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Abstract—Marton’s inner bound is the best known achievable
region for a general discrete memoryless broadcast channel. To
compute Marton’s inner bound one has to solve an optimization
problem over a large set of joint distributions of the auxiliary
random variables. The optimizers turn out to be very structured
in many cases. Finding properties of optimizers not only results in
efficient evaluation of the region, but it may also help one to prove
factorization of Marton’s inner bound (and thus its optimality).
The first part of this paper formulates this factorization approach
explicitly and states some conjectures and results along this line.
The second part of this paper focuses primarily on the structure
of the optimizers. This section is inspired by a new binary
inequality that recently resulted in a very simple characterization
of the sum-rate of Marton’s inner bound for binary input
broadcast channels. This prompted us to investigate whether this
inequality can be extended to larger cardinality input alphabets.
We show that several of the results for the binary input case
do carry over for higher cardinality alphabets and we present
a collection of results that help restrict the search space of
probability distributions to evaluate the boundary of Marton’s
inner bound in the general case. We also prove a new inequality
for the binary skew-symmetric broadcast channel that yields a
very simple characterization of the entire Marton’s inner bound
for this channel.

I. INTRODUCTION

A broadcast channel [1] models a communication scenario
where a single sender wishes to communicate multiple mes-
sages to many receivers. A two receiver discrete memoryless
broadcast channel consists of a sender X and two receivers
Y,Z. The sender maps a pair of messages M1,M2 to a trans-
mit sequence Xn(m1,m2)(∈ Xn) and the receivers each get
a noisy version Y n(∈ Yn), Zn(∈ Zn) respectively. Further
|X |, |Y|, |Z| < ∞ and p(yn1 , z

n|xn) =
∏n
i=1 p(yi, zi|xi). For

more details on this model and a collection of known results
please refer to Chapters 5 and 8 in [2]. We also adopt most
of our notation from this book.

The best known achievable rate region for a broadcast
channel is the following inner bound due to [3]. Here we
consider the private messages case.

Bound 1. (Marton) The union of rate pairs R1, R2 satisfying
the constraints

R1 < I(U,W ;Y ),

R2 < I(V,W ;Z),

R1 +R2 < min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W ),

for any triple of random variables (U, V,W ) such that
(U, V,W ) → X → (Y,Z) is achievable. Further to compute
this region it suffices [4] to consider |W| ≤ |X | + 4, |U| ≤
|X |, |V| ≤ |X |.

It is not known whether this region is the true capacity
region since the traditional Gallager type technique for proving
converses fails to work in this case. This raises the question of
whether Marton’s inner bound has an alternative representation
that is better amenable to analysis. We believe that central to
answering this question is understanding properties of joint
distributions p(u, v, w, x) corresponding to extreme points
of Marton’s inner bound. Our approach to this is twofold.
Roughly speaking in the first part of this paper we find suf-
ficient conditions on the optimizing distributions p(u, v, w, x)
which would imply a kind of factorization of Marton’s inner
bound that would imply that it is the correct rate region. In the
second part we find necessary conditions on any optimizing
p(u, v, w, x). Unfortunately the gap between these sufficient
and necessary conditions is still wide. However we discuss
how the necessary conditions may enhance our understanding
of the maximizers of the expression I(U ;Y ) + I(V ;Z) −
I(U ;V ) and how it may be useful in proving the factorization
of Marton’s inner bound.

A. Necessary conditions

The question of whether Marton’s inner bound matches one
of the known outer bounds has been studied in several works
recently [5], [6], [4], [7], [8]. Since we build upon these
results in this work, a brief literature review is in order. It
was shown in [6] that a gap exists between Marton’s inner
bound and the best-known outer bound [9] for the binary
skew-symmetric (BSSC) broadcast channel (Fig. 1) if a certain
binary inequality, (1) below, holds. A gap between the bounds
was demonstrated for the BSSC in [4] without explicitly
having to evaluate the inner bound. The conjectured inequality
for this channel was established in [7] and hence Marton’s
sum-rate for BSSC was explicitly evaluated. The inequality
was shown [8] to hold for all binary input broadcast channels
thus giving an alternate representation to Marton’s sum-rate
for binary input broadcast channels.

Theorem 1. [8] For all random variables (U, V,X, Y, Z) such
that (U, V )→ X → (Y,Z) forms a Markov chain and |X | =
2 the following holds

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}. (1)



This yields the following immediate corollary.

Corollary 1. [8] The maximum sum-rate achievable by Mar-
ton’s inner bound for any binary input broadcast channel is
given by

max
p(w,x)

min{I(W ;Y ), I(W ;Z)}+ P(W = 0)I(X;Y |W = 0)

+ P(W = 1)I(X;Z|W = 1).

Here W = {0, 1}.
Note that this characterization is much simpler than the one

given by the third inequality in Bound 1.
Our results on the necessary conditions of an optimizer

attempt to extend the new binary inequality to larger alphabet
sets, and to the entire rate region (rather than just the sum
rate).

B. Sufficient conditions

Suppose we have certain properties of p(u, v, w, x) that
maximize Marton’s inner bound. How can one use this to
prove that Marton’s inner bound is tight? The traditional
Gallager type technique requires us to consider the n-letter
expression and try to identify single-letter auxiliary random
variables. If any such statement can be shown, it has to hold
for n = 2 in particular. In [10], authors studied Marton’s
inner bound (sum-rate) via a two-letter approach and there
they presented an approach to test whether Marton’s inner
bound is indeed optimal. The crux of the paper [10] is a
certain factorization idea which if established would yield the
optimality of Marton’s inner bound for discrete memoryless
broadcast channels. Further the authors used the same idea
to show [11] an example of a class of broadcast channels
where Marton’s inner bound is tight and the best known
outer bounds are strictly loose1. The converse to the capacity
region of this class of broadcast channels was motivated by
the factorization approach. The authors also showed that the
factorizing approach works if an optimizer p(u, v, w, x1x2) for
the two-letter Marton’s inner bound satisfies certain conditions.

In this paper we provide more sufficient conditions that
imply factorization by forming a more refined version of the
two-letter approach [11]. Simulations conducted on randomly
generated binary input broadcast channels indicate that per-
haps the factorization stated below (Conjecture 1) is true; thus
indicating that Marton’s inner bound could be optimal.

For any broadcast channel q(y, z|x), denote

T (X) := max
p(u,v|x)

I(U ;Y ) + I(V ;Z)− I(U ;V ).

Note that T (X) is a function of p(x) for a given broadcast
channel. Similarly for any function f(X), defined on p(x)
denote by

C[f(X)] = max
p(v|x)

∑
v

p(v)f(X|V = v),

1The previous works established a gap between the bounds and in this work
it was shown that the outer bounds (both in the presence and absence of a
common message) are strictly sub-optimal.

the upper concave envelope evaluated of f(X) at p(x). (Note
that one can restrict the maximization to |V| ≤ |X | by Fenchel-
Caratheodory arguments). A 2-letter broadcast channel is a
product broadcast channel whose transition probability is given
by q(y1, y2|x1)q(z1, z2|x2); i.e. they can be considered as
parallel non-interfering broadcast channels. For this channel
the function T (X1, X2) is defined similarly as

max
p(u,v|x1,x2)

I(U ;Y1, Y2) + I(V ;Z1, Z2)− I(U ;V ).

Conjecture 1. For all product channels, for all λ ∈ [0, 1] and
for all p(x1, x2) the following holds:

λH(Y1, Y2)− λ̄H(Z1, Z2) + T (X1, X2)

≤ C[−λH(Y1)− λ̄H(Z1) + T (X1)]

+ C[−λH(Y2)− λ̄H(Z2) + T (X2)],

where λ̄ = 1− λ.
Remark 1. The above conjecture was not formally stated in
[10] as the authors did not have enough numerical evidence
at that point; however subsequently the evidence has grown
enough for some of the authors to have reasonable confidence
in the validity of the above statement.

It was shown [10] that if Conjecture 1 holds then Marton’s
inner bound would yield the optimal sum-rate for a two-
receiver discrete memoryless broadcast channel. Hence estab-
lishing the veracity of the conjecture becomes an important
direction in studying the optimality of Marton’s inner bound.

The validity of Conjecture 1 was established [10] in the
following three instances:

1) λ = 0, λ = 1, i.e. the extreme points of the interval,
2) If one of the four channels, say X1 7→ Y1 is deterministic,
3) In one of the components, say the first, receiver Y1 is

more capable2 than receiver Z1.
Note that to establish the conjecture one needs to get a

better handle on T (X). What inequality (1) shows is that when
|X| = 2 then

T (X) = max{I(X;Y ), I(X;Z)}.
In this work, we seek generalizations of the inequality (1) in
two different directions:
• To the entire private messages region: Maximizing
I(U ;Y ) + I(V ;Z)− I(U ;V ) for a given p(x) is related
to the sum-rate computation of Marton’s inner bound. If
one is interested in the entire private messages region,
one must deal with a slightly more general form and this
is presented in Section I-B1.

• Beyond binary input alphabets: The inequality (1) itself
fails to hold where |X | = 3, for instance in the Blackwell
channel3. Therefore, we attempt to establish properties of
the optimizing distributions p(u, v|x) that achieve T (X),
in Section III.

2A receiver Y is said to be more-capable [12] than receiver Z if I(X;Y ) ≥
I(X;Z) ∀p(x).

3Blackwell channel is a deterministic broadcast channel with X =
{0, 1, 2}, with the mapping X 7→ Y × Z given by: 0 7→ (0, 0), 1 7→
(0, 1), 2 7→ (1, 1).



1) A generalized conjecture: Much of the work in [10]
focused on the sum-rate. If one is interested in proving
the optimality of the entire rate-region (for the private mes-
sage case) then establishing the following equivalent con-
jecture would be sufficient. For α ≥ 1 define Tα(X) :=
maxp(u,v|x) αI(U ;Y ) + I(V ;Z)− I(U ;V ).

Conjecture 2. For all product channels, for all λ ∈ [0, 1], for
all α ≥ 1, and for all p(x1, x2) the following holds:

− (α− λ̄)H(Y1, Y2)− λ̄H(Z1, Z2) + Tα(X1, X2)

≤ C[−(α− λ̄)H(Y1)− λ̄H(Z1) + Tα(X1)]

+ C[−(α− λ̄)H(Y2)− λ̄H(Z2) + Tα(X2)].

Remark 2. The sufficiency of the conjecture in proving the
optimality of Marton’s inner bound follows from a 2-letter
argument similar to that found in [10]. However this conjecture
is not equivalent to proving the optimality of Marton’s inner
bound; indeed it is a stronger statement.

II. SUFFICIENT CONDITIONS

A sufficient condition beyond those established in [10] that
imply factorization is the following:

Claim 1. For some p(x1, x2) and a product channel if we
have a p(u, v|x1, x2) such that

T (X1, X2) = I(U ;Y1, Y2) + I(V ;Z1, Z2)− I(U ;V ),

and further P(X2 = x2|U = u) ∈ {0, 1} ∀u, x2, then the
factorization conjecture holds.

Proof: Observe that (by elementary manipulations) we
have

− (α− λ̄)H(Y1, Y2)− λ̄H(Z1, Z2) + αI(U ;Y1, Y2)

+ I(V ;Z1, Z2)− I(U ;V )

= −(α− λ̄)H(Y1|Z2)− λ̄H(Z1|Z2) + αI(U ;Y1|Z2)

+ I(V ;Z1|Z2)− I(U ;V |Z2)− (α− λ̄)H(Y2|Y1)

− λ̄H(Z2|Y1) + αI(U ;Y2|Y1) + I(V ;Z2|Y1)

− I(U ;V |Y1) + I(U ;V |Y1, Z2)− (α− 1)I(Y1;Z2|U)

− I(Y1;Z2|U, V )

= −(α− λ̄)H(Y1|Z2)− λ̄H(Z1|Z2) + αI(U ;Y1|Z2)

+ I(V ;Z1|Z2)− I(U ;V |Z2)− (α− λ̄)H(Y2|Y1)

− λ̄H(Z2|Y1) + αI(U ;Y2|Y1) + I(V ;Z2|U, Y1)

− (α− 1)I(Y1;Z2|U)− I(Y1;Z2|U, V ).

Since X2 is a function of U we have

αI(U ;Y2|Y1) + I(V ;Z2|U, Y1)− (α− 1)I(Y1;Z2|U)

− I(Y1;Z2|U, V ) = αI(X2;Y2|Y1).

Hence

T (X1, X2) = −(α− λ̄)H(Y1|Z2)− λ̄H(Z1|Z2)

+ αI(U ;Y1|Z2) + I(V ;Z1|Z2)− I(U ;V |Z2)

− (α− λ̄)H(Y2|Y1)− (α− λ̄)H(Y2|Y1)

− λ̄H(Z2|Y11) + αI(X2;Y2|Y1)

≤ C[−(α− λ̄)H(Y1)− λ̄H(Z1) + Tα(X1)]

+ C[−(α− λ̄)H(Y2)− λ̄H(Z2) + Tα(X2)].

Remark 3. The main purpose of this claim is to demonstrate
that if the distributions p(u, v|x) that achieve T (X), we
will refer to them as extremal distributions, satisfy certain
properties, then we could employ these properties to establish
the conjecture. In this paper we will establish some such
properties of the extremal distributions.

A. A conjecture for binary alphabets

A natural guess for extending the inequality (1), so as to
compute Tα(X), is the following: For any α ≥ 1, for all
random variables (U, V,X, Y, Z) such that (U, V ) → X →
(Y, Z) forms a Markov chain and |X | = 2, the following
holds

αI(U ;Y ) + I(V ;Z)− I(U ;V ) ≤
max{αI(X;Y ), I(X;Z)}. (2)

However this inequality turns out to be false in general. A
counterexample is presented in Appendix B.

However the inequality is true in the following cases:

1) If α ≤ 1 then the inequality in (2) holds: To see this let
Y ′ be obtained from Y by erasing each received symbol
with probability 1 − α. It is straightforward to see that
I(U ;Y ′) = αI(U ;Y ) and I(X;Y ′) = αI(X;Y ). Since

I(U ;Y ′)+I(V ;Z)−I(U ;V ) ≤ max{I(X;Y ′), I(X;Z)},

the inequality holds.
2) If α ≥ 1 at any p(x) where I(X;Y ) ≥ I(X;Z) the

inequality holds since

(α− 1)I(U ;Y ) ≤ (α− 1)I(X;Y ),

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ I(X;Y ).

The inequality in Equation (2) also holds for the binary
skew-symmetric broadcast channel shown in Figure 1 (we
assume p = 1

2 ); quite possibly the simplest channel whose
capacity region is not established. The proof is presented in
Appendix A.

By establishing Equation (2) for this channel, we are now
able to precisely characterize Marton’s inner bound region for
this channel. In particular it is straightforward to see that for
α ≥ 1, if M represents Marton’s inner bound, then



Z

Y

X

p

p

1− p

1− p 0

0

0

1

1

1

Fig. 1. The binary skew-symmetric broadcast channel

max
(R1,R2)∈M

αR1 +R2

= max
p(w,x)

(
min{I(W ;Y ), I(W ;Z)}+ (α− 1)I(W ;Y )

+ αP(W = 0)I(X;Y |W = 0)

+ P(W = 1)I(X;Z|W = 1)
)
.

A similar statement holds for when the roles of Y,Z are
interchanged. In particular this may enable one to show
the sub-optimality of Marton’s inner bound by looking at
directions beyond the sum-rate.

Based on simulations and other evidence we propose the
following conjecture.

Conjecture 3. For all α ≥ 1, for all (U, V ) → X → (Y,Z)
with |X | = 2, we have

− (α− λ̄)H(Y )− λ̄H(Z) + Tα(X)

≤ C[−(α− λ̄)H(Y )− λ̄H(Z) + max{αI(X;Y ), I(X;Z)}].

Remark 4. Clearly for a broadcast channel if Equation (2)
holds then the conjecture holds. Even though we know that
Equation (2) may fail at some p(x) for some channels, the
conjecture states that Equation (2) holds for a sufficient class
of p(x) that is needed to compute the concave envelope.

III. NECESSARY CONDITIONS: BEYOND BINARY INPUT
ALPHABETS

In this section we compute some properties of the extremal
distributions for T (X), |X | ≥ 3. To understand our approach,
it is useful to have a quick recap of the proof of Equation
(1) for binary alphabets. The main idea behind the proof is
to isolate the local maxima of the function p(u, v|x) by a
perturbation argument, an extension of the ideas introduced in
[4]. The following facts were established in [4]: for a fixed
broadcast channel q(y, z|x) to compute

max
p(u,v|x)

I(U ;Y ) + I(V ;Z)− I(U ;V )

if suffices to consider
1) |U|, |V| ≤ |X |, and
2) p(x|u, v) ∈ {0, 1}, i.e. X is a function of (U, V ), say

X = f(U, V ).

When X is binary, there are 16 possible functions from U, V
to X . The proof [8] essentially boiled down to showing
that the local maxima may only exist for the following two
cases: U = X,V = ∅; V = X,U = ∅, leading to the
terms I(X;Y ), I(X;Z) respectively. Indeed, in the proof,
there were only two non-trivial cases to eliminate: these were
(assume w.l.o.g. all alphabets of U ,V,X are {0, 1}):

X = U ⊕ V (XOR case), X = U ∧ V (AND case).

Hence we adopt the approach of eliminating classes of func-
tions where the local maxima may exist and we present the
generalizations of the AND case and the XOR cases in the
next two sections.

In the following sections we assume that p(u, v|x) achieves
T (X) and X = f(U, V ). Further we assume that q(y, z|x) >
0 ∀x, y, z, i.e. we are in a dense subset of channels with non-
zero transition probabilities. In this case we can further assume
that p(u, v) > 0 ∀u, v, [13].

A. Generalization of the AND case

In this section we deal with an extension of the AND case
from the proof of the binary inequality [8]. It says that one
cannot have one column and one row mapped to the same
input symbol.

Theorem 2. For any (U, V,X) such that X = f(U, V ) and
p(uv|x) achieves T (X) one cannot find x0, u0 and v0 such
that f(u0, v) = f(u, v0) = x0 for all u ∈ U and v ∈ V .

Proof: Assume otherwise that f(u0, v) = f(u, v0) = x0
for all u ∈ U and v ∈ V . Consider the multiplicative
perturbation qu,v,x = pu,v,x(1 + εLu,v) for some ε in some
interval around zero. For this to be a valid perturbation, it
has to preserve the marginal distribution of X . Therefore we
require that ∑

u,v

pu,v,xLu,v = 0 ∀x, (3)

We can view the expression I(U ;Y ) + I(V ;Z)− I(U ;V )
evaluated at qu,v,x as a function of ε. Non-positivity of the
second derivative at a local maximum implies

E(E(L|U, Y )2) + E(E(L|V,Z)2)− E(E(L|U, V )2) ≤ 0.

where random variable L is defined to take the value Lu,v
under the event that (U, V ) = (u, v). Routine calculations
show that this condition can be rewritten as follows∑

u,v

1

puv
I2u,v −

∑
u

∑
v1

∑
v2

Tf(u,v1),f(u,v2),uIu,v1Iu,v2 (4)

−
∑
v

∑
u1

∑
u2

Tf(u1,v),f(u2,v),vIu1,vIu2,v ≥ 0,

where Iu,v = puvLuv , Tx1,x2,u =
∑
y py|x1

py|x2

1
puy

, and
Tx1,x2,v is defined similarly. Equation (3) can be rewritten
as ∑

u,v:x=f(u,v)

Iu,v = 0 ∀x. (5)



Now, let us define Iu,v as follows: (a) Iu,v = 0 when u 6= u0
and v 6= v0, (b) Iu0,v = pu0,vpv0 when v 6= v0, (c) Iu,v0 =
−pu,v0pu0 when u 6= u0, and (d) Iu0,v0 = pu0v0(pv0 − pu0).
Note that Iu0,v > 0 for all v 6= v0, and Iu,v0 < 0 for all
u 6= u0 since pu,v > 0.

It is easy to verify equation (5) for this choice. The second
derivative constraint reduces (after some manipulation) to∑

u,v: u=u0
or v=v0

1

puv
I2u,v ≥

∑
u:u6=u0

Tx0,x0,uI
2
u,v0

+
∑
v:v 6=v0

Tx0,x0,vI
2
u0,v + Tx0,x0,u0

(
∑
v

Iu0,v)
2

+ Tx0,x0,v0(
∑
u

Iu,v0)2. (6)

Now, using Lemma 2 (a very similar result was used in
[8]) one can see that Tx0,x0,v ≥

pu0v0

pu0vpv0
, Tx0,x0,v0 ≥ 1

pv0
,

Tx0,x0,u ≥
pu0v0

puv0
pu0

and Tx0,x0,u0
≥ 1

pu0
. Hence, observe that∑

u:u6=u0

Tx0,x0,uI
2
u,v0 + Tx0,x0,u0

(
∑
v

Iu0,v)
2

+
∑
v:v 6=v0

Tx0,x0,vI
2
u0,v + Tx0,x0,v0(

∑
u

Iu,v0)2

≥
∑

u:u6=u0

pu0v0

puv0pu0

I2u,v0 +
1

pu0

(
∑
v

Iu0,v)
2

+
∑
v:v 6=v0

pu0v0

pu0vpv0
I2u0,v +

1

pv0
(
∑
u

Iu,v0)2. (7)

One can verify that for our given choice of Iu,v the right
hand side of the equation (7) is equal to the left hand side of
equation (6), i.e.∑

u,v: u=u0 or v=v0

1

puv
I2u,v =

1

pv0
(
∑
u

Iu,v0)2

+
1

pu0

(
∑
v

Iu0,v)
2 +

∑
v:v 6=v0

pu0v0

pu0vpv0
I2u0,v

+
∑

u:u6=u0

pu0v0

puv0pu0

I2u,v0 .

This implies that both equations (7) and (6) have to hold
with equality for our choice of Iu,v . Therefore all the inequal-
ities that we took from Lemma 2 have to hold with equality.
But this can happen only if U is independent of Y , and V
is independent of Z, i.e. I(U ;Y ) = I(V ;Z) = 0. This is a
contradiction and completes the proof.

Lemma 1. If there are u1 6= u2 such that f(u1, v) = f(u2, v)
for all v ∈ V , one can find another optimizer p(u′, v|x), where
I(U ;Y )+I(V ;Z)−I(U ;V ) = I(U ′;Y )+I(V ;Z)−I(U ′;V )
and furthermore |U ′| < |U|. A similar condition holds if one
can find v1 6= v2 such that f(u, v1) = f(u, v2) for all u ∈ U .

Remark 5. This lemma shows that to compute T (X) one only
needs to consider functions f(U, V ) where each row (fixed U )
has a distinct mapping; similarly for columns.

Proof: Assume that U = {u1, u2, ..., uk}. Define U ′ as
a random variable taking values in {2, 3, ..., k} as follows:
U ′ = i if U = ui for i ≥ 3, and U ′ = 2 if U = u1 or
U = u2. Note that H(X|U ′V ) = 0 since f(u1, v) = f(u2, v)
for all v ∈ V . It suffices to prove that

I(U ;Y )+I(V ;Z)−I(U ;V ) ≤ I(U ′;Y )+I(V ;Z)−I(U ′;V ).

This is equivalent to showing that I(U ;V |U ′) ≥ I(U ;Y |U ′).
Since H(X|U ′V ) = 0, we have

I(U ;V |U ′) = I(U ;V X|U ′) = I(U ;V XY |U ′) ≥ I(U ;Y |U ′).

This completes the proof.

Lemma 2. Take arbitrary u1, u2, v, x such that f(u1, v) = x.
Then any maximizing distribution must satisfy∑

y

p2y|x

pu2y
≥ pu1v

pu2vpu1

,

Equality implies that py|x = py|u2
= py|u1

for all y.

Proof: We start with the first derivative condition to write

log
pu1v

pu2v
≤
∑
y

py|x log
pu1y

pu2y
+
∑
z

pz|x log
pvz
pvz

=
∑
y

py|x log
pu1y

pu2y

=
∑
y

py|x log
pu1py|u1

pu2y

=
∑
y

py|x log
pu1

py|x

pu2y
−
∑
y

py|x log
py|x

py|u1

=
∑
y

py|x log
pu1

py|x

pu2y
−D(py|x‖py|u1

)

≤
∑
y

py|x log
pu1py|x

pu2y

≤ log
∑
y

py|x
pu1py|x

pu2y
.

B. An alternate proof for the XOR case

In this section we provide an alternative proof for the
binary XOR case, and its generalization to the non-binary case
(another extension of the XOR case has been provided in [13]).
Let us begin with the binary XOR case. Let U, V be binary
random variables, and X = U ⊕ V . We would like to show
that under this setting, we have

I(U ;Y ) + I(V ;Z) ≤ max(I(X;Y ), I(X;Z)).

Definition 1. Given p(u, x), let cp(u,x) denote the minimum
value of c such that I(U ;Y ) ≤ c·I(X;Y ) holds for all p(y|x)
for all possible alphabets Y . Alternatively, cp(u,x) is the mini-
mum value of c such that the function q(x) 7→ H(U)−cH(X)
when p(u|x) is fixed, matches its convex envelope at p(x).



By the data-processing inequality we know that 0 ≤
cp(u,x) ≤ 1, and the minimum is well defined.
Remark 6. Note that here we are adopting a dual notion. We
fix the auxiliary channel p(u|x) and then ask for a minimizing
c over all the forward channels.

If cp(u,x) + cp(v,x) ≤ 1 then note: I(U ;Y ) + I(V ;Z) ≤
cp(u,x)I(X;Y ) + cp(v,x)I(X;Z) ≤ max(I(X;Y ), I(X;Z)).

Theorem 3. For any binary U, V,X and a p(u, v, x) such that
X = U⊕V the following inequality holds: cp(u,x) +cp(v,x) ≤
1.

Proof: Let pij = p(U = i, V = j) for i, j ∈ {0, 1}. Let
α := p00

p00+p11
= p00

p(X=0) and β := p01
p01+p10

= p01
p(X=1) . Then

we claim that cp(u,x) ≤ |α − β| and cp(v,x) ≤ |α + β − 1|.
This will complete the proof since α, β ∈ [0, 1] implies

|α− β|+ |α+ β − 1| ≤ 1.

To show that cp(u,x) ≤ |α−β|, it suffices to show that q(x) 7→
H(U) − |α − β|H(X) is convex at all q(x). The proof for
cp(v,x) ≤ |α + β − 1| is similar. Note that H(U) − |α −
β|H(X) = h(αq(0) + βq(1)) − |α − β|h(q(0)) where h(·)
is the binary entropy function. Thus, we need to look at the
function x 7→ h(αx+ β(1− x))− |α− β|h(x) for x ∈ [0, 1].
The second derivative is

− (α− β)2

(αx+ β(1− x))(1− (αx+ β(1− x))
+
|α− β|
x(1− x)

.

We need to verify that the above expression is non-negative,
i.e.

(αx+ β(1− x))(1− (αx+ β(1− x)) ≥ |α− β|x(1− x).

This is true because

(αx+ β(1− x))(1− (αx+ β(1− x))

= (αx+ β(1− x))(x(1− α) + (1− x)(1− β))

≥ αx(1− x)(1− β) + β(1− x)x(1− α)

= x(1− x)[α(1− β) + β(1− α)]

≥ x(1− x)|α(1− β)− β(1− α)|
= x(1− x)|α− β|.

Remark 7. Note that the definition of cp(u,x) requires the
constraint I(U ;Y ) ≤ c · I(X;Y ) to hold for all channels
p(y|x). If the subchannel p(y|x) is known to be an erasure
channel (i.e. Y is equal to X with some probability and erased
otherwise), we can get even smaller values for c (here I(U ;X)

H(X) ).
In the Appendix C, we give a geometric interpretation to

above, which yields insights for higher cardinality alphabets.

IV. CONCLUSION

We propose a pathway for verifying the optimality of
Marton;’s inner bound by trying to determine properties
of the extremal distributions. We establish some necessary
conditions, extending the work in the binary input case. We
also add to the set of sufficient conditions. We present a few

conjectures whose verifications have immediate consequences
on the optimality of Marton.
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APPENDIX

A. Proof of an inequality for BSSC

We consider the binary skew-symmetric broadcast channel
with p = 1

2 shown in Figure 1. For this channel we prove that
for all α ≥ 1 and for all (U, V )→ X → (Y,Z) we have

αI(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{αI(X;Y ), I(X;Z)}.
The proof of this claim again uses the perturbation method.

Using the same arguments as in [8] it is easy to deduce that
the AND case is the only non-trivial case. (The impossibility
of an XOR mapping being a local maximum carries over for
all binary input broadcast channels in this setting.)



Claim 2. Any p(u, v) > 0 such that X = U ∧ V cannot
maximize (for α ≥ 1)

αI(U ;Y ) + I(V ;Z)− I(U ;V ),

for the BSSC channel for a fixed p(x).

Proof: Consider a perturbation of the form pε(u, v) =
p(uv)(1+ εL(u, v)). The first derivative conditions imply that∑

z

q(z|0) log
pvz(1z)puv(00)

pvz(0z)puv(01)
= 0,

∑
y

q(y|0) log
puy(1y)αpu(0)(α−1)puv(00)

puy(0y)αpu(1)(α−1)puv(10)
= 0.

For BSSC we have q(y|0) = 1
2 , y ∈ {0, 1} and q(y|1) =

1, y = 1 and vice-versa for Z.
Substituting this into first derivative conditions we obtain

pvz(10)puv(00)

pvz(00)puv(01)
= 1.

puy(10)αpu(0)(α−1)puv(00)

puy(00)αpu(1)(α−1)puv(10)

puy(11)αpu(0)(α−1)puv(00)

puy(01)αpu(1)(α−1)puv(10)
= 1.

The first of the above conditions is equivalent to

pvz(10)puv(00)

pvz(00)puv(01)
=

(puv(01) + 1
2puv(11))puv(00)

(puv(00) + puv(10))puv(01)
= 1.

or that
1

2
puv(11)puv(00) = puv(10)puv(01).

The second of the above conditions can be written as

1 =
puy(10)αpu(0)2(α−1)puv(00)2

puy(00)αpu(1)2(α−1)puv(10)2
puy(11)α

puy(01)α

=
puv(10)α(puv(00) + puv(01))2(α−1)puv(00)2

(puv(00) + puv(01))α(puv(10) + puv(11))2(α−1)puv(10)2

× (puv(10) + 2puv(11))α

(puv(00) + puv(01))α

=
(1 + 2puv(11)

puv(10)
)α

(1 + puv(01)
puv(00)

)2(1 + puv(11)
puv(10)

)2(α−1)
.

Let x = puv(01)
puv(00)

. Then from the first condition we have
puv(01)
puv(00)

= 2x. The second condition becomes

1 =
(1 + 4x)α

(1 + x)2(1 + 2x)2(α−1)
.

The second derivative conditions imply the following: (note
that the expression we are dealing with is essentially

(α− 1)H(U) +H(UV )− αH(UY )−H(V Z).

Hence we would like to show that for all valid multiplicative
perturbations we have

(α− 1) E(E(L|U)2) + E(L2)− αE(E(L|U, Y )2)

− E(E(L|V,Z)2) ≥ 0.

Computing the terms

E(E(L|U)2) =
I210

puv(00) + puv(01)
+

I210
puv(10) + puv(11)

,

E(L2) =
I200

puv(00)
+

I201
puv(01)

+
I210

puv(10)
,

E(E(L|U, Y )2) =
I210

puv(00) + puv(01)
+

I210
2puv(10)

+

I210
2(puv(10) + 2puv(11))

,

E(E(L|V,Z)2) =
I201

puv(00) + puv(10)
+

2I201
2puv(01) + puv(11)

.

Let G be the negative of the Hessian. This can be written
as

G00 =
1

puv(01)
+

1

puv(00)
− 1

puv(00) + puv(10)

− 2

2puv(01) + puv(11)
,

G01 = G10 =
1

puv(00)
,

G11 =
α− 1

puv(00) + puv(01)
+

α− 1

puv(10) + puv(11)

+
1

puv(10)
+

1

puv(00)
− α

puv(00) + puv(01)

− α

2puv(10)
− α

2(puv(10) + 2puv(11))

=
1

puv(10)
+

1

puv(00)
− 1

puv(00) + puv(01)

+
α− 1

puv(10) + puv(11)
− α

2puv(10)

− α

2(puv(10) + 2puv(11))
.

Using puv(00)puv(11) = 2puv(10)puv(11) we can write the
term G00 as

G00 =
1

puv(01)
+

1

puv(00)
− 1

puv(00) + puv(10)

− 2

2puv(01) + puv(11)

=
1

puv(01)
+

1

puv(00)
− 1

puv(00) + puv(10)

− puv(00)

puv(01)(puv(00) + puv(10))

=
(puv(00) + puv(01))puv(10)

(puv(00) + puv(10))puv(01)puv(00)
.

Hence for G to be positive semi-definite we require

α− 1

puv(10) + puv(11)
− α

2puv(10)
− α

2(puv(10) + 2puv(11))
≥

− puv(00)

puv(10)(puv(00) + puv(01))
.
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Fig. 2. The plot of g(x) for x ∈ [0, 1
2
]

Multiplying by puv(10) on both sides and noting that x =
puv(01)
puv(00)

= 1
2
puv(11)
puv(10)

we can rewrite this necessary condition as

α− 1

1 + 2x
− α

2
− α

2(1 + 4x)
≥ − 1

(1 + x)
.

This reduces to

α ≤ 1 + 4x

(1 + x)4x
.

Thus for a local maxima to occur we need that there is an
x ∈ (0,∞) satisfying the following two conditions:

1 ≤ α ≤ 1 + 4x

(1 + x)4x
,

1 =
(1 + 4x)α

(1 + x)2(1 + 2x)2(α−1)
.

The second condition implies that

α log
(1 + 4x)

(1 + 2x)2
= log

(1 + x)2

(1 + 2x)2
.

For 1 ≤ 1+4x
(1+x)4x (from first condition) to hold for some

x ∈ (0,∞) we need x ∈ (0, 12 ].
Plugging the value of α from the second condition, we also

require that

log
(1 + x)2

(1 + 2x)2
≥ 1 + 4x

(1 + x)4x
log

(1 + 4x)

(1 + 2x)2
.

(Note the negativity of log (1+4x)
(1+2x)2 when x ∈ (0, 12 ]).

This is equivalent to

(1 + x)2

(1 + 2x)2
≥
( (1 + 4x)

(1 + 2x)2

) 1+4x
(1+x)4x

.

Define

g(x) =
(1 + x)2

(1 + 2x)2
−
( (1 + 4x)

(1 + 2x)2

) 1+4x
(1+x)4x

.

Plotting g(x) in the interval [0, 12 ] we see that g(0) = 0 and
it is strictly negative and decreasing in (0, 12 ). Hence there
is no x simultaneously satisfying both the first and second
derivative conditions for BSSC when α > 1. This establishes
the AND case for BSSC.

B. A counterexample

We will produce a counterexample to the following state-
ment: for |X̧| = 2 the following inequality

αI(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{αI(X;Y ), I(X;Z)},
holds for any α > 1 and any Markov chain (U, V ) → X →
(Y,Z).

Consider the following setting: The channels are:

p(Y |X) =

[
0.5 0.5
0 1

]
, p(Z|X) =

[
1 0

0.1 0.9

]
.

The parameters are

p(X) = [0.8, 0.2], α =
I(X;Z)

I(X;Y )
= 3.429517.

The choice of α is actually the corner point for RHS. The
result is

LHS = 0.593020 > 0.586278 = RHS,

where LHS is obtained by the p.m.f. and mapping X =
f(U, V ) as

p(U, V ) =

[
0.05930 0.00005
0.14065 0.80000

]
, f(U, V ) =

[
1 1
1 0

]
.

This is AND case, exactly the case we cannot prove in general.
We also plot the figure for LHS and RHS w.r.t. α:

Acknowledgment: The authors wish to thank Yanlin Geng
for obtaining this counterexample.

C. A geometric interpretation to cp(u,x)
We know that cp(u,x) is the minimum value of c such that

the function q(x) 7→ H(U) − cH(X) when p(u|x) is fixed,
matches its convex envelope at p(x). The maxp(x) cp(u,x)
would be the minimum value of c such that q(x) 7→ H(U)−
cH(X) is completely convex in p(x) for a fixed p(u|x). Let us
fix some p(u|x) and let c′p(u,x) be the minimum value of c such
that the function q(x) 7→ H(U) − cH(X) is convex at p(x).
We will then have that maxp(x) cp(u,x) = maxp(x) c

′
p(u,x).



The term c′p(u,x) has a nice geometric interpretation. We
begin by using the perturbation method and perturb p(u, x)
along a direction L(X) such that E[L] = 0 (therefore we are
fixing p(u|x)). The second derivative of H(U)−cH(X) along
this direction is

−E(E(L|U)2) + cE(E(L|X)2) = −E(E(L|U)2) + cE(L2).

If we want this to be greater than or equal to zero, it implies
that c ≥ E(E(L|U)2)

E(L2) for all L(X) such that E[L] = 0.
Now consider the vector space of random variable, V on a

given sample space Ω defined as follows: Given a fixed sample
space, Ω, the set of all random variables (i.e. all functions from
the sample space to real numbers) forms a vector space with
normal addition and scalar multiplication of random variables.
We define the inner product between two random variables X
and Y to be E(XY ).

The set of all functions of X , i.e. {L(X) : L : R 7→ R}
is a itself a linear subspace of V . Let us denote this set of
all random variables that are functions of X by VX . We
can similarly define the set of all random variables that are
functions of U and denote it by VU .

Now, let us use 1 to denote the random variable that takes
value 1 with probability 1. The set of random variables that
are perpendicular to 1 are the ones with zero expected value.
Let us denote the set of these random variables, itself a linear
subspace, by V1⊥.

Note that 1 ∈ VX and 1 ∈ VU . Let us define the following
two subspaces:

V ′X = VX ∩ V1⊥,

V ′U = VU ∩ V1⊥.

Now, the perturbation method says that we should take some
L(X) in V ′X . Its projection onto VU is equal to E(L|U), its
squared length being E(E(L|U)2). Note that the projection
onto VU is the same as the projection onto V ′U because all
the action is taking place in V1⊥. The expression E(E(L|U)2)

E(L2)
is the cosine squared of the angle formed by vector L and
its projection onto V ′U . The term c should dominate all such
cosine-squared values when L freely changes over V ′X . Thus,
c′p(u,x) has to be the cosine-squared of the angle between the
two subspaces V ′U and V ′X . This is because we are taking an
arbitrary vector L in V ′X , then finding the vector in V ′U that
has the smallest angle with L, i.e. its projection of L onto V ′U ,
and then computing their cosine-squared expression.

Note that if the Gacs-Korner common information between
U and X is non-trivial, then the angle between the two
subspaces V ′U and V ′X is zero (because the intersection of
V ′X and V ′U will be non-trivial). Otherwise, the angle between
the two subspaces is strictly positive. It is worth noting that
the angle between the two subspaces V ′U and V ′X has a
symmetric definition. Therefore the minimum value of c such
that the function q(x) 7→ H(U) − cH(X) is convex at the
given p(x), is the same as the minimum value of c such that
q(u) 7→ H(X)− cH(U) is convex at the given p(u).

To compute the cosine of the angle between the two
subspaces it suffices to take two arbitrary vectors in these two
subspaces and maximize the cosine of their angle. We can
express the cosine of the angle using Pearson’s correlation
coefficient between two variables:

c′q(u,x) = ( max
L:X 7→R, T :U7→R

Cov
(
L(X), T (U)

)√
V ar(L(X))×

√
V ar(T (U))

)2.

Note that here the maximization is over arbitrary functions
L and T , and the requirement that E[L] = E[T ] = 0
is relaxed. Another formula for c′q(u,x) is the maximum
of (E[L(X)T (U)])2 over all L(X) and T (U) satisfying
E[L(X)] = 0, E[L(X)2] = 1, E[T (U)] = 0 and E[T (U)2] =
1. This is a simple optimization problem and can be dealt with
using the Lagrange multipliers technique. It gives rise to other
analytical formulas for c′q(u,x).


