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Abstract

We study the capacity regions of broadcast channels with binary inputs and symmetric
outputs. We study the partial order induced by the more capable ordering of broadcast channels
for channels belonging to this class. This study leads to some surprising connections regarding
various notions of dominance of receivers. The results here also help us isolate some classes of
symmetric channels where the best known inner and outer bounds differ.

1 Introduction

In [1], Cover introduced the notion of a broadcast channel through which one sender transmits
information to two or more receivers. For the purpose of this paper we focus our attention on
broadcast channels with precisely two receivers.

Definition: A broadcast channel (BC) consists of an input alphabet X and output alphabets
Y1 and Y2 and a probability transition function p(y1, y2|x). A ((2nR1 , 2nR2), n) code for a broadcast
channel consists of an encoder

xn : 2nR1 × 2nR2 → X n,

and two decoders
Ŵ1 : Yn1 → 2nR1

Ŵ2 : Yn2 → 2nR2 .

The probability of error P (n)
e is defined to be the probability that the decoded message is not

equal to the transmitted message, i.e.,

P (n)
e = P

(
{Ŵ1(Y n

1 ) 6=W1} ∪ {Ŵ2(Y n
2 ) 6=W2}

)
where the message is assumed to be uniformly distributed over 2nR1 × 2nR2 .

A rate pair (R1, R2) is said to be achievable for the broadcast channel if there exists a sequence
of ((2nR1 , 2nR2), n) codes with P (n)

e → 0. The capacity region of the broadcast channel is the closure
of the set of achievable rates. The capacity region of the two-receiver discrete memoryless channel
is unknown.

The capacity region is known for lots of special cases where there is a “dominant receiver” such
as degraded, less noisy, more capable, essentially less noisy, and essentially more capable. In fact
superposition coding is optimal here. An interesting observation in [7] was that the notions of more
capable and essentially less noisy may not be compatible with each other.

∗The work of S. Shamai was supported by the Israel Science Foundation (ISF).
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1 INTRODUCTION

In this paper, we study in detail the notions of more capable receivers and essentially less
noisy receivers by focusing on an important(commonly used in coding theory) class of binary-
input symmetric-output(BISO) broadcast channels. We establish a slew of results and some of the
interesting ones are summarized below.

1.1 Summary of selected results

Here are some of the results established in this paper.

• Any BISO channel with capacity C is more capable than the binary symmetric channel with
capacity C. (Corollary 1)

• The binary erasure channel with capacity C is more capable than any BISO channel with
capacity C. (Corollary 2)

• Any two BISO channels with the same capacity and whose outputs have cardinality at most
3, are more-capable comparable, i.e. one receiver is more capable than the other receiver.
(Corollary 3)

• For any two BISO channels with same capacity, a receiver Y1 is more capable than receiver
Y2 if and only if receiver Y2 is essentially less noisy than Y1. (They go in reverse directions !)
(Lemma 4)

• Superposition coding region is the capacity region for a BISO-broadcast channel if any one
of the channels is either a BSC or a BEC. (Corollary 4)

• For two BISO channels with the same capacity, superposition coding is optimal if and only if
the channels are more capable comparable. (Corollary 5)

• For two BISO channels of same capacity Marton’s inner bound differs from the outer bound[6]
unless the channels are more capable comparable (Theorem 3)

• We also show that it suffices to consider U → X to be BSC when we wish to compute the
boundary of the superposition coding region for BISO broadcast channels. (Lemma 8). This
vastly generalizes a result of Wyner and Ziv[10] for degraded BSC broadcast channel.

1.2 Preliminaries

Definition 1. [4] A channel F1 : X → Y1 is said to be more capable than the channel F2 : X → Y2,
denoted F1 � F2, if I(X;Y1) ≥ I(X;Y2),∀p(x).

Definition 2. [7] A class of distributions P = {p(x)} on the input alphabet X is said to be a
sufficient class of distributions for a 2-receiver broadcast channel if the following holds: Given any
triple of random variables (U, V,X) satisfying (U, V )→ X → (Y1, Y2) forms a Markov chain, there
exists a distribution q(u, v, x) (also obeying the Markov relationship (U, V ) → X → (Y1, Y2)) that
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satisfies

q(x) ∈ P,
I(U ;Yi)p ≤ I(U ;Yi)q, i = 1, 2,
I(V ;Yi)p ≤ I(V ;Yi)q, i = 1, 2,
I(X;Yi|U)p ≤ I(X;Yi|U)q, i = 1, 2, (1)
I(X;Yi|V )p ≤ I(X;Yi|V )q, i = 1, 2,
I(X;Yi)p ≤ I(X;Yi)q, i = 1, 2,

Definition 3. [7] A channel F1 : X → Y1 is essentially less noisy compared to a channel F2 : X →
Y2, denoted by F1 � F2, if there exists a sufficient class of distributions P such that whenever
p(x) ∈ P, for all U → X → (Y1, Y2) we have

I(U ;Y2) ≤ I(U ;Y1).

In this paper, we restrict ourselves to a class C of discrete memoryless channels with binary
inputs and symmetric outputs(BISO) as defined below.

Definition 4. A discrete memoryless channel with input alphabet X = {0, 1} and output alphabet
Y = {k : −l ≤ k ≤ l} is said to belong to class C (or BISO) if

pk = P(Y = k|X = 0) = P(Y = −k|X = 1),−l ≤ k ≤ l.

Binary symmetric channel(BSC) and Binary Erasure Channel(BEC) are examples of channels
that belong to the class C. It is easy to see that uniform input distribution is the capacity achieving
distribution for any channel in C.
Remark 1. As k = 0 can be split equally into 0+ and 0− with probability p0+ = p0− = p0/2, so we
just consider k = ±1, ...,±l and use {pk, p−k : k = 1, . . . , l} to denote the transition probabilities.
Sometimes shortened to {pk, p−k}k.

Partition P of an interval [a, b] is a finite sequence (points) {tk}k such that a = t0 < t1 < t2 <
. . . < tN = b. A partition P is finer than Q if points of partition P contain those of Q. A common
refinement of two partitions P and Q is a new partition consisting of all the points of P and Q.

Definition 5. (BISO partition and BISO curve)
For a BISO channel with transition probabilities {pk, p−k}k, rearrange h( pk

pk+p−k
) in the ascending

order and denote the permutation as π. BISO partition is defined as the partition of [0, 1] with
points tk =

∑k
i=1(pπi + p−πi). We set t0 = 0. BISO curve is defined as the stepwise function f(t)

such that f(t) = h( pπk
pπk+p−πk

) on (tk−1, tk], and f(0) = 0.

For the channel BSC(p), we have the partition as t0 = 0, t1 = 1 and the curve as f(t) = h(p)
on (0, 1]. For the channel BEC(e), we have the partition as t0 = 0, t1 = 1− e, t2 = 1, and the curve
as f(t) = 0 on (0, 1− e] and f(t) = 1 on (1− e, 1].

Definition 6. (Lorenz curve of a BISO channel)
For a BISO channel with BISO curve f(t), the Lorenz curve (or the cumulative function) F (t) is
defined as F (t) =

∫ t
0 f(τ)dτ .

Properties of the Lorenz curve:
Since 0 ≤ f(t) ≤ 1 and f(t) is non-decreasing on [0, 1] we have
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1. F (t) is non-negative, piecewise linear and convex.

2. The slope of the line segments of F (t) is at most 1.

By definition of BISO curve, the length of k-th interval (tk−1, tk] is (pπk + p−πk). Therefore

I(X;Y ) =
∑
k>0

(pk + p−k)h(x ∗ h−1(h(
pk

pk + p−k
)))−

∑
k>0

(pk + p−k)h(
pk

pk + p−k
) (2)

=
∫ 1

0
h(x ∗ h−1(f(τ)))dτ −

∫ 1

0
f(τ)dτ

=
∫ 1

0
h(x ∗ h−1(f(τ)))dτ − F (1)

Thus, a finer partition does not change I(X;Y ) and in particular the channel capacity. Indeed the
capacity is C = 1− F (1).

2 Main

2.1 On partial orderings and capacity regions of BISO broadcast channels

2.1.1 On more capable comparability of BISO channels

We will establish a sufficient condition for determining whether two BISO channels are comparable
using the more capable partial ordering. Before we state our sufficient condition for more capable
comparable, we need the following three lemmas.

Lemma 1. Given BISO channels X → Y and X → Z with BISO curves f(t) and g(t), respectively.
Let the common refinement of these two BISO partitions be {tk : k = 0, . . . , N̂}, and ξk = tk− tk−1.
Then

F (ti) =
i∑

k=1

ξkf(tk) ≤
i∑

k=1

ξkg(tk) = G(ti), i = 1, . . . , N̂

if and only if the Lorenz curve F (t) ≤ G(t) for all t ∈ [0, 1].

Proof. The if direction is obvious. We just need to prove the other direction, i.e. F (ti) ≤ G(ti)⇒
F (t) ≤ G(t). We prove by contradiction: Let t∗ be a point such that F (t∗) > G(t∗). Clearly
t∗ ∈ (tj−1, tj) for some j. Since F (tj−1) ≤ G(tj−1) by assumption, it is necessary that f(t) > g(t)
for t ∈ (tj−1, tj). However integrating from t∗ to tj , we have that F (tj) > G(tj), which contradicts
the assumption that the inequality is valid for all tk.

The following lemma is well-known.

Lemma 2. (Lemma 2 in [10])
The function h(x ∗ h−1(y)) is strictly convex in y. ( Key ingredient of Mrs. Gerber’s lemma)

Lemma 3. (Lemma 1 in [3])
Let x1, ..., xl and y1, ..., yl be nondecreasing sequences of real numbers. Let ξ1, ..., ξl be a sequence

of real numbers such that
l∑

j=k

ξjxj ≥
l∑

j=k

ξjyj , 1 ≤ k ≤ l
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with equality for k = 1. Then for any convex function Λ,

l∑
j=1

ξjΛ(xj) ≥
l∑

j=1

ξjΛ(yj).

Theorem 1. (A sufficient condition)
Given BISO channels X → Y and X → Z with Lorenz curves F (t) and G(t), respectively. Further
let F (1) = G(1), i.e. channels have same capacity. If F (t) ≤ G(t) then Y is more capable than Z.

Proof. Using Lemma 1 we know that

F (ti) =
i∑

k=1

ξkf(tk) ≤
i∑

k=1

ξkg(tk) = G(ti), i = 1, . . . , N̂

and since F (1) = G(1) we have equality at i = N̂ . Using Lemma 3 and by noticing that f(tk) and
g(tk) are both nondecreasing we have

N̂∑
j=1

ξjΛ(f(tj)) ≥
N̂∑
j=1

ξjΛ(g(tj))

for any convex function Λ. Taking Λ(y) = h(x ∗ h−1(y))− y we obtain that

N̂∑
j=1

ξjh
(
x ∗ h−1(f(tj))

)
−

N̂∑
j=1

ξjf(tj) ≥
N̂∑
j=1

ξjh
(
x ∗ h−1(g(tj))

)
−

N̂∑
j=1

ξjg(tj).

From (2) this is equivalent to
I(X;Y ) ≥ I(X;Z),∀p(x).

Thus the theorem is established.

For reasons that will be apparent later (Lemma 5) it is useful to zoom in on the following
subclass of BISO channels.

Let C(C) be the class of BISO channels with capacity C.
For instance BSC(p) belongs to this class, where 1 − h(p) = C. Similarly BEC(e) belongs to

this class when 1 − e = C. Let F (C) denote an arbitrary BISO channel belonging to this class.
Using an abuse of notation, we denote by BSC(C) and BEC(C) as the binary symmetric channel
and the binary erasure channel with capacity C, respectively.

Corollary 1. F (C)� BSC(C).

Proof. From Theorem 1 it suffices that the Lorenz curves satisfy G(t) ≤ FBSC(t), t ∈ [0, 1]. Observe
that G(0) = FBSC(0) = 0, G(1) = FBSC(1) and that FBSC(t) is the straight-line connecting 0 and
FBSC(1). The convexity of G(t) (Property 1) implies that G(t) ≤ FBSC(t), t ∈ [0, 1].

Corollary 2. BEC(C)� F (C).

Proof. Similar to above it suffices that the Lorenz curves satisfy FBEC(t) ≤ G(t), t ∈ [0, 1].
FBEC(t) = 0, t ∈ [0, 1 − e] and hence FBEC(t) ≤ G(t), t ∈ [0, 1 − e]. Combining FBEC(1) = G(1)
and (comparing slopes) F ′BEC(t) = fBEC(t) = 1 ≥ g(t) = G′(t), t ∈ (1 − e, 1], we also have
FBEC(t) ≤ G(t), t ∈ [1− e, 1].

5



2 MAIN

Figure 1: Lorenz curves for BISO channels with the same capacity and output of size 3.

2.1.2 Relation to information combining

Some of the results, more precisely Corollaries 1 and 2, can be obtained via an almost direct
application of the results in [9]. From [9], for U → X ∼ BSC(s), if Y is a BISO receiver (with
same capacity as BEC and BSC)

I(X;U, YBSC) ≤ I(X;U, Y ) ≤ I(X;U, YBEC)

which then yields I(X;YBSC |U) ≤ I(X;Y |U) ≤ I(X;YBEC |U). But by symmetry conditioning on
U , where U → X ∼ BSC(s) is same as taking X ∼ P(X = 0) = 1− s. One could also obtain the
same conclusion by using the results in [7]. However here we have used a different approach, via
Theorem 1, to establish the extreme properties of BSC and BEC.

Corollary 3. Let F1(C) and F2(C) be two BISO channels in C whose output alphabet sizes are at
most 3. Then either F1(C) � F2(C) or F2(C) � F1(C), i.e. two such channels are always more
capable comparable.

Proof. For BISO channel X → Y with transition probabilities {p−1, p0, p1}, k = 0 is split equally
into 0+ and 0−. Thus the Lorenz curve F (t) contains two sloping lines: one with slope h( q0+

q0++q0−
) =

1, and the other not bigger than 1. Given two Lorenz curves of this kind, F (t) and G(t), with
F (1) = G(1), then either F (t) ≤ G(t) for all t ∈ [0, 1] or F (t) ≥ G(t) for all t ∈ [0, 1] (Figure 1).
According to Theorem 1, these two channels are more capable comparable.

Remark 2. Not all BISO channels with the same capacity are more capable comparable. A counter
example is the following: Consider a BISO channel X → (Y,Z) with transition probabilities ac-
cording to:

P(Y = i|X = 0) = ai,−2 ≤ i ≤ 2
P(Z = j|X = 0) = bj ,−2 ≤ j ≤ 2

where a−2 = 0.061, a−1 = a1 = 1−10a−2

2 , a2 = 9a−2 and b−2 = 0.0634977, b−1 = 1−b−2

5 , b1 =
4(1−b−2)

5 , b2 = 0. One can verify that the channels have same capacity, but are not more capable
comparable.
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2.1.3 On more capable and essentially less noisy orderings in BISO channels

In this section we will establish that these two partial orderings, restricted to C, are inverses of
each other(!). This is counter-intuitive as more capable and essentially less noisy are two notions
of saying that one receiver is superior to another receiver.

Below (for a complete argument see Lemma 1 in [7]) we note that the uniform input distribution
forms a sufficient class for a broadcast channel consisting of two channels F1, F2 ∈ C.

Claim 1. Consider a binary input broadcast channel whose component channels, F1 : X → Y1

and F2 : X → Y2 are both output-symmetric, i.e. F1, F2 ∈ C. Then the uniform input distribution
P(X = 0) = 1

2 forms a sufficient class.

Proof. The following construction suffices - we leave the details to the reader. Let j, k ∈ {0, 1};
then define

Q(U = (u, j), V = (v, k), X = x) =

{
1
2P(U = u, V = v,X = x⊕ j) j = k

0 j 6= k
.

Lemma 4. Let F1, F2 ∈ C(C); then F1 � F2 ⇐⇒ F2 � F1.

Proof. Assume F1 � F2. From Claim 1 we know that P(X = 0) = 1
2 is a sufficient distribution for

the channels F1, F2. Therefore, when P(X = 0) = 1
2 we have for all U such that U → X → (Y1, Y2)

I(U ;Y1) = I(X;Y1)− I(X;Y1|U)
= C − I(X;Y1|U)
= I(X;Y2)− I(X;Y1|U)
= I(U ;Y2) + I(X;Y2|U)− I(X;Y1|U)
≤ I(U ;Y2),

where the last inequality follows from F1 � F2. Since P(X = 0) = 1
2 is a sufficient class of

input distributions for a broadcast channel comprising of F1, F2 it follows from the definition that
F2 � F1.

Assume F2 � F1. The proof follows by contradiction. Suppose there is a value x such that
when P(X = 0) = x, I(X;Y2) − I(X;Y1) = δ > 0, then consider a U such that P(U = 0) =
P(U = 1) = 1

2 , P(X = 0|U = 0) = x = P(X = 1|U = 1). Observe that, from the symmetry
I(X;Y2|U)− I(X;Y1|U) = δ > 0. However since P(X = 0) = 1

2 , using a similar decomposition we
see that

I(U ;Y1) = I(U ;Y2) + I(X;Y2|U)− I(X;Y1|U)
= I(U ;Y2) + δ > I(U ;Y2),

contradicting the assumption F2 � F1. Therefore F1 � F2.

The following lemma is an immediate consequence of Corollaries 1, 2, and Lemma 4.

Lemma 5. Let BSC(C) represent a binary symmetric channel with capacity C, BEC(C) - a
binary erasure channel with capacity C, and F (C) - an arbitrary binary input symmetric output
channel, i.e. F ∈ C, with capacity C. We have
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(i) BEC(C)� F (C)� BSC(C),

(ii) BSC(C) � F (C) � BEC(C).

This leads us to one of the main results in this paper.

Theorem 2. Let BSC(C) represent a binary symmetric channel with capacity C, BEC(C) - a
binary erasure channel with capacity C, and F (C) - an arbitrary binary input symmetric output
channel, i.e. F ∈ C, with capacity C. For any three numbers 0 ≤ C1 ≤ C2 ≤ C3 we have

(i) BEC(C3)� F (C2)� BSC(C1),

(ii) BSC(C3) � F (C2) � BEC(C1).

Proof. If Ca < Cb then BSC(Ca), BEC(Ca) are degraded versions of BSC(Cb), BEC(Cb) respec-
tively. Hence from Lemma 5 we have

BEC(C3)� BEC(C2)� F (C2)� BSC(C2)� BSC(C1),

BSC(C3) � BSC(C2) � F (C2) � BEC(C2) � BEC(C1).

The following corollary is immediate.

Corollary 4. Superposition coding region is the capacity region for a BISO-broadcast channel if
any one of the channels is either a BSC or a BEC.

Proof. Superposition coding is optimal both for more capable comparable channels[2] and for es-
sentially less noisy comparable channels [7]. From Theorem 2, if any one of the channels is either
a BSC or a BEC, then the channels are either more capable comparable or essentially less noisy
comparable.

Remark 3. In [7] the capacity region of a BSC/BEC broadcast channel was established. Corollary
4 generalizes this result to only requiring that one of the BISO channels is a BEC or a BSC.

2.2 Comparison of inner and outer bounds for BISO channels

The following are some commonly used inner bounds (or achievable rate regions) for the capacity
region (CR):

• Time-Division region (TD): This region is characterized by the set of points

R1 ≤ αC1

R2 ≤ (1− α)C2,

where C1 and C2 are the channel capacities for the two receivers, respectively. The rates are
achieved by transmitting at capacity C1 to the first receiver for fraction α of the time, and
at capacity C2 to second receiver for the remaining fraction.
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• Randomized Time-Divison region (RTD): This corresponds to a time-division strategy except
that the slots for which communication occurs to one receiver is also drawn from a codebook
which conveys additional information. The rates are characterized by

R1 ≤ I(W ;Y1) + P(W = 0)I(X;Y1|W = 0)
R2 ≤ I(W ;Y2) + P(W = 1)I(X;Y2|W = 1)

R1 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}+ P(W = 0)I(X;Y1|W = 0) + P(W = 1)I(X;Y2|W = 1),

over binary random variables W satisfying W → X → (Y1, Y2) being Markov. The binary
random variable W characterizes the slots which distinguish communication to one receiver
over the other.

• Marton’s Inner bound (MIB): This is the best known achievable rate region. The rates are
characterized by

R1 ≤ I(U,W ;Y1)
R2 ≤ I(V,W ;Y2)

R1 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(U ;Y1|W ) + I(V ;Y2|W )− I(U ;V |W ),

over random variables (U, V,W ) satisfying (U, V,W )→ X → (Y1, Y2) being Markov. Observe
that setting U = X,V = ∅ when W = 0 and V = X,U = ∅ when W = 1 reduces MIB to the
RTD region.

Lemma 6 ([8]). For binary input broadcast channels, the maximum sum rate implied by
Marton’s inner bound(MIB) matches that of randomized time-divison(RTD) region.

• Outer bound (OB): The following region[6] represents an outer bound to the capacity region.
The union of rate pairs

R1 ≤ I(U ;Y1)
R2 ≤ I(V ;Y2)

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U)
R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V )

over all (U, V )→ X → (Y1, Y2) represents an outer bound to the capacity region.

Remark 4. For BISO channels since P(X = 0) = 1
2 is a common sufficient distribution, it can

be shown that the OB matches an earlier outer bound due to Körner and Marton [5].

We adopt the notation in Table 1.

Lemma 7. Consider a 2-receiver broadcast channel where both X → Y1 and X → Y2 represent
the BISO channels with transition probabilities {qk, q−k : 1 ≤ k ≤ N} and {pj , p−j : 1 ≤ j ≤
N} respectively. Consider the following region formed by taking the union of rate pairs (R1, R2)
satisfying

R2 ≤ I(U ;Y2)
R2 +R1 ≤ I(U ;Y2) + I(X;Y1|U)

R1 ≤ I(X;Y1)

over all p(u)p(x|u)p(y1, y2|x). Then the same region can be realized by restricting to a binary U
such that U → X ∼ BSC(s) and P(X = 0) = 1

2 .
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Table 1: Notation
Abbr. Abbr.
TD time-division region BSC binary symmetric channel

RTD randomized time-division region BEC binary erasure channel
MIB Marton’s inner bound e.l.n. essentially less noisy
CR capacity region e.m.c. essentially more capable
OB Outer bound (Körner-Marton, Nair-El Gamal) ∗ binary convolution

BISO binary input symmetric output h(·) binary entropy function

Proof. The proof is presented in the Appendix.

Let U → X ∼ BSC(s1), V → X ∼ BSC(s2) and P(X = 0) = 1
2 . Let I(U ;Y1) = f1(s1), where

P(X = 1|U = 0) = s1, and define I(V ;Y2) = f2(s2) in a similar fashion. It is clear from symmetry
that f1(s) = f1(1− s), f2(s) = f2(1− s).

From Lemma 7 and Remark 4 it follows that OB can be written as the union of rate pairs
R1, R2 satisfying

R1 ≤ f1(s1)
R2 ≤ f2(s2)

R1 +R2 ≤ f1(s1) + C − f2(s1) (3)
R1 +R2 ≤ f2(s2) + C − f1(s2).

for some 0 ≤ s1, s2 ≤ 1
2 .

Let

I = {s ∈ [0, 0.5] : f1(s) > f2(s)}
J = {s ∈ [0, 0.5] : f1(s) < f2(s)}.

The following result relates the equivalence of the various bounds and their relation to whether
the channels are more capable comparable.

Theorem 3. Let F1, F2 ∈ C(C). Then the following are equivalent:

(a) F1 and F2 are not more capable comparable

(b) TD ⊂ OB

(c) There exists s1 ∈ I, s2 ∈ J such that f1(s1) + f2(s2) > C

(d) TD ⊂MIB

(e) MIB ⊂ OB.

Proof. The proof of this equivalence is presented in the Appendix.

Corollary 5. For two BISO channels with the same capacity, superposition coding is optimal if
and only if the channels are more capable comparable.
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Proof. If superposition coding region is indeed the capacity region, then we have R1 + R2 ≤
I(X;Y1) ≤ C. Further since the two channels have the same capacity, we have the TD region
is optimal. From Theorem 3 we have that the channels are more capable comparable.

Remark 5. A characterization of when superposition coding is optimal for 2-receiver broadcast
channels is open in general. It is known that superposition coding is optimal when the channels are
either essentially more capable comparable or essentially less noisy comparable[7] - two incompatible
notions. However a converse statement is still unknown.

Observation 1. From remark 2 we know that there exists a pair of channels F1, F2 ∈ C(C) which
are not more capable comparable. Hence from Theorem 3 we know that the capacity region is
strictly larger than TD. However, if we replace F2 by BEC(C), a more capable channel, then the
capacity of the broadcast channel formed by F1 and BEC(C) is the TD region (Corollary 2). Thus
replacing by a more capable channel can strictly reduce the capacity region.

This observation leads to an operational definition of a better receiver and a partial order as
follows.

2.2.1 A new partial order

We now introduce a natural operational partial order among broadcast channels.

Definition 7. Receiver Z2 is a better receiver than Y2 if the capacity region of X → (Y1, Z2)
contains that of X → (Y1, Y2) for every channel X → Y1. In other words, if we replace receiver Y2

by receiver Z2 then the capacity region will not decrease.

Remark 6. Note that the capacity region of a broadcast channel just depends on the marginal
distributions X → Y1, X → Y2, and hence the definition makes sense.

From Observation 1 we know that a more capable receiver is not necessarily a better receiver.
However we will show that if Z2 is a less noisy receiver than Y2, then Z2 is indeed a better receiver
than Y2.

Claim 2. If Z2 is a less noisy receiver than Y2, then Z2 is a better receiver than Y2.

Proof. The capacity region of a discrete memoryless broadcast channel has the following n-letter
characterization. Consider the region Rn defined as the union of rate pairs (R1, R2) that satisfy

R1 ≤
1
n
I(U ;Y n

1 )

R2 ≤
1
n
I(V ;Y n

2 )

for some p(u)p(v)p(xn|u, v). It is known that the capacity region is limnRn. (This is folklore. It is
clear that this is achievable, and a converse follows by setting U = M1 and V = M2 and applying
Fano’s inequality.) Observe that

I(V ;Y j
2,1, Z

n
2,j+1) = I(V ;Y j−1

2,1 , Z n
2,j+1) + I(V ;Y2j |Y j−1

2,1 , Z n
2,j+1), j = n, . . . , 1

≤ I(V ;Y j−1
2,1 , Z n

2,j+1) + I(V ;Z2j |Y j−1
2,1 , Z n

2,j+1)

= I(V ;Y j−1
2,1 , Z n

2,j).

By taking the extreme points of this chain we obtain that I(V ;Y n
2 ) ≤ I(V ;Zn2 ). Claim follows from

the expression of the capacity region stated above.

11
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3 Conclusion

We look at partial orders induced by the more capable relations and less noisy relations in binary-
input symmetric-output(BISO) broadcast channels. We establish the capacity regions for a class
of them and also show various other results related to the evaluation of various bounds. Some of
the results act contrary to popular intuition and hence BISO channels can serve as a simple class
from which we can improve our understanding of various relations. We also use perturbation based
arguments to show the optimality of certain auxiliary channels, thus generalizing earlier results.
We hope that some of the results presented here can invoke a careful rethinking of various notions
of dominance between receivers.
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Appendix

A.1 Proof to Lemma 7

Proof. Let U = {1, 2, ...,m}, P(U = i) = ui and P(X = 0|U = i) = si. Further let h(x) =
−x log2 x−(1−x) log2(1−x) be the binary entropy function and let ∗ denote the binary convolution,
i.e. a ∗ b = a(1− b) + b(1− a).
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Using these notations we have the following expansions,

I(U ;Y2) =
∑
j

(pj + p−j)
(
h(

pj
pj + p−j

∗
∑
i

uisi)−
∑
i

uih(
pj

pj + p−j
∗ si)

)
I(X;Y1|U) =

∑
k

(qk + q−k)
(∑

i

uih(
qk

qk + q−k
∗ si)− h(

qk
qk + q−k

)
)

I(X;Y1) =
∑
k

(qk + q−k)
(
h(

qk
qk + q−k

∗
∑
i

uisi)− h(
qk

qk + q−k
)
)
.

Define Ũ = {1, 2, ...,m} × {1, 2}, P(Ũ = (i, 1)) = ui
2 , P(X = 0|Ũ = (i, 1)) = si, P(Ũ =

(i, 2)) = ui
2 , and P(X = 0|Ũ = (i, 2)) = 1 − si. This induces an X̃ with P(X̃ = 0) = 1

2 and it is
straightforward to notice

I(Ũ ; Ỹ2) ≥ I(U ;Y2),

I(X̃; Ỹ1|Ũ) = I(X;Y1|U),

I(X̃; Ỹ1) ≥ I(X;Y1).

Thus for every U replacing U by Ũ leads to a larger achievable region.
Hence it suffices to maximize over all auxiliary random variables of the form (U,X) defined by:

U = {1, 2, ...,m} × {1, 2}, P(U = (i, 1)) = ui
2 , P(X = 0|U = (i, 1)) = si, P(U = (i, 2)) = ui

2 and
P(X = 0|U = (i, 2)) = 1− si. Let this class of random variables (U,X) be Q.

Since P(X = 0) = 1
2 remains fixed, the third inequality remains constant. Therefore, to compute

the extreme points, we proceed to compute the distribution (U,X) (belonging to Q) that maximizes
λI(U ;Y2) +

(
I(U ;Y2) + I(X;Y1|U)

)
.

For a given p(u, x) ∈ Q, |U| = 2m , consider the multiplicative Lyapunov perturbation defined
by

R(U = (i, 1), X = 0) = P(U = (i, 1), X = 0)(1 + εL(i))
R(U = (i, 1), X = 1) = P(U = (i, 1), X = 1)(1 + εL(i)) (4)
R(U = (i, 2), X = 0) = R(U = (i, 1), X = 1)
R(U = (i, 2), X = 1) = R(U = (i, 1), X = 0)

For r(u, x) to be a valid probability distribution we require the conditions 1 + εL(i) ≥ 0, ∀i and∑m
=1 iP

(
U = (i, 1)

)
L(i) = 0.

Observe that the perturbation maintains P(X = 0) and further the new pair r(u, x) also belongs
to Q. A non-trivial L exists if m = |U|

2 ≥ 2.
Observe that

(λ+ 1)Ir(U ;Y2) + Ir(X;Y1|U)
= (λ+ 1)Hp(Y2) + λHp(U) +Hp(U, Y1)− (λ+ 1)Hp(U, Y2)

+ ε
(
λHL

p (U) +HL
p (U, Y1)− (λ+ 1)HL

p (U, Y2)
)

where

HL
p (U) = −

∑
i

2p(i)L(i) log 2p(i)

HL
p (U, Y1) = −

∑
i,y1

2p(i, y1)L(i) log 2p(i, y1)

HL
p (U, Y2) = −

∑
i,y2

2p(i, y2)L(i) log 2p(i, y2).

13
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The first derivative with respect to ε being zero implies

λHL
p (U) +HL

p (U, Y1)− (λ+ 1)HL
p (U, Y2) = 0

and this further implies that if p(u, x) achieves the maximum of (λ+1)Ip(U ;Y2)+Ip(X;Y1|U) then
(λ + 1)Ir(U ;Y2) + Ir(X;Y1|U) = (λ + 1)Ip(U ;Y2) + Ip(X;Y1|U) for any valid perturbation that
satisfies (4).

Now we choose ε such that mini 1 + εL(i) = 0, and let i = i∗ achieve this minimum. Observe
that r(i∗) = 0 and hence there exists an U with cardinality equal to 2(m − 1) such that (λ +
1)I(U ;Y2) + I(X;Y1|U) is constant. We can proceed by induction until m = 1.

Since (U,X) ∈ Q and |U| = 2, implies that the optimal auxiliary channel U → X follows the
distribution given by

P(U = 1) = P(U = 2) =
1
2

P(X = 0|U = 1) = P(X = 1|U = 2) = s,

i.e. U → X ∼ BSC(s).

The same proof can also be used to establish the following lemma.

Lemma 8. Consider a 2-receiver broadcast channels where both X → Y1 and X → Y2 represent
the BISO channels with transition probabilities {qk, q−k : 1 ≤ k ≤ N} and {pj , p−j : 1 ≤ j ≤ N}
respectively. Consider the following superposition coding region formed by taking the union of rate
pairs (R1, R2) satisfying

R2 ≤ I(U ;Y2)
R2 +R1 ≤ I(U ;Y2) + I(X;Y1|U)
R2 +R1 ≤ I(X;Y1)

over all p(u)p(x|u)p(y1, y2|x). Then the same region can be realized by restricting to a binary U
such that U → X ∼ BSC(s) and P(X = 0) = 1

2 .

Remark 7. This generalizes the result by Wyner and Ziv [10] for BSC broadcast channels. In [2]
it was shown that superposition coding is indeed optimal when the two channels are more capable
comparable.

A.2 Proof to Theorem 3

Proof. (a) ⇒ (b): Recalling: Let

I = {s ∈ [0, 0.5] : f1(s) > f2(s)}
J = {s ∈ [0, 0.5] : f1(s) < f2(s)}.

Since the channels are not more-capable comparable, we know that there esists s1 ∈ I and s2 ∈ J .
Construct Ũ → X, where Ũ = U ′ ×Q with binary U ′ and Q, and probabilities

P(Ũ = (0, 0)) =
1− ε

2
P(X = 0|Ũ = (0, 0)) = 1

P(Ũ = (0, 1)) =
ε

2
P(X = 0|Ũ = (0, 1)) = s1

P(Ũ = (1, 0)) =
1− ε

2
P(X = 1|Ũ = (1, 0)) = 1

P(Ũ = (1, 1)) =
ε

2
P(X = 1|Ũ = (1, 1)) = s1.

14
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Thus, U ′ 7→ X ∼ BSC(0) conditioned on the event Q = 0, U ′ 7→ X ∼ BSC(1− s1) conditioned on
Q = 1, and further U ′ is independent of Q with P(U ′ = 0) = 1

2 . We can see that Q is independent
of X and hence of Y1, Y2; thus I(Q;Y1) = I(Q;Y2) = 0. Now

I(Ũ ;Y1) = I(U ′, Q;Y1) = I(U ′;Y1|Q) + I(Q;Y1)
= I(U ′;Y1|Q)
= (1− ε)I(X;Y1) + εI(U ′;Y1|Q = 1)
= (1− ε)C + εf1(s1).

Similarly, we obtain
I(Ũ ;Y2) = (1− ε)C + εf2(s1).

Thus we have

R1 ≤ (1− ε)C + εf1(s1)
R2 ≤ f2(s2)

R1 +R2 ≤ I(Ũ ;Y1) + I(X;Y2|Ũ)

= I(Ũ ;Y1) + I(X;Y2)− I(Ũ ;Y2)
= (1− ε)C + εf1(s1) + C − [(1− ε)C + εf2(s1)]
= C + ε[f1(s1)− f2(s1)] (> C)

R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V )
= f2(s2) + C − f1(s2) (> C).

To show that we can have (1− ε)C+ εf1(s1) +f2(s2) > C, we just need to choose small ε to ensure
f2(s2) > ε[C − f1(s1)]. Since this is clearly possibe, we have OB ⊃ TD.

(b) ⇒ (c): From Equation (3), we have the following expression of the boundary of the outer
bound,

R1 ≤ I(U ;Y1) = f1(s1)
R2 ≤ I(V ;Y2) = f2(s2)

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U) = f1(s1) + C − f2(s1)
R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V ) = f2(s2) + C − f1(s2)

Clearly for every s1 ∈ I, s2 ∈ J if f1(s1) + f2(s2) ≤ C then from above OB = TD. However
since OB ⊃ TD, there exists s1 ∈ I, s2 ∈ J such that f1(s1) + f2(s2) > C.

(c) ⇒ (d): In general, TD ⊆ RTD ⊆MIB. So now it suffices to show there exists an example
where the sum rate of RTD region is strictly larger than TD region.

We now compute the maximum sum rate of the RTD region. From Lemma 6 we know that this
matches the maximum sum rate of the MIB region.

Consider an auxiliary channel W → X such that

P(W = 0) = a, P(W = 1) = 1− a
P(X = 0|W = 0) = s2, P(X = 0|W = 1) = s1

where as2 + (1− a)s1 = 1
2 .
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It is straightforward to check the following

I(X;Y1|W = 0) = C − f1(s2), I(X;Y1|W = 1) = C − f1(s1)
I(X;Y2|W = 0) = C − f2(s2), I(X;Y2|W = 1) = C − f2(s1),
I(X;Y1) = I(X;Y2) = C.

Then observe that

I(W ;Y1) + P(W = 0)I(X;Y1|W = 0) + P(W = 1)I(X;Y2|W = 1)
= I(X;Y1) + P(W = 1)

(
I(X;Y2|W = 1)− I(X;Y1|W = 1)

)
= C + (1− a)(f1(s1)− f2(s1))

where the last inequality holds since s1 ∈ I.
Similarly

I(W ;Y2) + P(W = 0)I(X;Y1|W = 0) + P(W = 1)I(X;Y2|W = 1) = C + a(f2(s2)− f1(s2)).

Therefore the sum rate of RTD (eq. MIB) for this choice of (W,X) is given by

C + min{(1− a)(f1(s1)− f2(s1)), a(f2(s2)− f1(s2))}. (5)

Therefore if (c) is satisfied, i.e. there exists s1 ∈ I, s2 ∈ J , then there exists a (W,X) so that
equation (5) gives a sum rate strictly larger than C.
Remark 8. A careful reader will notice that the above argument only requires s1 ∈ I, s2 ∈ J and
does not even require f1(s1) + f2(s2) > C. But existence of any sa ∈ I, sb ∈ J will imply that (a)
holds and hence (c) holds.

(d)⇒ (e): Since TD ⊂MIB, to compute the maximum sum rate of MIB it suffices to maximize
over s1 ∈ I, s2 ∈ J, 0 < a < 1 the term

C + min{(1− a)(f1(s1)− f2(s1)), a(f2(s2)− f1(s2))}.

Consider any triple s1 ∈ I, s2 ∈ J, 0 < a < 1. Pick any ε > 0 small enough (will show later how
small we require it).

Define (U,X) = (Q,U1, X) where P(Q = 0) = 1 − a + ε,P(Q = 1) = a − ε; and U1 7→ X ∼
BSC(s1) conditioned on Q = 0, and U1 7→ X ∼ BSC(0) conditioned on Q = 1. Further take
P(U1 = 0) = P(U1 = 1) = 1

2 . Observe that this induces P(X = 0) = P(X = 1) = 1
2 .

Similarly define (V,X) = (Q′, V1, X) where P(Q′ = 0) = a + ε,P(Q′ = 1) = 1 − a − ε; and
V1 7→ X ∼ BSC(s2) conditioned on Q′ = 0, and V1 7→ X ∼ BSC(0) conditioned on Q′ = 1. Further
take P(V1 = 0) = P(V1 = 1) = 1

2 . Observe that this also induces P(X = 0) = P(X = 1) = 1
2 .

Since the distribution of X is consistent there exists a triple (U, V,X) with the same pairwise
marginals (U,X) and (V,X) as described earlier. With this choice, OB reduces to

R1 ≤ I(U ;Y1) = (1− a+ ε)f1(s1) + (a− ε)C
R2 ≤ I(V ;Y2) = (a+ ε)f2(s2) + (1− a− ε)C

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U) = C + (1− a+ ε)(f1(s1)− f2(s1))
R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V ) = C + (a+ ε)(f2(s2)− f1(s2)).

Clearly the maximum sum rate of the above region is minimum of the terms

{C+(1−a+ε)(f1(s1)−f2(s1)), C+(a+ε)(f2(s2)−f1(s2)), (1−2ε)C+(1−a+ε)f1(s1)+(a+ε)f2(s2)}.

16



REFERENCES

We pick ε > 0 to satisfy

(1− 2ε)C + (1− a+ ε)f1(s1) + (a+ ε)f2(s2) > C + (1− a)(f1(s1)− f2(s1))
⇔ (1− a)f2(s1) + af2(s2) > ε(2C − f1(s1)− f2(s2)),

and
af1(s2) + (1− a)f2(s1) > ε(2C − f1(s1)− f2(s2)),

then the maximum sum rate of the OB expression will be strictly bigger than that of MIB region.
Since this is possible for every s1 ∈ I, s2 ∈ J, 0 < a < 1, the maximum sum rate of OB is strictly
larger than that of MIB. Therefore OB ⊃MIB or (e) holds.

(e) ⇒ (a): Since MIB ⊂ OB clearly implies the channels are not more capable comparable.
This is because when the channels are more capable comparable we know from [2] that superposition
coding is optimal and that MIB = CR = OB.
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