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Abstract—We determine the capacity region of a 3-receiver
less noisy broadcast channel. The difficulty in extending the two-
receiver result to three-receivers involves extending theCsiszar-
sum lemma to three or more sequences, a standard difficulty in
this area. In this work we bypass the difficulty by using a new
information inequality, for less noisy receivers, that is employed in
the converse. We also generalize our result to obtain the capacity
region for a class of less noisy receivers.

I. I NTRODUCTION

Consider the problem of reliable communication ofk in-
dependent messagesM1, ...,Mk over a discrete-memoryless
broadcast channel (DM-BC), tok-receiversY1, Y2, . . . , Yk

respectively. A(2nR1 × · · · × 2nRk , n) code for the DM-BC
consists of: (i) a message set[1 : 2nR1 ]× · · · × [1 : 2nRk ], (ii)
an encoder that assigns a codewordxn(m1, . . . ,mk) to each
message-tuple(m1, . . . ,mk), and (iii) k decoders, decoder
l assigns an estimatêml(y

n
l,1) ∈ [1 : 2nRl ] or an error

messagee to each received sequenceynl,1, 1 ≤ l ≤ k.
We assume that the messages are uniformly distributed over
[1 : 2nR] × · · · [1 : 2nRk ]. The probability of error is defined
asP (n)

e = P{∪k
l=1M̂l 6= M}.

A rate-tuple(R1, · · · , Rk) is said to be achievable if there
exists a sequence of(2nR1×· · ·×2nRk , n) codes withP (n)

e →
0 asn → ∞. The capacity region is defined as the closure of
the union of all achievable rates.

Definition 1: A receiverYs is said to be less noisy [3] than
receiverYt if I(U ;Ys) ≥ I(U ;Yt) for all U → X → (Ys, Yt).

We denote this relationship(partial-order) byYs � Yt.
Remark 1:Observe that this partial-order only depends on

the marginal distributionsp(ys|x) andp(yt|x).
Definition 2: A k-receiver less noisy broadcast channel is

a k-receiver discrete memoryless broadcast channel where the
receivers satisfy the partial orderY1 � Y2 � · · · � Yk.

The capacity region for the2-receiver broadcast channel
was established (Proposition 3 in [3]) to be the union of rate
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pairs(R1, R2) satisfying

R1 ≤ I(X ;Y1|U) (1)

R2 ≤ I(U ;Y2)

over all choices of(U,X) such thatU → X → (Y1, Y2) forms
a Markov chain.

The extension of this result tok-receivers is open,k ≥ 3.
In this paper we present a simple proof for the casek = 3.

Further our proof can also be used to provide an alternate
proof for k = 2, although it must be noted that the original
proof provides a strong-converse while ours provides a weak-
converse. A modern-day weak converse proof (reproduced in
section I-A) for the 2-receiver case may be obtained using
the outer bounds in [5], [2], [8], however all use Csiszar sum
lemma which has no natural generalization to three receivers.
Instead our proof relies on a information inequality (Lemma
1) which helps us by-pass the use of Csiszar sum lemma.

Indeed using this lemma one can also obtain the capacity
region for a subset ofk-receiver less noisy broadcast channel
(which contains the 3-receiver less noisy broadcast channel as
well). However for clarity of exposition, we shall first establish
the result for the 3-receiver less noisy broadcast channel and
then present the general result for the class ofk-receiver less
noisy broadcast channel.

A. Motivation

In this section we present the (modern-day) weak converse
argument for the capacity region of the two-receiver less noisy
broadcast channel, to highlight the difficulties encountered in
naturally extending it to three or more receivers.

Theorem 1:[3] The capacity region of the two-receiver less
noisy broadcast channel is the union of rate pairs(R1, R2)
satisfying

R1 +R2 ≤ I(U ;Y2) + I(X ;Y1|U)

R2 ≤ I(U ;Y2)

over all choices of(U,X) such thatU → X → (Y1, Y2) forms
a Markov chain.

Remark 2: It is easy to see that (by considering corner
points) this region is identical to the region in (1).

Proof: Here we only show the converse. The direct part
uses superposition coding and is standard.



From Fano’s inequality we have

n(R1 +R2)− nǫn

≤ I(M1;Y
n
1,1|M2) + I(M2;Y

n
2,1)

=
n∑

i=1

I(M1;Y1,i|M2, Y
i−1
1,1 ) + I(M2;Y2,i|Y

n
2,i+1)

≤
n∑

i=1

I(M1;Y1,i|M2, Y
n
2,i+1, Y

i−1
1,1 ) + I(Y n

2,i+1;Y1,i|M2, Y
i−1
1,1 )

+ I(M2;Y2,i|Y
n
2,i+1)

(a)
=

n∑

i=1

I(M1;Y1,i|M2, Y
n
2,i+1, Y

i−1
1,1 ) + I(Y i−1

1,1 ;Y2,i|M2, Y
n
2,i+1)

+ I(M2;Y2,i|Y
n
2,i+1)

≤

n∑

i=1

I(M1;Y1,i|M2, Y
n
2,i+1, Y

i−1
1,1 ) + I(M2, Y

n
2,i+1, Y

i−1
1,1 ;Y2,i)

≤

n∑

i=1

I(Xi;Y1,i|Ui) + I(Ui;Y2,i).

where Ui = (M2, Y
n
2,i+1, Y

i−1
1,1 ). Here (a) follows from

Csiszar-sum lemma [1] which implies that
n∑

i=1

I(Y n
2,i+1;Y1,i|M2, Y

i−1
1,1 ) =

n∑

i=1

I(Y i−1
1,1 ;Y2,i|M2, Y

n
2,i+1).

(2)
The second inequality is much easier and again follows from

Fano’s inequality since,

nR2 − nǫn

≤ I(M2;Y
n
2,1)

=

n∑

i=1

I(M2;Y2,i|Y
n
2,i+1) ≤

n∑

i=1

I(M2, Y
n
2,i+1, Y

i−1
1,1 ;Y2,i)

=

n∑

i=1

I(Ui;Y2,i).

Standard arguments (settingU2 = (Q,U2Q)) are used to
complete the converse.

Remark 3:Here the Csiszar-sum lemma is crucial for iden-
tifying the auxiliary variable in the converse. However there is
no useful generalization of this equality (2) to three or more
receivers, that can be used in a similar converse. This equality
(Csiszar-sum lemma) is used in several of the converses for
two receivers (more capable, degraded message sets, semi-
deterministic channel) and in each case, the generalization to
three or more receivers is absent. For the case of degraded
message sets, it is known [7] that the straightforward extension
(simple superposition coding) is not optimal. In this paper, we
propose the first generalization to three or more receivers,that
bypasses the use of Csiszar sum lemma.

The original proof (Proposition 3 in [3]) of the two-receiver
less noisy broadcast channel also employs Csiszar sum lemma
in a non-explicit manner. It is used in (4.14) [4] in a similar
fashion, and this result is in turn used in [3].

One could also fairly argue that even the proof of Lemma
1 here reminds of the use of past and future like in the
Csiszar sum lemma; however magically we use this argument
only for pairs of receivers and hence no three sequences are

considered simultaneously. One point to note is that while
Csiszar sum lemma is very general, our argument is dependent
on the partial order between the receivers. However this may
also indicate that there are other alternative arguments tothe
Csiszar sum-lemma which may be worthwhile pursuing.

II. M AIN RESULTS

A. Three-receiver less noisy broadcast channel

The main result of the paper is the following:
Theorem 2:The capacity region of a 3-receiver less noisy

discrete memoryless broadcast channel is given by the union
of rate triples(R1, R2, R3) satisfying:

R1 ≤ I(X ;Y1|V )

R2 ≤ I(V ;Y2|U)

R3 ≤ I(U ;Y3)

over all choices of(U, V,X) such thatU → V → X →
(Y1, Y2, Y3) forms a Markov chain. Further it suffices to
consider|U | ≤ |X |+ 1, |V | ≤ (|X |+ 1)2.

1) Achievability: The rate-triples are achievable using su-
perposition coding and jointly typical decoding. The argu-
ments are standard in literature and hence only an outline is
provided.

Consider a (U, V,X) such thatU → V → X →
(Y1, Y2, Y3) forms a Markov chain. We will show the achiev-
ability of any rate-triple satisfyingR3 < I(U ;Y3), R2 <

I(V ;Y2|U), R1 < I(X ;Y1|V ).
The encoding proceeds as follows:
• Generate2nR3 sequenceun(m3) ∼

∏n

i=1 pU (ui).
• For eachm3, generate2nR2 sequencesvn(m2,m3) dis-

tributed according to
∏n

i=1 pV |U (vi|ui).
• Finally for each (m2,m3) pair, generate 2nR1

xn(m1,m2,m3) sequences distributed according to∏n

i=1 pX|V,U(xi|vi, ui) =
∏n

i=1 pX|V (xi|vi).

ReceiverY3, upon receivingyn31, assignsM̂3 = m3 if there
is a unique sequenceun(m3) such that the pair(un(m3), y

n
31)

is jointly typical; otherwise receiverY3 declares an error.
This decoding succeeds with high probability as long as
R3 < I(U ;Y3).

ReceiverY2 performs successive decoding. (This is in gen-
eral worse than joint decoding, but in this situation successive
decoding is sufficient.) Upon receivingyn21, assignsM̄3 = m3

if there is a unique sequenceun(m3) such that the pair
(un(m3), y

n
21) is jointly typical; otherwise receiverY2 declares

an error. Assuming if finds a uniqueun(m3) sequence, it then
assignsM̂2 = m2 if there is a unique sequencevn(m2,m3)
such that the triple(un(m3), v

n(m2,m3), y
n
21) is jointly typ-

ical; otherwise receiverY2 declares an error. The first step
of decoding succeeds with high probability as long asR3 <

I(U ;Y2), but this holds asI(U ;Y2) ≥ I(U ;Y3) (sinceY2 is
a less-noisy receiver thanY3). The second step of decoding
succeeds with high probability as long asR2 < I(V ;Y2|U).

Similarly, receiverY1 also performs successive decoding.
The three steps of decoding will succeed with high probability
as long as the conditionsR3 < I(U ;Y1), R2 < I(V ;Y1|U),



and R1 < I(X ;Y1|V, U) = I(X ;Y1|V ) hold. SinceY1 �
Y2 � Y3 the first two conditions are automatically satisfied.
This completes the proof of achievability.

2) Converse: The interesting part of this proof is the
converse, and in particular the use of Lemma 1 to identify
the auxiliary random variables.

Lemma 1:Let X → (Ys, Yt) be a discrete-memoryless
broadcast channel without feedback andYs � Yt. Consider
M to be any random variable such that

M → Xn → (Y n
s,1, Y

n
t,1)

form a Markov chain. Then the following hold:

1) I(Y i−1
s,1 ;Yt,i|M) ≥ I(Y i−1

t,1 ;Yt,i|M), 1 ≤ i ≤ n.

2) I(Y i−1
s,1 ;Ys,i|M) ≥ I(Y i−1

t,1 ;Ys,i|M), 1 ≤ i ≤ n.

Proof: The proof of Part 1 follows by progressively
flipping one co-ordinate ofY i−1

s1 to Y i−1
t1 , and showing that

the inequality holds at each flip using the less-noisy (Ys � Yt)
assumption.

Observe that for any1 ≤ r ≤ i− 1

I(Y r−1
t,1 , Y i−1

s,r ;Yti|M)

= I(Y r−1
t,1 , Y i−1

s,r+1;Yt,i|M) + I(Ys,r ;Yt,i|M,Y r−1
t,1 , Y i−1

s,r+1)

(a)

≥ I(Y r−1
t,1 , Y i−1

s,r+1;Yt,i|M) + I(Yt,r;Yt,i|M,Y r−1
t,1 , Y i−1

s,r+1)

= I(Y r
t,1, Y

i−1
s,r+1;Yti|M),

where(a) follows from the following two observations:

• (M,Y r−1
t,1 , Y i−1

s,r+1, Yti) → Xr → (Ys,r, Yt,r) forms a
Markov chain

• The receiverYs is less noisy thanYt implying, in partic-
ular, that

I(Ys,r;Yt,i|M,Y
r−1
t,1 , Y

i−1
s,r+1) ≥ I(Yt,r;Yt,i|M,Y

r−1
t,1 , Y

i−1
s,r+1).

This yields us a chain of inequalities of the form

I(Y i−1
s,1 ;Yt,i|M) ≥ I(Yt,1, Y

i−1
s,2 ;Yti|M) ≥ · · ·

· · · ≥ I(Y i−2
t,1 , Ys,i−1;Yti|M) ≥ I(Y i−1

t,1 ;Yt,i|M),

thus establishing the Part 1 of the Lemma.

The proof of Part 2 follows identical arguments (replaceYti

by Ysi) as in the proof of Part 1 and is omitted.

Remark 4: It must be noted that the Lemma 1 is not
necessarily true in the presence of feedback. When there is
feedback(M,Y r−1

t,1 , Y i−1
s,r+1, Yti) → Xr → (Ys,r, Yt,r) do not

satisfy the Markov chain relationship.

The main converse follows using Fano’s inequality and the
above lemma.

Observe that

nR3 ≤ I(M3;Y
n
3,1) + nǫn

=

n∑

i=1

I(M3;Y3,i|Y
i−1
3,1 ) + nǫn

≤
n∑

i=1

I(M3, Y
i−1
3,1 ;Y3,i) + nǫn

(a)

≤
n∑

i=1

I(M3, Y
i−1
2,1 ;Y3,i) + nǫn

=
n∑

i=1

I(Ui;Y3,i) + nǫn,

whereUi = (M3, Y
i−1
2,1 ). Here(a) follows from Lemma 1.

From Fano’s inequality we also have

nR2 ≤ I(M2; Y
n
2,1|M3) + nǫn

=
n∑

i=1

I(M2;Y2,i|M3, Y
i−1
2,1 ) + nǫn

=
n∑

i=1

I(Vi; Y2,i|Ui) + nǫn,

whereVi = (M2,M3, Y
i−1
2,1 ).

Finally observe that

nR1 ≤ I(M1;Y
n
1,1|M2,M3) + nǫn

=

n∑

i=1

I(M1;Y1,i|M2,M3Y
i−1
1,1 ) + nǫn

(a)

≤

n∑

i=1

I(Xi;Y1,i|M2,M3, Y
i−1
1,1 ) + nǫn

(b)
=

n∑

i=1

I(Xi; Y1,i|M2,M3)− I(Y i−1
1,1 ;Y1,i|M2,M3) + nǫn

(c)

≤

n∑

i=1

I(Xi;Y1,i|M2,M3)− I(Y i−1
2,1 ;Y1,i|M2,M3) + nǫn

(d)

≤
n∑

i=1

I(Xi;Y1,i|M2,M3, Y
i−1
2,1 ) + ǫn

=
n∑

i=1

I(Xi;Y1,i|Vi) + nǫn.

Here (a), (b), and (d) follow from the data processing
inequality and that

(M1,M2,M3, Y
i−1
1,1 , Y i−1

2,1 ) → Xi → Y1i

forms a Markov chain. The inequality(c) follows from Part
2 of Lemma 1.

Let Q ∈ {1, 2, ..., n} to be a uniformly distributed random
variable independent of all other random variables. Setting
U = (UQ, Q), V = (VQ, Q), X = XQ completes the
converse in the standard way. ClearlyU → V → X forms
a Markov chain asVi = (Ui,M2). The cardinality arguments
are standard in literature (see [1], [7]), and follows using
the Fenchel-Bunt strengthening of the usual Caratheodory’s
argument.

Remark 5:The choice of Ui = (M3, Y
i−1
2,1 ), Vi =

(M2,M3, Y
i−1
2,1 ) might suggest to a reader that this region



may still be optimal in the presence of feedback. However as
noted in Remark 4, the absence of feedback is crucially used
in the proof of Lemma 1, and hence this argument does not
go through.

We can also use Lemma 1 to give a new proof for the 2-
receiver case without resorting to Csiszar sum lemma. Indeed
one can directly prove a weak converse for (1), instead of
proving it for an equivalent region, the one in Theorem 1.

3) A new converse for the 2-receiver setting:Here, we just
provide an outline of the steps. Observe that in the two receiver
case,

nR1 ≤ I(M1;Y
n
1,1|M2) + nǫn

=
n∑

i=1

I(M1;Y1,i|M2, Y
i−1
1,1 ) + nǫn

(a)

≤
n∑

i=1

I(Xi;Y1,i|M2Y
i−1
1,1 ) + nǫn

(b)
=

n∑

i=1

I(Xi;Y1,i|M2)− I(Y i−1
1,1 ;Y1,i|M2) + nǫn

(c)

≤
n∑

i=1

I(Xi;Y1,i|M2)− I(Y i−1
2,1 ;Y1,i|M2) + nǫn

(d)

≤
n∑

i=1

I(Xi;Y1,i|M2, Y
i−1
2,1 ) + ǫn

=

n∑

i=1

I(Xi;Y1,i|Ui) + nǫn,

whereUi = (M2, Y
i−1
2,1 ). Here(a), (b), and (d) follow from

the data processing inequality and that

(M1,M2, Y
i−1
1,1 , Y i−1

2,1 ) → Xi → Y1i

forms a Markov chain, and inequality(c) follows from Part 2
of Lemma 1.

The inequality

nR2 ≤
n∑

i=1

I(M2, Y
i−1
2,1 ;Y2,i) + nǫn

=
n∑

i=1

I(Ui;Y2,i) + nǫn.

is immediate from Fano’s inequality.
Thus Lemma 1 gives a new proof for the 2-receiver case

without resorting to Csiszar sum lemma, and this proof gen-
eralizes to three receivers.

Remark 6:A natural question here is whether this approach
generalizes to more than three receivers. It appears to the
authors that to generalize this argument to more than three
receivers, one has to impose additional constraints on the
class ofk-receiver less broadcast noisy channels. Since this
generalization leads to a rather interesting condition we shall
define the class, and give a brief outline as to why the proof
generalizes naturally under this setting. However, currently this
proof idea does not generalize to more than 3-receivers. We
will discuss this after the next section.

B. Thek-receiver interleavable broadcast channel

Definition 3: A k-receiver less noisy broadcast channel is
said to belong to be aninterleavablebroadcast channel if there
existsk − 1 virtual receiversV1, ..., Vk−1 satisfying:

• X → V1 → ... → Vk−1 forms a Markov chain and
• The following“interleaved” less noisy condition holds:

Y1 � V1 � Y2 � · · ·Yk−1 � Vk−1 � Yk. (3)

This class generalizes the 3-receiver less noisy broadcast
channel. Indeed, the following broadcast channels are some
examples belonging to this class :

1) A sequence of degraded receivers, i.e.X → Y1 → ... →
Yk; setVi = Yi+1,

2) A sequence of “nested” less noisy receivers, i.e.Yi �
(Yi+1, ..., Yk); setVi = (Yi+1, ..., Yk),

3) A 3-receiver less noisy sequence, i.e.Y1 � Y2 � Y3; set
V1 = V2 = Y2.

From Remark 1 we know that the less-noisy ordering only
depends on the marginals. Hence without loss of generality
we can assume that the probability distribution factorizesas
follows:

p(xn, yn1 , . . . , y
n
k , v

n
1 , . . . , v

n
k−1)

=

n∏

i=1

p(xi|x
i−1)p(y1i, .., yki, v1i, .., vk−1,i|xi)

=
n∏

i=1

p(xi|x
i−1)p(y1i, .., yki|xi)p(v1i, .., vk−1,i|xi)

=

n∏

i=1

p(xi|x
i−1)p(y1i, .., yki|xi)p(v1i|xi)

k−1∏

j=2

p(vji|vj−1,i)

Here the first equality is due to the fact that the channel
is DMC without feedback, second is due to the fact that the
assumptions on the less noisy structure just depend on the
marginals, and third is due to the Markov chainX → V1 →
... → Vk−1.

Given this structure we immediately observe the following
Markov chain

V i−1
s,1 → V i−1

s−1,1 → Xn, Y n
1 , . . . , Y n

k ,M1, ...,Mk. (4)

for 1 ≤ s ≤ k − 1; (setV0 = X).
Theorem 3:The capacity region of a k-receiver interleav-

able less-noisy discrete memoryless broadcast channel is given
by the union of rate triples(R1, . . . , Rk) satisfying

Rl ≤ I(Ul;Yl|Ul+1), 1 ≤ l ≤ k,

over all choices of(U2, ...Uk, X) such that(Uk+1 = ∅) →
Uk → · · ·U2 → (U1 = X) → (Y1, Y2, . . . , Yk) forms
a Markov chain. Further it suffices to consider|Uk−r | ≤
(|X |+ 1)r+1, 1 ≤ r ≤ k − 2.

Proof: The proof is almost identical to that of the three
receiver broadcast channel. The achievability proof is standard
using superposition encoding and successive decoding and is
omitted here.



Let Mk
l+1 = (Ml+1, ...,Mk). Using Fano’s inequality,

observe that for1 ≤ l ≤ k.

nRl ≤ I(Ml;Y
n
l,1|M

k
l+1) + nǫn

=

n∑

i=1

I(Ml;Yl,i|M
k
l+1, Y

i−1
l,1 ) + nǫn

=

n∑

i=1

I(Ml, Y
i−1
l,1 ;Yl,i|M

k
l+1)

− I(Y i−1
l,1 ;Yl,i|M

k
l+1) + ǫn

(a)

≤ I(Ml, Y
i−1
l,1 ; Yl,i|M

k
l+1)

− I(V i−1
l,1 ;Yl,i|M

k
l+1) + ǫn

b)

≤ I(Ml, V
i−1
l−1,1;Yl,i|M

k
l+1)

− I(V i−1
l,1 ;Yl,i|M

k
l+1) + ǫn

(c)
= I(Ml, V

i−1
l−1,1;Yl,i|M

k
l+1, V

i−1
l,1 )ǫn

=

n∑

i=1

I(Ul,i;Yl,i|Ul+1,i) + nǫn,

where Ul,i = (Mk
l , V

i−1
l−1,1). We set V0 = X . Here the

inequalities(a), (b) follow from the Lemma 1 and thatVl−1 �
Yl � Vs−1. The equality(c) follows from the Markov chain
in (4).

Define Q to be a uniform random variable taking values
in {1, .., n} and independent of all other random variables. As
usual, we setUl = (Ul,Q, Q) andX = XQ. SinceX → V1 →
· · · → Vk−1 is a Markov chain it follows thatUk → Uk−1 →
· · · → U2 → X forms a Markov chain as well. The cardinality
arguments are again standard and omitted. This completes the
proof of the converse.

Remark 7: It is not very difficult to observe that in general
the 4-receiver less noisy broadcast channel is not aninterleav-
able broadcast channel. To observe this, letZ1 � Z2 be any
pair of less noisy but not degraded (stochastically) receivers.
(Such a pair exists, see [3] or [6]). For instance takeX → Z1

to be BEC(0.5) and X → Z2 to be BSC(0.2). Now let
Y1, Y2 ≈ Z1; say, takeY1 = Z1 and Y2 to be an erased
version ofZ1 with erasure probabilityǫ1. If we let ǫ1 → 0
then forV1 to satisfyY1 � V1 � V2 it must be thatV1 → Z1.
Similarly takeY3 = Z2 and Y4 to be an erased version of
Z1 with erasure probabilityǫ2. Similarly if we set ǫ2 → 0
it must be thatV3 → Z2. HoweverX → V1 → V3 is not a
Markov chain sinceX → Z1 → Z2 is not. Hence the problem
of determining the capacity ofk-receiver less noisy channel
k ≥ 4 is still very much open.

III. C ONCLUSION

We establish the capacity region for the 3-receiver less noisy
broadcast channel. We also compute the capacity region for
a class of k-receiver less noisy sequences that contain the
previously mentioned scenario. A new information inequality
is used to obtain the converse. and this technique also sim-
plifies the original proof [3] of the converse of the 2-receiver
broadcast channel.

The problem of determining the capacity region of the
4-receiver less noisy broadcast channel is still open. So is
the question of determining the capacity region of a three-
receiver more capable [3] channel. Among the other simple-
to-state open problems in this area, one also does not know the
capacity of the three receiver degraded broadcast channel with
two messages [7], [9], where two of the three receivers need
to recover both the massages while the third is only interested
in one of them. This problem is peculiar in the sense that the
best known achievable region to date has only one auxiliary
random variable, and yet one does not know if the region is
optimal.
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