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On the evaluation of Marton’s inner bound for
two-receiver broadcast channels

Venkat Anantharam, Fellow, IEEE, Amin Gohari, Senior Member, IEEE, Chandra Nair, Fellow, IEEE,

Abstract—Marton’s inner bound is the best known achievable
rate region for a general two-receiver discrete memoryless broad-
cast channel. In this paper, we establish improved bounds on the
cardinalities of the auxiliary random variables appearing in this
inner bound to the true rate region. We combine a perturbation
technique, along with a representation using concave envelopes of
information-theoretic functions that involve the use of auxiliary
random variables, to achieve this improvement. The new cardi-
nality bounds lead to a proof that a randomized time-division
strategy achieves every rate triple in Marton’s region for binary
input broadcast channels. This extends the result by Hajek and
Pursley which showed that the Cover-van der Muelen region was
exhausted by the randomized time-division strategy.

I. INTRODUCTION

A broadcast channel [1] models a communication scenario
where a single sender wishes to communicate multiple mes-
sages to many receivers. A two-receiver discrete memoryless
broadcast channel consists of a sender X and two receivers Y
and Z. The sender maps a triple of messages M0,M1,M2 to a
transmit sequence Xn(m0,m1,m2)(∈ Xn) and the receivers
each get a noisy version Y n(∈ Yn), Zn(∈ Zn) respectively.
Here |X |, |Y|, |Z| < ∞. Receiver Y wishes to decode the
message pair (M0,M1) correctly and receiver Z wishes to
decode the message pair (M0,M2) correctly, with probability
approaching 1 as n → ∞. We assume that the channel is mem-
oryless and that there is no feedback from the receivers to the

This paper was presented in part at the IEEE International Symposium on
Information Theory, 2013.

V. Anantharam is with the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, Berkeley, CA 94720
USA (e-mail: ananth@eecs.berkeley.edu). A. Gohari is with the Department
of Electrical Engineering, Sharif University of Technology, Tehran, Iran
(email: aminzadeh@sharif.edu). C. Nair is with the department of Information
Engineering, The Chinese University of Hong Kong, Hong Kong (e-mail:
chandra@ie.cuhk.edu.hk).

During the course of this work Venkat Anantharam was supported by
the ARO MURI grant W911NF-08-1-0233: “Tools for the Analysis and
Design of Complex Multi-Scale Networks", the NSF Science and Technology
Center grant CCF-0939370: “Science of Information", and the NSF grants
CNS-0910702, ECCS-1343398, CNS-1527846, and CIF-1618145, by Marvell
Semiconductor Inc., by the U.C. Discovery program, and by the William and
Flora Hewlett Foundation supported Center for Long Term Cybersecurity at
Berkeley. The work of Amin Gohari was partially supported by the Sharif
University of Technology under Grant QB950607. The work of Chandra
Nair was partially supported by the following grants from the University
Grants Committee of the Hong Kong Special Administrative Region, China:
a) (Project No. AoE/E-02/08), b) GRF Projects 415715, 14231916, 1430714.
He also acknowledges the support from the Institute of Theoretical Computer
Science and Communications (ITCSC) at the Chinese University of Hong
Kong, as well as a VC discretionary fund support.

Communicated by V. Prabhakaran, Associate Editor for Shannon Theory.
Copyright (c) 2015 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

transmitter. This means that p(yn, zn|xn) =
n

i=1 p(yi, zi|xi).
We borrow most of our notation from Chapters 5 and 8 in [2],
where the classical results on broadcast channels are reviewed.
Let the rates of messages (M0,M1,M2) be (R0, R1, R2)
respectively, i.e. Ri :=

1
n logMi, i = 0, 1, 2. A rate triple is

said to be achievable if communication of messages with rates
arbitrarily close to it is feasible. The best known achievable
rate region for a broadcast channel is the following inner bound
[12].

Theorem 1 (Marton ’79). The union of nonnegative rate
triples (R0, R1, R2) satisfying the constraints

R0 ≤ min{I(W ;Y ), I(W ;Z)},
R0 +R1 ≤ I(U,W ;Y ),

R0 +R2 ≤ I(V,W ;Z),

R0 +R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W ),

for any triple of random variables (U, V,W ) such that
(U, V,W ) → X → (Y, Z) is achievable.

Denote this achievable region as RM . It was shown in [8],
using a perturbation-based approach, that the extreme points
of the region are obtained by p(u, v, w, x) that satisfy |W| ≤
|X | + 4, |U| ≤ |X |, |V| ≤ |X |. In addition, one can assume
w.l.o.g. that X is a function of U , V and W .

A. Motivation

We summarize below our motivation for the work and its
potential significance.

a) It is not known whether RM is the true capacity region
(i.e. the region of all achievable rate triples) for a two-
receiver discrete memoryless broadcast channel. One way
to establish the suboptimality of Marton’s inner bound
would be to consider two-letter extensions of RM and see
if this yields rates outside RM . The previous cardinality
bounds established in [8] were not sufficiently strong to
conduct an exhaustive numerical search to test this idea
even for the two-letter extension of a binary channel, i.e.
one where X , Y and Z each have cardinality 2. Theorem
4 and Proposition 1 (our main results) make a significant
difference and now we can do rather convincing numerical
optimizations over the space of auxiliaries for the two-letter
extension of a binary alphabet broadcast channel. This
numerical optimization approach has so far not yielded
any improvements on the region by going to the two-letter
extension.
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b) In contrast to the above point, after this work had been
done, a similar study was conducted for the interference
channel and the Han-Kobayashi achievable region by one
of the authors and his students. Due to the presence of
more constraints, it is much harder to conduct numerical
optimizations in a randomly chosen binary alphabet inter-
ference channel setting. However, by considering a sub-
class where numerical optimizations were possible, many
examples showing the suboptimality of the Han-Kobayashi
achievable region were obtained in [15].

c) In recent years, several definitive results [5], [13], [19] on
channel capacity regions were established by evaluating
achievable regions or outer bounds to the capacity region
and showing that the inner and outer bounds matched. This
raises the question of whether Marton’s inner bound has an
alternative representation that is better amenable to analysis
or in establishing a converse to the coding theorem. We
believe that central to answering this question is under-
standing properties of the joint distributions p(u, v, w, x)
corresponding to the extreme points of RM . We call such
distributions of p(u, v, w, x) extremal distributions of RM .
In addition to the cardinality bounds on U ,V,W , results in
[7], [10], [14] and in here further restrict the set of extremal
distributions.

B. Evaluation using supporting hyperplanes

Since Marton’s achievable region is a convex set in R3
+

the region can be characterized by determining the supporting
hyperplanes, or equivalently by computing the function:

ΓM (γ0, γ1, γ2) := max
(R0,R1,R2)∈RM

γ0R0 + γ1R1 + γ2R2. (1)

Observe that if (R0, R1, R2) ∈ RM then any point
(R′

0, R
′
1, R

′
2) with 0 ≤ R′

0 ≤ R0, 0 ≤ R′
1 ≤ R1, 0 ≤ R′

2 ≤ R2

also belongs to RM . Hence it suffices to consider supporting
hyperplanes of RM that have γ0, γ1, γ2 ≥ 0 to characterize
the nontrivial boundary of RM .

First, we recall the following preliminaries from convex
analysis.

Definition 1. An exposed point of a closed convex set C is
a point x ∈ C such that there is a supporting hyperplane that
intersects the convex set only at x.

Definition 2. An extreme point of a closed convex set C is a
point x ∈ C such that if x = λy+ (1− λ)z for some y, z ∈ C
and λ ∈ (0, 1), then either x = y or x = z.

Theorem 2 (Strasziewicz, Theorem 18.6 in [17]). For any
closed convex set C, the set of exposed points of C is a dense
subset of the set of extreme points of C. Thus every extreme
point is the limit of some sequence of exposed points.

Since any closed convex set is characterized by its extreme
points, to characterize RM it suffices to restrict to the set of
nonnegative triples (γ0, γ1, γ2) that will lead to exposed points.
Determining ΓM (γ0, γ1, γ2) for such triples will, by continuity
(using Theorem 2), determine all the extreme points of RM

and will thereby characterize the set.

From the rate constraints in Theorem 1 one sees that if
(R0, R1, R2) ∈ RM then (αR0, R1 + (1 − α)βR0, R2 +
(1 − α)(1 − β)R0) ∈ RM for any 0 ≤ α,β ≤ 1. An
immediate consequence is that the supporting hyperplanes
passing through an exposed point with R0 > 0 must have
γ0 ≥ max{γ1, γ2}. Additionally any exposed point with
R0 = 0 has a supporting hyperplane satisfying γ0 = 0.

From the above discussion, it suffices to compute only
ΓM (γ0, γ1, γ2) with γ0 ≥ max{γ1, γ2} or γ0 = 0. We will
now show how we can impose cardinality constraints on the
auxiliary random variables showing up in these computations.

Let γ0 ≥ max{γ1, γ2}. Assume γ1 ≥ γ2 without loss of
generality. Define nonnegative numbers δ0, δ1 according to
γ1 = γ2 + δ1, γ0 = γ1 + δ0. We claim that the equation
(2) on top of the next page holds where tλ(·) is a function of
the distribution of X defined by

tλ(X) :=− (δ1 + λ(δ0 + γ2))I(X;Y ) (3)
− (1− λ)(δ0 + γ2)I(X;Z)

+ max
p(u,v|x):

(U,V )−X−(Y,Z)

{(δ1 + γ2)I(U ;Y )+

+γ2I(V ;Z)− γ2I(U ;V )} ,

and CX [·] denotes the upper concave envelope of the function
over the space of probability distributions on X evaluated
at p(x). Here step (a) can be justified by observing that
for any (U, V,W ) → X → (Y, Z) the rate triple given
by R0 = min{I(W ;Y ), I(W ;Z)}, R1 = I(U,W ;Y ) −
min{I(W ;Y ), I(W ;Z)}, and

R2 =

min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(V ;Z|W )

− I(U ;V |W )− I(U,W ;Y )

+

belongs to RM , where [a]+ := max{a, 0}. Equality (b)
follows by an application of Corollary 2 in [3] which, in
turn, follows using a max-min theorem of Terkelsen [18] (our
application of Corollary 2 of [3] follows similar lines as the
proof of Lemma 1 of [3] using this corollary). Equality (c)
follows from the interpretation of auxiliary variables in terms
of upper concave envelopes as presented in [16].

Remark 1. It is useful to note that the random variable W plays
the role of mixing between various distributions of p(u, v, x),
to achieve the concave envelope. In the main part of this
section, we will establish cardinality bounds on the sizes of
U and V that appear in these mixing distributions. This in
turn, immediately translates to bounds on the sizes of U and
V conditioned on the random variable W .

It follows immediately from the arguments in [9] that one
can impose cardinality bounds |U| ≤ |X |, |V| ≤ |X | while
evaluating tλ(X) in (3). However, due to the non-convexity
of the underlying expression, numerical exhaustive search is
rather infeasible even when |X | = 4, which would be required
when considering a product of two binary-input broadcast
channels. The main results of this paper (and the technique) are
inspired by the idea of comparing the two-letter extension of
Marton’s region with the single-letter one to have an informed
guess towards its optimality.
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ΓM (γ0, γ1, γ2) = max
(R0,R1,R2)∈RM

γ0R0 + γ1R1 + γ2R2

= max
(R0,R1,R2)∈RM

δ0R0 + δ1(R0 +R1) + γ2(R0 +R1 +R2)

(a)
= max

p(u,v,w,x)
δ0 min{I(W ;Y ), I(W ;Z)}+ δ1I(U,W ;Y )

+ γ2

min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )



= max
p(u,v,w,x)

min
λ∈[0,1]

(δ1 + λ(δ0 + γ2))I(W ;Y ) + (1− λ)(δ0 + γ2)I(W ;Z)

+ (δ1 + γ2)I(U ;Y |W ) + γ2I(V ;Z|W )− γ2I(U ;V |W )

(b)
= min

λ∈[0,1]
max

p(u,v,w,x)
(δ1 + λ(δ0 + γ2))I(W ;Y ) + (1− λ)(δ0 + γ2)I(W ;Z)

+ (δ1 + γ2)I(U ;Y |W ) + γ2I(V ;Z|W )− γ2I(U ;V |W )

(c)
= min

λ∈[0,1]
max
p(x)


(δ1 + λ(δ0 + γ2))I(X;Y ) + (1− λ)(δ0 + γ2)I(X;Z) + CX [tλ(X)]


, (2)

Define the function

t̂λ(X) :=− (δ1 + λ(δ0 + γ2))I(X;Y ) (4)
− (1− λ)(δ0 + γ2)I(X;Z)

+ max
p(u,v|x):

(U,V )−X−(Y,Z)


(δ1 + γ2)I(U ;Y )

+ γ2I(V ;Z)− γ2I(U ;V )

,

where additionally the alphabets of the auxiliary variables U, V
are assumed satisfy |U|+ |V| ≤ |X |+ 1 and X is a function
of (U, V ). Clearly t̂λ(X) ≤ tλ(X).

Proposition 1. Let tλ(X) and t̂λ(X) be defined according to
(3) and (4) respectively. Then the upper concave envelopes of
tλ(X) and t̂λ(X) match, i.e.

CX [tλ(X)] = CX [t̂λ(X)].

Remark 2. It is worth noting that the above bounds make it
possible to estimate t̂λ(X) when |X | = 4. Further, it is also
curious that the bounds on the cardinalities show an additive
trade-off in their sizes. This is rather surprising both in the
form and in that it captures a trade-off between the sizes of the
transmission spaces of the two messages akin to the intrinsic
trade-off of the broadcast channel.

In the preceding, we considered the case where γ0 ≥
max{γ1, γ2}. The remaining interesting case happens when
γ0 = 0. As earlier, let γ1 ≥ γ2, and let δ1 be defined according
to γ1 = γ2 + δ1. Then, mimicking the arguments above, one
can see that (5) on top of the next page holds where t0λ(·) is
a function of the distribution of X defined by

t0λ(X) :=− (δ1 + λγ2)I(X;Y )− (1− λ)γ2I(X;Z) (6)

+ max
p(u,v|x):

(U,V )−X−(Y,Z)


(δ1 + γ2)I(U ;Y ) + γ2I(V ;Z)

− γ2I(U ;V )

.

For the analog of step (a) in (2) observe that for any
(U, V,W ) → X → (Y, Z) the rate triple given by R0 = 0,
R1 = I(U,W ;Y ), and

R2 =

min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(V ;Z|W )

− I(U ;V |W )− I(U,W ;Y )

+

belongs to RM .
As before, define the function

t̂0λ(X) :=− (δ1 + λγ2)I(X;Y )− (1− λ)γ2I(X;Z) (7)

+ max
p(u,v|x):

(U,V )−X−(Y,Z)


(δ1 + γ2)I(U ;Y ) + γ2I(V ;Z)

− γ2I(U ;V )

,

where additionally the alphabets of the auxiliary variables U, V
are assumed to satisfy |U|+|V| ≤ |X |+1, and X is a function
of (U, V ). Clearly t̂0λ(X) ≤ t0λ(X).

Proposition 2. Let t0λ(X) and t̂0λ(X) be defined according to
(6) and (7) respectively. Then the upper concave envelopes of
t0λ(X) and t̂0λ(X) match, i.e.

CX [t0λ(X)] = CX [t̂0λ(X)].

1) Idea of the proof: The proof builds on perturbation tech-
niques introduced in [9]. A previously unused idea exploited
in this paper is to use the dual form of the upper concave
envelope of a function. To explain this idea, take an arbitrary
function f(p(x)) defined on the probability distributions on a
finite alphabet X . The upper concave envelope of f , denoted
by C[f ](p(x)), is the smallest concave function on the prob-
ability simplex that dominates f(p(x)). It can be expressed
via an optimization problem involving an auxiliary random
variable (see [16]) as follows:

C[f ](p(x)) := sup
p(w|x)



w

p(w)f(p(x|w)). (8)

Note that one can restrict the maximization to |W| ≤ |X | +
1 using Carathéodory’s theorem on convex hulls of sets in
finite dimensions. Alternatively, upper concave envelopes can



4

ΓM (0, γ1, γ2) = min
λ∈[0,1]

max
p(u,v,w,x)

(δ1 + λγ2)I(W ;Y ) + (1− λ)γ2I(W ;Z) (5)

+ (δ1 + γ2)I(U ;Y |W ) + γ2I(V ;Z|W )− γ2I(U ;V |W )

= min
λ∈[0,1]

max
p(x)


(δ1 + λγ2)I(X;Y ) + (1− λ)γ2I(X;Z) + CX [t0λ(X)]


,

be studied through duality. Given a vector d = (dx, x ∈ X ),
the dual of the function f(·) is defined as

f†(d) = max
p(x)


f(p(x))−



x

dxp(x)


. (9)

Two properties that we exploit are that (i) the dual of a function
f is the same as the dual of C[f ]; (ii) the dual of f uniquely
determines C[f ]. In fact, the following equation holds:

C[f ](p(x)) = inf
d


f†(d) +



x

dxp(x)

. (10)

Thus, if f†(d) = g†(d) for two functions f and g, then C[f ] =
C[g]. Also, for any functions f and g, one can use a proof by
contradiction to show1 that

∃d : f†(d) < g†(d) ⇐⇒ ∃p(x) : C[f ](p(x)) < C[g](p(x)).
(11)

The above argument shows that the following theorem
implies Propositions 1 and 2. Proposition 2 follows by setting
δ0 = 0 below.

Theorem 3. Let d = (dx, x ∈ X ) be any vector. For
δ1, δ0, γ2 ≥ 0 and λ ∈ [0, 1] consider the maximization
problem defined by:

max
p(x)


− (δ1 + λ(δ0 + γ2))I(X;Y )

− (1− λ)(δ0 + γ2)I(X;Z)

+ max
p(u,v|x):

(U,V )−X−(Y,Z)


(δ1 + γ2)I(U ;Y ) + γ2I(V ;Z)

− γ2I(U ;V )


−


x

dxp(x)

.

Then there exist random variables (U, V ) satisfying |U|+|V| ≤
|X | + 1 that achieve the maximum. Further we can assume
that X is a function of (U, V ).

We will establish Theorem 3 in Section II.
Remark 3. We will henceforth assume that γ2 > 0; else, an
immediate inspection yields that setting U = X and V to be
a constant random variable is a maximizer, and this satisfies
the cardinality constraints with equality.

1If C[f ](p(x)) < C[g](p(x)) at some p(x), then from (10) it cannot
be that for all d we have f†(d) ≥ g†(d). To see the reverse direction,
since the dual of C[f ] is same as as that of f , we have f†(d) =
maxp(x)


C[f ](p(x))−


x dxp(x)


and hence if f†(d) < g†(d) then

it cannot be that for all p(x) we have C[f ](p(x)) ≥ C[g](p(x)).

Remark 4. The assumption that X is a function of U and
V is an immediate consequence of the functional represen-
tation lemma [2]. Given p(u, v, x), let Q be independent of
(U, V ) such that X is a function of (Q,U, V ). Then setting
Ũ = (U,Q) and Ṽ = V does not decrease the expression
in Theorem 3. Since the interest is in extremal distributions
only; one can always begin the perturbations from a p(u, v, x)
where X is a function of U, V . Note that all the perturbations
considered in this paper are of the multiplicative form, i.e.
p(u, v, x) = p(u, v, x)(1 +  L(u, v, x)), and hence preserve
the functional relationship between X and U, V .

II. PROOF OF THEOREM 3
Consider maximizing over p(u, v, x) the expression:

S(p(u, v, x)) :=− (δ1 + λ(δ0 + γ2))I(X;Y )

− (1− λ)(δ0 + γ2)I(X;Z)

+ (δ1 + γ2)I(U ;Y ) + γ2I(V ;Z)

− γ2I(U ;V )−


x

dxp(x), (12)

for δ1, δ0 ≥ 0, γ2 > 0, λ ∈ [0, 1] and arbitrary real numbers
dx, x ∈ X . Here (U, V ) → X → (Y, Z)

Proposition 3. Let (U, V ) be a cardinality minimal pair (in
the sense of |U|+ |V|) such that X is a function of U and V
(see Remark 4) and p(u, v, x) is a maximizer of S(p(u, v, x)).
Then one cannot find ω1(u) and ω2(v) such that ω1(u) and
ω2(v) are not simultaneously zero for all u and v and further



u

p(u)ω1(u) = 0,


v

p(v)ω2(v) = 0,



uv

p(u, v, x)ω1(u)−


uv

p(u, v, x)ω2(v) = 0 ∀x.

Proof. For the main part of the proof, we will assume that
λ ∈ (0, 1). The extreme cases, λ ∈ {0, 1}, are rather easy and
will be taken care of in Remark 5.

Suppose we are given that p(u, v, x) is a (cardinality-
minimal) global maximizer of S(p(u, v, x)). Let us first con-
sider perturbations of the form p

(1)
 (u, v, x) = p(u, v, x)(1 +

 ω1(u)) such that


u p(u)ω1(u) = 0. In this case we are
preserving p(v, x|u) and perturbing the marginal distribution
of U . Rewrite S(p(u, v, x)) as follows:

S(p(u, v, x)) =(1− λ)(γ2 + δ0)(H(Y )−H(Z))− δ0H(Y )

− (δ1 + γ2)H(Y |U) + γ2H(V |U)

− γ2H(V |Z) + (δ1 + λ(δ0 + γ2))H(Y |X)

+ (1− λ)(δ0 + γ2)H(Z|X)−


x

dxp(x).

(13)
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The terms H(Y |X), H(Z|X), H(V |U), H(Y |U),


x dxpx
are linear in  since we are preserving p(v, x|u), and the terms
−H(V |Z),−H(Y ) are convex in . The first derivative for
this perturbation has to be zero, and the second derivative has
to be nonpositive. Since (1 − λ)(γ2 + δ0) > 0 (since γ2 > 0
from Remark 3 and λ ∈ (0, 1)) for the second derivative to
be nonpositive we must have

d2

d2
[H(Y )−H(Z)]=0 ≤ 0. (14)

Note that the above quantity depends solely on p
(1)
 (x) :=

uv p(u, v, x)(1 +  ω1(u)).
Next consider perturbations of the form p

(2)
 (u, v, x) =

p(u, v, x)(1 +  ω2(v)) such that


v p(v)ω2(v) = 0. In this
case we are preserving p(u, x|v) and perturbing the marginal
distribution of V . Rewrite S(p(u, v, x)) as follows:

S(p(u, v, x)) =λ(γ2 + δ0)(H(Z)−H(Y ))− δ0H(Z)

− δ1H(Y |U)− γ2H(U |Y ) + γ2H(U |V )

− γ2H(Z|V ) + (δ1 + λ(δ0 + γ2))H(Y |X)

+ (1− λ)(δ0 + γ2)H(Z|X)−


x

dxp(x).

(15)

The terms H(Y |X), H(Z|X), H(U |V ), H(Z|V ),


x dxpx
are linear in  since we are preserving p(u, x|v) and the
terms −H(Y |U),−H(U |Y ),−H(Z) are convex in . The
first derivative for this perturbation has to be zero, and the
second derivative has to be nonpositive. That λγ2 > 0 implies

d2

d2
[H(Z)−H(Y )]=0 ≤ 0, (16)

and the above second derivative depends solely on p
(2)
 (x) :=

uv p(u, v, x)(1 +  ω2(v)).
Now let us assume that one can find ω1(u) and ω2(v) such

that ω1(u) and ω2(v) are not simultaneously zero for all u
and v and further



u

p(u)ω1(u) = 0,


v

p(v)ω2(v) = 0,



uv

p(u, v, x)ω1(u)−


uv

p(u, v, x)ω2(v) = 0 ∀x. (17)

We will arrive at a contradiction.
Consider the two perturbations induced by the nontrivial

pair ω1(u) and ω2(v). Since we are at a global maximum, the
second derivatives with respect to both of these perturbations
have to be nonpositive. From (17) we know that they induce
a common perturbation in p(x), defined according to

p(x) =


uv

p(u, v, x)(1 +  ω2(v))

=


uv

p(u, v, x)(1 +  ω1(u)).

This implies that in (14), (16) we must have,

d2

d2
[H(Z)−H(Y )]=0 = 0.

This forces that for the perturbation using ω1(u), we must
have (note γ2 > 0)

d2

d2
[H(V |Z)]=0 =

d2

d2
[δ0H(Y )]=0 = 0,

and for the perturbation using ω2(v), we must have (again
note γ2 > 0)

d2

d2
[H(U |Y )]=0 =

d2

d2
[δ1H(Y |U)]=0

=
d2

d2
[δ0H(Z)]=0 = 0.

Lemma 3 from Appendix A implies that for the perturbation
using ω1(u) the terms H

p
(1)

(V |Z) and H(Y ) are linear in ,

and for the perturbation using ω2(v), the terms H
p
(2)

(U |Y ),

H
p
(2)

(Y |U), and H(Z) are linear in . We separate the

argument into two cases.
Case 1: δ0 > 0. This implies that both H(Y ) and

H(Z) are linear in  under both perturbations since both
perturbations induce the same perturbation p(x). Hence both
terms S(p

(1)
 (u, v, x)) and S(p

(2)
 (u, v, x)) would be linear

in  and since the first derivative is zero, they must remain
constant under both perturbations. Now, if we take a nontrivial
perturbation, say ω1(u), and take  to its upper or lower limit2,
we get a distribution on U whose support is smaller than that
for  = 0 while the value of S(p(u, v, x)) has been preserved.
Thus we have been able to reduce |U| + |V|, which is a
contradiction.

Case 2: δ0 = 0. Express H(Y )−H(Z) as a function of 
induced by the common p(x) as H(Y )−H(Z) = g()+â +
b̂, with g(0) = g′(0) = 0. Note that in both perturbations, since
all other terms are linear in , we can write S(p

(1)
 (u, v, x))

as follows:

(1− λ)(γ2 + δ0)g() + a1+ b1,

and we can write S(p
(2)
 (u, v, x)) as follows:

−λ(γ2 + δ0)g() + a2+ b2.

The fact that at  = 0 the values under both perturbations
match implies that b1 = b2 = b. Further since first derivatives
with respect to both perturbations are 0 at  = 0, this forces
a1 = a2 = 0. Thus we have

S(p(1) (u, v, x)) = (1− λ)(γ2 + δ0)g() + b,

S(p(2) (u, v, x)) = −λ(γ2 + δ0)g() + b.

Thus, if g() is nonzero for any valid , this will contradict
the global maximality at  = 0.

Thus, as when δ0 = 0, we have that S(p(u, v, x)) remains
constant under both perturbations. Now if we take a nontrivial
perturbation, say ω1(u) and take  to its upper or lower limit,
as said earlier, we get a distribution on U whose support is
smaller than that for  = 0 while the value of S(p(u, v, x)) has
been preserved. Thus we have been able to reduce |U|+ |V|,
which is a contradiction.

2The limits on  are determined by the nonnegativity of the probability
vector and at both of the positive(upper) or the negative(lower) limit for  we
have minu p(u)(1 +  ω1(u)) = 0.
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Remark 5. The case when λ = 0 or λ = 1 is much simpler.
For λ = 0 observe that for any perturbation of the type
p(u, v, x)(1 + ω2(v)), the resultant expression (see (15)) is
convex in , and hence we can take the limiting  (either the
upper or lower limit) and reduce the cardinality of V . Indeed, it
is not hard to see that an optimal choice is V = constant. This
suffices for the proof of Proposition 3, but also note that once
V is a constant, an immediate inspection says that U = X is
a maximizer. A similar argument works for λ = 1.

We combine Proposition 3 with the Lemma 1 below to
establish Theorem 3.

Lemma 1. For any p(u, v, x) where |U|+ |V| > |X |+1, one
can find ω1(u) and ω2(v) such that ω1(u) and ω2(v) are not
simultaneously zero for all u and v and further



u

p(u)ω1(u) = 0,


v

p(v)ω2(v) = 0,



uv

p(u, v, x)ω1(u)−


uv

p(u, v, x)ω2(v) = 0 ∀x.

Proof of Lemma 1. These are |X | + 2 equations in total but
one of the equations is redundant since the first pair of
equations imply that



x



uv

p(u, v, x)ω1(u) =


u

p(u)ω1(u) = 0

=


v

p(v)ω2(v) =


x



uv

p(u, v, x)ω2(v).

Thus the first pair of equations themselves imply that



x




uv

p(u, v, x)ω1(u)−


uv

p(u, v, x)ω2(v)


= 0.

Thus, there are |X | + 1 independent equations at most. The
choice ω1(u) = ω2(v) = 0 for all u, v solves the above system
of linear equations. Therefore the system of linear equations
is not inconsistent. Since the total number of free variables is
|U|+|V|, which is strictly larger than the number of equations,
i.e. |X |+1, we must have a nontrivial solution for ω1(u) and
ω2(v).

A. Recasting the main results in a traditional form

Usually cardinality bounds on the auxiliary variables are
stated for the region represented by a collection of inequalities,
as in the bound (1); so we will recast the results in the
previous section using traditional arguments à la the Fenchel-
Bunt extension of Carathéodory’s theorem.

Theorem 4. The set of all triples (R0, R1, R2) satisfying the
constraints

R0 ≤ min{I(W ;Y ), I(W ;Z)},
R0 +R1 ≤ I(UW ;Y ),

R0 +R2 ≤ I(VW ;Z),

R0 +R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W ),

for any triple of random variables (U, V,W ) such that
(U, V,W ) → X → (Y, Z), can be computed under the restric-
tion |W| ≤ |X |+4, and conditioned on any W = w the sizes
of U and V can be restricted to satisfy |U|+|V| ≤ |X |+1, and
further we can assume X to be function (possibly dependent
on w) of U and V .

Proof. The proof comes from noting that each point in a
convex set can be expressed as a convex combination of its
extreme points. By our previous argument, every extreme point
of Marton’s region can be obtained by restricting sizes of to U
and V to |U|+ |V| ≤ |X |+1 and X to be a function of U and
V , conditioned on W (see Remark 1 and Theorem 2). Indeed,
every boundary point is in the convex combination of extreme
points that lie on a given supporting hyperplane of the form
γ0R0 + γ1R1 + γ2R2. As before, w.l.o.g., let us assume that
γ1 ≥ γ2.

Now consider the space of probability distributions
p(u, v, x) with |U|+|V| ≤ |X |+1, and consider the continuous
mapping from the space to R|X |+4

+ defined by


p(X = 1), . . . , p(X = |X |− 1), H(Y ), H(Z),

I(U ;Y ), I(V ;Z), I(U ;V )

.

Let S denote the range of this mapping. By the Fenchel-
Bunt extension of Carathéodory’s theorem, every point in the
convex hull of S can be expressed as a convex combination
of at most |X | + 4 points in S. This yields a distribution
p(w, u, v, x) satisfying: |W| ≤ |X | + 4; conditioned on
any W = w the sizes of U and V satisfy |U| + |V| ≤
|X | + 1 and X is a function of U and V ; and the values of
I(W ;Y ), I(W ;Z), I(U ;Y |W ), I(V ;Z|W ) and I(U ;V |W )
are preserved.

B. Application to binary input broadcast channels

If we restrict our attention to the case when X is binary,
we obtain from Theorem 4 that it suffices to consider U and
V such that conditioned on W = w, |U| + |V| ≤ 3, which
implies one of U and V must be a constant random variable. It
is immediate that the other variable must be X . This particular
choice is referred to in the literature as the randomized time-
division strategy.

Thus, Marton’s region for binary input broadcast channels
reduces to that given in the following result.

Corollary 1. Marton’s region for binary input broadcast
channels can be written as the union of nonnegative rate
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triples (R0, R1, R2) satisfying the constraints

R0 ≤ min{I(W ;Y ), I(W ;Z)},

R0 +R1 ≤ I(W ;Y ) +

k

i=1

pW (i)I(X;Y |W = i),

R0 +R2 ≤ I(W ;Z) +

ℓ

i=k+1

pW (i)I(X;Z|W = i),

R0 +R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}

+

k

i=1

pW (i)I(X;Y |W = i)

+

ℓ

i=k+1

pW (i)I(X;Z|W = i),

over random variables W with alphabet W = {1, 2, . . . , ℓ}
such that W → X → (Y, Z) is Markov, and k ≤ ℓ ≤ 5.

This region is known as the randomized time-division region
[2] and this extends the result of [11] which showed that the
Cover-van der Muelen region (which is at most as large as the
Marton’s region in general) reduced to the randomized-time-
division region. The case for the sum rate was shown earlier
in [6] using the inequality discussed in Section II-B1.
Remark 6. Note that the reduction to |W| = ℓ ≤ 5 is
possible since I(U ;V |W ) = 0 whenever U or V is a constant.
Thus we do not need to preserve this average when using
Carathéodory’s theorem. It may be possible to further reduce
the cardinality of W in the binary setting. The main objective
of this paper is to obtain sharper bounds on U and V , so we
have not pursued this direction of investigation. The reason
for not being concerned about this is that, while evaluating
Marton’s region for binary input broadcast channels, the
authors found that it is much easier to evaluate it via the
method of supporting hyperplanes as outlined in Section I-B.
In this case, for every fixed λ ∈ [0, 1] in (2) and (3), a binary-
valued W suffices.

1) An observation: In [6] it was shown that it suffices
to consider a randomized time-division strategy, as above,
to obtain the maximum sum-rate of Marton’s region for a
binary input broadcast channel. The main step was to prove
the following inequality, for any (U, V ) → X → (Y, Z) and
binary X:

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}.
(18)

A direct and natural extension of this approach to the
weighted case (i.e. all of Marton’s region) to show optimality
of randomized time-division would be to conjecture that the
following weighted version of the above inequality held.
Namely, one might hope that for every α > 1 and X binary,
(U, V ) → X → (Y, Z) would imply

αI(U ;Y ) + I(V ;Z)− I(U ;V )
?
≤ max{αI(X;Y ), I(X;Z)}.

(19)

However, this inequality is not correct, and a counterexample
to the inequality is presented in Appendix A.

Remark 7. It is curious to observe that our new proof strategy
has established that randomized time-division is optimal for
all of Marton’s region even though (19) is false in general.
What our argument shows is that, for those p(x) that are used
to obtain the concave envelope as in (2) and (3), the above
inequality indeed holds.

C. A study via numerical simulations

The main motivation for this research exercise was to be
able to compare the two-letter Marton’s achievable region and
the single-letter achievable region and determine if there are
channels for which the two-letter region strictly outperforms
the single-letter region. Despite extensive simulations on bi-
nary input broadcast channels we were unable to find channels
for which the two-letter region strictly improved on the single-
letter region. In this section, we wish to provide some details
on our simulations as well as our numerical observations so
that it may help other researchers who may be interested in
pursuing this line of attack.

We analyzed Marton’s region using the expression in (2).
In particular. Marton’s inner bound is optimal if and only if
for every channel p(y, z|x) and for any δ1, δ0, γ2 ≥ 0, the
following equality holds

min
λ∈[0,1]

max
p(x)


(δ1 + λ(δ0 + γ2))I(X;Y ) (20)

+ (1− λ)(δ0 + γ2)I(X;Z) + CX [tλ(X)]


=
1

2
min

λ∈[0,1]
max

p(x1,x2)


(δ1 + λ(δ0 + γ2))I(X1, X2;Y1, Y2)

+ (1− λ)(δ0 + γ2)I(X1, X2;Z1, Z2)

+ CX1,X2
[tλ(X1, X2)]



where the second expression is evaluated for the two-letter
channel defined according to p(y1, z1|x1)⊗p(y2, z2|x2). Since
we were initially motivated to find examples that demonstrated
the suboptimality of Marton’s inner bound, we relaxed the
above condition and searched for pairs of channels and distri-
butions p(x1, x2) where the following inequality held:

(δ1 + λ(δ0 + γ2))I(X1;Y1) + (1− λ)(δ0 + γ2)I(X1;Z1)

+ CX1 [tλ(X1)] + (δ1 + λ(δ0 + γ2))I(X2;Y2)

+ (1− λ)(δ0 + γ2)I(X2;Z2) + CX2 [tλ(X2)] (21)
< (δ1 + λ(δ0 + γ2))I(X1, X2;Y1, Y2)

+ (1− λ)(δ0 + γ2)I(X1, X2;Z1, Z2)

+ CX1,X2
[tλ(X1, X2)]

where the right-hand side is evaluated for the channel
p1(y1, z1|x1) ⊗ p2(y2, z2|x2) at a joint input distribution
p(x1, x2) and the two terms on the left-hand side are evaluated
for their corresponding channels at the corresponding marginal
distributions.

Remark 8. Clearly, if there is no instance where (21) held,
then it would imply that (20) held and Marton’s region would
be optimal. On the other hand, it is possible that there are
instances that satisfy (21) while (20) continues to hold. Hence,
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our numerical searches were leaning towards gaining insight
for instances where (21) (a weaker condition) is true.

Next, observe that for any p1(y1, z1|x1)⊗p2(y2, z2|x2) and
any p(x1, x2) we have

I(X1, X2;Y1, Y2) ≤ I(X1;Y1) + I(X2;Y2),

I(X1, X2;Z1, Z2) ≤ I(X1;Z1) + I(X2;Z2).

Therefore (21) holds only if there is an instance of p(x1, x2)
where

CX1 [tλ(X1)] + CX2 [tλ(X2)] < CX1,X2 [tλ(X1, X2)]. (22)

Note that the right-hand side is evaluated at a joint input
distribution p(x1, x2) and the two terms on the left-hand side
are evaluated at the corresponding marginal distributions. This
is an inequality that can be studied via the dual expression for
the concave envelope.

Lemma 2. There is an instance where the inequality in (22)
holds if and only if there exist two functions d1(x1) and d2(x2)
such that

max
p1(x1)


tλ(X1)−



x1

p1(x1)d1(x1)



+ max
p2(x2)


tλ(X2)−



x2

p2(x2)d2(x2)


<

max
p(x1,x2)


tλ(X1, X2)−



x1,x2

p(x1, x2)(d1(x1) + d2(x2))


.

Proof. The proof follows from the dual formulation of the
concave envelope. The left-hand side of the inequality in (22)
depends only on the marginal distributions p1(x1), p2(x2),
hence one can equivalently look for two instances of p1(x1)
and p2(x2) such that

CX1
[tλ(X1)] + CX2

[tλ(X2)]

< max
p(x1,x2)∈Π(p1,p2)

CX1,X2 [tλ(X1, X2)], (23)

where

Π(p1, p2) :=

{p(x1, x2) : p(x1) = p1(x1), p(x2) = p2(x2), ∀x1, x2}

denotes the set of all joint distributions with the given
marginals.

Next, we argue that for any instances of p1(x1) and p2(x2)

max
p(x1,x2)∈Π(p1,p2)

CX1,X2 [tλ(X1, X2)] =

CX1,X2


max

p(x1,x2)∈Π(p1,p2)
tλ(X1, X2)


. (24)

Note that both sides of the equality are functions of pairs of
distributions (p1, p2), and the concave envelope CX1,X2 on the
right-hand side should be interpreted as one over the pairs of
distributions (p1(x1), p2(x2)).

Equality (24) follows from the following two observations:
(i) if f(x, y) is jointly concave in (x, y), then

g(x) := supy f(x, y) is concave in x.3 This implies
that maxp(x1,x2)∈Π(p1,p2) CX1,X2

[tλ(X1, X2)] is jointly
concave in pairs of distributions (p1, p2). Since

max
p(x1,x2)∈Π(p1,p2)

CX1,X2 [tλ(X1, X2)]

≥ max
p(x1,x2)∈Π(p1,p2)

tλ(X1, X2)

and the left-hand side is concave in pairs of distributions, we
have from the definition of the upper concave envelope that

max
p(x1,x2)∈Π

CX1,X2
[tλ(X1, X2)]

≥ CX1,X2


max

p(x1,x2)∈Π
tλ(X1, X2)


. (25)

(ii) On the other hand, for all p(x1, x2) ∈ Π(p1, p2), we have
tλ(X1, X2) ≤ maxp(x1,x2)∈Π(p1,p2) tλ(X1, X2), implying im-
mediately that

CX1,X2 [tλ(X1, X2)] ≤ CX1,X2


max

p(x1,x2)∈Π(p1,p2)
tλ(X1, X2)


,

where the envelope on the right-hand side is evaluated with re-
spect to pairs of distributions p1, p2, while the envelope on the
left-hand side is evaluated with respect to joint distributions.

Since this holds for every p(x1, x2) ∈ Π(p1, p2) we obtain
the reverse direction that

max
p(x1,x2)∈Π(p1,p2)

CX1,X2
[tλ(X1, X2)]

≤ CX1,X2


max

p(x1,x2)∈Π(p1,p2)
tλ(X1, X2)


. (26)

Equations (25) and (26) complete the proof of equation (24).
Equation (24) shows that (23) holds if and only if

CX1
[tλ(X1)] + CX2

[tλ(X2)]

< CX1,X2


max

p(x1,x2)∈Π(p1,p2)
tλ(X1, X2)


, (27)

for some p1(x1) and p2(x2). Since both sides are functions
defined on pairs of distributions (p1, p2), using equation (11)
the statement of Lemma 2 is a reformulation of the inequality
(27) in terms of their duals. This is because the right hand
side of the expression in the lemma can be rewritten as

max
p1(x1),p2(x2)


max

p(x1,x2)∈Π
tλ(X1, X2)


−


x1

p1(x1)d1(x1)

−


x2

p2(x2)d2(x2)


.

Therefore, the initial target of our numerical simulations
were to find product channels p1(y1, z1|x1) ⊗ p2(y2, z2|x2)
and functions d1(x1) and d2(x2) such that the inequality in
Lemma 2 held.

3To see this, take arbitrary x0, x1 and λ ∈ [0, 1]. For every  > 0, one
can find y0 and y1 such that g(xi) ≤ f(xi, yi) +  for i = 0, 1. Then,
λg(x1) + λ̄g(x0) ≤ λf(x1, y1) + λ̄f(x0, y0) +  ≤ f(xλ, yλ) +  by the
joint concavity of f , where xλ = λx1 + λ̄x0 and yλ = λy1 + λ̄y0. From
here, we conclude that λg(x1) + λ̄g(x0) ≤ g(xλ) + . We obtain concavity
of g by letting  converge to zero.
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• Proposition 1 implies that we can replace tλ by (the
cardinality-constrained) t̂λ for testing the inequality in
Lemma 2. Therefore when p1(y1, z1|x1)⊗ p2(y2, z2|x2)
has binary-input broadcast channels factors, the expres-
sion in Lemma 2, after expanding t̂λ on the left-hand
side, reduces to determining values of α,β such that

max
p1(x1)


− (δ1 + λ(δ0 + γ2))I(X1;Y1)

− (1− λ)(δ0 + γ2)I(X1;Z1)

+ max{(δ1 + γ2)I(X1;Y1), γ2I(X1;Z1)}

− αp1(X1 = 0)


+ max
p2(x2)


− (δ1 + λ(δ0 + γ2))I(X2;Y2)

− (1− λ)(δ0 + γ2)I(X2;Z2)

+ max{(δ1 + γ2)I(X2;Y2), γ2I(X2;Z2)}

− βp2(X2 = 0)


< max
p(x1,x2)


t̂λ(X1, X2)− αp1(X1 = 0)

−βp2(X2 = 0)} . (28)

Let us fix the broadcast channels
p1(y1, z1|x1), p2(y2, z2|x2) and the parameters
γ2, δ0, δ1,α,β. Then, each of the two terms of the
left-hand side of (28) is a continuous function of a single
variable, and this is easy to optimize with high numerical
accuracy (even with the previously known bounds on the
alphabet of the auxiliary random variables, this part is
only mildly more cumbersome and was clearly feasible).
To compute the right-hand side, from Proposition 1 we
need to compute

max
p(u,v,x1,x2)

−(δ1 + λ(δ0 + γ2))I(X1, X2;Y1, Y2)

− (1− λ)(δ0 + γ2)I(X1, X2;Z1, Z2)

+ (δ1 + γ2)I(U ;Y1, Y2) + γ2I(V ;Z1, Z2)

− γ2I(U ;V )

over U and V such that |U| + |V| ≤ |X1||X2| + 1 and
X1, X2 is a function of (U, V ). For binary X1, X2 this
implies that it suffices to consider |U|+ |V| ≤ 5.
Remark 9. In contrast, the previous bound implied that
it was sufficient to consider |U| ≤ 4 and |V| ≤ 4. This
is a 15 dimensional non-convex optimization problem.
Solving this optimization problem is infeasible by today’s
computing power considering the space of distributions
of p(u, v) we are left to deal with. This is the case even
with the starting points of local optimization chosen from
a very coarse grid of size, say 0.1 (here we even ignore
the complexity of determining the maximizing function
of X1, X2 over U, V ).
The case of |U| = 4, |V| = 1 and |U| = 1, |V| = 4 are
simple cases, as they correspond to U = (X1, X2), V =
constant and U = constant, V = (X1, X2) respectively
and it is immediate that there will be no instances
satisfying Lemma 2. Therefore the main nontrivial cases
are |U| = 2, |V| = 3 and |U| = 3, |V| = 2.

• Note that to show that there are no instances satisfying
Lemma 2 we need to exhaustively compute the maximum
over p(u, v, x), where X is a function of (U, V ) and, say,
|U| = 3, |V| = 2. For each possible p(u, v) naively there
are 46 potential functional mappings.
However, from earlier results, we know that certain
functions x(u, v) cannot arise as maximizers, or, in some
cases, if they do occur as maximizers then we know that
they cannot satisfy Lemma 2. The study of such extremal
functions started in [4], [14] and was continued in [10].
Here we recap the results from these papers, and we revert
back to the notation where we have a single broadcast
channel p(y, z|x) rather than a product channel.

– To compute the maximum, Theorem 1 in [10] (a
generalization of the result regarding the infeasiblity
of the XOR pattern as a maximizer [4]) imposes
restrictions on the functional mappings that drasti-
cally reduce the number of mappings that need to be
considered.

– To compute the maximum, it suffices to consider
mappings for which there do not exist symbols
u0 ∈ U , v0 ∈ X and x0 ∈ X such that x(u0, v) =
x0 = x(u, v0) for all u, v. For binary X this was
called the AND mapping [4] and this result was
generalized to arbitrarily sized |X | in [10]. Alter-
nately, we can recover this result as an immediate
consequence of Proposition 3. To see this, define
ω1(u) = 1 = ω2(v) as long as u ∕= u0 and v ∕= v0.
Define ω1(u0) = p(u0)−1

p(u0)
and ω2(v0) = p(v0)−1

p(v0)
.

Thus clearly


u p(u)ω1(u) = 0 =


v p(v)ω2(v).
Further note that


u,v

p(u, v, x)(ω1(u)− ω2(v))

=


u=u0 or v=v0

p(u, v, x)(ω1(u)− ω2(v)), ∀x.

For any x ∕= x0, clearly p(u, v, x) = 0 when u = u0

or v = v0 (from the mapping). Finally, for x = x0

we have


u=u0 or v=v0

p(u, v, x0)(ω1(u)− ω2(v))

=


u=u0,v ∕=v0

p(u0, v, x0)(ω1(u0)− 1)

+


u ∕=u0,v=v0

p(u, v0, x0)(1− ω2(v0))

+ p(u0, v0, x0)(ω1(u0)− ω2(v0))

= p(u0)(ω1(u0)− 1) + p(v0)(1− ω2(v0)) = 0.

Thus from Proposition 3, we see that it suffices to
consider mappings such that there do not exist u0,
v0 and x0 such that x(u0, v) = x0 = x(u, v0) for all
u, v.

These two results (especially the first) help to greatly
reduce the number of functional mappings.

Remark 10. The following points are worth mentioning.
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Hp
(Y |Z) = −



(y,z):p(y,z)>0

p(y, z)(1 +  E[L|Y = y, Z = z]) log
p(y, z)(1 +  E[(L|Y = y, Z = z])

p(z)(1 +  E[L|Z = z])

(a)
= −



(y,z):p(y,z)>0

p(y, z)(1 +  E[L|Y = y, Z = z]) log
p(y, z)(1 +  E[L|Z = z])

p(z)(1 +  E[L|Z = z])

= −


(y,z):p(y,z)>0

p(y, z)(1 +  E[L|Y = y, Z = z]) log p(y|z). (29)

• With all these results in the background, we performed
extensive simulations trying to find an instance satisfying
the inequality in Lemma 2. At least when all outputs of
both broadcast channels are binary valued, we believe that
we performed a rather exhaustive and intensive search,
yet we were unable to find any such instance. We also
generated some higher cardinality settings at random
(especially when X1 is ternary and X2 is binary), and
we were still unable to find any instance satisfying the
inequality in Lemma 2.

• However, since this is a rather central problem in network
information theory, we would also urge other interested
researchers to independently confirm our numerical ob-
servations. We hope that the theoretical results men-
tioned about restricting the class of extremal functional
mappings will provide useful to this end. Further note
that Proposition 3 has implications beyond bounding
cardinalities, as illustrated above.

• Finally, another interesting future work is suggested by
our observation that when numerically optimizing the
|U| = 3, |V| = 2 case in the statement of Lemma 2,
only binary U and V showed up as the actual optimizers.
Further the only distributions and functional mappings
that arose even as local maximizers were the product
distributions of the single-letter optimizers. All the results
we have obtained regarding extremal distributions are for
a generic broadcast channel and we have not been able
to make use of the additional channel structure imposed
by product channels to further restrict the extremal distri-
butions or maximizing patterns. If further numerical sim-
ulations confirm similar behavior for product channels,
then perhaps such a study is warranted.

APPENDIX

Lemma 3. Consider three random variables X,Y, Z and a
perturbation of their joint distribution defined according to

p(x, y, z) = p(x, y, z)(1 +  L(x, y, z)),

where


x,y,z p(x, y, z)L(x, y, z) = 0 and || is small enough
that 1 + L(x, y, z) ≥ 0 for all (x, y, z). Then

d2

d2
[H(Y |Z)]=0 = 0

implies that Hp(Y |Z) is linear in  over the interval of 
where p(x, y, z) is defined.

Proof of Lemma 3. Routine calculations yield that

d2

d2
[H(Y |Z)]=0 = −E[E[L|Y, Z]2] + E[E[L|Z]2]

and hence the second derivative being zero at  = 0 implies
that

E[E[L|Y, Z]2]− E[E[L|Z]2] = 0.

Since E[L|Z] = E[E[L|Y, Z]|Z] the above equality can be
written as E


(E[L|Y, Z]− E[L|Z])

2

= 0. Thus E[L|Y =

y, Z = z] = E[L|Z = z] whenever p(y, z) > 0.
Observe that Hp(Y |Z) is equal to the expression given in

(29) on the top of this page where step (a) is justified because
E[L|Y = y, Z = z] = E[L|Z = z] whenever p(y, z) > 0.
Thus Hp(Y |Z) is linear in .

We will produce a counterexample to the following state-
ment: for |X | = 2 the following inequality

αI(U ;Y ) + I(V ;Z)− I(U ;V )
?
≤ max{αI(X;Y ), I(X;Z)},

(30)

holds for any α > 1 and any Markov chain (U, V ) → X →
(Y, Z).

Consider the following setting. The channels are:

p(Y |X) =


0.5 0.5
0 1


, p(Z|X) =


1 0
0.1 0.9


.

The parameters are

p(X) = [0.8, 0.2], α =
I(X;Z)

I(X;Y )
= 3.429517.

The choice of α is actually the corner point for the right-hand
side of (30). The result is

αI(U ;Y ) + I(V ;Z)− I(U ;V ) = 0.593020

> 0.586278

= max{αI(X;Y ), I(X;Z)},

where we use the probability mass function and mapping X =
f(U, V ) given by

p(U, V ) =


0.05930 0.00005
0.14065 0.80000


, f(U, V ) =


1 1
1 0


.

Acknowledgment: The authors wish to thank Yanlin Geng
for obtaining this counterexample.
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