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Abstract

We derive an achievable region for the 2-receiver
broadcast channel with private messages only by in-
corporating ideas of message splitting as in the Han-
Kobayashi scheme for the interference channel. The
achievable region we obtain is equivalent to the best-
known achievable region under this scenario, obtained
by Marton.

The scheme presented here is motivated by the fol-
lowing question: Why does a common random vari-
able W help improve Marton’s achievable rate region
when only private messages are required? Motivated
by this question, we produce a region without an ex-
plicit commonly generated random variable W ; in-
stead we think of each private message being split
naturally into two parts: one part that is also de-
coded by the other receiver, and another that is only
decoded by its intended receiver.

1 Introduction

In [1], Cover introduced the notion of a broadcast
channel through which one sender transmits infor-
mation to two or more receivers.

Definition: A broadcast channel (BC) consists of
an input alphabet X and output alphabets Y1 and
Y2 and a probability transition function p(y1, y2|x).
A ((2nR1 , 2nR2), n) code for a broadcast channel con-
sists of an encoder

xn : 2nR1 × 2nR2 → Xn,

and two decoders

Ŵ1 : Yn1 → 2nR1

Ŵ2 : Yn2 → 2nR2 .

The probability of error P (n)
e is defined to be the

probability that the decoded message is not equal to
the transmitted message, i.e.,

P (n)
e = P

(
{Ŵ1(Y n1 ) 6=W1} ∪ {Ŵ2(Y n2 ) 6=W2}

)

where the message is assumed to be uniformly dis-
tributed over 2nR1 × 2nR2 .

A rate pair (R1, R2) is said to be achievable for
the broadcast channel if there exists a sequence of
((2nR1 , 2nR2), n) codes with P

(n)
e → 0. The capacity

region of the broadcast channel is the closure of the
set of achievable rates.

The capacity region of the two user discrete mem-
oryless channel is unknown. The capacity re-
gion is known for lots of special cases such as de-
graded, less noisy, more capable, deterministic, semi-
deterministic, etc. The best known achievable re-
gion for the private messages is the one presented
by Märton [5] and is stated below:

Bound 1. [Märton ’79] The following rate pairs are
achievable:

R1 ≤ I(U,W ;Y1)
R2 ≤ I(V,W ;Y2)

R1 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(U ;Y1|W )
+ I(V ;Y2|W )− I(U ;V |W )

for any p(u, v, w, x) such that (U, V,W ) → X →
(Y1, Y2) form a Markov chain.

1.1 Motivation

The paper is motivated by the following observation:
W is a random variable whose information content
will be decoded by both receivers. Since there is only
private messages requirement it seems quite natural
to assume that it is optimal to set W = ∅ - the trivial
random variable. This yields the following achievable
region:

Bound 2. [Märton ’79] The following rate pairs are
achievable:

R1 ≤ I(U ;Y1)
R2 ≤ I(V ;Y2)

R1 +R2 ≤ I(U ;Y1) + I(V ;Y2)− I(U ;V )

for any p(u, v, x) such that (U, V ) → X → (Y1, Y2)
form a Markov chain.
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However it is known that the region represent by
Bound 2 is strictly contained in the region denoted
by Bound 1, even for private messages.

In the next section we will derive an achievable re-
gion from an intuitive stand point. It will be shown
that the region thus obtained is equivakent to Mar-
ton’s inner bound. It is hoped that the derivation
will make the role played by W in the original region
clear.

2 An achievable region

In the first part we walk the reader through the in-
tuition behind the derivation of the region. A reader
may skip to Section 2.3 if desired.

2.1 Intuition

For the derivation of this achievable region we start
with the reduced Marton’s region, i.e. the set of rate-
pairs (R1, R2) satisfying

R1 ≤ I(U ;Y1)
R2 ≤ I(V ;Y2)

R1 +R2 ≤ I(U ;Y1) + I(V ;Y2)− I(U ;V ).

In this expression Un sequences represent the private
message for receiver Y1, and V n sequences represent
the private message for receiver Y2. Each sequence
Un, V n is decoded separately at both receivers Y1, Y2.

Let us ask a hypothetical question: What if the re-
ceivers can decode some part of the other receiver’s
message for free? Then the receivers could use this
additional information to decode the message in-
tended for them.

To answer this need to make precise the following
two notions: (i) what do we mean by part of the
other receiver’s message, and (ii) what do we mean
by free?

The first part is clear; any random variable U1 =
f(U) and V1 = g(V ) can be regarded as parts of the
random variables U and V as the information content
in U and V will be the same as that in (U,U1), (V, V1).
The second part is a bit more tricky. We say that
receiver Y1 can decode V1 and Y2 can decode U1, for
free, if the following two conditions are satisfied:

I(U1;Y2) ≥ I(U1;Y1, V1)
I(V1;Y1) ≥ I(V1;Y2, U1). (1)

Intuitively the first inequality means that Y2 can
decode U1 better than Y1 can decode U1 even if it
knew V1. This condition may remind the reader
about very strong interference and strong interference
conditions, and is exactly in the same spirit.

2.2 An interference channel like reasoning

The transmission of the message M1 can be viewed
as causing interference to the transmission between X
to Y2. Similarly the transmission of the message M2

can be viewed as causing interference to the transmis-
sion between X to Y1. Unlike traditional interference
channels, all of the interference is present at the same
physical transmitter.

Just as in the Han-Kobayashi scheme for the inter-
ference channel it is feasible to think of U = (U1, U2)
where U1 represents the part that can easily be de-
coded by Y2 while the remaining part of U is the
private part. A similar decomposition holds for V =
(V1, V2). Conditions (1) just ensures that necessitat-
ing Y2 to decode U1 and Y1 to decode V1 do not really
impose constraints on the number of Un1 and V n1 se-
quences that may otherwise be generated.

Motivated by this reasoning we arrive at the
achievable region1 in the next section.

2.3 Main Result

Theorem 1. Let (U, V ) be any two (auxiliary) ran-
dom variables such that

(U, V )→ X → (Y1, Y2)

forms a Markov chain. Further let U1 = f(U), V1 =
g(V ) be two random variables that are deterministic
functions of U and V respectively satisfying:

I(U1;Y2) ≥ I(U1;Y1, V1)
I(V1;Y1) ≥ I(V1;Y2, U1).

Then any pair (R1, R2) satisfying the following con-
straints:

R1 ≤ I(U ;Y1, V1)
R1 ≤ I(U ;Y1|V1) + I(V1;Y2, U1)
R2 ≤ I(V ;Y2, U1) (2)
R2 ≤ I(V ;Y2|U1) + I(U1;Y1, V1)

R1 +R2 ≤ I(U ;Y1, V1) + I(V ;Y2, U1)− I(U ;V )

is achievable.

Proof. The proof of this theorem closely mirrors that
of Marton’s theorem for obvious reasons. For com-
pleteness we present the proof in the Appendix.

Remark 1. We present some remarks on the achiev-
able region presented in Theorem 1.

1The author is thankful to Amin Gohari for pointing out
an error in an earlier version
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i) There is no explicit random variable W that is
commonly generated; instead there is just U and
V that are independently generated. The re-
ceivers may choose to decode parts of the inter-
fering message if it helps them decode their own
message.

ii) Setting U1 = V1 = ∅, the trivial random vari-
able, (and is a valid choice satisfying (1) for ev-
ery U, V ) reduces the region to the one in Bound
2.

iii) For the degraded broadcast channel X → Y1 →
Y2, a natural choice would to set V1 = V and
U1 = ∅ since receiver Y1 can decode all that re-
ceiver Y2 decodes. It is easy to see that this is a
valid choice, i.e. satisfies (1), and leads us to the
following region

R1 ≤ I(U ;Y1, V )
R1 ≤ I(U ;Y1|V ) + I(V ;Y2)
R2 ≤ I(V ;Y2) (3)

R1 +R2 ≤ I(U ;Y1, V ) + I(V ;Y2)− I(U ;V )
= I(U ;Y1|V ) + I(V ;Y2)

By setting U = X it follows that the above region
indeed coincides with the capacity region of the
degraded broadcast channel.

iv) The following region is equivalent to the region
presented in Theorem 1.

Bound 3. Let (U,U1, V, V1) be any four (auxil-
iary) random variables such that

(U,U1, V, V1)→ X → (Y1, Y2)

forms a Markov chain. Further let U1, V1 satisfy:

I(U1;Y2) ≥ I(U1;Y1, V1)
I(V1;Y1) ≥ I(V1;Y2, U1).

Then any pair (R1, R2) satisfying the following
constraints:

R1 ≤ I(U,U1;Y1, V1)
R1 ≤ I(U,U1;Y1|V1) + I(V1;Y2, U1)
R2 ≤ I(V, V1;Y2, U1) (4)
R2 ≤ I(V, V1;Y2|U1) + I(U1;Y1, V1)

R1 +R2 ≤ I(U,U1;Y1, V1) + I(V, V2;Y2, U1)
− I(U,U1;V, V1)

is achievable.

Clearly this is at least as good as the region pre-
sented in Theorem 1 as this reduces to the region
in Theorem 1 when U1 = f(U), V1 = f(V ). To
show the other direction set Ũ = (U,U1), Ṽ =
(V, V1) and observe that U1 = f(Ũ), V1 = g(Ṽ ).

We now present the two Lemmas that shows the
equivalence between the regions in Theorem 1 and
Bound 1.

Lemma 1. The region presented in Theorem 1 con-
tains the region in Bound 1.

Proof. Consider a triple a triple (Ũ , Ṽ , W̃ ) for Mar-
ton’s scheme.

Case 1: I(Ṽ , W̃ ;Y1) ≥ I(Ṽ , W̃ ;Y2) (or
I(Ũ , W̃ ;Y2) ≥ I(Ũ , W̃ ;Y1)) If I(Ṽ , W̃ ;Y1) ≥
I(Ṽ , W̃ ;Y2), then by setting U1 = ∅, V1 = V =
(Ṽ , W̃ ), U = (Ũ , Ṽ , W̃ ), we obtain that we can
achieve

R2 ≤ I(Ṽ , W̃ ;Y2)

R1 +R2 ≤ I(Ũ ;Y1|Ṽ , W̃ ) + I(Ṽ , W̃ ;Y2)

which contains the region prescribed by Bound 1.
The other case is dealt similarly.

Case 2: I(Ṽ , W̃ ;Y1) < I(Ṽ , W̃ ;Y2) and
I(Ũ , W̃ ;Y2) < I(Ũ , W̃ ;Y1)); In this case it is easy to
see that for all boundary points of Martons region it
suffices to consider I(W̃ ;Y1) = I(W̃ ;Y2) (see also [4]).
For our scheme set, U = (Ũ , W̃ ), V = (Ṽ , W̃ ), V1 =
W̃ , U1 = ∅. Clearly (1) holds. Therefore we can
achieve

R2 ≤ I(Ṽ , W̃ ;Y2)

R1 ≤ I(Ũ ;Y1|W̃ ) + I(W̃ ;Y2) = I(Ũ , W̃ ;Y1)

R1 +R2 ≤ I(Ṽ , W̃ ;Y2) + I(Ũ , W̃ ;Y1,W )− I(U,W ;V,W )
= I(W ;Y2) + I(U ;Y1|W ) + I(V ;Y2|W )

− I(U ;V |W )
= min{I(W ;Y2), I(W ;Y1)}+ I(U ;Y1|W )

+ I(V ;Y2|W )− I(U ;V |W ),

which is same as the region prescribed by Bound 1.

Lemma 2. The region presented in Bound 1 contains
the region in Theorem 1.

Proof. We have R1 ≤ I(U,U1;Y1|V1) +
I(V1;Y2, U1) ≤ I(U,U1, V1;Y1) (using (1)). Similarly
R2 ≤ I(V,U1, V1;Y2).
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Observe that we have

R1 +R2

≤ I(V ;Y2, U1) + I(U ;Y1, V1)− I(U ;V )
= I(V, V1;Y2, U1) + I(U,U1;Y1, V1)− I(U,U1;V, V1)
= I(V, V1;Y2|U1) + I(U,U1;Y1, V1)− I(U ;V, V1|U1)
= I(V1;Y2|U1) + I(V ;Y2|U1, V1) + I(U1;Y1, V1)

+ I(U ;Y1, V1|U1)− I(U ;V, V1|U1)
= I(V1;Y2, U1) + I(U1;Y1, V1)− I(U1;V1)

+ I(V ;Y2|U1, V1) + I(U ;Y1|V1, U1)
− I(U ;V |V1, U1)

However (1) implies that

I(V1;Y2, U1) + +I(U1;Y1, V1)− I(U1;V1)
≤ I(V1;Y1) + I(U1;Y1|V1) = I(U1, V1;Y1),

I(V1;Y2, U1) + I(U1;Y1, V1)− I(U1;V1)
≤ I(U1;Y2) + I(V1;Y2|U1) = I(U1, V1;Y2).

Therefore it follows that

R1 +R2 ≤ min{I(U1, V1;Y2), I(U1, V1;Y1)}
+ I(U ;Y1|V1, U1) + I(V ;Y2|U1, V1)
− I(U ;V |V1, U1).

These rate pairs are achievable using Marton’s
scheme with (Ũ , Ṽ , W̃ ) by setting W̃ = (U1, V1),
Ũ = U and Ṽ = V .

3 Conclusion

This paper presents an achievable region for the 2-
receiver broadcast channel by borrowing on ideas of
message splitting. The use of message splitting in
broadcast channel is not new to this work, indeed it
was introduced in [6] to establish the capacity region
of a class of three receiver broadcast channels with
degraded message sets. In this paper we use this idea
to get a better understanding of the role played by W
for the case when only private messages are required.
It thus incorporates ideas from the interference chan-
nel model on to the broadcast channel setting.
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Proof of Theorem 1
The arguments are standard and are just presented

for completeness.
Codebook generation: Generate 2n(I(U1;Y1,V1)−ε)

sequences Un1 independently and identically dis-
tributed according to

∏
i p(u1i). For each such

sequences Un1 generate 2n(I(U ;Y1,V1|U1)−ε) sequences
Un independently and identically distributed accord-
ing to

∏
i p(ui|u1i). Consider the total collection

of 2n(I(U ;Y1,V1)−2ε) sequences thus generated. Ran-
domly and uniformly bin them into 2nR1 bins. It is
easy to see that a randomly chosen bin will be non-
empty with high probability as long as

R1 < I(U ;Y1, V1)− ε (5)

Independently generate 2n(I(V1;Y2,U1)−ε) sequences
V n1 independently and identically distributed accord-
ing to

∏
i p(v1i). For each such sequences V n1 gen-

erate 2n(I(V ;Y2,U1|V1)−ε) sequences V n independently
and identically distributed according to

∏
i p(vi|v1i).

Consider the total collection of 2n(I(V ;Y1,V1)−2ε) se-
quences thus generated. Randomly and uniformly

4
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bin them into 2nR2 bins. Similarly, a randomly cho-
sen bin will be non-empty with high probability as
long as

R2 < I(V ;Y2, U1)− ε (6)

For all (m1,m2) ∈ 2nR1 × 2nR2 define a product
bin Bm1,m2 comprising of pairs of sequences Un that
belong to bin numbered m1 and V n that belong to
bin numbered m2. We say that a product bin m1,m2

is good if there exists at least one jointly typical pair
Un, V n. For all good product bins, pick one of the
jointly typical pairs Un, V n in the product bin and
generate a jointly typical sequence Xn(m1,m2) ac-
cording to p(x|u, v).

Encoding and decoding strategy: To transmit a mes-
sage pair (m1,m2) ∈ 2nR1 × 2nR2 the transmitter
look at the product bin numbered by (m1,m2). The
transmitter declares an error (error event E1) if the
product bin is not good; otherwise we transmit the
sequence Xn(m1,m2).

Assuming the transmitter does not declare an er-
ror, the receiver Y1 upon receiving yn1 computes a list
of sequences vn1 such that it is jointly typical with the
receiver yn1 . The decoder at receiver Y1 declares an
error if

(a) Event E2,1: there is no sequence vn1 that is jointly
typical with the received yn1

(b) Event E3,1: there is more that one sequence vn1
that is jointly typical with the received yn1 .

If there is a unique vn1 that is typical with the received
yn1 , then the receiver computes a list of sequences un

that is jointly typical with the pair (yn1 , v
n
1 ). The

decoder at receiver Y1 declares an error if

(c) Event E4,1: there is no sequence un that is jointly
typical with the pair yn1 , v

n
1 .

(d) Event E5,1: there is more that one sequence un

that is jointly typical with the pair yn1 , v
n
1 ..

If there is a unique un the the receiver estimates M̂1

to be the bin number corresponding to the sequence
Un.

A similar decoding strategy occurs at receiver Y2

as well. Let us call the corresponding error events
E2,2, E3,2, E4,2, E5,2 respectively.

Analysis of error probability: Following the argu-
ments in [3] (follows from an application of the sec-
ond moment method) that the probability of the error

event E1 goes to zero as n→∞ as long as

I(U ;Y1, V1)−R1 + I(V1;Y2, U1)
> I(U ;V1) + 3ε,

I(V ;Y2, U1)−R2 + I(U1;Y1, V1)
> I(U1;V ) + 3ε,

I(U ;Y1, V1)−R1 + I(V ;Y2, U1)−R2

> I(U ;V ) + 3ε. (7)

By the strong Markov property[2] the transmitted
sequence vn1 will be jointly typical with the received
yn1 with high probability. Therefore the probabil-
ity of the error event E2,1 goes to zero as n → ∞.
The probability that a randomly generated sequence
vn1 is jointly typical with the received yn1 is at most
2−n(I(V1;Y1)− ε

2 ). Therefore by the union bound the
probability that at least one randomly generated vn1
is jointly typical with the received yn1 goes to zero
since

−I(V1;Y1) +
ε

2
+ I(V1;Y2, U1)− ε < 0,

which follows from (1). So only the transmitted vn1 is
jointly typical with the received yn1 with high proba-
bility. Therefore the probability the error event E3,1
goes to zero as n→∞.

Again using the strong Markov property, we can
show that the probability of the error event E4,1 goes
to zero as n→∞. We split the error event E5,1 into
two parts: (i) there is an un with an underlying se-
quence un1 different from the transmitted un1 that is
jointly typical with the pair yn1 , v

n
1 . By union bound

this probability goes to zero as the total number
of such sequences un is bounded by 2n(I(U ;Y1,V1)−2ε)

and the probability that each randomly generated se-
quence is jointly typical with the pair yn1 , v

n
1 is at

most 2n(I(U ;Y1,V1)− ε
2 ). (ii) there is a sequence un

with an underlying sequence un1 same as the trans-
mitted one that is jointly typical with the pair yn1 , v

n
1 .

By union bound this probability goes to zero as the
total number of such sequences un is bounded by
2n(I(U ;Y1,V1|U1)−ε) and the probability that each ran-
domly generated sequence is jointly typical with the
pair yn1 , v

n
1 is at most 2n(I(U ;Y1,V1|U1)− ε

2 ). Combining
these two, we see that the probability of the error
event E5,1 goes to zero as n→∞.

This implies that receiver Y1 decodes the correct
Un with high probability, and hence the right M1.
A similar analysis can be carried out for receiver Y2

as well, showing that she also decodes the correct M2

with high probability. Thus the estimates M̂1, M̂2 are
correct with high probability, and this completes the
proof of the achievability.

Setting ε → 0 and taking the closure of the rates
completes the proof of Theorem 1.
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