2R2

= max
(0,R1,R2)∈ĈK

λ1R1 + λ2R2

= max
(R1,R2)∈CK

λ1R1 + λ2R2,

where CK is the private messages capacity region that was
already characterized in Section III-A.

Hence to characterize ĈK , it suffices to show that for all
λ0 > λ2 > λ1 > 0 we have

max
(R0,R1,R2)∈ÔK

λ0R0 + λ1R1 + λ2R2

≤ max
(R0,R1,R2)∈ÎK

λ0R0 + λ1R1 + λ2R2.

Remark 10. The setting λ0 ≥ λ1 + λ2 can be deduced from
the degraded message sets capacity region and an earlier result
[11]; however this setting of parameters will be subsumed in
our treatment.

For any α ∈ [0, 1] observe that

max
(R0,R1,R2)∈ÔK

λ0R0 + λ1R1 + λ2R2

(a)

≤
sup

(V,W )→X→(Y1,Y2)

E(XXT )�K

λ0I(W ;Y1) + ᾱλ0I(W ;Y2)
+λ2I(V ;Y2|W ) + λ1I(X;Y1|V,W )

(b)
=

sup
(V,W )→X→(Y1,Y2)

E(XXT )�K

αλ0(I(X;Y1)− I(X;Y1|W ))
+ᾱλ0(I(X;Y2)− I(X;Y2|W ))

+λ2(I(X;Y2|W )− I(X;Y2|V,W ))
+λ1I(X;Y1|V,W )

(c)

≤
sup

W→X→(Y1,Y2)

E(XXT )�K

αλ0I(X;Y1) + ᾱλ0I(X;Y2)
−αλ0I(X;Y1|W )− ᾱλ0I(X;Y2|W )

+λ2I(X;Y2|W ) + λ1S
q
λ2
λ1

(X|W )

≤ sup
E(XXT )�K

(αλ0I(X;Y1) + ᾱλ0I(X;Y2))

+ sup
W→X→(Y1,Y2)

E(XXT )�K

tqλ(X|W )

= sup
E(XXT )�K

(αλ0I(X;Y1) + ᾱλ0I(X;Y2)) + V̂q
λ(K).

Here (a) follows from the first, third, and fourth constraints
of the UVW outer bound; (b) is due to the Markov chain
(V,W )→ X→ (Y1,Y2); and (c) follows from the definition
of Sq

λ(·|·) by noticing that conditioned on W , V → X →
(Y1,Y2) is Markov.

From Corollary 2, we know that there exist independent
random variables X1∗ ∼ N (0,K1), X2∗ ∼ N (0,K2), K1 +
K2 � K, such that V̂q

λ(K) = tqλ(X1∗+X2∗) and Sq
λ2
λ1

(X1∗+

X2∗) = sqλ2
λ1

(X1∗). Now let W∗ ∼ N (0,K − (K1 +K2)) be

independent of X1∗,X2∗ and let X = W∗ + X1∗ + X2∗. Ob-
serve that this choice maximizes αλ0I(X; Y1)+ᾱλ0I(X; Y2)
and attains V̂q

λ(K) simultaneously. Indeed, from Corollary 2,
the covariance matrices K1 and K2 are unique, i.e. there is a
unique such decomposition.

In order to conform to notation in the bounds, let V∗ = X2∗,

implying X = W∗ + X1∗ + V∗.

max
(R0,R1,R2)∈OK

λ0R0 + λ1R1 + λ2R2

≤ αλ0I(X; Y1) + ᾱλ0I(X; Y2)− αλ0I(X; Y1|W∗)
+ (λ2 − ᾱλ0)I(X; Y2|W∗) + λ1I(X; Y1|V∗,W∗)
− λ2I(X; Y2|V∗,W∗)

= αλ0I(W∗; Y1) + ᾱλ0I(W∗; Y2) + λ2I(V∗; Y2|W∗)
+ λ1I(X; Y1|V∗,W∗).

Now using Proposition 12 choose U∗ = X1∗ + ÃV∗ as
before to have

I(X; Y1|V∗,W∗) = I(U∗; Y1|W∗)− I(U∗;V∗|W∗).

Hence

max
(R0,R1,R2)∈ÔK

λ0R0 + λ1R1 + λ2R2

≤ αλ0I(W∗;Y1) + ᾱλ0I(W∗;Y2) + λ2I(V∗;Y2|W∗)
+ λ1

(
I(U∗;Y1|W∗)− I(U∗;V∗|W∗)

)
≤

sup
(U,V,W )→X→(Y1,Y2)

E(XXT )�K

αλ0I(W ;Y1)
+ᾱλ0I(W ;Y2) + λ2I(V ;Y2|W )
+λ1

(
I(U ;Y1|W )− I(U ;V |W )

)
.

Since the above holds for all α ∈ [0, 1], we have

max
(R0,R1,R2)∈OK

λ0R0 + λ1R1 + λ2R2

≤ min
α∈[0,1]

sup
(U,V,W )→X→(Y1,Y2)

E(XXT )�K

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2)
+λ2I(V ;Y2|W )
+λ1I(U ;Y1|W )
−λ1I(U ;V |W ).

To complete the proof that the inner and outer bounds
match we present the following Proposition 13 (essentially
established in [4]). We will defer the proof of this proposition
to Appendix I-B.

Proposition 13. The following min-max interchange holds:

min
α∈[0,1]

sup
(U,V,W )→X→(Y1,Y2)

E(XXT )�K

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2)
+λ2I(V ;Y2|W ) + λ1I(U ;Y1|W )

−λ1I(U ;V |W )

= sup
(U,V,W )→X→(Y1,Y2)

E(XXT )�K

min
α∈[0,1]

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2)
+λ2I(V ;Y2|W )
+λ1I(U ;Y1|W )
−λ1I(U ;V |W )

= sup
(U,V,W )→X→(Y1,Y2)

E(XXT )�K

λ0 min{I(W ;Y1), I(W ;Y2)}
+λ2I(V ;Y2|W ) + λ1I(U ;Y1|W )

−λ1I(U ;V |W ).

Now using Marton’s inner bound we can always achieve
the triples: R0 = min{I(W ; Y1), I(W ; Y2)}, R2 =
I(V ; Y2|W ), R1 = I(U ; Y1|W )− I(U ;V |W ). Hence

max
(R0,R1,R2)∈ÔK

λ0R0 + λ1R1 + λ2R2

≤ sup
(U,V,W )→X→(Y1,Y2)

E(XXT )�K

λ0 min{I(W ;Y1), I(W ;Y2)}
+λ2I(V ;Y2|W ) + λ1I(U ;Y1|W )

−λ1I(U ;V |W )

≤ max
(R0,R1,R2)∈ÎK

λ0R0 + λ1R1 + λ2R2.

Thus Marton’s inner bound and UVW outer bound match.
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C. An explicit representation
The boundary is achieved via Gaussian signaling. We will

show here that the capacity region established here matches
the region given by equations (2)− (4) in [11]. What we have
established in the above arguments can be phrased as

max
(R0,R1,R2)∈ĈK

λ0R0 + λ1R1 + λ2R2

= min
α∈[0,1]

max
Kw,Kv�0
Kw+Kv�K

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2)
+λ2I(V ;Y2|W ) + λ1I(X;Y1|V,W )

,

where W,V are independent zero mean Gaussians with co-
variances Kw,Kv respectively, and X = U + V +W , where
U is another zero mean Gaussian independent of W,V having
covariance K −Kw −Kv .

The region, RK , implied by the equations (2)− (4) in [11]
can be cast as

max
(R0,R1,R2)∈RK

λ0R0 + λ1R1 + λ2R2

= max
Kw,Kv�0
Kw+Kv�K

λ0 min{I(W ; Y1), I(W ; Y2)}
+λ2I(V ; Y2|W ) + λ1I(X; Y1|V,W )

,

where (as before) W,V are independent zero mean Gaussians
with covariances Kw,Kv respectively, and X = U + V +W ,
where U is another zero mean Gaussian independent of W,V
having covariance K −Kw −Kv .

The main result of this section is to show that RK = ĈK ,
i.e. in particular the following proposition.

Proposition 14. The following min-max interchange holds:

min
α∈[0,1]

max
Kw,Kv�0
Kw+Kv�K

αλ0I(W ; Y1) + ᾱλ0I(W ; Y2)
+λ2I(V ; Y2|W ) + λ1I(X; Y1|V,W )

= max
Kw,Kv�0
Kw+Kv�K

λ0 min{I(W ; Y1), I(W ; Y2)}
+λ2I(V ; Y2|W ) + λ1I(X; Y1|V,W )

,

where the random variables W ∼ N (0,Kw), V ∼ N (0,Kv),
and U ∼ N (0,K − Kw − Kv) are mutually independent,
and X = U + V + W . Further the Markov relationship
(W,U, V )→ X→ (Y1,Y2) holds.

Proof. The non-trivial direction is to establish that

min
α∈[0,1]

max
Kw,Kv�0
Kw+Kv�K

αλ0I(W ; Y1) + ᾱλ0I(W ; Y2)
+λ2I(V ; Y2|W ) + λ1I(X; Y1|V,W )

≤ max
Kw,Kv�0
Kw+Kv�K

λ0 min{I(W ; Y1), I(W ; Y2)}
+λ2I(V ; Y2|W ) + λ1I(X; Y1|V,W )

.

Let us define

SRλ(α) := max
Kw,Kv�0
Kw+Kv�K

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2)
+λ2I(V ;Y2|W ) + λ1I(X;Y1|V,W )

,

and let Wα, Vα,Xα be the unique maximizing Gaussian dis-
tributions that achieve the maximum value. These maximizers
exist because we are on a compact set of covariance matrices
and the uniqueness is a consequence of Corollary 2.

Now let α∗ ∈ [0, 1] be the minimizer of SRλ(α). The
following inequalities hold for any β ∈ [0, 1] and are clear

from the definitions:

α∗λ0I(Wβ ; Y1) + ᾱ∗λ0I(Wβ ; Y2)

+ λ2I(Vβ ; Y2|Wβ) + λ1I(Xβ ; Y1|Vβ ,Wβ)

≤ α∗λ0I(Wα∗ ; Y1) + ᾱ∗λ0I(Wα∗ ; Y2)

+ λ2I(Vα∗ ; Y2|Wα∗) + λ1I(Xα∗ ; Y1|Vα∗ ,Wα∗)

≤ βλ0I(Wβ ; Y1) + β̄λ0I(Wβ ; Y2)

+ λ2I(Vβ ; Y2|Wβ) + λ1I(Xβ ; Y1|Vβ ,Wβ).

Comparing the first and last term, we obtain that

(α∗ − β)I(Wβ ; Y1) ≤ (α∗ − β)I(Wβ ; Y2).

Case 1: If α∗ ∈ (0, 1) we have that I(Wβ ; Y1) ≤
I(Wβ ; Y2) whenever β ≤ α∗ and I(Wβ ; Y1) ≥ I(Wβ ; Y2)
whenever β ≥ α∗. Consider the sequence of unique Gaussian
maximizers Wβn , Vβn ,Xβn that attain SRλ(βn) as βn ↑ α∗.
By continuity of SRλ(α) in α (indeed it is Lipschitz con-
tinuous), and by the compactness of the set {(Kv,Kw) :
Kv,Kw � 0,Kv + Kw � K}, there is a convergent
subsequence of the associated covariance matrices. Thus there
is a maximizer W (b)

α∗ , V
(b)
α∗ ,X

(b)
α∗ that attains SRλ(α∗) such

that I(W
(b)
α∗ ; Y1) ≤ I(W

(b)
α∗ ; Y2).

Similarly approaching α∗ from above, we obtain
another maximizer W

(a)
α∗ , V

(a)
α∗ ,X

(a)
α∗ that attains SRλ(α∗)

such that I(W
(a)
α∗ ; Y1) ≥ I(W

(a)
α∗ ; Y2). However by

the uniqueness of the Gaussian maximizer at any
α ∈ [0, 1] we must have I(W

(b)
α∗ ; Y1) = I(W

(a)
α∗ ; Y1)

and I(W
(b)
α∗ ; Y2) = I(W

(a)
α∗ ; Y2). This implies that

I(W
(b)
α∗ ; Y1) = I(W

(a)
α∗ ; Y1) = (W

(b)
α∗ ; Y2) = I(W

(a)
α∗ ; Y2).

Let us denote the unique maximizer as Wα∗ , Vα∗ ,Xα∗ . We
now have I(Wα∗ ; Y1) = I(Wα∗ ; Y2) and hence, as desired,
we obtain

SRλ(α∗) = λ0 min{I(Wα∗ ; Y1), I(Wα∗ ; Y2)}
+ λ2I(Vα∗ ; Y2|Wα∗) + λ1I(X; Y1|Vα∗ ,Wα∗).

Case 2: If α∗ = 0 then a similar argument approaching 0
from above yields that I(W0; Y1) ≥ I(W0; Y2), which then
yields

SRλ(0) = λ0 min{I(W0; Y1), I(W0; Y2)}
+ λ2I(Vα∗ ; Y2|Wα∗) + λ1I(X; Y1|Vα∗ ,Wα∗),

as desired. Case α∗ = 1 follows similarly.
Thus we have established the required min-max interchange.

IV. CONCLUSION

We developed a new method to show the optimality of
Gaussian distributions. We illustrated this technique for three
examples and computed the capacity region of the two-receiver
Gaussian vector broadcast channel with common and private
messages. We can see several other problems where this tech-
nique can have immediate impact. Some of the mathematical
tools and results in the Appendix can also be of independent
interest.
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APPENDIX I
SOME KNOWN RESULTS

A. A characterization of Gaussian distributions

Theorem 3 (Theorem 1 in [12]). Let X1, ..,Xn be n mutually
independent t-dimensional random column vectors, and let
A1, .., An and B1, ..., Bn be non-singular t × t matrices. If∑n
i=1AiXi is independent of

∑n
i=1BiXi, then the Xi are

normally distributed.

Remark 11. In this paper we only use Ai, Bi as multiples of
I . In this case, the theorem follows from an earlier result of
Skitovic [13]. There were scalar versions of this known since
the 30s, including Bernstein’s theorem. The proof relies on
solving the functional equation satisfied by the characteristic
functions.

Corollary 3. If X1 and X2 are independent t-dimensional
random column vectors, and if X1 + X2 and X1 − X2

are independent then X1,X2 are normally distributed with
identical covariances.

Proof. The fact that X1,X2 are normally distributed follows
from Theorem 3. Let X̂i := Xi − E(Xi), i = 1, 2. Notice
that shifting random variables by constants doesn’t affect the
independence, we have

E((X̂1 +X̂2)(X̂1−X̂2)T ) = E(X̂1 +X̂2) E(X̂1−X̂2)T = 0.

On the other hand

E((X̂1 + X̂2)(X̂1 − X̂2)T ) = E(X̂1X̂
T
1 )− E(X̂2X̂

T
2 ).

Thus they have the same covariance matrix.

B. Min-max theorem

We reproduce the following Corollary from the Appendix
of [4].

Corollary 4 (Corollary 2 in [4]). Let Λd be the d-dimensional
simplex, i.e. αi ≥ 0 and

∑d
i=1 αi = 1. Let P be a set of

probability distributions p(u). Let Ti(p(u)), i = 1, .., d be a
set of functions such that the set A, defined by

A = {(a1, a2, ..., ad) ∈ Rd : ai ≤ Ti(p(u)) for some p(u) ∈ P},

is a convex set. Then

sup
p(u)∈P

min
α∈Λd

d∑
i=1

αiTi(p(u)) = min
α∈Λd

sup
p(u)∈P

d∑
i=1

αiTi(p(u)).

We will now show how one can use the Corollary 4 to
establish Proposition 13.

Proof of Proposition 13:

Proof. We take P as the set of p(u, v, w,x) that satisfy the
covariance constraint. Here we take d = 2 and set

T1(p(u, v, w, x)) = λ0I(W ; Y1) + λ1I(U ; Y1|W )

+ λ2I(V ; Y2|W )− λ1I(U ;V |W )

T2(p(u, v, w, x)) = λ0I(W ; Y2) + λ1I(U ; Y1|W )

+ λ2I(V ; Y2|W )− λ1I(U ;V |W )

The following set is a convex set:

A =

{
(a1, a2) : ai ≤ Ti(p(u, v, w,x)), i = 1, 2

for some p ∈ P

}
To show this, suppose we have (a1, a2), (b1, b2) ∈ A, and
p, q ∈ P such that ai ≤ Ti(p), bi ≤ Ti(q), i = 1, 2.
Consider a new distribution r(u, v, w̃,x) where W̃ = (Q,W ),
Q is Bernoulli(α), and r(u, v, (0, w),x) = ᾱ p(u, v, w,x),
r(u, v, (1, w),x) = α q(u, v, w,x). Clearly Er(XXT ) =
ᾱEp(XXT ) + αEq(XXT ) � K thus r ∈ P . Now Ti(r) =
λ0Ir(Q; Yi) + ᾱTi(p) +αTi(q) ≥ ᾱai +αbi, i = 1, 2, which
means ᾱ(a1, a2) + α(b1, b2) ∈ A. Thus A is convex.

Hence from Corollary 4, we have

min
α∈[0,1]

sup
(U,V,W )→X→(Y1,Y2)

E(XXT )�K

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2)
+λ2I(V ;Y2|W ) + λ1I(U ;Y1|W )

−λ1I(U ;V |W )

= sup
(U,V,W )→X→(Y1,Y2)

E(XXT )�K

min
α∈[0,1]

αλ0I(W ;Y1) + ᾱλ0I(W ;Y2)
+λ2I(V ;Y2|W )
+λ1I(U ;Y1|W )
−λ1I(U ;V |W )

= sup
(U,V,W )→X→(Y1,Y2)

E(XXT )�K

λ0 min{I(W ;Y1), I(W ;Y2)}
+λ2I(V ;Y2|W ) + λ1I(U ;Y1|W )

−λ1I(U ;V |W )
.

APPENDIX II
EXISTENCE OF MAXIMIZING DISTRIBUTIONS

The aim of this section is to give formal proofs of Propo-
sitions 7 and 10 as our arguments critically hinge on proving
properties of maximizing distributions. Our basic topological
space consists of Borel probability measures on Rt endowed
with the weak-convergence topology. This is a metric space
with the Levy-Prokhorov metric yielding the distance between
two probability measures.

Remark 12. For the proofs in this section, it is not necessary
to know the precise definition of the Levy-Prokhorov metric;
but just that the topological space is a metric space and hence
normal4. Notation wise, most of the time we use random
variables X instead of the induced probability measure to
represent points on this space. We will also try to state the
various theorems that we employ in this section as and when
we use them.

A. Properties of additive Gaussian noise

In this section we will establish the validity of Proposition
7. For this we need some tools and results from analysis.

We first establish certain smoothness properties of distribu-
tions obtained according to Y = X+Z, where Z ∼ N (0, I) is
independent of X. Stronger forms of such smoothness results
are very well known in certain mathematical circles and are
used widely in the study of the heat equation. Here we present
the results for completeness.

4A normal topological space is one where every two disjoint closed sets
have disjoint open neighbourhoods.
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For simplicity of notation, we consider the scalar case. Let
F̃ (x) = P(X ≤ x). Note that 0 ≤ F̃ (x) ≤ 1. Then we see
that since fz(z) has a density, we have

P(Y ≤ y) =

∫ ∞
−∞

1√
2π
e−z

2/2F̃ (y − z)dz.

Thus we have

P(Y ≤ y + δ) =

∫ ∞
−∞

1√
2π
e−z

2/2F̃ (y + δ − z)dz

=

∫ ∞
−∞

1√
2π
e−(z+δ)2/2F̃ (y − z)dz.

By the Dominated Convergence Theorem (to justify inter-
change of derivative and integration) Y has a density given
by

fY (y) = lim
δ→0

1

δ
(P(Y ≤ y + δ)− P(Y ≤ y))

=

∫ ∞
−∞

−z√
2π
e−z

2/2F̃ (y − z)dz.

Hence

|fY (y)| ≤
∫ ∞
−∞

|z|√
2π
e−z

2/2dz =
2√
2π
.

Again by Dominated Convergence Theorem we have

f ′Y (y) =

∫ ∞
−∞

z2 − 1√
2π

e−z
2/2F̃ (y − z)dz.

Thus

|f ′Y (y)| ≤
∫ ∞
−∞

|z2 − 1|√
2π

e−z
2/2dz ≤ 2.

Remark 13. Thus Y has a bounded density and a bounded
first derivative of the density. In the vector case, similarly we
have a bounded density and a uniformly bounded L1 norm
for ∇fY(y). For the setting Y = GX + Z, we have the same
result.

Next, we state a general proposition which relates weak
convergence to convergence of densities.

Proposition 15 (Lemma 1 in [14]). Suppose that Yn and
Y have continuous densities fn(y), f(y) with respect to the
Lebesgue measure on Rt. If Yn

w⇒ Y and

sup
n
|fn(y)| ≤M(y) <∞, ∀y ∈ Rt

and

fn is equicontinuous, i.e. ∀ y, ε > 0, ∃ δ(y, ε), n(y, ε)

such that ‖y−y1‖ < δ(y, ε) implies that |fn(y)− fn(y1)| <
ε ∀n ≥ n(y, ε), then for any compact subset C of Rt

sup
y∈C
|fn(y)− f(y)| → 0 as n→∞.

If {fn} is uniformly equicontinuous, i.e. δ(y, ε), n(y, ε) do
not depend on y, and f(yn)→ 0 whenever ‖yn‖ → ∞ then

sup
y∈Rt

|fn(y)− f(y)| = ‖fn(y)− f(y)‖∞ → 0 as n→∞.

Proposition 16. Let {Xn} be any sequence of random vari-
ables and let Yn = Xn+Z where Z ∼ N (0, I) is independent
of {Xn}. Let fn(y) represent the density of Yn. Then the
collection of functions {fn(y)} is uniformly bounded and
uniformly equicontinuous.

Proof. The uniform bound on the density is clear from Remark
(13). To see the uniform equicontinuity observe that by the
mean value theorem

|fn(y + ∆)− fn(y)| = |∇fn(y′) ·∆|
(a)

≤ ‖∇fn(y′)‖1‖∆‖∞
≤ ‖∇fn(y′)‖1‖∆‖2

where (a) follows from Holder’s inequality. Now the uniform
bound on L1 norm of ∇fY(y) from Remark (13) yields the
desired equicontinuity.

Definition: A collection of random variables Xn on Rt is
said to be tight if for every ε > 0 there is a compact set
Cε ⊂ Rt such that P(Xn /∈ Cε) ≤ ε, ∀n.

Proposition 17. Consider a sequence of random variables
{Xn} such that E(XnXT

n ) � K, ∀n. Then the sequence is
tight.

Proof. Define Cε = {x : ‖x‖22 ≤ 1
ε tr(K)}. By Markov’s

inequality P(‖Xn‖2 > 1
ε tr(K)) ≤ εE(‖Xn‖2)

tr(K) ≤ ε, ∀n.

Theorem 4 (Prokhorov). If {Xn} is a tight sequence of
random variables in Rt then there exists a subsequence
{Xni} and a limiting probability distribution X∗ such that
Xni

w⇒ X∗.

Proposition 18. Let Xn
w⇒ X∗ and let Z ∼ N (0, I) be

pairwise independent of {Xn},X∗. Let Yn = Xn+Z, Y∗ =
X∗ + Z. Further let E(XnXT

n ) � K, E(X∗X
T
∗ ) � K. Let

fn(y) denote the density of Yn and f∗(y) denote the density
of Y∗. Then

1) Yn
w⇒ Y∗,

2) fn(y)→ f∗(y) for all y,
3) h(Yn)→ h(Y∗).

Proof. The first part follows from pointwise convergence of
characteristic functions (which is equivalent to weak conver-
gence by the Levy’s continuity theorem) since ΦYn

(t) =
ΦXn(t)e−‖t‖

2/2. The second part (a stronger proposition than
weak convergence) comes from Proposition 15. We have
uniform equicontinuity since∇fn(y) has a uniformly bounded
L1 norm (see Remark (13)). Bounded L1 norm of ∇fn(y)
also implies that f∗(yn)→ 0 whenever ‖yn‖ → ∞ (Reason:
if a point has density > ε then it has a neighbourhood
depending only on ε where the density is bigger than ε

2 , hence
this implies that this neighbourhood has a lower bounded
probability measure depending only on ε. This cannot happen
at infinitely many points of a sequence yn such that |yn| → ∞
since the total integral is one). The third part comes from
Theorem 5 (below) in a direct manner as the densities are
uniformly bounded, the second moment (κ = 2) is uniformly
bounded by tr(K), and the pointwise convergence from the
second part.
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Theorem 5 (Theorem 1 in [15]). Let {Yi ∈ Ct} be a sequence
of continuous random variables with pdf’s {fi} and Y∗ be a
continuous random variable with pdf f∗ such that fi → f∗
pointwise. Let ‖y‖ =

√
y†y denote the Euclidean norm of

y ∈ Ct. If the conditions

max{sup
y
fi(y), sup

y
f∗(y)} ≤ F,

max{
∫
‖y‖κfi(y)dy,

∫
‖y‖κf∗(y)dy} ≤ L

hold for some κ > 1 and for all i then h(Yi)→ h(Y∗).

Remark 14. This theorem is relatively straightforward. One
gets lim infi h(Yi) ≥ h(Y∗) coming due to the upper bound
on the densities and lim supi h(Yi) ≤ h(Y∗) due to the
moment constraints. A similar kind of result can be found
in Appendix 3A of [3].

We now have the tools to prove Proposition 7.
Proof of Proposition 7:

Proof. Define

vq
λ(K̂) = sup

X:E(XXT )=K̂

sqλ(X).

Let Xn be a sequence of random variables such that
E(XnXT

n ) = K̂ and sqλ(Xn) ↑ vq
λ(K̂). By the covari-

ance constraint (Proposition 17) we know that the sequence
of random variables Xn forms a tight sequence and by
Theorem 4 there exists X∗

K̂
and a convergent subsequence

such that Xni
w⇒ X∗

K̂
. From Proposition 18 we have that

h(Y1ni), h(Y2ni)→ h(Y∗
1K̂

), h(Y∗
2K̂

) and hence sqλ(X∗
K̂

) =

vq
λ(K̂). We have the following trivial bound

vq
λ(K̂) = sqλ(X∗

K̂
) ≤ I(X∗

K̂
; Y1) ≤ 1

2
log |I +G1K̂G

T
1 |.

Recall that Vq
λ(K) is defined using a convex combination

as follows

Vq
λ(K) = sup

(V,X):E(XXT )�K
V→X→(Y1,Y2)

sqλ(X|V ).

Hence to obtain the best convex combination subject to the
covariance constraint it suffices to restrict ourselves to the
family of maximizers X∗

K̂
for K̂ � 0. Thus, we can see that

Vq
λ(K) = sup

αi,K̂i:αi≥0,
∑
i αi=1∑

i αiK̂i�K

∑
i

αiv
q
λ(K̂i),

where {αi} denotes a finite convex combination. It takes
t(t+1)

2 constraints to preserve the covariance matrix and one
constraint to preserve

∑
i αiv

q
λ(K̂i). Hence, by using the Bunt-

Carathedory theorem5, we can restrict ourselves to convex
combinations of at most m := t(t+1)

2 + 1 points, i.e.

Vq
λ(K) = sup

αi,K̂i:αi≥0,
∑m
i=1 αi=1∑m

i=1 αiK̂i�K

m∑
i=1

αiv
q
λ(K̂i).

5We need to use Bunt’s extension [16] of Caratheodory’s theorem as we no
longer have compactness of the set required for the usually referred extension
due to Fenchel. We can also use the vanilla Caratheordory at the expense of
one extra cardinality.

Consider any sequence of convex combinations ({αni }, {Kn
i })

that approaches the supremum as n→∞. Using compactness
of the m-dimensional simplex, we can assume w.l.o.g. that
αni

n→∞→ α∗i , i = 1, ..,m. If any α∗i = 0, since αni K
n
i � K

and vq
λ(Kn

i ) ≤ 1
2 log |I + G1K

n
i G

T
1 | it is easy to see that

αni v
q
λ(Kn

i )
n→∞→ 0. Thus we can assume that mini=1,..m α

∗
i =

α∗ > 0. This implies that Kn
i � 2

α∗K for large enough n
uniformly in i. Hence we can find a convergent subsequence
for each i, 1 ≤ i ≤ m, so that Knk

i
k→∞→ K∗i . Putting these

together, we have

Vq
λ(K) =

m∑
i=1

α∗i v
q
λ(K̂∗i ),

or in other words, we can find a pair of random variables
(V∗,X∗) with |V∗| ≤ t(t+1)

2 + 1 such that Vq
λ(K) =

sqλ(X∗|V∗).

B. Continuity in a pathwise sense on concave envelopes

In this section we will establish the validity of Proposition
10. For this we need more tools and results from analysis.

Proposition 19. For λ > 1, there exists Cλ such that sqλ(X) ≤
Cλ for all X.

Proof. We know from Theorem 1 that if E(XXT ) � K then

sqλ(X) ≤ Sq
λ(X) ≤ Vq

λ(K) ≤ sqλ(X∗K)

for some X∗K ∼ N (0,K∗), K∗ � K. This implies that

sup
X

sqλ(X) ≤ sup
K�0:X∼N (0,K)

I(X; Y1)− λI(X; Y2).

Let Σi = (GTi Gi)
−1, i = 1, 2. For X ∼ N (0,K), we have

2I(X; Y1)− 2λI(X; Y2)

= log |I +G1KG
T
1 | − λ log |I +G2KG

T
2 |

= log |I +KGT1 G1| − λ log |I +KGT2 G2|
= − log |Σ1|+ λ log |Σ2|+ log |Σ1 +K| − λ log |Σ2 +K|.

To bound the last two terms, we use the min-max theorem on
eigenvalues: Let µj(A) be the j-th smallest eigenvalue of the
symmetric matrix A ∈ Rt×t, we have

µj(A) = min
Lj

max
06=u∈Lj

uTAu

uTu
= max
Lt+1−j

min
06=u∈Lt+1−j

uTAu

uTu
,

where Lj is a j-dimensional subspace of Rt. Notice that t-
dimensional subspace of Rt is unique, that is Lt = Rt, we
have

µ1(A) = max
Lt

min
06=u∈Lt

uTAu

uTu
= min

06=u∈Rt
uTAu

uTu
,

µt(A) = min
Lt

max
06=u∈Lt

uTAu

uTu
= max

06=u∈Rt
uTAu

uTu
.
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Thus for any non-zero u ∈ Rt we have µ1(A) ≤ uTAu
uTu

≤
µt(A). Now

µj(K + Σ)

= min
Lj

max
06=u∈Lj

(
uTKu

uTu
+
uTΣu

uTu
)

≥ min
Lj

max
0 6=u∈Lj

(
uTKu

uTu
+ µ1(Σ)) = µj(K) + µ1(Σ),

≤ min
Lj

max
06=u∈Lj

(
uTKu

uTu
+ µt(Σ)) = µj(K) + µt(Σ).

Hence we have µj(K) + µ1(Σ) ≤ µj(K + Σ) ≤ µj(K) +
µt(Σ), j = 1, 2, . . . , t. Now

log |Σ1 +K| − λ log |Σ2 +K|

=

t∑
j=1

log
µj(K + Σ1)

(µj(K + Σ2))λ

≤
t∑

j=1

log
µj(K) + µt(Σ1)

(µj(K) + µ1(Σ2))λ

≤ t ·max
j

log
µj(K) + µt(Σ1)

(µj(K) + µ1(Σ2))λ

(a)

≤ t · log
µ∗ + µt(Σ1)

(µ∗ + µ1(Σ2))λ
,

where µ∗ = max{0, 1
λ−1 (µ1(Σ2) − λµt(Σ1))}, and (a)

holds since µj(K) ≥ 0, the derivative of the function
f(x) := log(x + µt(Σ1)) − λ log(x + µ1(Σ2)) is zero at
x∗ = 1

λ−1 (µ1(Σ2) − λµt(Σ1)), negative when x > x∗ and
positive when x < x∗. Finally the upper bound is finite by
noticing that µt(Σ1), µ1(Σ2) > 0 since the positive semi-
definite matrices Σ1 and Σ2 are invertible.

For m ∈ N the set Am := {X : E(‖X‖2) ≤ m}
is a closed subset of the topology space. This is because
if Xn

w⇒ X∗ then E(‖X∗‖2) ≤ lim infn E(‖Xn‖2) (by
definition of weak convergence and monotone convergence
theorem by considering continuous and bounded functions
fn(x) = min{x2, n}).

Recall our definition

Sq
λ(X) = C(sqλ(X)) = sup

p(v|x):V→X→(Y1,Y2)

sqλ(X|V ).

Taking V = X we observe that Sq
λ(X) ≥ 0. Define s̄qλ(X) =

max{sqλ(X), 0}. Now note that Sq
λ(X) = C(̄sqλ(X)), since

Sq
λ(X) ≥ 0.
Let s̄q,mλ (X) be s̄qλ(X) restricted to Am. Consider a se-

quence Xn ∈ Am such that Xn
w⇒ X∗. Since the second

moments are uniformly bounded, similar arguments as in
Proposition 7 will imply that s̄q,mλ (Xn) → s̄q,mλ (X∗). Let
sq,mλ (X) be the continuous extension of s̄q,mλ (X) from Am
on to P . This exists due to the Tietze Extension Theorem
(stated below).

Theorem 6 (The Tietze Extension Theorem). Let A be a
closed subset in a normal topological space, then every
continuous map f : A → R can be extended to a continuous
map on the whole space.

Further observe that the function sq,mλ (X) is bounded and
non-negative since s̄q,mλ (X) is bounded (from above by Cλ)
and non-negative.

The following result follows from a recent result in [17].
The convex hull of a function f(X) is the lower convex
envelope, or equivalently −C(−f(X)).

Theorem 7. For the set of Borel probability measures on Rt
endowed with the weak-convergence topology, the convex hull
of an arbitrary bounded and continuous function is continuous.

Proof. This theorem is obtained directly from Corollary 5 and
Theorem 1 in [17].

An immediate corollary, which follows from the fact that
convex hull of f(X) is −C(−f(X)), is the following:

Corollary 5. For the set of Borel probability measures on
Rt endowed with the weak-convergence topology, the upper
concave envelope of an arbitrary bounded and continuous
function is continuous.

Now define Sq,m
λ (X) to be concave envelope of sq,mλ (X).

From Corollary 5 we have that Sq,m
λ (X) is continuous; Further

since sq,mλ (X) is bounded and non-negative, so is Sq,m
λ (X).

Continuity in particular implies that

if Xn
w⇒ X∗, then Sq,m

λ (Xn)→ Sq,m
λ (X∗). (1)

Proposition 20 (Continuity in a pathwise sense). If Xn
w⇒ X∗

and E(XnXT
n ),E(X∗X

T
∗ ) � K, then Sq

λ(Xn)→ Sq
λ(X∗).

Proof. The proof is essentially validating the interchange of
limits between m,n in (1). We show a uniform convergence
(in m) of Sq,m

λ (Xn) → Sq
λ(Xn) and this suffices to justify

the interchange due to the following argument: Given ε > 0
choose Mε > 0 such that |Sq

λ(Xn) − Sq,m
λ (Xn)| < ε for

all n whenever m > Mε (such an Mε exists by uniform
convergence). This implies that ∀ m > Mε we have

Sq
λ(Xn) ≤ Sq,m

λ (Xn) + ε,
n→∞
=⇒ lim sup

n
Sq
λ(Xn) ≤ Sq,m

λ (X∗) + ε,

m→∞
=⇒ lim sup

n
Sq
λ(Xn) ≤ Sq

λ(X∗) + ε.

Similarly ∀m > Mε

Sq
λ(Xn) ≥ Sq,m

λ (Xn)− ε,
n→∞
=⇒ lim inf

n
Sq
λ(Xn) ≥ Sq,m

λ (X∗)− ε,
m→∞
=⇒ lim inf

n
Sq
λ(Xn) ≥ Sq

λ(X∗)− ε.

Hence Sq
λ(Xn) → Sq

λ(X∗) provided we show the uniform
convergence (in m) of Sq,m

λ (Xn) → Sq
λ(Xn). Given ε > 0

consider a V such that Sq
λ(Xn) ≤ sqλ(Xn|V ) + ε

4 . Observe
that V induces a probability measure on the space of all
probability measures. We now bound the induced probability
measure assigned to distributions such that E(‖X‖2) ≥ m.
Since E(‖Xn‖2) ≤ tr(K), from Markov’s inequality the mass
of the induced measure on the probability measures such that
E(‖X‖2) ≥ m is at most tr(K)

m . Hence their contribution to
sqλ(Xn|V ) is at most Cλtr(K)

m , where Cλ is the global upper
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bound on sqλ(X). Thus by taking m large enough we can make
this smaller than ε

4 . Hence

Sq,m
λ (Xn) ≥ sq,mλ (Xn|V ) ≥ sqλ(Xn|V )− ε

4
≥ Sq

λ(Xn)− ε

2
.

Similar argument (taking V ′ such that Sq,m
λ (Xn) ≤

sq,mλ (Xn|V ′) + ε
4 ) also shows that Sq

λ(Xn) ≥ Sq,m
λ (Xn)− ε

2 .

Hence for all m > 4Cλtr(K)
ε we have that |Sq

λ(Xn) −
Sq,m
λ (Xn)| ≤ ε uniformly in n as desired.

We now have the tools to prove Proposition 10.
Proof of Proposition 10:

Proof. The proof is similar to Proposition 7. Define

v̂q
λ(K̂) := sup

X:E(XXT )=K̂

tqλ(X)

= sup
X:E(XXT )=K̂

−λ0αI(X; Y1)
+(λ2 − λ0ᾱ)I(X; Y2)

+λ1S
q
λ2
λ1

(X)
.

Let Xn be a sequence of random variables such that
E(XnXT

n ) = K̂ and tqλ(Xn) ↑ v̂q
λ(K̂). By the covariance

constraint (Proposition 17) we know that the sequence of
random variables Xn forms a tight sequence and by Theorem
4 there exists X∗

K̂
and a convergent subsequence such that

Xni
w⇒ X∗

K̂
. Proposition 18 yields that h(Y1ni), h(Y2ni)→

h(Y∗
1K̂

), h(Y∗
2K̂

) and Proposition 20 yields Sq
λ2
λ1

(Xni) →

Sq
λ2
λ1

(X∗
K̂

). Hence tqλ(X∗
K̂

) = v̂q
λ(K̂). Since V̂q

λ(K) is defined

using a convex combination as follows

V̂q
λ(K) = sup

(W,X):E(XXT )�K
W→X→(Y1,Y2)

tqλ(X|W ),

to obtain the maximizer subject to the covariance constraint it
suffices to restrict ourselves to the family of maximizers X∗

K̂

for K̂ � 0. Thus, we can see that

V̂q
λ(K) = sup

αi,K̂i:
∑
i αiK̂i�K

∑
i

αiv̂
q
λ(K̂i),

where {αi} denotes a finite convex combination. It takes
t(t+1)

2 constraints to preserve the covariance matrix and
one constraint to preserve tqλ(X|W ). Hence by Bunt-
Caratheodory’s theorem and a similar argument as in the proof
of Proposition 7, we can find a pair of random variables
(W∗,X∗) with |W∗| ≤ t(t+1)

2 + 1 such that V̂q
λ(K) =

tqλ(X∗|W∗).

Indeed the proof technique we used carries over almost
verbatim to establish this general Proposition, which could be
useful in other multi-terminal information theory scenarios.

Proposition 21. Consider the space of all Borel probability
distributions on Rt endowed with the topology induced by
weak convergence. If f(X) is a bounded real-valued function
with the following property, P : for any sequence {Xn} that
satisfies the two properties (i) ∃ κ > 1 such that E(‖Xn‖κ) ≤
B ∀n (i.e. sequence has a uniformly bounded κ-th moment)
and (ii) Xn

w⇒ X∗, we have f(Xn)→ f(X∗); then the same

properties holds for F (X) = C(f(X)), its upper concave
envelope; i.e. F (X) is bounded and satisfies P .

Proof. The boundedness of F (X) is immediate. To show that
F (X) satisfies property P , we use the same argument as
earlier. Consider a sequence {Xn} with a uniformly bounded
κ-th moment such that Xn

w⇒ X∗. First, restrict f to Am (set
of all distributions whose κ-th moment is upper bounded by
m) and observe that this induces a continuous (by property
P of f ) and bounded function (on the topology induced by
weak convergence) from this closed set, Am, to reals. Now
we extend this restricted function by the Tietze extension
theorem to obtain fm(X), a continuous and bounded function
on the whole space. Then from Corollary 5 we see that the
concave envelope of fm(X), denoted by Fm(X) is bounded
and continuous. Finally, in a similar fashion as in the proof
of Proposition 20, one can establish a uniform convergence
(in n) of Fm(Xn) → F (Xn) and hence conclude that
F (Xn)→ F (X∗).

Remark 15. This proposition can be used to establish the
existence of the maximizing distributions in other network
information theory settings, without having to repeat the
arguments or the machinery we used in this paper.

APPENDIX III
GAUSSIAN VECTOR WIRETAP CHANNEL

In this section we will show how the techniques we intro-
duced in this paper can be adapted to establish the optimality
of Gaussian auxiliary random variables in the vector Gaussian
wiretap channel setting. We only provide a brief outline since
the details mimic the arguments in Section II-C.

Consider a vector Gaussian wiretap channel

Y1 = G1X + Z1

Y2 = G2X + Z2,

where Z1 ∼ N (0, I), Z2 ∼ N (0, I), and the matrices G1

and G2 are invertible (see Remark (1)). Further we impose
a covariance constraint on the input, i.e. E(XXT ) � K. The
goal of the wiretapper setting is to communicate a message M
to receiver Y1 while keeping the eavesdropper Y2 ignorant
of the message. For formal description and known results in
this setting the readers are urged to refer to Chapter 22 in [3].

The secrecy capacity, CS, for vector Gaussian wiretap
channel under a covariance constraint is given by

sup
(Q,U,X):E(XXT )�K
(Q,U)→X→(Y1,Y2)

I(U ; Y1|Q)− I(U ; Y2|Q)

= sup
X:E(XXT )�K

C

(
I(X; Y1)− I(X; Y2)

+C(I(X; Y2)− I(X; Y1))

)
,

where the equality is an immediate consequence of the def-
inition of an upper concave envelope of a function. The
conditioning on Q in the capacity expression is due to the
covariance constraint; note that in the discrete memoryless
setting one does not need this conditioning in the capacity
formula. The achievability and the converse for this formula
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follows from arguments in the discrete memoryless setting,
see [3]. (Note that due to the covariance constraint one must
stop the converse argument at equality labeled (d) on Page
555 of [3].)

Here we just outline the key steps (it could be a useful
template for other settings as well), which are identical to
those in Sections II-B and II-C.
• Consider the objective function C(I(X; Y1) −
λI(X; Y2) + C(I(X; Y2) − λI(X; Y1))), where
λ > 1.

• Observe that C(I(X; Y2) − λI(X; Y1)) satisfies the
factorization property (see Proposition 6), and there
is a maximizer for supX:E(XXT )�K C(I(X; Y2) −
λI(X; Y1)) (see Proposition 7).

• Observe that C(I(X; Y1)− λI(X; Y2) + C(I(X; Y2)−
λI(X; Y1))) satisfies the factorization property
(see Proposition 9), and there is a maximizer
for supX:E(XXT )�K C(I(X; Y1) − λI(X; Y2) +
C(I(X; Y2)− λI(X; Y1))) (see Proposition 10).

• By going to the two-letter version of the channel and
using the invariance of mutual information with respect to
rotations, in a fashion identical to the proof of Proposition
11, one obtains that the optimizer is a Gaussian.

• Observe the continuity of the maximum value at λ = 1
and let λ ↓ 1. (see Remark (9)).

Using the above arguments we obtain that

CS =
1

2
max

0�K2�K1�K
log
|I +G1K1G

T
1 |

|I +G2K1GT2 |
+ log

|I +G2K2G
T
2 |

|I +G1K2GT1 |
.

The results in [18]–[20] seems to indicate that the maximum
value is attained by setting K2 = 0. As mentioned earlier
(see Remark (5)), the techniques introduced in this paper are
aimed at showing that the maximizers are Gaussian and further
properties of the maximizers can be attained using standard
optimization techniques.

APPENDIX IV
ALTERNATE PATH TO THEOREM 1

Below, we will give an elementary proof of Theorem 1
without invoking Corollary 3. However this approach only
shows that Gaussian is a maximizer and not necessarily the
unique maximizer6.

Corollary 6. For every l ∈ N, n = 2l, let (V n,Xn) ∼∏n
i=1 p∗(vi,xi). Then (V n, X̃n) achieves Vq

λ(K) where
X̃n|

(
V n = (v1, v2, .., vn)

)
∼ 1√

n
(Xv1 + Xv2 + · · ·+ Xvn) .

We take Xv1 ,Xv2 , . . . ,Xvn to be independent random vari-
ables here.

Proof. The proof follows from induction using Proposition 8.

Consider (V n,Xn) ∼
∏n
i=1 p∗(vi,xi), where p∗(v,x)

achieves Vq
λ(K). Let V = {1, ..,m} where m ≤

t(t+1)
2 + 1. Now consider (V n, X̃n) where X̃n|

(
V n =

6It is possible that this approach can be extended to provide a proof of
uniqueness as well, but we do not pursue it here.

(v1, v2, .., vn)
)
∼ 1√

n
(Xv1 + Xv2 + · · ·+ Xvn) . Again we

take Xv1 ,Xv2 , . . . ,Xvn to be independent random variables.
As is common in information theoretic arguments, we

are going to consider typical sequences and atypical se-
quences. Let us define typical sequences in the following
fashion, T (n)(V ) := {vn :

∣∣|{i : vi = v}| − np∗(v)
∣∣ ≤

nωnp∗(v), ∀v ∈ [1 : m]}. where ωn is any sequence such
that ωn → 0 as n → ∞ and ωn

√
n → ∞ as n → ∞. For

instance ωn = logn√
n

.
Note that (using Chebyshev’s inequality)

P(
∣∣|{i : vi = v}| − np∗(v)

∣∣ > nωnp∗(v)) ≤ 1− p∗(v)

p∗(v)ω2
nn
.

Hence P(vn /∈ T (n)(V ))→ 0 as n→∞.
Consider any sequence of typical sequences vn ∈ T (n)(V ).

Consider a sequence of induced distributions X̂n ∼ X̃n|vn,
where by X̃n|vn we mean X̃n|(V n = vn) for ease of notation.

Proposition 22. X̂n
w⇒ N (0,

∑m
v=1 p∗(v)Kv)

Proof. For given vn, let An(v) = |{i : vi = v}|. We know
that An(v) ∈ np∗(v)(1 ± wn),∀v. Consider a c ∈ Rt with
‖c‖ = 1. Let X̂c

n,i ∼ 1√
n
cT · Xvi and X̂c

n,i be independent
random variables over i. Note that

∑n
i=1 X̂c

n,i ∼ cT X̂n.
Note that

n∑
i=1

E((X̂c
n,i)

2) =
1

n

∑
v

An(v)cTKvc

→ cT
(∑

v

p∗(v)Kv

)
c.

n∑
i=1

E((X̂c
n,i)

2; |X̂c
n,i| > ε1)

=
1

n

∑
v

An(v) E(cTXvX
T
v c; cTXvX

T
v c ≥ nε21)

≤
∑
v

p∗(v)(1 + ωn) E(cTXvX
T
v c; cTXvX

T
v c ≥ nε21)

→ 0.

In the last convergence we use that Kv’s are bounded,
and hence cTXv has a bounded seconded moment. Hence
from Lindeberg-Feller CLT7 we have

∑n
i=1 X̂c

n,i
w⇒

N (0, cT
∑
v p∗(v)Kvc). Hence X̂n

w⇒ N (0,
∑
v p∗(v)Kv)

(Cramer-Wold device).

The next proposition shows a uniform convergence of the
conditional laws to the Gaussian.

Proposition 23. Given any δ > 0, there exists N0 such that
∀n > N0 we have for all vn ∈ T (n)(V )

sqλ(X̃n|vn)− sqλ(X∗) ≤ δ,

where X∗ ∼ N (0,
∑
v p∗(v)Kv).

Proof. Assume not. Then we have a subsequence vnk ∈
T (nk)(V ) and distributions X̃nk |vnk such that

sqλ(X̃nk |vnk) > sqλ(X∗) + δ, ∀k.

7We adopt the notation in Theorem (4.5), Chapter 2 in [21].
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However from Proposition 22 we know that X̃nk |vnk
w⇒ X∗

and from Proposition 18 we have sqλ(X̃nk |vnk) → sqλ(X∗), a
contradiction.

Theorem 8. There is a single Gaussian distribution (i.e. no
mixture is required) that achieves Vq

λ(K).

Proof. We know from Corollary 6 that for every l ∈ N, n = 2l,
the pair (V n, X̃n) achieves Vq

λ(K). Hence

Vq
λ(K) =

∑
vn

p∗(v
n)sqλ(X̃n|vn)

=
∑

vn∈T (n)(V )

p∗(v
n)sqλ(X̃n|vn)

+
∑

vn /∈T (n)(V )

p∗(v
n)sqλ(X̃n|vn).

For a given vn, let X̂ ∼ X̃n|vn. Then note that E(X̂X̂T ) �∑m
v=1Kv. Thus sqλ(X̂) ≤ I(X̂; Y1) ≤ C for some fixed

constant C that is independent of vn. Thus using Proposition
23 we can upper bound Vq

λ(K) for large n by

Vq
λ(K) =

∑
vn∈T (n)(V )

p∗(v
n)sqλ(X̃n|vn)

+
∑

vn /∈T (n)(V )

p∗(v
n)sqλ(X̃n|vn)

≤
∑

vn∈T (n)(V )

p∗(v
n)(sqλ(X∗) + δ)

+ C
∑

vn /∈T (n)(V )

p∗(v
n)

= P(vn ∈ T (n))(sqλ(X∗) + δ) + C P(vn /∈ T (n)).

Here X∗ ∼ N (0,
∑
v p∗(v)Kv). Since P(vn ∈ T (n)) → 1

as n → ∞ we get Vq
λ(K) ≤ sqλ(X∗) + δ; but δ > 0

is arbitrary, hence Vq
λ(K) ≤ sqλ(X∗). The other direction

Vq
λ(K) ≤ sqλ(X∗) is trivial from the definition of Vq

λ(K) and
the fact that

∑
v p∗(v)Kv � K.
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