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On broadcast channels with binary inputs and
symmetric outputs

Yanlin Geng, Member, IEEE, Chandra Nair, Member, IEEE, Shlomo Shamai, Fellow, IEEE, and Zizhou Wang

Abstract—We establish capacity regions for some classes of
broadcast channels with binary inputs and symmetric outputs.
We investigate the more capable partial order and establish that
the binary erasure channel and the binary symmetric channel
form the two extremes for channels having the same capacity.
Further, we apply the results to identify a class of broadcast
channels for which the best known inner and outer bounds on
the capacity region differ.

I. INTRODUCTION

In [1], Cover introduced the notion of a broadcast channel
through which one sender transmits information to two or
more receivers. For the purpose of this paper we focus our
attention on broadcast channels with precisely two receivers.

A broadcast channel, denoted by [X → (Y1, Y2)], con-
sists of an input alphabet X , two output alphabets Y1
and Y2, and a transition probability function q(y1, y2|x). A
(d2nR1e, d2nR2e, n) code for a broadcast channel consists of
an encoder

xn : {1, 2, . . . , d2nR1e} × {1, 2, . . . , d2nR2e} → Xn,

and two decoders

Ŵ1 : Yn1 → {1, 2, . . . , d2nR1e}
Ŵ2 : Yn2 → {1, 2, . . . , d2nR2e}.

The probability of error P (n)
e is defined to be the probability

of the event that either of the receivers decodes incorrectly, i.e.,

P (n)
e = P

(
{Ŵ1(Y n1 ) 6=W1} ∪ {Ŵ2(Y n2 ) 6=W2}

)
where the message is assumed to be uniformly distributed over
{1, 2, . . . , d2nR1e} × {1, 2, . . . , d2nR2e}.

A rate pair (R1, R2) is said to be achievable for a broadcast
channel if there exists a sequence of (d2nR1e, d2nR2e, n) codes
with P (n)

e → 0 as n→∞. The capacity region of a broadcast
channel is the closure of the set of achievable rate pairs. The
capacity region of a general two-receiver discrete memoryless
broadcast channel is unknown.
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The capacity region is known [2] for classes of broadcast
channels such as degraded, less noisy, more capable, essen-
tially less noisy, and essentially more capable. In each of the
classes mentioned above, there is a “dominant receiver” and it
has been shown that superposition coding, where the dominant
receiver is able to decode the message for the other receiver,
is optimal.

For a pair of random variables (X,Y ) distributed according
to p(x, y), the mutual information is denoted as Ip(X;Y ).
When the underlying distribution p(x, y) is clear from the
context, it is sometimes omitted.

Definition 1 ([3]). A channel T1 : [X → Y1] is less noisy than
another channel T2 : [X → Y2], if for all p(u, x) such that
U → X → (Y1, Y2) is Markov we have I(U ;Y1) ≥ I(U ;Y2).

Definition 2 ([3]). A channel T1 : [X → Y1] is more capable
than another channel T2 : [X → Y2], denoted by T1

mc
≥ T2, if

for all p(x) we have I(X;Y1) ≥ I(X;Y2).

Definition 3 ([4]). A class of distributions P = {p(x)} on the
input alphabet X is said to be a sufficient class of distributions
for a broadcast channel [X → (Y1, Y2)] if the following
holds: Given any triple of random variables (U, V,X) such that
(U, V )→ X → (Y1, Y2) is Markov, there exists a distribution
q(ũ, ṽ, x) such that (Ũ , Ṽ ) → X → (Y1, Y2) is Markov and
satisfies

q(x) ∈ P,
Ip(U ;Y2) ≤ Iq(Ũ ;Y2),

Ip(V ;Y1) ≤ Iq(Ṽ ;Y1),

Ip(U ;Y2) + Ip(X;Y1|U) ≤ Iq(Ũ ;Y2) + Iq(X;Y1|Ũ),

Ip(V ;Y1) + Ip(X;Y2|V ) ≤ Iq(Ṽ ;Y1) + Iq(X;Y2|Ṽ ).

(1)

Remark 1. Note that the definition of a sufficient class depends
only on the pair of channels [X → Y1] and [X → Y2] rather
than the joint transition probability of the broadcast channel
[X → (Y1, Y2)].

Definition 4 ([4]). A channel T1 : [X → Y1] is essentially less

noisy than another channel T2 : [X → Y2], denoted by T1
eln
≥

T2, if there exists a sufficient class of distributions P such
that for all p(u, x) with p(x) ∈ P and U → X → (Y1, Y2) is
Markov we have Ip(U ;Y1) ≥ Ip(U ;Y2).

Remark 2. Note that essentially less noisy comparison may not
induce a partial order among all channels because the sufficient
class of distributions depends on the pair of channels under
consideration. (In this regard, see Remark 9.)

Remark 3. Sometimes we say that receiver Y1 is less noisy
(more capable, essentially less noisy) than Y2, with the un-



LEFT HEADER 2

1

0

−1

p0

p0

=⇒

1

0+

0−

−1

1
2p0

1
2p0

Fig. 1. Splitting of a binary erasure channel.

derstanding that the corresponding channels satisfy the corre-
sponding relationship.

In this paper, we restrict ourselves to a class of discrete
memoryless channels with binary inputs and symmetric out-
puts (BISO) defined below1.

Definition 5. A binary input symmetric output (BISO) discrete
memoryless channel [X → Y ] has an input alphabet X =
{0, 1}, an output alphabet Y = {0,±1, . . . ,±l}, and transition
probabilities that satisfy

pk = P(Y = k|X = 0) = P(Y = −k|X = 1),−l ≤ k ≤ l.

A binary symmetric channel (BSC) and a binary erasure
channel (BEC) are examples of BISO channels. It is easy to
see that uniform input distribution u(x) maximizes the mutual
information (or in other words, u(x) is a capacity achieving
distribution), i.e.

C = max
p(x)

Ip(X;Y ) = Iu(X;Y ).

In the rest of this paper we assume without loss of generality
that Y = {±1, . . . ,±l}. This can be done because one can
always split the output Y = 0 into two outputs Y = 0+, Y =
0− such that P(Y = 0+|X = 0) = P(Y = 0−|X = 0) =
p0
2 . This new receiver is essentially indistinguishable from the

original one as either receiver can “simulate” the other receiver
locally and hence the probability of error corresponding to
any decoding rule in one receiver can be achieved in the other
receiver. We illustrate this splitting for a BEC in Figure 1.

For notation, we use {pk, p−k : k = 1, . . . , l} to denote
the transition probabilities P(Y = k|X = 0), sometimes
shortened to {pk, p−k}k.

Definition 6. A binary input symmetric output broadcast
channel is a broadcast channel where the channels [X → Y1]
and [X → Y2] are both BISO channels.

Remark 4. Our interest is primarily in studying the capacity
regions of discrete memoryless broadcast channels without
feedback; it is known and easy to see that the capacity region
depends only on the marginals. Therefore, we shall treat all
broadcast channels with a given pair of marginals to belong
to an equivalence class.

In this paper, we study the notions of more capable receivers
and essentially less noisy receivers by focusing on the class

1This class has also been alternately referred to as Binary Input Output
Symmetric (BIOS) [5].

of binary input symmetric output broadcast channels. We
establish several results which are summarized below. These
results can be considered as a natural generalization of the
results in [4].

A. Summary of results

• Any BISO channel with capacity C is more capable than
a BSC with capacity C. (Corollary 1).

• A BEC with capacity C is more capable than any BISO
channel with capacity C. (Corollary 2)

• Any two BISO channels with the same capacity and
whose outputs have cardinalities at most 3, are more
capable comparable, i.e. one receiver is more capable than
the other receiver. (Corollary 3)

• For any two BISO channels with the same capacity, a
receiver Y1 is more capable than receiver Y2 if and only
if receiver Y2 is essentially less noisy than Y1. (They go
in reverse directions2.) (Lemma 3)

• The superposition coding region is the capacity region
for a BISO broadcast channel if either of the channels is
a BSC or a BEC. (Corollary 4)

• For two BISO channels with the same capacity, superpo-
sition coding is optimal if and only if the channels are
more capable comparable. (Corollary 5)

• For two BISO channels with the same capacity Marton’s
inner bound differs from the outer bound [6] unless the
channels are more capable comparable. (Theorem 3)

• It suffices to consider [U → X] to be BSC to compute
the boundary of the superposition coding region for
BISO broadcast channels. (Lemma 7). channels (Lemma
7). This generalizes a result of Wyner and Ziv [7] for
degraded BSC broadcast channel.

B. Preliminaries
Define h(x) := −x log2 x − (1 − x) log2(1 − x) to be the

binary entropy function, and x = h−1(y) be the inverse of
h(x), x ∈ [0, 0.5].

Partition P of an interval [a, b] is a finite sequence of points
{tk} such that a = t0 < t1 < t2 < . . . < tN = b. A partition
P is finer than Q if points of partition P contain those of Q.
A common refinement of two partitions P and Q is a new
partition consisting of all the points of P and Q.

Definition 7 (BISO partition and BISO curve). For a BISO
channel with transition probabilities {pk, p−k}k, rearrange
h( pk

pk+p−k
) in the ascending order and denote the permutation

as π. BISO partition is defined as the partition of [0, 1] with
points t0 = 0 and tk =

∑k
i=1(pπi + p−πi). BISO curve is

defined as the step function f(t) such that f(0) = 0 and
f(t) = h(

pπk
pπk+p−πk

) on (tk−1, tk].

For the channel BSC(p), we have the partition as t0 = 0,
t1 = 1 and the curve as f(t) = h(p) on (0, 1]. For the channel
BEC(e), we have the partition as t0 = 0, t1 = 1− e, t2 = 1,
and the curve as f(t) = 0 on (0, 1 − e] and f(t) = 1 on
(1− e, 1]. These two BISO curves are illustrated in Figure 2.

2 Superposition is optimal by taking either of the receivers as the weak
receiver, since capacity region matches the time-division multiplexing region.
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Definition 8 (Lorenz curve of a BISO channel). For a BISO
channel with BISO curve f(t), the Lorenz3 curve (or the
cumulative function) F (t) is defined as F (t) =

∫ t
0
f(τ)dτ .

Properties of the Lorenz curve:
Since 0 ≤ f(t) ≤ 1 and f(t) is a non-decreasing step

function on [0, 1] we have

1) F (t) is non-negative, piecewise linear and convex.
2) The slope of the line segments of F (t) is at most 1.

We illustrate the Lorenz curves for a BSC, a BEC and a
generic BISO channel having the same capacity in Figure 3.

t

F (t)

1

F (1)

BSC
BEC

1− e

BISO

Fig. 3. Lorenz curves for a BSC, a BEC, and a generic BISO channel such
that they have the same value at t = 1.

Denote ∗ as the binary convolution, that is a ∗ b := a(1 −
b) + (1 − a)b. Let x = P(X = 0), elementary calculations
yield

I(X;Y )

=
∑
k>0

(pk + p−k)

(
h(x ∗ pk

pk + p−k
)− h(

pk
pk + p−k

)

)
(a)
=

∫ 1

0

h(x ∗ h−1(f(τ)))dτ −
∫ 1

0

f(τ)dτ

(2)

where (a) follows from the definition of BISO curve. Thus
for channels that have the same Lorenz curve, the mutual
information and in particular the channel capacities, are the
same regardless of the output alphabet sizes. Indeed the
capacity, achieved by x = 0.5, is C = 1− F (1).

3The authors adopt this name from economics and is sometimes used for
cumulative distribution functions obtained after rearrangement of terms from
the smallest to the largest.

II. ON PARTIAL ORDERS AND CAPACITY REGIONS FOR
CLASSES OF BISO BROADCAST CHANNELS

A. On more capable comparability of BISO channels

We will establish a sufficient condition for two BISO
channels to be more capable comparable. Before we state our
sufficient condition for more capable comparability, we need
the following lemmas.

Lemma 1 (Mrs. Gerber’s Lemma: Lemma 2 in [7]). The
function h(x ∗ h−1(y)) is convex in y for x ∈ [0, 1].

Lemma 2 (Lemma 1 in [8]). Let x1, ..., xl and y1, ..., yl be
nondecreasing sequences of real numbers. Let ξ1, ..., ξl be a
sequence of real numbers such that

l∑
j=k

ξjxj ≥
l∑

j=k

ξjyj , 1 ≤ k ≤ l

with equality for k = 1. Then for any convex function Λ,

l∑
j=1

ξjΛ(xj) ≥
l∑

j=1

ξjΛ(yj).

Remark 5. The above inequality is related to majorization and
one can trace it back to Result 108, Page 89 in [9].

Theorem 1 (A sufficient condition). Consider BISO channels
[X → Y1] and [X → Y2] with Lorenz curves F (t) and G(t),
respectively. Further let F (1) = G(1), i.e. channels have the
same capacity. If F ≤ G then Y1 is more capable than Y2.

Proof. Let the common refinement of these two BISO parti-
tions be {tk : k = 0, . . . , N̂}, and ξk := tk − tk−1. Let the
BISO curves be f(t) and g(t) respectively. Then

F (ti) =

i∑
k=1

ξkf(tk) ≤
i∑

k=1

ξkg(tk) = G(ti), i = 1, . . . , N̂ .

Since F (1) = G(1) we have equality at i = N̂ . Using Lemma
2 and by noticing that f(tk) and g(tk) are both nondecreasing
we have

N̂∑
j=1

ξjΛ(f(tj)) ≥
N̂∑
j=1

ξjΛ(g(tj))

for any convex function Λ. Taking Λ(y) = h(x ∗ h−1(y))− y
we obtain that

N̂∑
j=1

ξjh
(
x ∗ h−1(f(tj))

)
−

N̂∑
j=1

ξjf(tj)

≥
N̂∑
j=1

ξjh
(
x ∗ h−1(g(tj))

)
−

N̂∑
j=1

ξjg(tj).

From (2) this is equivalent to

I(X;Y1) ≥ I(X;Y2),∀p(x).

Thus the theorem is established.
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Remark 6. This is not, however, a necessary condition. Con-
sider Y1 = Y2 = {−2,−1, 1, 2}, pk = P(Y1 = k|X = 0),
qk = P(Y2 = k|X = 0), such that

p = [0.05, 0.2, 0.2, 0.55],

q = [0, 0.222434268, 0.509103154, 0.268462578].

One can verify that I(X;Y2) ≥ I(X;Y1), and the minimum
value of I(X;Y2)/I(X;Y1), is attained at P(X = 0) = 0.5,
and equals 1 + 3.5× 10−8. Now, append a channel [Y2 → Ỹ2]
so that P(Ỹ2 = k|X = i) = (1− e)P(Y2 = k|X = i), i = 0, 1
and P(Ỹ2 = E|X = 0) = P(Ỹ2 = E|X = 1) = e. Then, it
is immediate that I(X; Ỹ2) = (1 − e)I(X;Y2) for all p(x).
Choose e to make the ratio of I(X; Ỹ2)/I(X;Y1), at P(X =
0) = 0.5, to be one. Since the ratio I(X; Ỹ2)/I(X;Y1) =
(1 − e)I(X;Y2)/I(X;Y1) and hence the minimum of the
ratio is still attained at P(X = 0) = 0.5, and the new
pair of channels remain remains more capable comparable.
However, the Lorenz curves, shown in Figure 4, don’t satisfy
the sufficient condition in Theorem 1.

t

F (t)

1

0.6483

Y1

0.6

0.2483

Ỹ2

0.2685

Fig. 4. Lorenz curves for two BISO channels with the same capacity and
more capable comparable (see Remark 6).

For reasons that will be apparent later (cf. Lemma 4,
Theorem 3, etc.) it is useful to shift our focus to the following
subclass of BISO channels.

Let C(C) be the class of BISO channels with capacity C,
and BISO(C) denote an arbitrary BISO channel in this class.

For instance when 1 − h(p) = C, BSC(p) belongs to
this class. Similarly BEC(e) belongs to this class when
1 − e = C. Using an abuse of notation, we denote BSC(C)
and BEC(C) as the binary symmetric channel and the binary
erasure channel with capacity C, respectively.

Corollary 1. BISO(C)
mc
≥ BSC(C).

Proof. From Theorem 1 it suffices that Lorenz curves satisfy
FBISO ≤ FBSC . Observe that FBISO(0) = FBSC(0) = 0,
FBISO(1) = FBSC(1), and FBSC(t) is the straight line con-
necting 0 and FBSC(1). The convexity of FBISO(t) (Property
1) implies that FBISO ≤ FBSC .

Remark 7. The least capable property of BSC was indepen-
dently established in Chapter 7 of [10].

Corollary 2. BEC(C)
mc
≥ BISO(C).

Proof. Similar to above it suffices that the Lorenz curves
satisfy FBEC ≤ FBISO. Notice FBEC(t) = 0, t ∈ [0, 1 − e]
hence FBEC(t) ≤ FBISO(t), t ∈ [0, 1 − e]. Combining

FBEC(1) = FBISO(1) and by comparing slopes fBEC(t) =
1 ≥ fBISO(t), t ∈ (1− e, 1], we have FBEC ≤ FBISO.

1) Relation to information combining: Some of the results,
more precisely Corollaries 1 and 2, can be seen in the light
of results in [11], [12]. For instance, from [12], when [U →
X] ∼ BSC(s), for a BISO, a BSC and a BEC that have the
same capacity, one has

I(X;U, YBSC) ≤ I(X;U, YBISO) ≤ I(X;U, YBEC),

which then yields

I(X;YBSC |U) ≤ I(X;YBISO|U) ≤ I(X;YBEC |U).

But conditioning on U , where [U → X] ∼ BSC(s) is the
same, by symmetry, as taking X ∼ P(X = 0) = 1 − s. One
could also obtain the same conclusion by using the results
in [4]. However here we have used a different approach, via
Theorem 1, to establish the extreme properties of BSC and
BEC.

Corollary 3. Let BISO1(C) and BISO2(C) be two BISO
channels with output alphabet sizes at most 3. Then either
BISO1(C)

mc
≥ BISO2(C) or BISO2(C)

mc
≥ BISO1(C),

i.e. two such channels are always more capable comparable.

Proof. For a BISO channel [X → Y ] with transition proba-
bilities {p−1, p0, p1}, Y = 0 is split equally into 0+ and 0−.
Thus the Lorenz curve F (t) contains two sloping lines: one
with slope h(

p0+
p0++p0−

) = 1, and the other not bigger than
one. Note that for binary output case (i.e. BSC or p0 = 0)
the Lorenz curve is a straight line with slope at most one.
Given two Lorenz curves of this kind, F1(t) and F2(t), with
F1(1) = F2(1), then either F1 ≤ F2 or F1 ≥ F2 (Figure 5).
According to Theorem 1, these two channels are more capable
comparable.

t

F (t)

1

F (1)

BSC

BISO1

BISO2

Fig. 5. Lorenz curves for BISO channels with the same capacity and output
sizes at most 3.

Remark 8. Not all BISO channels with the same capacity are
more capable comparable. A counter example is the following:
Consider Y1 = Y2 = {−2,−1, 1, 2}, pk = P(Y1 = k|X = 0),
qk = P(Y2 = k|X = 0), such that

p = [0.05, 0.2, 0.2, 0.55],

q = [0, 0.177713558, 0.732286442, 0.09].

One can verify that the capacities, attained at P(X = 0) = 0.5,
have a difference I(X;Y1) − I(X;Y2) = 8.2 × 10−10. Now
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similar to Remark 6, we append an erasure channel to Y1 to get
Ỹ1, such that [X → Ỹ1] and [X → Y2] have the same capacity.
Now for I(X; Ỹ1)−I(X;Y2), we have the value 0.001630643
at P(X = 0) = 0.1932 and −0.001678222 at P(X = 0) =
0.0177. So they are not more capable comparable.

B. On more capable and essentially less noisy orders in BISO
channels

We first establish that there is a partial order induced by
essentially less noisy comparison within the class of BISO
broadcast channels. Further we will establish that, when re-
stricted to C(C), the more capable and essentially less noisy
partial orders are inverse of each other. It is worth noting that
more capable and essentially less noisy are two notions of
saying that one receiver is superior to another receiver, since
superposition coding adapted to the (corresponding) stronger
receiver is optimal in both cases.

Note that a BISO broadcast channel is a special case of
c-symmetric broadcast channel considered in [4]. Thus the
following result follows from Lemma 2 in [4].

Claim 1 (Lemma 2 in [4]). For a BISO broadcast channel, the
uniform input distribution P(X = 0) = 0.5 forms a sufficient
class.

Remark 9. Since the uniform distribution forms a sufficient
class for all BISO broadcast channels, it is immediate that
the essentially less noisy comparison induces a partial order
within the class of BISO channels.

Lemma 3. BISO1(C)
mc
≥ BISO2(C) if and only if

BISO2(C)
eln
≥ BISO1(C).

Proof. Let the two channels be [X → Y1] and [X → Y2],
respectively. Assume Y1

mc
≥ Y2. From Claim 1 we know that

P(X = 0) = 0.5 is a sufficient distribution for these two
channels. Therefore, when P(X = 0) = 0.5 we have for all
U such that U → X → (Y1, Y2)

I(U ;Y1) = I(X;Y1)− I(X;Y1|U)

= C − I(X;Y1|U)

= I(X;Y2)− I(X;Y1|U)

= I(U ;Y2) + I(X;Y2|U)− I(X;Y1|U)

≤ I(U ;Y2),

where the last inequality follows from Y1
mc
≥ Y2. Thus we

obtain that Y2
eln
≥ Y1.

Assume Y2
eln
≥ Y1. The proof follows by contradiction.

Suppose there is a value x such that when P(X = 0) = x,
I(X;Y2) − I(X;Y1) = δ > 0, then consider a U such that
P(U = 0) = P(U = 1) = 0.5, P(X = 0|U = 0) =
x = P(X = 1|U = 1). From the symmetry, I(X;Y2|U) −
I(X;Y1|U) = δ > 0. However since P(X = 0) = 0.5, using
a similar decomposition we see that

I(U ;Y1) = I(U ;Y2) + I(X;Y2|U)− I(X;Y1|U)

= I(U ;Y2) + δ > I(U ;Y2),

contradicting the assumption Y2
eln
≥ Y1. Thus Y1

mc
≥ Y2.

Recall our notation: BSC(C) - a binary symmetric channel
with capacity C; BEC(C) - a binary erasure channel with ca-
pacity C; and BISO(C) - an arbitrary binary input symmetric
output channel with capacity C. The following lemma is an
immediate consequence of Corollaries 1, 2, and Lemma 3.

Lemma 4. The following relations hold:

(i) BEC(C)
mc
≥ BISO(C)

mc
≥ BSC(C),

(ii) BSC(C)
eln
≥ BISO(C)

eln
≥ BEC(C).

This leads us to the following result.

Theorem 2. For any three numbers 0 ≤ C1 ≤ C2 ≤ C3 the
following relations hold:

(i) BEC(C3)
mc
≥ BISO(C2)

mc
≥ BSC(C1),

(ii) BSC(C3)
eln
≥ BISO(C2)

eln
≥ BEC(C1).

Proof. If Ca < Cb then BSC(Ca), BEC(Ca) are degraded
versions of BSC(Cb), BEC(Cb) respectively. Hence from
Lemma 4

BEC(C3)
mc
≥ BEC(C2)

mc
≥ BISO(C2)

mc
≥ BSC(C2)

mc
≥ BSC(C1), and

BSC(C3)
eln
≥ BSC(C2)

eln
≥ BISO(C2)

eln
≥ BEC(C2)

eln
≥ BEC(C1).

Remark 10. In [4] the capacity region of a BSC/BEC broadcast
channel was established. Corollary 4 generalizes this result to
only requiring that one of the BISO channels is a BEC or a
BSC.

III. COMPARISON OF INNER AND OUTER BOUNDS FOR
BISO CHANNELS

In this section we focus on BISO broadcast channels and
consider inner bounds and outer bounds to the capacity region.
The main result in this section is that if two BISO channels of
the same capacity are not more capable comparable then the
best known inner and outer bounds differ for the corresponding
BISO broadcast channel.

The following are some commonly used inner bounds (or
achievable rate regions) and outer bounds for the capacity
region (CR):
• Time-division region (TD): This region is characterized

by the set of points (R1, R2) satisfying

R1 ≤ αC1

R2 ≤ (1− α)C2

for some α ∈ [0, 1], where C1 and C2 are the capacities
of the two channels, respectively. The rates are achieved
by transmitting at rate C1 to the first receiver for fraction
α of the time, and at rate C2 to the second receiver for
the remaining fraction.

• Randomized time-divison region (RTD): This corre-
sponds to a time-division strategy except that the slots
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for which communication occurs to one receiver is also
drawn from a codebook which conveys additional infor-
mation. This region is characterized by the set of points
(R1, R2) satisfying

R1 ≤ I(W ;Y1) + P(W = 0)I(X;Y1|W = 0)

R2 ≤ I(W ;Y2) + P(W = 1)I(X;Y2|W = 1)

R1 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}
+ P(W = 0)I(X;Y1|W = 0)

+ P(W = 1)I(X;Y2|W = 1)

for some random variables (W,X) such that W is binary
and W → X → (Y1, Y2) is Markov. The binary random
variable W characterizes the slots which distinguish
communication to one receiver over the other.

• Marton’s inner bound (MIB): This is the best known
achievable rate region. The region is characterized by the
set of rate pairs (R1, R2) satisfying

R1 ≤ I(U,W ;Y1)

R2 ≤ I(V,W ;Y2)

R1 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}
+ I(U ;Y1|W ) + I(V ;Y2|W )− I(U ;V |W )

for some (U, V,W,X) such that (U, V,W ) → X →
(Y1, Y2) is Markov. Observe that setting U = X , V = ∅
when W = 0 and V = X , U = ∅ when W = 1 reduces
MIB to the RTD region.
Lemma 5 ([13]). For a binary input broadcast channel,
the maximum sum rate implied by Marton’s inner bound
matches that of randomized time-divison region.

• Outer bound (OB): The following region [6] represents
an outer bound to the capacity region. The region is
characterized by the set of rate pairs (R1, R2) satisfying

R1 ≤ I(U ;Y1)

R2 ≤ I(V ;Y2)

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U)

R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V )

for some random variables (U, V,X) such that (U, V )→
X → (Y1, Y2) is Markov.
Remark 11. For BISO channels since P(X = 0) = 0.5
is a common sufficient distribution, it can be shown that
this outer bound matches an earlier outer bound due to
Körner and Marton [14].

It is clear that these regions satisfy the following relationship
for any broadcast channel:

TD ⊆ RTD ⊆MIB ⊆ CR ⊆ OB.

Another achievable region that we deal with in this paper
is the superposition coding region [1].
• Superposition coding region (SC): This region is charac-

terized by the set of rate pairs (R1, R2) satisfying

R1 ≤ I(U ;Y1)

R1 +R2 ≤ I(X;Y2)

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U)

for some random variables (U,X) such that U → X →
(Y1, Y2) is Markov.

In the above representation, we treat Y2 as the receiver
capable of decoding the message for Y1. One could also
interchange the roles of the two receivers and obtain a similar
region. It will be usually clear from context as to which of
the two representations (or in other words, which of the two
receivers plays the role of Y2 above) we employ.

The following corollary to Theorem 2 is immediate.

Corollary 4. Superposition coding region is the capacity
region for a BISO broadcast channel if any one of the channels
is either a BSC or a BEC.

Proof. Superposition coding region is known to be optimal
both for more capable comparable channels [15] and for
essentially less noisy comparable channels [4]. From Theorem
2, if any one of the channels is either a BSC or a BEC, then
the channels are either more capable comparable or essentially
less noisy comparable.

Lemma 6. Consider a two-receiver broadcast channel where
both [X → Y1] and [X → Y2] are BISO channels. Consider
the following convex region formed by taking the union of rate
pairs (R1, R2) satisfying

R2 ≤ I(U ;Y2)

R2 +R1 ≤ I(U ;Y2) + I(X;Y1|U) (3)
R1 ≤ I(X;Y1)

over all (U,X) such that U → X → (Y1, Y2) is Markov.
Then any extreme point of this convex region can be realized
by restricting to a binary U such that [U → X] ∼ BSC and
P(X = 0) = 0.5.

Proof. The proof is presented in Appendix A.

Consider a Markov chain (U, V )→ X → (Y1, Y2) such that
[U → X] ∼ BSC(s1), [V → X] ∼ BSC(s2) and P(U =
0) = P(V = 0) = 0.5. Note this implies P(X = 0) = 0.5.

Using this set of random variables define

f1(s1) := I(U ;Y1),

f2(s2) := I(V ;Y2).

It is clear from symmetry that f1(s) = f1(1− s), f2(s) =
f2(1 − s). When P(X = 0) = s then note that I(X;Y1) =
C − f1(s) and I(X;Y2) = C − f2(s). To see this, construct
[U → X] ∼ BSC(s) with P(U = 0) = 0.5. Then

C = I(X;Y1) = I(U ;Y1) + I(X;Y1|U) = f1(s) + I(X;Y1|U)

From Lemma 6 and Remark 11 it follows that OB can be
written as the union of rate pairs (R1, R2) satisfying

R1 ≤ f1(s1)

R2 ≤ f2(s2)

R1 +R2 ≤ f1(s1) + C − f2(s1)

R1 +R2 ≤ f2(s2) + C − f1(s2)

(4)

for some 0 ≤ s1, s2 ≤ 0.5.
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Let

I = {s ∈ [0, 0.5] : f1(s) > f2(s)},
J = {s ∈ [0, 0.5] : f1(s) < f2(s)}.

The following result about BISO channels with the same
capacity, relates the equivalence of various bounds and their
relation to whether the channels are more capable comparable.

Theorem 3. For a BISO broadcast channel with channels
BISO1(C) and BISO2(C), the following statements are
equivalent:
(a) BISO1(C) and BISO2(C) are not more capable com-

parable
(b) TD ( OB
(c) There exists s1 ∈ I, s2 ∈ J such that f1(s1)+f2(s2) > C
(d) TD (MIB
(e) MIB ( OB.

Proof. The proof of this equivalence is presented in Appendix
B.

Corollary 5. For a BISO broadcast channel with channels
BISO1(C) and BISO2(C) superposition coding region is
optimal if and only if the channels are more capable compa-
rable.

Proof. Since both channels have the same capacity, the su-
perposition coding region reduces to {(R1, R2) ∈ <2

+ :
R1+R2 ≤ C}, i.e. the time-division region. Now the corollary
is immediate from Theorem 3.

Remark 12. A characterization of when superposition coding
is optimal for two-receiver broadcast channels is open in
general. It is known that superposition coding is optimal when
the channels are either essentially more capable comparable or
essentially less noisy comparable. However, it is not known
whether such a comparison is necessary for superposition
coding to be optimal.
Remark 13. From Remark 8 we know that there exists a
pair of channels BISO1(C) and BISO2(C) which are not
more capable comparable. Hence from Theorem 3 we know
that the capacity region is strictly larger than TD. However,
if we replace BISO2(C) by BEC(C), a more capable
channel, then the capacity of the broadcast channel formed by
BISO1(C) and BEC(C) is the TD region (Corollary 2 and
the proof of Corollary 5). Thus replacing by a more capable
channel can strictly reduce the capacity region.

This observation leads to an operational definition of a better
receiver and a partial order as follows.

A. A new partial order

We now introduce a natural operational partial order among
broadcast channels.

Definition 9. Receiver Z2 is a better receiver than Y2 if the
capacity region of broadcast channel [X → (Y1, Z2)] contains
that of [X → (Y1, Y2)] for every channel [X → Y1]. In
other words, if we replace receiver Y2 by receiver Z2 then
the capacity region will not decrease.

Remark 14. Since the capacity region of a broadcast channel
only depends on the marginal channels [X → Y1] and [X →
Y2], the above operational partial order is well-defined.

From Remark 13 we know that a more capable receiver is
not necessarily a better receiver. However we will show that
a less noisy receiver is a better receiver.

Proposition 1. If Z2 is a less noisy receiver than Y2, then Z2

is a better receiver than Y2.

Proof. The capacity region of a discrete memoryless broadcast
channel has the following n-letter characterization. Consider
the region Rn defined as the closure of the union of rate pairs
(R1, R2) that satisfy

R1 ≤
1

n
I(U ;Y n1,1)

R2 ≤
1

n
I(V ;Y n2,1)

for some p(u)p(v)p(xn|u, v). It is known that the capacity
region is ∪nRn. (It is clear that this is achievable, and a
converse follows by setting U = M1 and V = M2 and
applying Fano’s inequality.) Observe that for j = n, . . . , 1

I(V ;Y j2,1, Z
n
2,j+1)

= I(V ;Y j−12,1 , Zn2,j+1) + I(V ;Y2j |Y j−12,1 , Zn2,j+1)

≤ I(V ;Y j−12,1 , Zn2,j+1) + I(V ;Z2j |Y j−12,1 , Zn2,j+1)

= I(V ;Y j−12,1 , Zn2,j).

By taking the extreme points of this chain we obtain that
I(V ;Y n2,1) ≤ I(V ;Zn2,1). The proposition follows from the
expression of the capacity region stated above.

IV. CONCLUSION

We look at partial orders induced by the more capable and
less noisy relations in binary input symmetric output broadcast
channels. We establish the capacity regions for a class of them
and also show various other results related to the evaluation
of various bounds. We also show the optimality of certain
auxiliary channels, thus generalizing earlier results.
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APPENDIX

A. Proof to Lemma 6

Proof. For each (U,X), construct (Ũ , X̃) = ((U,Q), X̃) such
that Q ∼ Bern( 1

2 ) and

P(Ũ = (u, 0)) = P(Ũ = (u, 1)) =
1

2
P(U = u)

P(X̃ = 0|Ũ = (u, 0)) = P(X = 0|U = u)

P(X̃ = 0|Ũ = (u, 1)) = 1− P(X = 0|U = u)

Denote this class of (Ũ , X̃) as Q. Notice that P(X̃ = 0) = 0.5
and by symmetry we have

I(Ũ ; Ỹ2) ≥ I(U ; Ỹ2|Q) = I(U ;Y2),

I(X̃; Ỹ1|Ũ) = I(X;Y1|U),

I(X̃; Ỹ1) ≥ I(X;Y1).

Thus for every (U,X), replacing it with (Ũ , X̃) only
enlarges the region given by (3). Thus a uniform distribution
on X is sufficient. We proceed to show that taking [U →
X] ∼ BSC is sufficient.

From above, it suffices to maximize over all (U,X) ∈ Q.
Since P(X = 0) = 0.5 is fixed, the third inequality remains
constant. Therefore, to compute the extreme points, we pro-
ceed to compute the distribution (U,X) ∈ Q that maximizes
λI(U ;Y2)+

(
I(U ;Y2)+I(X;Y1|U)

)
. Rewrite the expression

as

(λ+ 1)I(X;Y2) + I(X;Y1|U)− (λ+ 1)I(X;Y2|U).

Let f(x) = I(X;Y1)−(λ+1)I(X;Y2), where x = P(X = 0).
Notice that f(x) = f(1−x); and let xλ and x1−xλ 1−xλ (by
symmetry) maximize f(x). Construct [U → X] ∼ BSC(xλ),
then I(X;Y1|U)− (λ+ 1)I(X;Y2|U) is maximized; let U ∼
Bern( 1

2 ), then I(X;Y2) is maximized since P(X = 0) = 0.5.
Notice this construction falls into class Q, hence the proof is
finished.

The same proof can also be used to establish the following
lemma.

Lemma 7. Consider a two-receiver broadcast channel where
both [X → Y1] and [X → Y2] are BISO channels. Consider
the following superposition coding region formed by taking
the union of rate pairs (R1, R2) satisfying

R2 ≤ I(U ;Y2)

R2 +R1 ≤ I(U ;Y2) + I(X;Y1|U)

R2 +R1 ≤ I(X;Y1)

over all (U,X) such that U → X → (Y1, Y2) is Markov. Then
the extreme points of the region can be realized by restricting
to a binary U such that [U → X] ∼ BSC(s) and P(X =
0) = 0.5.

Remark 15. This generalizes a result by Wyner and Ziv [7] for
BSC broadcast channels. In [15] it was shown that superposi-
tion coding is optimal when the two channels are more capable
comparable. Hence the extreme points of the capacity region
for any more capable comparable BISO broadcast channel can
be obtained by setting [U → X] ∼ BSC(s) and U to be
uniformly distributed.

B. Proof to Theorem 3

Proof. (a) ⇒ (b): As defined earlier, let

I = {s ∈ [0, 0.5] : f1(s) > f2(s)},
J = {s ∈ [0, 0.5] : f1(s) < f2(s)}.

Since the channels are not more capable comparable, we know
that I and J are both non-empty. Let s1 ∈ I, s2 ∈ J be two
points from these two sets. Construct (Ũ ,X), where Ũ =
(U ′, Q) with binary U ′ and Q, and probabilities

P(Ũ = (0, 0)) =
1− ε

2
P(X = 0|Ũ = (0, 0)) = 1

P(Ũ = (0, 1)) =
ε

2
P(X = 0|Ũ = (0, 1)) = s1

P(Ũ = (1, 0)) =
1− ε

2
P(X = 1|Ũ = (1, 0)) = 1

P(Ũ = (1, 1)) =
ε

2
P(X = 1|Ũ = (1, 1)) = s1.

Thus, [U ′ 7→ X] ∼ BSC(0) conditioned on the event Q =
0, [U ′ 7→ X] ∼ BSC(1 − s1) conditioned on Q = 1, and
further U ′ is independent of Q with P(U ′ = 0) = 0.5. We
can see that Q is independent of X and hence of Y1, Y2; thus
I(Q;Y1) = I(Q;Y2) = 0. Now

I(Ũ ;Y1) = I(U ′, Q;Y1) = I(U ′;Y1|Q) + I(Q;Y1)

= I(U ′;Y1|Q)

= (1− ε)I(X;Y1) + εI(U ′;Y1|Q = 1)

= (1− ε)C + εf1(s1).

Similarly, we obtain

I(Ũ ;Y2) = (1− ε)C + εf2(s1).

http://books.google.com.hk/books?id=t1RCSP8YKt8C
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Let [V → X] ∼ BSC(s2). Thus OB reduces to

R1 ≤ (1− ε)C + εf1(s1)

R2 ≤ f2(s2)

R1 +R2 ≤ I(Ũ ;Y1) + I(X;Y2|Ũ)

= I(Ũ ;Y1) + I(X;Y2)− I(Ũ ;Y2)

= (1− ε)C + εf1(s1) + C − (1− ε)C − εf2(s1)]

= C + ε(f1(s1)− f2(s1)) (> C)

R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V )

= f2(s2) + C − f1(s2) (> C).

To show that we can have (1−ε)C+εf1(s1)+f2(s2) > C, we
just need to choose small ε to ensure f2(s2) > ε(C−f1(s1)).
Since this is clearly possible, we have OB ) TD.

(b) ⇒ (c): Let [U → X] ∼ BSC(s1) and [V →
X] ∼ BSC(s2). From Equation (4), we have the following
expression of the boundary of the outer bound,

R1 ≤ I(U ;Y1) = f1(s1)

R2 ≤ I(V ;Y2) = f2(s2)

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U) = f1(s1) + C − f2(s1)

R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V ) = f2(s2) + C − f1(s2)

Clearly for every s1 ∈ I, s2 ∈ J if f1(s1) + f2(s2) ≤ C
then from above OB = TD. However since OB ) TD, there
exists s1 ∈ I, s2 ∈ J such that f1(s1) + f2(s2) > C.

(c) ⇒ (d): In general, TD ⊆ RTD ⊆ MIB. So now it
suffices to show there exists an example where the sum rate
of the RTD region is strictly larger than the TD region.

We now compute the maximum sum rate of the RTD region.
From Lemma 5 we know that this matches the maximum sum
rate of the MIB region.

Consider an auxiliary channel W → X such that

P(W = 0) = a, P(W = 1) = 1− a
P(X = 0|W = 0) = s2, P(X = 1|W = 1) = s1

where as2 + (1− a)(1− s1) = 0.5. Clearly a /∈ {0, 1} since
s1, s2 < 0.5 as at s = 0.5 we have I(X;Y1) = I(X;Y2) = C.

It is straightforward to check the following

I(X;Y1|W=0) = C − f1(s2),

I(X;Y1|W=1) = C − f1(s1),

I(X;Y2|W=0) = C − f2(s2),

I(X;Y2|W=1) = C − f2(s1),

I(X;Y1) = I(X;Y2) = C.

Then observe that

I(W ;Y1) + P(W = 0)I(X;Y1|W = 0)

+ P(W = 1)I(X;Y2|W = 1)

= I(X;Y1) + P(W=1)
(
I(X;Y2|W=1)− I(X;Y1|W=1)

)
= C + (1− a)(f1(s1)− f2(s1))

Similarly

I(W ;Y2) + P(W = 0)I(X;Y1|W = 0)

+ P(W = 1)I(X;Y2|W = 1)

= C + a(f2(s2)− f1(s2)).

Therefore the sum rate of RTD (equivalently that of MIB)
for this choice of (W,X) is given by

C + min{(1− a)(f1(s1)− f2(s1)), a(f2(s2)− f1(s2))}. (5)

Therefore if (c) is satisfied, i.e. there exists s1 ∈ I, s2 ∈ J ,
then there exists a (W,X) so that equation (5) gives a sum
rate strictly larger than C.

Remark 16. A careful reader will notice that the above argu-
ment only requires s1 ∈ I, s2 ∈ J and does not even require
f1(s1) + f2(s2) > C. But the existence of any sa ∈ I, sb ∈ J
will imply that (a) holds and hence (c) holds.

(d) ⇒ (e): The maximum sum rate of MIB is achieved
using RTD (Lemma 5). Since TD ( MIB, to compute the
maximum sum rate of MIB, it suffices to maximize over s1 ∈
I , s2 ∈ J , 0 < a < 1 the term

C + min{(1− a)(f1(s1)− f2(s1)), a(f2(s2)− f1(s2))}. (6)

Consider any triple s1 ∈ I, s2 ∈ J, 0 < a < 1. Pick any
ε > 0 small enough (will show later how small we require it).

Define (U,X) = (Q,U1, X) where P(Q = 0) = 1 − a +
ε,P(Q = 1) = a− ε; and [U1 7→ X] ∼ BSC(s1) conditioned
on Q = 0, and [U1 7→ X] ∼ BSC(0) conditioned on Q = 1.
Further take P(U1 = 0|Q = 0) = P(U1 = 0|Q = 1) = 0.5.
Observe that this induces P(X = 0) = P(X = 1) = 0.5.

Similarly define (V,X) = (Q′, V1, X) where P(Q′ = 0) =
a + ε, P(Q′ = 1) = 1 − a − ε; and [V1 7→ X] ∼ BSC(s2)
conditioned on Q′ = 0, and [V1 7→ X] ∼ BSC(0) conditioned
on Q′ = 1. Further take P(V1 = 0|Q′ = 0) = P(V1 = 0|Q′ =
1) = 0.5. Observe that this also induces P(X = 0) = P(X =
1) = 0.5.

Since the distribution of X is consistent there exists a triple
(U, V,X) with the same pairwise marginals (U,X) and (V,X)
as described earlier. With this choice, OB reduces to

R1 ≤ I(U ;Y1) = (1− a+ ε)f1(s1) + (a− ε)C
R2 ≤ I(V ;Y2) = (a+ ε)f2(s2) + (1− a− ε)C

R1 +R2 ≤ I(U ;Y1) + I(X;Y2|U)

= C + (1− a+ ε)(f1(s1)− f2(s1))

R1 +R2 ≤ I(V ;Y2) + I(X;Y1|V )

= C + (a+ ε)(f2(s2)− f1(s2)).

Clearly the maximum sum rate of the above region is
minimum of the terms

{C + (1− a+ ε)(f1(s1)− f2(s1)),

C + (a+ ε)(f2(s2)− f1(s2)), (7)
(1− 2ε)C + (1− a+ ε)f1(s1) + (a+ ε)f2(s2)}.
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We pick ε > 0 to satisfy

(1− 2ε)C + (1− a+ ε)f1(s1) + (a+ ε)f2(s2)

> C + (1− a)(f1(s1)− f2(s1)), or equivalently
(1− a)f2(s1) + af2(s2) > ε(2C − f1(s1)− f2(s2)),

and also satisfy

af1(s2) + (1− a)f1(s1) > ε(2C − f1(s1)− f2(s2)).

The above two constraints imply that the third term in (7) is
strictly larger than both the terms in (6). Comparing the first
two terms in (7) to those in (6) it is immediate that the sum
rate of the OB expression (7) will be strictly bigger than that
of MIB region (6). Since this is possible for every s1 ∈ I, s2 ∈
J, 0 < a < 1, the maximum sum rate of OB is strictly larger
than that of MIB. Since TD (MIB the maximum of MIB
is not achieved when a ∈ {0, 1}. Therefore OB ) MIB or
(e) holds.

(e)⇒ (a): MIB ( OB clearly implies the channels are not
more capable comparable. This is because when the channels
are more capable comparable we know from [15] that super-
position coding is optimal and that MIB = CR = OB.
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