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Abstract—We determine the capacity region of a 3-receiver pairs(R;, R2) satisfying
less noisy broadcast channel. The difficulty in extending t& two-
receiver result to three-receivers involves extending th€siszar- Ry < I(X;1a|U) (1)
sum lemma to three or more sequences, a standard difficulty in Ry < I(U;Ys)
this area. In this work we bypass the difficulty by using a new
information inequality, for less noisy receivers, that is enployed in  over all choices ofU, X) such that/ -+ X — (Y7, Y>) forms
the converse. We also generalize our result to obtain the capity g Markov chain.
region for a class of less noisy receivers. The extension of this result tb-receivers is operi > 3.
In this paper we present a simple proof for the case 3.
|. INTRODUCTION Further our proof can also be used to provide an alternate
proof for k£ = 2, although it must be noted that the original
Consider the problem of reliable communicationfoin- proof provides a strong-converse while ours provides a weak
dependent messagés, ..., M, over a discrete-memorylessconverse. A modern-day weak converse proof (reproduced in
broadcast channel (DM-BC), t&-receiversYi,Ys,...,Y;, Section I-A) for the 2-receiver case may be obtained using
respectively. A(2"%1 x ... x 278k p) code for the DM-BC the outer bounds in [5], [2], [8], however all use Csiszar sum
consists of: (i) a message det: 2"%1] x - . x [1 : 278+], (i) lemma which has no natural generalization to three recgiver
an encoder that assigns a codewatdm, ..., m;) to each Instead our proof relies on a information inequality (Lemma

message-tuplém,, ..., my), and (iii) k& decoders, decoder1) which helps us by-pass the use of Csiszar sum lemma.
| assigns an estimatey(y,) € [I : 2"%i] or an error Indeed using this lemma one can also obtain the capacity

messagee to each received sequengg,, 1 < | < k. region for a subset of-receiver less noisy broadcast channel

We assume that the messages are uniformly distributed o{#hich contains the 3-receiver less noisy broadcast chawme
[1:277] x ...[1:2"8]. The probability of error is defined well). However for clarity of exposition, we shall first ebtish

aspP™ — P{UE_, N, # M}, the result for the 3-receiver less noisy broadcast .charrlmbl a
then present the general result for the clas&-oéceiver less

A rate-tuple(Ry,-- - , Rx) is said to be achievable if there™ '™
noisy broadcast channel.

exists a sequence (2711 x - - - x 211% ) codes withP\™ —
0 asn — oo. The capacity region is defined as the closure @&. Motivation
the union of all achievable rates. In this section we present the (modern-day) weak converse
Definition 1: A receiverY; is said to be less noisy [3] than@rgument for the capacity region of the two-receiver legsyno
receiverY; if I(U;Y,) > I(U;Y;) forall U — X — (Y,,Y;). broadcast channel, to highlight the difficulties encoudein
We denote this relationship(partial-order) by = ;. naturally extending it to three or more receivers.

Remark 1:Observe that this partial-order only depends Oﬂo}l-shegrrig dia[:t] IE:nCr?eﬁaiglt{hreegﬂgiT) r(:f(’;t;e;;\t/\éo-rz;:ﬁzlv}ezr)less
the marginal distributiong(y;|z) and p(y:|z). y Paiis, 1tz

s ] X satisfyin
Definition 2: A k-receiver less noisy broadcast channel is fying
a k-receiver discrete memoryless broadcast channel where the Ri+ Ry < I(U;Y2) + 1(X;11[U)
receivers satisfy the partial ord&; > Y, > --- = Y}. Ry < I(U;Ys)

The cap_acny region f(_)f thé—_recewer broadcast_channevaer all choices of U, X) such thal/ — X — (Y4, Ya) forms
was established (Proposition 3 in [3]) to be the union of rale\ - ov chain

Remark 2:1t is easy to see that (by considering corner

This work was partially supported by a grant from the Uniigr&rants points) this region is identical to the region in (1)
Committee of the Hong Kong Special Administrative Regiohjra (Project Proof: H IV sh h The di
No. AoE/E-02/08), and by the institute of theorectical conep science and roof: Here we only show the converse. e direct part

communications (ITCSC). uses superposition coding and is standard.



From Fano’s inequality we have considered simultaneously. One point to note is that while
Csiszar sum lemma is very general, our argument is dependent
on the partial order between the receivers. However this may
also indicate that there are other alternative argumentiseto

’IL(Rl + Rz) — NEn
< I(M1§ Y17,11|M2) + I(M2§ Y27,11)

— ZI(Mlﬂfl,ilM%Yfﬂl) + I(Ma; Ya,i|Y's1) Csiszar sum-lemma which may be worthwhile pursuing.
o Il. MAIN RESULTS

< I(My; Y| Mo, Y, Vi) + 1(Yahi: Yial M2, Yi17) A, Three-receiver less noisy broadcast channel
i=1 . . —
- I(Ma; Yo Vi) The main result of the paper is the following:

n Theorem 2:The capacity region of a 3-receiver less noisy
@ S I(My Y| Mo, Yo, YT ) + (Y Yai| M, Y5'iy,)  discrete memoryless broadcast channel is given by the union
i=1 of rate triples(R1, R2, R3) satisfying:

) + I(M2; Y2, Y3 41) Ry < I(X;Y1]V)
< ZI(M1§Y1,7;|M2, Y27,lz‘+17Y1i51) + I(M2:Y27?i+1vyli31?y2’i) Ry <I(V;Y2|U)
izl R; < I(U;Y3)
<D (X5 YalUs) + 1(Uss Yaye).

p over all choices of(U,V, X) such thatU — V — X —

) (Y1,Ys,Ys) forms a Markov chain. Further it suffices to
where U; = (JVIQ,Y'QZH,.YH}). Here (a) follows from  consider|U| < |X|+ 1, V] < (|X] + 1)2.
Csiszar-sum lemma [1] which implies that 1) Achievability: The rate-triples are achievable using su-
_ n _ perposition coding and jointly typical decoding. The argu-
S IS Vil Me, YY) = T(Y1 YoM, Y3',, ). ments are standard in literature and hence only an outline is
i=1 i=1 provided.
Consider a(U,V,X) such thatU — V — X —

n

The second inequality is much easier and again follows from

Fano's inequality since, (Y1,Ys,Ys) forms a Markov chain. We will show the achiev-
ability of any rate-triple satisfyingR; < I(U;Y3),Rs <
nhe —nen I(V;Ya|U), Ry < I(X;Y4|V).
< ITSM??YM) . The encoding proceeds as follows:
- ZI(M2; Ya,ilY2liv1) < ZI(Mz,erfiH,YfEl;Yu) o Generate2"/* sequence:” (ms) ~ [[;_; pu (ui). _
i=1 i—1 e For eachms, generate"?2 sequences” (mo, ms3) dis-
n tributed according tq ;" ; py v (vilus).
= ZI(UiSY%)' e Finally for each (mg,ms) pair, generate 2%
=t x2™(my, ma, mg) sequences distributed according to
Standard arguments (settiig, = (Q,Uszq)) are used to [T pxvu (@ilvi, wi) = [T, pxjv (@ilvi).-
complete the converse. [ | ReceiverYs, upon receiving/y, assignsh/s = ms if there

Remark 3:Here the Csiszar-sum lemma is crucial for idenis a unique sequenag’(mg) such that the paitu™(ms), y%;)
tifying the auxiliary variable in the converse. Howeverrihés is jointly typical, otherwise receivelys declares an error.
no useful generalization of this equality (2) to three or enofThis decoding succeeds with high probability as long as
receivers, that can be used in a similar converse. This igualR; < I(U;Y3).

(Csiszar-sum lemma) is used in several of the converses foReceiverY; performs successive decoding. (This is in gen-
two receivers (more capable, degraded message sets, semalworse than joint decoding, but in this situation susives
deterministic channel) and in each case, the generalizétio decoding is sufficient.) Upon receiving,, assigns\l; = mg
three or more receivers is absent. For the case of degradethere is a unique sequenc&*(ms) such that the pair
message sets, it is known [7] that the straightforward esiten (v (ms), y5,) is jointly typical; otherwise receiver; declares
(simple superposition coding) is not optimal. In this papex an error. Assuming if finds a uniqué* (ms) sequence, it then
propose the first generalization to three or more receitieas, assignsi, = mo if there is a unique sequeneé (maq, ms)
bypasses the use of Csiszar sum lemma. such that the tripldu™(ms), v™ (ma, ms),y5;) is jointly typ-

The original proof (Proposition 3 in [3]) of the two-receiveical; otherwise receivel; declares an error. The first step
less noisy broadcast channel also employs Csiszar sum lenohaecoding succeeds with high probability as longias<
in a non-explicit manner. It is used in (4.14) [4] in a similad (U;Y2), but this holds ad (U;Ys) > I(U;Y3) (sinceYs is
fashion, and this result is in turn used in [3]. a less-noisy receiver thari). The second step of decoding

One could also fairly argue that even the proof of Lemmsucceeds with high probability as long &s < I(V; Y2|U).

1 here reminds of the use of past and future like in the Similarly, receiverY; also performs successive decoding.
Csiszar sum lemma; however magically we use this argumditite three steps of decoding will succeed with high probigbili
only for pairs of receivers and hence no three sequences aselong as the condition®; < I(U;Y1), R: < I(V;Y1|U),



and R; < I(X;Y1|V,U) = I(X;Y1|V) hold. SinceY; Observe that
Y, = Y3 the first two conditions are automatically satisfied. n

. . . Rz < I(M. ,Y + n
This completes the proof of achievability. [ | = ,S 3 ¥5:) +ne

2) Converse: The interesting part of this proof is the = I(Ms;Ys|Ys1") + nen
converse, and in particular the use of Lemma 1 to identify
the auxiliary random variables.

Lemma 1l:Let X — (Y,Y;) be a discrete-memoryless
broadcast channel without feedback anid = Y;. Consider
M to be any random variable such that

s
Il
=

I(Ms,Ys7":Ya) + nen

()= 1

IN
M-

—~
S
=

I(Ms, Y37 Ya,) + nen

1

.
Il

I(U;; Ya,i) + nen,

I

Il
—

M — X" = (Y, Y1)

whereU; = (Ms,Y;7"). Here(a) follows from Lemma 1.

form a Markov chain. Then the following hold: From Fano’s inequality we also have

1) IV 7Y M) > LY/ 7Y Y IM), 1<i<n. nRy < I(My; Y3 | Ms) 4 nen

2) (Vi s Vaal M) 2 (VT Vau M), 1 < < =S (Mt YoM, Vi) e

Proof: The proof of Part 1 follows by progressively -
flipping one co-ordinate o¥; ! to Y;;!, and showing that = 3 I(Vi YaulUh) + nen
the inequality holds at each flip using the less-nolgy £ Y;) — ’
assumption. ;
P _ whereV; = (My, Mz, Y;71).
Observe that forany <r <i—1 Finally observe that ’

i nRy < I(My; Y| Ma, Ms) + ney,
I(Y) 7 Y Y | M)

s, n
. . _ . ) i—1
= T VI Vel M) 4 (Y Yol MY Yind) = T YaalMe, M) + mee
(a) . ) n
-1 -1 -1 -1 (a) ;
> LY TN Y Yl M) + T(Ye s Yo MY T Y 0) < ST (X5 Vi Ma, M, YY) + nen
i—1 i=
:I(KT17YSZ,T,+1;E7:|M)7 nl
&N 1(X5; Vil Mz, Ms) — (Vi7" Ya s Mo, Ms) + ne,
where(a) follows from the following two observations: =1
. () & i
o (MY[TLYIL V) > X = (Vi Yi,) forms a < D T(X5 Yau|Ma, My) = 1(Y31 s Yaa| Ma, Ms) + nen
Markov chain " .
e The receiverY; is less noisy thary; implying, in partic- 4 v i—1
ular, that < ;I(X17Y1J|M27M37Y2,1 )+ én
LY Youl MLYIT L VI 2 1Y Vea MUY YE L), =D I(XiYialVa) + nen.

i=1
Here (a),(b), and (d) follow from the data processing

This yields us a chain of inequalities of the form inequality and that

IV Y M) > I(Y1, Yigh Y| M) > - (M, My, M3, V{71, Y371 = X — Yy

s,1
s > (YT Yo Yas [ M) > I(Y/ T Ve[ M), forms a Markov chain. The inequality:) follows from Part
' 2 of Lemma 1.
thus establishing the Part 1 of the Lemma, L_et Q € {1,2,...,n} to be a uniformly distribu_ted random
i i variable independent of all other random variables. Sgttin
The proqf of Part 2 follows |dent|cal_ arguments (replage 7 — Ug.Q).V = (Vo.Q),X = X, completes the
by Ys;) as in the proof of Part 1 and is omitted. B converse in the standard way. Cleafly — V — X forms
Remark 4:1t must be noted that the Lemma 1 is nok Markov chain ag/; = (U;, M-). The cardinality arguments
necessarily true in the presence of feedback. When thereaje standard in literature (see [1], [7]), and follows using
feedback(M, Y, 7',V 11, Y1) = X, — (Y, Y2,) do NOt  the Fenchel-Bunt strengthening of the usual Caratheoslory’
satisfy the Markov chain relationship. argument. ]
The main converse follows using Fano's inequality and the Remark 5:The choice of U; = (M3, Y;1'), V; =
above lemma. (Mg,Mg,Y;:l) might suggest to a reader that this region



may still be optimal in the presence of feedback. However &8 Thek-receiver interleavable broadcast channel

noted in Remark 4, the absence of feedback is crucially usedhefinition 3: A k-receiver less noisy broadcast channel is
in the proof of Lemma 1, and hence this argument does noliq ¢ helong to be anterleavablebroadcast channel if there
go through. existsk — 1 virtual receiversyy, ..., Vi._; satisfying:

We can also use Lemma 1 to give a new proof for the 2- e X 5 Vi — .. — Vi, forms a Markov chain and
receiver case without resorting to Csiszar sum lemma. bhdee e The foIIowing“interI;aved” less noisy condition holds:
one can directly prove a weak converse for (1), instead of ’
proving it for an equivalent region, the one in Theorem 1. ViV =Yoo= Y1 =V =Y. 3)

3) A new converse for the 2-receiver settirtdere, we just ) ) . )
provide an outline of the steps. Observe that in the twovecei  This class generalizes the 3-receiver less noisy broadcast

case, channel. Indeed, the following broadcast channels are some
examples belonging to this class :
1) A sequence of degraded receivers, Ke— Y| — ... —
=3 I(Mi; Vi Mo, Vi) + nen Yi; setV; = Y,
2) A sequence of “nested” less noisy receivers, Ye.~
(Yig1, ..., Yi); setV; = (Yigq, .o, Yi),

nRy < I(My; Y| Mz) + nep

il

(a) i1

< — H(X3 V1,6 M2YY, ) + nen 3) A 3-receiver less noisy sequence, ¥g.= Y, = Y3 set

® ; Vi=V, =1

= (X Vi, | Ma) — I(Y{ 15 Y| Mz) + nep From Remark 1 we know that the less-noisy ordering only

o o depends on the marginals. Hence without loss of generality

<3 I(X YialMs) — I(Y37" Y4l Mz) + ne, we can assume that the probability distribution factoriass
i=1 follows:

(4 & ,

< ST (X Vi M, Yo7+ en FACN TR T/ N

.
Il
i

p(I’i|Ii71)p(yli7 ey Ykis Uliy ooy ’kal-,i|'ri)

I
M=
Il

N
Il
-

I(X5;Y1,:|Us) + nen,

Il
—

p(@i|2" (Y, -y Yri| )P (V145 - Vg—1,i|Ts)

I
=

whereU; = (M, Y;7"). Here(a), (b), and (d) follow from

the data processing inequality and that !

.
Il

n k—1
(My, My, {74 YViTH) = Xy — Yo = [ p@ilz =)oy, -, yrilwi)p(osilz:) [ [ pojilvj-14)
’ ’ i=1 Jj=2
forms a Markov chain, and inequalify) follows from Part 2 Here the first equality is due to the fact that the channel
of Lemma 1. is DMC without feedback, second is due to the fact that the
The inequality assumptions on the less noisy structure just depend on the
marginals, and third is due to the Markov chaih— V| —

nRy <Y I(Ms, Y37 Y2,) + nep o = Vi1

Given this structure we immediately observe the following
Markov chain

Vil s VI o XYY My, My (4)

N.
i M:
I

I

Il
-

I(Ui; Ya,i) + nep.

2

is immediate from Fano’s inequality. for1 <s<k-—1; (setVp = X).

Thus Lemma 1 gives a new proof for the 2-receiver case Theorem 3:The capacity region of a k-receiver interleav-
without resorting to Csiszar sum lemma, and this proof gefble less-noisy discrete memoryless broadcast channigkis g
eralizes to three receivers. by the union of rate triple$R;, ..., Ry) satisfying

Rema_lrk 6: A natural question here is.whether this approach R < I(U;; Yi|Uig1), 1 <1<k,
generalizes to more than three receivers. It appears to the
authors that to generalize this argument to more than thmeer all choices of(Us, ..Uy, X) such that(Uy 1 = 0) —
receivers, one has to impose additional constraints on thig — ---Us — (U3 = X) — (Y1,Ya,...,Y)) forms
class ofk-receiver less broadcast noisy channels. Since tlisMarkov chain. Further it suffices to considgf,_,.| <
generalization leads to a rather interesting condition hadls (| X|+1)"!, 1 <r <k -—2.
define the class, and give a brief outline as to why the proof Proof: The proof is almost identical to that of the three
generalizes naturally under this setting. However, cdlyehis receiver broadcast channel. The achievability proof indsiad
proof idea does not generalize to more than 3-receivers. \Wging superposition encoding and successive decodingsand i
will discuss this after the next section. omitted here.



Let Mlk+1 = (Mi41,..., My). Using Fano’s inequality,
observe that fod <[ < k.

nR; < I(My; Y |MF) + nen

= > T(My; Yl M1, YT ) + nen
1=1

I(Mh Ylffl7 le,ilMl]il)

-

Il
—

~

(Ylffl; n,i|Ml]iL1) +en

(@) i—1 k
< I(M, Yy 5 Yl M)
- I(Vlffl; Vii| M) + €n

b) o
< I(M, Vi 35 Yia M)
— I(Vi 5 Vi M) + en
(c) i— i—
= I(M17 ‘/171171; Yl7i|Mlk+17 Vl,l 1)6"
= Z I(U,; Y1,6|Uig1,4) + nen,
i=1
where U;; = (MF,V/'7')). We setV, = X. Here the
inequalities(a), (b) follow from the Lemma 1 and thdf_; >

Y, = Vi_1. The equality(c) follows from the Markov chain
in (4).

IIl. CONCLUSION

We establish the capacity region for the 3-receiver lessynoi
broadcast channel. We also compute the capacity region for
a class of k-receiver less noisy sequences that contain the
previously mentioned scenario. A new information inegyali
is used to obtain the converse. and this technique also sim-
plifies the original proof [3] of the converse of the 2-reegiv
broadcast channel.

The problem of determining the capacity region of the
4-receiver less noisy broadcast channel is still open. So is
the question of determining the capacity region of a three-
receiver more capable [3] channel. Among the other simple-
to-state open problems in this area, one also does not krew th
capacity of the three receiver degraded broadcast charittel w
two messages [7], [9], where two of the three receivers need
to recover both the massages while the third is only intecest
in one of them. This problem is peculiar in the sense that the
best known achievable region to date has only one auxiliary
random variable, and yet one does not know if the region is
optimal.
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Define @ to be a uniform random variable taking values

in {1,..,n} and independent of all other random variables. As

usual, we set/; = (U, ¢, Q) andX = Xg. SinceX — V; —
-+« — Vi_1 is a Markov chain it follows that/;, — Uj_1 —

-+ — Uy — X forms a Markov chain as well. The cardinality[z]
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