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Abstract

Certain families of non-convex optimization problems involving linear combinations of log-determinants of positive definite
matrices are shown to have a unique local maximizer. These geometric results are established using information-theoretic arguments.
We demonstrate these results for three different families: two of which arise in the study of the capacity region of the vector
Gaussian broadcast channel and another one in the study of computing the optimal generalized Brascamp-Lieb constant.

I. INTRODUCTION

The results in this paper are motivated by explicit evaluations of capacity regions in multiuser information theory and that
of optimal constants in certain families of inequalities. One of the fundamental problems in multiuser information theory is to
determine the capacity region of a broadcast channel [1]. For a vector Gaussian broadcast channel with only private message
decoding requirements, the capacity region was determined via a very interesting and indirect relaxation (channel enhancement)
in [2]. This proof employed the use of Entropy Power Inequality [3], [4]. Entropy power inequality is a fundamental entropic
inequality in functional analysis and convex geometry that is usually proved via the calculus of variations where a monotonically
increasing path is constructed from a pair of independent distributions to a pair of standard Gaussians. This proof technique
of employing the entropy power inequality or of constructing a monotonic path could not be easily employed in the case of
the two-receiver vector Gaussian broadcast channel with private and common message decoding requirements.

The capacity region for the private and common message setting was obtained in [5] by using arguments combining
sub-additivity and rotations to deduce the Gaussian optimality of a particular information functional. This technique, while
demonstrating the Gaussian optimality of an associated functional in a rather direct manner, did not provide (at that time)
geometric insights such as the existence of a monotonic path to the maximizer from any point (thereby demonstrating uniqueness
of the local maximizer and hence global maximizer). This paper addresses this concern and shows how the very same arguments
that were used to deduce the Gaussian optimality, can also be used to recover the uniqueness of local maximizers and a local
direction along which the function is always increasing from a non-optimal starting point. This paper was also motivated by the
recent result [6], where the authors constructed a different functional in this setting and demonstrated a monotonicity property
for that functional.

Apart from the two settings of the vector Gaussian broadcast channel, the paper also considers the family of unified Brascamp-
Lieb and Entropy Power Inequalities, [7], and demonstrate a similar uniqueness of the local maximizer for the non-convex
problem of computing the optimal constant. Computing the optimal Brascamp-Lieb-inequality constant has garnered attention
over the years from math and the computer science communities [8], [9]. In particular the work [8] provides algorithmic
guarantees for the computation of the Brascamp-Lieb constant, going beyond the more modest goals of showing the uniqueness
of the local maximizer that is attained in this paper. On the other hand, the functional considered in this paper is a unified
formulation that generalizes Brascamp-Lieb inequalities and the entropy power inequalities.

Remark 1. There are many more functionals that can be inferred from the network information theory literature but the
examples listed here are chosen because the first two are very relevant to wireless communications and the third one is of
broad interest across several communities.

The use of information theory tools for proving inequalities about determinants of positive semi-definite matrices can be
traced back to [10]. Of course, the arguments here are a more involved and rely on fancier proofs of sub-additivity of the
associated functionals.

II. TWO RECEIVER VECTOR GAUSSIAN BROADCAST CHANNEL WITH PRIVATE MESSAGES

Consider the following optimization problem defined in the space of positive semi-definite matrices. We will use this as a
motivating example for the results of this paper.

Optimization Problem 1. Let Σ1,Σ2 ≻ 0 be two positive definite matrices and let λ > 1 be a constant. Consider

max
K:0⪯K⪯K0

log |K +Σ1| − λ log |K +Σ2|.



As log |K| is concave in the space of positive definite matrices, it is evident that Optimization Problem 1 defines a non-convex
optimization problem.

Proposition 1. Let λ > 1 be a real number and Σ1,Σ2 ≻ 0 be two d × d positive definite matrices. Let K0 ⪰ 0 be any
positive semi-definite matrix. Consider the bounded continuous function

f(K) := log |K +Σ1| − λ log |K +Σ2|

defined on the convex domain K : 0 ⪯ K ⪯ K0. Then the function, f(K), has a unique local (hence global) maximizer K∗

in the domain, and further for any, K ̸= K∗, K : 0 ⪯ K ⪯ K0, both the functions ua(t) := f(Ka,t) and ub(t) = f(Kb,t),
satisfy ua(1) = f(K∗) > ua(t) = f(Ka,t) > ua(0) = f(K), for any t ∈ (0, 1), and similarly for ub(t). Here

Ka,t = (1− t)K + tK∗ − t(1− t)(K −K∗)[tK + (1− t)K∗ +Σ2]
−1(K −K∗),

Kb,t = (1− t)K + tK∗ − t(1− t)(K −K∗)[tK + (1− t)K∗ +Σ1]
−1(K −K∗).

Remark 2. It turns out (and this is the main point of this paper) this proposition has an elegant information-theoretic proof,
and this is not a one-off phenomenon.

Proof. Let X ∼ N (0,K) be a zero-mean Gaussian distribution (in Rd) with covariance matrix K satisfying 0 ⪯ K ⪯ K0.
Suppose Z1 and Z2 are zero-mean Gaussians with positive definite covariance Σ1 and Σ2 respectively, independent of X.
Define Y1 = X+ Z1 and Y2 = X+ Z2. Let

g(K) := h(Y1)− λh(Y2)

= h(X+ Z1)− λh(X+ Z2)

=
1

2
log |K +Σ1| −

λ

2
log |K +Σ2| −

(λ− 1)d

2
log(2πe)

=
1

2
f(K)− (λ− 1)d

2
log(2πe).

Observe that g(K) is just a scaled version of f(K) that is shifted by a constant. Therefore it suffices to prove the Proposition
with f(K) replaced by g(K).

Since f(K) is a bounded continuous function on the compact set K : 0 ⪯ K ⪯ K0, it (and correspondingly g(K)) attains
its maximum value at some point (not necessarily unique) in the set, say K∗. For K ̸= K∗, K : 0 ⪯ K ⪯ K0, Let X and
X∗ be independent Gaussians with distributions N (0,K) and N (0,K∗) respectively. Let Z11 and Z12 be two i.i.d. copies of
Z1. Similarly, let Z21 and Z22 be two i.i.d. copies of Z2. Here the collection (X,X∗,Z11,Z12,Z21,Z22) are assumed to be
mutually independent. Define Y1 = X+ Z11, Y2 = X+ Z21, Y∗

1 = X∗ + Z12 and Y∗
2 = X∗ + Z22.

Define (Xt+,Xt−) to be the rotated versions of (X,X∗) as follows,[
Xt+

Xt−

]
=

[√
1− t

√
t√

t −
√
1− t

] [
X
X∗

]
We define Y1t+,Y1t−,Y2t+,Y2t− similarly.

Let v and V ∗ denote the value of g(K) and g(K∗), we have

v + V ∗ = g(K) + g(K∗)

= h(Y1)− λh(Y2) + h(Y∗
1)− λh(Y∗

2)

= h(Y1,Y
∗
1)− λh(Y2,Y

∗
2)

(a)
= h(Y1t+,Y1t−)− λh(Y2t+,Y2t−)

= h(Y1t+|Y2t−)− λh(Y2t+|Y2t−) + h(Y1t−|Y1t+)− λh(Y2t−|Y1t+)− (λ− 1)I(Y1t+;Y2t−),

where (a) follows since rotations preserve entropies. Note thatZ1t+ :=
√
1− tZ11 +

√
tZ12 is independent of Z1t− :=√

tZ11 −
√
1− tZ12, and X+ can be expressed as Xt+ =

√
t(1− t)(K − K∗)[tK + (1 − t)K∗ + Σ2]

−1Y2t− + X†
t+,

where X†
t+ is independent of Y2t−. It is immediate that Z1t+,Z2t+,X

†
t+, and Y2t− are mutually independent. Further

X†
t+ ∼ N (0,Ka,t) where Ka,t = tK + (1− t)K∗ − t(1− t)(K −K∗)[tK + (1− t)K∗ +Σ2]

−1(K −K∗). Therefore

h(Y1t+|Y2t−)− λh(Y2t+|Y2t−) = g(Ka,t).

In a similar fashion we can write Xt− =
√

t(1− t)(K −K∗)[tK + (1− t)K∗ +Σ2]
−1Y1t+ +X‡

t− where Z1t−,Z2t−,X
‡
t−,

and Y1t+ are mutually independent. Further X‡
t− ∼ N (0,Kb,1−t) where Kb,t = tK + (1− t)K∗ − t(1− t)(K −K∗)[tK +

(1− t)K∗ +Σ1]
−1(K −K∗). Therefore

h(Y1t−|Y1t+)− λh(Y2t−|Y1t+) = g(Kb,1−t).



Putting this together we have

v + V ∗ = g(K) + g(K∗)

= g(Ka,t) + g(Kb,1−t)− (λ− 1)I(Y1t+;Y2t−).

Observe that if K ̸= K∗, then Y1t+ and Y2t− are not independent for any t ∈ (0, 1), as E(Y1t+Y
T
2t−) =

√
t(1− t)(K −

K∗) ̸= 0. Therefore if K∗ is a global maximizer and as K ̸= K∗ is a point in the domain K : 0 ⪯ K ⪯ K0, we have

g(K) + g(K∗) = g(Ka,t) + g(Kb,1−t)− (λ− 1)I(Y1t+;Y2t−)

< g(Ka,t) + g(Kb,1−t)

≤ 2g(K∗),

where the last inequality being due to K∗ is a global maximizer, and that Ka,t and Kb,1−t belong to the domain K : 0 ⪯
K ⪯ K0. Therefore g(K) < g(K∗), implying the uniqueness of the global maximizer. Consequently, for t ∈ (0, 1) since
Kb,1−t ̸= K∗, we have

0 < g(K∗)− g(Kb,1−t) < g(Ka,t)− g(K).

Therefore g(Ka,t) > g(K) for any t ∈ (0, 1). Similarly, we have

0 < g(K∗)− g(Ka,t) < g(Kb,1−t)− g(K).

Hence g(Kb,t) > g(K) for any t ∈ (0, 1). This shows that ua(t) and ub(t) have the desired properties as claimed in the
Proposition.

Note that as t → 0, we have Ka,t,Kb,t → K, and hence g(K) cannot be a local maximizer. Since this is true for any
K : 0 ⪯ K ⪯ K0, and K ̸= K∗, the function f(K) has a unique local maximizer in the domain as required.

Remark 1. The two possible paths Ka,t and Kb,t in the Proposition 1 yield gradients at each point along which the function is
strictly increasing. The gradients at K are respectively: (K∗−K)− (K∗−K)(K∗+Σ2)

−1(K∗−K) and (K∗−K)− (K∗−
K)(K∗ +Σ1)

−1(K∗ −K). This induces, informally, a gradient flow on the space on the feasible set of positive semi-definite
matrices, that can be used to deduce a monotonically increasing flow from any point to the global maximizer.

III. GAUSSIAN BROADCAST CHANNEL WITH COMMON MESSAGE

In this section, we will consider an optimization problem associated with the computation of the capacity region of the
two-receiver Gaussian broadcast channel with private and common messages [5].

Optimization Problem 2. Let Σ1,Σ2 ≻ 0 be two positive definite matrices and let λ0 > λ2 > 1 and α ∈ [0, 1] be constants.
Consider

max
K,K̂⪰0

K+K̂⪯K0

(λ2 − λ0ᾱ) log |K + K̂ +Σ2| − λ0α log |K + K̂ +Σ1|+ log |K +Σ1| − λ2 log |K +Σ2|,

where ᾱ := 1− α.

In spite of the above function being non-convex, we will show, as in the previous section, that the function has a unique
local maximizer (hence global maximizer).

Proposition 2. Let λ0 > λ2 > 1 and α ∈ [0, 1] be real numbers and Σ1,Σ2 ≻ 0 be two d× d positive definite matrices. Let
K0 ⪰ 0 be any positive semi-definite matrix. Consider the bounded continuous function

f(K, K̂) := (λ2 − λ0ᾱ) log |K + K̂1 +Σ2| − λ0α log |K + K̂1 +Σ1|+ log |K +Σ1| − λ2 log |K +Σ2|

defined on the convex domain (K, K̂1) : K, K̂1 ⪰ 0;K+K̂1 ⪯ K0. Then the function, f(K, K̂), has a unique local maximizer
(K∗, K̂∗) in the domain, and further for any, (K, K̂) ̸= (K∗, K̂∗), (K, K̂) : K, K̂ ⪰ 0,K + K̂ ⪯ K0, both the functions
ua(t) := f(Ka,t, K̂a,t) and ub(t) = f(Kb,t, K̂b,t), satisfy ua(1) = f(K∗, K̂∗) > ua(t) = f(Ka,t, K̂a,t) > ua(0) = f(K, K̂),
for any t ∈ (0, 1), and similarly for ub(t). Here

Ka,t = (1− t)K + tK∗ − t(1− t)(K −K∗)[tK + (1− t)K∗ +Σ2]
−1(K −K∗),

Ka,t + K̂a,t = (1− t)(K + K̂) + t(K∗ + K̂∗)

− t(1− t)[(K + K̂)− (K∗ + K̂∗)][t(K + K̂) + (1− t)(K∗ + K̂∗) + Σ2]
−1[(K + K̂)− (K∗ + K̂∗)].

The alternate path is

Kb,t = (1− t)K + tK∗ − t(1− t)(K −K∗)[tK + (1− t)K∗ +Σ1]
−1(K −K∗),



Kb,t + K̂b,t = (1− t)(K + K̂) + t(K∗ + K̂∗)

− t(1− t)[(K + K̂)− (K∗ + K̂∗)][t(K + K̂) + (1− t)(K∗ + K̂∗) + Σ1]
−1[(K + K̂)− (K∗ + K̂∗)].

Proof. Let U ∼ N (0,K) and V ∼ N (0, K̂) be zero-mean Gaussian distributions with covariance matrix K and K̂ satisfying
0 ⪯ K, K̂ and K + K̂ ⪯ K0. Suppose Z1 and Z2 are zero-mean Gaussians with positive definite covariance Σ1 and Σ2

respectively.
Define Y1 = U+V + Z1, Y2 = U+V + Z2, Ŷ1 = U+ Z1 and Ŷ2 = U+ Z2. Let

g(K, K̂) := (λ2 − λ0ᾱ)h(Y2)− λ0αh(Y1) + h(Ŷ1)− λ2h(Ŷ2)

=
1

2
(λ2 − λ0ᾱ) log |K + K̂ +Σ2| −

λ0

2
α log |K + K̂ +Σ1|

+
1

2
log |K +Σ1| −

λ2

2
log |K +Σ2| −

(λ0 − 1)d

2
log(2πe)

=
1

2
f(K, K̂)− (λ0 − 1)d

2
log(2πe).

As in the earlier section, it suffices to prove the Proposition with f(K, K̂) replaced by g(K, K̂).
Since f(K, K̂) is a bounded continuous function on the compact set (K, K̂) : K, K̂ ⪰ 0,K + K̂ ⪯ K0, it (and

correspondingly g(K, K̂)) attains its maximum value at some point (not necessarily unique) in the set, say (K∗, K̂∗).
For (K, K̂) ̸= (K∗, K̂∗), (K, K̂) : K, K̂ ⪰ 0,K + K̂ ⪯ K0. Let U,V and U∗,V∗ be independent Gaussians with

distribution N (0,K),N (0, K̂) and N (0,K∗),N (0, K̂∗) respectively. Let Z11 and Z12 be two i.i.d. copies of Z1. Similarly,
let Z21 and Z22 be two i.i.d. copies of Z2. Here the collection (U,V,U∗,V∗,Z11,Z12,Z21,Z22) are assumed to be mutually
independent. Define Y11 = U + V + Z11, Y21 = U + V + Z21, Ŷ11 = U + Z11 and Ŷ21 = U + Z21. Also, we define
Y12 = U∗ +V∗ + Z12, Y22 = U∗ +V∗ + Z22, Ŷ12 = U∗ + Z11 and Ŷ22 = U∗ + Z22.

Define (Ut+,Ut−) to be the rotated versions of (U,U∗) as follows,[
Ut+

Ut−

]
=

[√
1− t

√
t√

t −
√
1− t

] [
U
U∗

]
We define Vt+, Vt−, Y1t+, Y1t−, Y2t+, Y2t−, Ŷ1t+, Ŷ1t−, Ŷ2t+, Ŷ2t− similarly.

Let v and V ∗ denote the value of g(K, K̂) and g(K∗, K̂∗).

v + V ∗ = g(K, K̂) + g(K∗, K̂∗)

= (λ2 − λ0ᾱ)h(Y21)− λ0αh(Y11) + h(Ŷ11)− λ2h(Ŷ21)

+ (λ2 − λ0ᾱ)h(Y22)− λ0αh(Y12) + h(Ŷ12)− λ2h(Ŷ22)

= (λ2 − λ0ᾱ)h(Y21,Y22)− λ0αh(Y11,Y12)

+ h(Ŷ11, Ŷ12)− λ2h(Ŷ21, Ŷ22)

(a)
= (λ2 − λ0ᾱ)h(Y2t+,Y2t−)− λ0αh(Y1t+,Y1t−)

+ h(Ŷ1t+, Ŷ1t−)− λ2h(Ŷ2t+, Ŷ2t−)

= (λ2 − λ0ᾱ)h(Y2t+|Y2t−)− λ0αh(Y1t+|Y2t−)

+ h(Ŷ1t+|Ŷ2t−)− λ2h(Ŷ2t+|Ŷ1t−)

+ (λ2 − λ0ᾱ)h(Y2t−|Y1t+)− λ0αh(Y1t−|Y1t+)

+ h(Ŷ1t−|Ŷ1t+)− λ2h(Ŷ2t−|Ŷ1t+)

− (λ0 − λ2)I(Y1t+;Y2t−)− (λ2 − 1)I(Ŷ1t+; Ŷ2t−).

where (a) follows since rotations preserve entropies. Note that Z1t+ :=
√
1− tZ11 +

√
tZ12 is independent of Z1t− :=√

tZ11 −
√
1− tZ12, and Ut+ can be expressed as Ut+ =

√
t(1− t)(K − K∗)[tK + (1 − t)K∗ + Σ2]

−1(Ŷ2t−) + U†
t+,

where U†
t+ is independent of Ŷ2t−. It is immediate that Z1t+,Z2t+,U

†
t+, and Ŷ2t− are mutually independent. Further

U†
t+ ∼ N (0,Ka,t) where Ka,t = (1− t)K+ tK∗− t(1− t)(K−K∗)[tK+(1− t)K∗+Σ2]

−1(K−K∗). In a similar fashion
we can write Ut++Vt+ =

√
t(1− t)[(K+ K̂)− (K∗+ K̂∗)][t(K+ K̂)+(1− t)(K∗+ K̂∗)+Σ2]

−1(Y2t−)+(U†
t++V†

t+)

where Z1t+,Z2t+,V
†
t+, and Y2t− are mutually independent. Further U†

t+ +V†
t+ ∼ N (0,Ka,t + K̂a,t) where

Ka,t + K̂a,t = (1− t)(K + K̂) + t(K∗ + K̂∗)

− t(1− t)[(K + K̂)− (K∗ + K̂∗)][t(K + K̂) + (1− t)(K∗ + K̂∗) + Σ2]
−1[(K + K̂)− (K∗ + K̂∗)].



Let E(Cov(X|Y)) := E((X− E(X|Y))(X− E(X|Y))T ). Note that

E(Cov(X|Y)) = E((X− E(X|Y))(X− E(X|Y))T )

= E((X− E(X|Y,Z) + E(X|Y,Z)− E(X|Y))(X− E(X|Y,Z) + E(X|Y,Z)− E(X|Y))T )

(a)
= E((X− E(X|Y,Z))(X− E(X|Y,Z))T ) + E((E(X|Y,Z)− E(X|Y))(E(X|Y,Z)− E(X|Y))T )

⪰ E((X− E(X|Y,Z))(X− E(X|Y,Z))T )

= E(Cov(X|Y,Z)).

where (a) uses the orthogonality property of conditional expectation which implies that E((X− E(X|Y,Z))(E(X|Y,Z)−
E(X|Y))T ) = 0 since E(X|Y,Z)− E(X|Y) is measurable w.r.t σ(Y,Z).

Observe that

Ka,t = E(Cov(Ut+|Ut− + Z2t−))

= E(Cov(Ut+|Ut− + Z2t−,Vt+,Vt−)) ∵ (Vt+,Vt−) ⊥ (Ut+,Ut−,Z2t−)

= E(Cov(Ut+ +Vt+|Ut− + Z2t−,Vt+,Vt−))

= E(Cov(Ut+ +Vt+|Ut− + Z2t− +Vt−,Vt+,Vt−))

⪯ E(Cov(Ut+ +Vt+|Ut− + Z2t− +Vt−))

= Ka,t + K̂a,t.

This implies that K̂a,t ⪰ 0.
Therefore

(λ2 − λ0ᾱ)h(Y2t+|Y2t−)− λ0αh(Y1t+|Y2t−) + h(Ŷ1t+|Ŷ2t−)− λ2h(Ŷ2t+|Ŷ1t−) = g(Ka,t, K̂a,t).

By a similar procedure, we may also conclude that

(λ2 − λ0ᾱ)h(Y2t−|Y1t+)− λ0αh(Y1t−|Y1t+)+

+ h(Ŷ1t−|Ŷ1t+)− λ2h(Ŷ2t−|Ŷ1t+) = g(Kb,1−t, K̂b,1−t).

Putting this together we have

v + V ∗ = g(K, K̂) + g(K∗, K̂∗)

= g(Ka,t, K̂a,t) + g(Kb,1−t, K̂b,1−t)− (λ0 − λ2)I(Y1t+;Y2t−)− (λ2 − 1)I(Ŷ1t+; Ŷ2t−).

Observe that if (K, K̂) ̸= (K∗, K̂∗), then either Ŷ1t+ and Ŷ2t− are not independent, or Y1t+ and Y2t− are not independent
for any t ∈ (0, 1). This follows since E(Ŷ1t+Ŷ

T
2t−) =

√
t(1− t)(K − K∗) and E(Y1t+Y

T
2t−) =

√
t(1− t)((K + K̂) −

(K∗ + K̂∗)). Therefore if K∗, K̂∗ is a global maximizer and (K, K̂) ̸= (K∗, K̂∗) is a point in the domain (K, K̂) : K, K̂ ⪰
0,K + K̂ ⪯ K0, then we have

g(K, K̂) + g(K∗, K̂∗) = g(Ka,t, K̂a,t) + g(Kb,1−t, K̂b,1−t)− (λ0 − λ2)I(Y1t+;Y2t−)

− (λ2 − 1)I(Ŷ1t+; Ŷ2t−)

< g(Ka,t, K̂a,t) + g(Kb,1−t, K̂b,1−t)

≤ 2g(K∗, K̂∗),

where the last inequality being due to Ka,t,Kb,t and Kb,1−t, K̂b,1−t belong to the domain (K, K̂) : K, K̂ ⪰ 0,K + K̂ ⪯ K0.
Therefore g(K, K̂) < g(K∗, K̂∗), implying the uniqueness of the global maximizer. Consequently, for t ∈ (0, 1) since
Kb,1−t, K̂b,1−t ̸= (K∗, K̂∗), we have

0 < g(K∗, K̂∗)− g(Kb,1−t, K̂b,1−t) < g(Ka,t, K̂a,t)− g(K, K̂).

Therefore g(Ka,t, K̂a,t) > g(K, K̂) for any t ∈ (0, 1). Similarly, we have

0 < g(K∗, K̂∗)− g(Ka,t, K̂a,t) < g(Kb,1−t, K̂b,1−t)− g(K, K̂).

Hence g(Kb,t, K̂b,t) > g(K) for any t ∈ (0, 1). This shows that ua(t) and ub(t) have the desired properties as claimed in the
Proposition.

Note that as t → 0, we have (Ka,t, K̂a,t) → (K, K̂), and hence g(K, K̂) cannot be a local maximizer. Since this is true
for any (K, K̂) : K, K̂ ⪰ 0,K + K̂ ⪯ K0, and (K, K̂) ̸= (K∗, K̂∗), the function f(K, K̂) has a unique local maximizer in
the domain as required.



IV. GENERALIZED BRASCAMP-LIEB INEQUALITY

Optimization Problem 3. Let {di}ki=1, {cj}mj=1 be positive real numbers. Let ϵ > 0 be a constant. Let Aj : Rn 7→ Rmj , j =

1, 2, ..,m be surjective linear maps. Let n1, .., nk be positive natural numbers such that
∑k

i=1 ni = n.

sup
{Ki}k

i=1:0⪯Ki⪯K0i

k∑
i=1

di log |Ki| −
m∑
j=1

cj log |AjKAT
j + ϵImj

|.

Here K = diag(K1,K2, ..,Kk) is a block diagonal positive definite matrix.

Remark 2. When k = 1, ϵ = 0, and the upper bound K0 is removed, the above optimization problem reduces to that of
computing the optimal Brascamp-Lieb constants. In the form written above, this corresponds to a unified inequality studied in
[7].

Proposition 3. Let {di}ki=1, {cj}mj=1 be positive real numbers. Let ϵ > 0 be a constant. Let Aj : Rn 7→ Rmj , j = 1, 2, ..,m

be surjective linear maps. Let n1, .., nk be positive natural numbers such that
∑k

i=1 ni = n. Let {K0i}ki=1 be given positive
definite matrices. Consider the bounded continuous function

f(K1, ..,Kk) :=
k∑

i=1

di log |Ki| −
m∑
j=1

cj log |AjKAT
j + ϵImj

|,

where K = diag(K1,K2, ..,Kk), defined on the convex domain Ki : 0 ⪯ Ki ⪯ K0i. The function, f(K1, ...,Kk), has
a unique local (hence global) maximizer K∗ = (K∗

1 ,K
∗
2 , ...,K

∗
k) in the domain, and further for any, K ̸= K∗, both the

functions ua(t) := f(Ka,t) and ub(t) = f(Kb,t), satisfy ua(1) = f(K∗, K̂∗) > ua(t) = f(Ka,t, K̂a,t) > ua(0) = f(K, K̂),
for any t ∈ (0, 1), and similarly for ub(t). Here

Ka,t = (1− t)K + tK∗,

Kb,t = (1− t)K + tK∗ − t(1− t)(K −K∗)[tK + (1− t)K∗]−1(K −K∗).

Proof. Let Xi ∼ N (0,Ki), i = 1, .., k be mutually independent Gaussian random variables with covariance matrices Ki

satisfying 0 ≺ Ki ⪯ K0i. Denote X = (X1,X2, . . . ,Xk). Let Zj ∼ N (0, Imj ) be a collection of mutually independent
standard Gaussians, that are also independent of X. Define Yj = AjX+

√
ϵZj for j = 1, ..,m. Define

g(K1, ..,Kk) :=

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(Yj)

=
1

2

 k∑
i=1

di log |Ki| −
m∑
j=1

cj log |AjKAT
j + ϵImj

|

+
1

2

 k∑
i=1

dini −
m∑
j=1

cjmj

 log(2πe)

=
1

2
f(K1, ..,Kk) +

1

2

 k∑
i=1

dini −
m∑
j=1

cjmj

 log(2πe).

Since f(K1, . . . ,Kk) is a bounded continuous function on the compact set Ki : 0 ⪯ Ki ⪯ K0i, it (and correspondingly
g(K1, . . . ,Kk)) attains its maximum value at some point (not necessarily unique) in the set, say {K∗

i }ki=1. For any feasible
(K1, ...,Kk) ̸= (K∗

1 , ..,K
∗
k), let Xi and X∗

i be independent Gaussians with distribution N (0,Ki) and N (0,K∗
i ) respectively.

Let Zj1 and Zj2 be two i.i.d. copies of Zj . Here the collection ({Xi}, {X∗
i }, {Zj1}, {Zj2} are assumed to be mutually

independent. Define Yj = AjX+ Zj1, and Y∗
j = AjX

∗ + Zj2.
Define (Xt+,Xt−) to be the rotated versions of (X,X∗) as follows,[

Xit+

Xit−

]
=

[√
1− t

√
t√

t −
√
1− t

] [
Xi

Xi
∗

]
We define Y1t+,Y1t−,Y2t+,Y2t− similarly. Let v and V ∗ denote the value of g(K1, ..,Kk) and g(K∗

1 , ..,K
∗
k). Now, observe

that

g(K1, ..,Kk) + g(K∗
1 , ..,K

∗
k) =

k∑
i=1

dih(Xi,X
∗
i )−

m∑
j=1

cjh(Yj ,Y
∗
j )

=

k∑
i=1

dih(Xit+,Xit−)−
m∑
j=1

cjh(Yjt+,Yjt−)



(a)
=

k∑
i=1

dih(Xit+)−
m∑
j=1

cjh(Yjt+)

+

k∑
i=1

dih(Xit−|Xt+)−
m∑
j=1

cjh(Yjt−|Xt+)−
m∑
j=1

cjI(Yjt−;Xt+|Yjt+)

= g(Ka1,t, ...,Kak,t) + g(Kb1,1−t, ...,Kbk,1−t)−
m∑
j=1

cjI(Yjt−;Xt+|Yjt+),

where Kai,t = (1 − t)Ki + tK∗
i and Kbi,t = (1 − t)Ki + tK∗

i − t(1 − t)(Ki − K∗
i )[tKi + (1 − t)K∗

i ]
−1(Ki − K∗

i ). The
equality (a) uses the Markov chain Yjt− → Xt+ → Yjt+.

Suppose K = (K1, ..,Kk) was another global maximizer, then we would have

2V ∗ = g(Ka1,t, ...,Kak,t) + g(Kb1,1−t, ...,Kbk,1−t)

−
m∑
j=1

cjI(Yjt−;Xt+|Yjt+).

As Ka,t and Kb,(1−t) are feasible choices, this necessitates that V ∗ = g(Ka1,t, ...,Kak,t) = g(Kb1,1−t, ...,Kbk,1−t) and
I(Yjt−;Xt+|Yjt+) = 0 for each j = 1, ...,m. Therefore we have the Markov chain Yjt− → Yjt+ → Xt+. Since we also
have the Markov chain Yjt− → Xt+ → Yjt+, this induces a double Markovity condition (see Exercise 16.25 in [11] and
Remark 19 in [12]) and consequently (crucially using the fact that Yjt+ has an independent additive Gaussian Zjt+ that
renders the support condition in Remark 19 of [12]) we can conclude that Yjt− is independent of (Xt+,Yjt+). This implies
that

0 = E
(
AjXt−(AjXt+)

T
)
= t(1− t)Aj(K −K∗)AT

j .

Hence
∑m

j=1 cjh(Yjt+) does not depend on t, implying since V ∗ = g(Ka1,t, ...,Kak,t) that
∑k

i=1 dih(Xit+), also does not
depend on t. From the strict concavity of log |K| on the space of positive definite matrices and as Kat,i = (1− t)Ki + tK∗

i ,
we must have Ki = K∗

i for i = 1, ..., k. This establishes the uniqueness of the global maximizer.
Now, as in the previous sections, if K ̸= K∗, then we have

v + V ∗ = g(Ka1,t, ...,Kak,t) + g(Kb1,1−t, ...,Kbk,1−t)−
m∑
j=1

cjI(Yjt−;Xt+|Yjt+)

≤ g(Ka1,t, ...,Kak,t) + g(Kb1,1−t, ...,Kbk,1−t).

Now from the uniqueness of the global maximizer, for any t ∈ (0, 1), we have that both g(Ka1,t, ...,Kak,t),
g(Kb1,1−t, ...,Kbk,1−t) < V ∗, implying that both g(Ka1,t, ...,Kak,t), g(Kb1,1−t, ...,Kbk,1−t) > v, showing the uniqueness of
the local maximizer as desired.

Remark 3. Note that the path Ka,t is the one employed by Stam in his proof of the entropy power inequality [13]. However
the path in [9] is different from both Ka,t and Kb,t

CONCLUSION

Designing efficient algorithms using the geometric insights for the first two settings, in spite of the problem being non-
convex, is an important problem for future research. From a mathematical perspective, identifying the gradient flow and then
perhaps using that in discrete probability distributions may help yield insights for optimality of Marton’s region for the two
receiver discrete memoryless broadcast channel.
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