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Abstract—Marton’s region is the best known inner bound for
a general discrete memoryless broadcast channel. We establish
improved bounds on the cardinalities of the auxiliary random
variables. We combine the perturbation technique along with a
representation using concave envelopes to achieve this improve-
ment. As a corollary of this result, we show that a randomized
time division strategy achieves the entire Marton’s region for
binary input broadcast channels, extending the previously known
result for the sum-rate and validating a previous conjecture due
to the same authors.

I. INTRODUCTION

In this paper we consider a discrete-memoryless two user
broadcast channel consisting of a sender X and two receivers
Y,Z where |X |, |Y|, |Z| < ∞. The sender maps two pri-
vate messages M1,M2 to a transmit sequence Xn(m1,m2).
The receivers each get a noisy version of the transmitted
codeword over their individual channel. We assume that the
channel is memoryless and there is no feedback implying
p(yn, zn|xn) =

∏n
i=1 p(yi, zi|xi). We borrow most of our

notation from Chapters 5 and 8 in [1] where the classical
results on broadcast channels are reviewed.

The best known achievable rate region for a broadcast
channel is the following inner bound [2].

Bound 1. (Marton) The union of non-negative rate pairs
R1, R2 satisfying the constraints

R1 ≤ I(UW ;Y ),

R2 ≤ I(VW ;Z),

R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W ),

for any triple of random variables (U, V,W ) such that
(U, V,W )→ X → (Y, Z) is achievable.

Denote this achievable region due to Marton as RM . It was
shown in [3], using a novel perturbation based approach, that
it suffices to consider |W| ≤ |X |+ 4, |U| ≤ |X |, |V| ≤ |X | to
obtain RM .

In this paper we improve the cardinality bounds on the
auxiliary random variables used in Marton’s inner bound. We
had made two conjectures related to Marton’s inner bound
in [6]. One of them is resolved in this paper. The other, if
true, would have established the optimality of Marton’s inner
bound for broadcast channels. The second conjecture involves

comparing a quantity related to the two-letter version of a
given broadcast channel with the same quantity obtained using
the single-letter description. The improved cardinality bounds
allow one to numerically verify the second conjecture for
binary input broadcast channels. Given the page limitations,
we focus on giving a proof of our results while leaving out
the broader implications.

The perturbation technique, introduced in [3], was also used
to show that the extremal points of Marton’s inner bound were
structured [4], [5], [6]. As an example, the following much
simpler characterization of the sum-rate than the one given
by the third inequality in Bound 2, for binary input broadcast
channels, was obtained in [4].

Lemma 1. [4] The maximum sum-rate achievable by Marton’s
inner bound for any binary input broadcast channel is given
by

max
p(w,x)

min{I(W ;Y ), I(W ;Z)}+ P(W = 0)I(X;Y |W = 0)

+ P(W = 1)I(X;Z|W = 1).

Here W = {0, 1}.

Lemma 1 is equivalent to stating that setting U = X,V = 0
or V = X,U = 0 in Marton’s inner bound suffices to compute
the maximum sum-rate for any binary input broadcast channel.
Our new cardinality bounds immediately extend this result to
the entire RM for any binary input broadcast channel.

A. The main result and its proof outline

The main result of the paper is the following

Theorem 1. To compute Marton’s inner bound, RM , it suf-
fices to consider union over p(u, v, w, x) such that |U|+ |V| ≤
|X |+ 1 and |W| ≤ |X |+ 4.

Remark 1. The cardinality bound |U|+|V| ≤ |X |+1 represents
a trade-off between the sizes of alphabets of U and V which
has a striking correspondence to the broadcast channel setting
of having to trade-off an increase in communication rate to
one receiver at the expense of the other receiver.

The reasoning (and intuition) for the proof of this theorem
is built on the previous works by the authors, in particular
[7], [4], [5], [8], [9], [6]. Since Marton’s inner bound, RM ,
is a convex compact subset of R3

+, it is the intersection of the



various supporting hyperplanes when we think of it as a subset
of R3. The cardinality bound of |U| + |V| ≤ |X | + 1 is first
developed for the exposed points of RM . By Strasziewicz’s
theorem[10] we know that the exposed points are dense
in the set of extreme points. By continuity of the mutual
information terms w.r.t. probability distributions, we obtain the
same cardinality bound on |U| + |V| for the extreme points.
Finally, we use convexification using W to show that the
bound goes through for all points on the boundary of RM .

B. Preliminaries

An exposed point of a closed convex set C is a point x ∈ C
such that there is a supporting hyperplane that intersects the
convex set only at x. An extreme point of a closed convex set
C is a point x ∈ C in the set such that if x = λy + (1 − λ)z
for some y, z ∈ C and λ ∈ [0, 1], then either x = y or x = z.
For a closed compact set C in a finite dimensional Euclidean
space, Strasziewicz’s theorem states that exposed points are a
dense subset of extreme points.

Let us partition the exposed points of RM into (0, 0),
(C1, 0), (0, C2), and finally a set E consisitng of exposed
points (R1, R2) with R1, R2 > 0. The first three exposed
points can be obtained by setting U = 0, V = 0, U = X,V =
0, and U = 0, V = X respectively in Bound 2.

For every exposed point in x ∈ E let us associate a
supporting hyperplane of the form γx1R1 + γx2R2 = cx

such that the only point of intersection of the supporting
hyperplane and RM is x. It is clear that if x ∈ E then we
can assume γx1 , γ

x
2 > 0. By symmetry assume γx1 ≥ γx2 . Let

αx
1 = γx1 − γx2 ≥ 0 and αx

2 = γx2 > 0, then we can express
the hyperplane as αx

1R1 + αx
2 (R1 +R2) = c.

We now present the following lemma about RM .

Lemma 2. Given any x ∈ E with αx
1R1 + αx

2 (R1 + R2) its
associated supporting hyperplane, the following holds:

max
(R1,R2)∈RM

αx
1R1 + αx

2 (R1 +R2)

= max
(U,V,W ):

(U,V,W )→X→(Y,Z)

αx
1 I(UW ;Y )

+ αx
2

(
min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W )
)
.

Proof: From the first and third inequalities in Bound 2 it is
clear that the left hand side is smaller than or equal to the right
hand side. Let p∗(u, v, w, x) be a maximizer of the right hand
side. Clearly, one must have Ip∗(V ;Z|W )− Ip∗(U ;V |W ) ≥
0. Otherwise set V = ∅ to get a contradiction.

Suppose Ip∗(UW ;Y ) ≤ Ip∗(UW ;Z), then by set-
ting W ′ = (U,W ), U ′ = ∅, V ′ = X we see that
the right hand side does not decrease. Further, R1 =
I(UW ;Y ), R2 = I(X;Z|UW ) ∈ RM . Hence under this
setting the two sides match. Suppose, on the other hand,
Ip∗(VW ;Z) ≤ Ip∗(VW ;Y ), then we can see that setting
(W ′ = (V,W ), U ′ = X,V ′ = 0) does not decrease the
right hand side. Note that in this case the right hand side
is upper bounded by (αx

1 + αx
2 )I(X;Y ). However the pair

(R1 = I(X;Y ), R2 = 0) ∈ RM . This implies the reverse
inequality as desired.

Finally assume that Ip∗(UW ;Y ) > Ip∗(UW ;Z) and
Ip∗(VW ;Z) > Ip∗(VW ;Y ). If I(W ;Y ) < I(W ;Z), then by
choosing Q to be Bernoulli(ε) and setting W ′ = (U,W ), V ′ =
X,U ′ = 0 when Q = 1 and W ′ = W,V ′ = V,U ′ = U
when Q = 0 we can increase the right hand side. Here
ε ∈ (0, 1) is chosen to make I(QW ′;Y ) = I(QW ′;Z).
(Similar arguments have been employed earlier [11], [12]
and hence we are being terse.) Thus we can assume that
Ip∗(W ;Y ) = Ip∗(W ;Z). Then, note that R1 = Ip∗(UW ;Y ),
R2 = I∗p (V ;Z|W ) − I∗p (V ;U |W ) belongs to RM . This
implies that the two maximizations yield identical values.
Further note that the x ∈ E can be attained by a suitable
choice of a maximizing distribution of the right hand side.

Note min{I(W ;Y ), I(W ;Z)} = minλ∈[0,1] λI(W ;Y ) + (1 −
λ)I(W ;Z). The following min-max equality follows from the
min-max theorem and its corollary in [9].

Claim 1. [9] Let α1 ≥ 0, α2 > 0. We have the following
min-max relation:

max
(U,V,W ):

(U,V,W )→X→(Y,Z)

min
λ∈[0,1]

α1I(UW ;Y )

+ α2

(
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W )
)

= min
λ∈[0,1]

max
(U,V,W ):

(U,V,W )→X→(Y,Z)

α1I(UW ;Y )

+ α2

(
λI(W ;Y ) + (1− λ)I(W ;Z) + I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W )
)

Further we can also infer that there is a p∗(u, v, w, x) that
achieves the common value in both problems. To see this:
let λ∗ ∈ [0, 1] and q∗(u, v, w, x) achieve the value of the
min - max formulation and p∗(u, v, w, x) achieve the common
value using max - min formulation. Then observe that

λ∗-SRα(q∗) ≥ λ∗-SRα(p∗) ≥ SRα(p∗),

where

λ-SRα(p) = α1Ip(UW ;Y ) + α2

(
λIp(W ;Y )

+ (1− λ)Ip(W ;Z) + Ip(U ;Y |W )

+ Ip(V ;Z|W )− Ip(U ;V |W )
)
,

and

SRα(p) = α1Ip(UW ;Y ) + α2

(
min{Ip(W ;Y ), Ip(W ;Z)}

+ Ip(U ;Y |W ) + Ip(V ;Z|W )− Ip(U ;V |W )
)
.

Equality holds since the values at both ends are same by
Claim 1 and hence we have that p∗(u, v, w, x) also achieves
the value of the min - max formulation.

Starting with any maximizer p∗(u, v, w, x) of the
min - max formulation, we will find another maximizer,
using Caratheodory’s theorem, Lemma 4, and Theorem 2,
r∗(u, v, w, x) with |W| ≤ |X | + 2, |U| + |V| ≤ |X | + 1
such that λ∗-SRα(p∗) = λ∗-SRα(r∗), Ip∗(W ;Y ) =



Ir∗(W ;Y ), Ip∗(W ;Z) = Ir∗(W ;Z). Thus we will have
λ∗-SRα(r∗) = SRα(r∗).

For any fixed λ ∈ [0, 1] consider maximizing λ-SRα(p)
over p(u, v, w, x). For simplicity of notation, let λ̄ = 1 − λ.
We can express λ-SRα(p) as

(α1 + α2λ)H(Y ) + λ̄α2H(Z)

+
(
− (α1 + α2λ)H(Y |W )− λ̄α2H(Z|W )

+ (α1 + α2)I(U ;Y |W ) + α2(I(V ;Z|W )− I(U ;V |W ))
)

Using an upper concave envelope1 representation the above
problem is equivalent to: compute maxp(x)

(α1 + α2λ)H(Y ) + λ̄α2H(Z)

+ C
[
− (α1 + α2λ)H(Y )− λ̄α2H(Z) (1)

+ max
p(u,v|x)

(
(α1 + α2)I(U ;Y ) + α2(I(V ;Z)− I(V ;U))

)]

We know that associated with any point on the upper con-
cave envelope w.r.t. p(x), there exists a supporting hyperplane∑
x cxpx = c such that p(u, v, x) attains a global maximum

of

max
p(u,v,x)

−(α1 + α2λ)H(Y )− λ̄α2H(Z) (2)

+ (α1 + α2)I(U ;Y ) + α2(I(V ;Z)− I(V ;U))−
∑
x

cxp(x).

Our main results stem from the formulation of the optimiza-
tion problem given by (2).

The proof uses perturbation ideas. Here we present a
preliminary lemma that will be used later on.

Lemma 3. Consider three random variables X,Y, Z and a
perturbation of their probabilities defined according to

pε(x, y, z) = p(x, y, z)(1 + εL(x, y, z)).

Then we have that

d2

dε2
[H(Y |Z)]ε=0 = 0

implies that Hpε(Y |Z) is linear in ε.

Proof: Routine calculations yield that

d2

dε2
[H(Y |Z)]ε=0 = −E(E(L|Y,Z)2) + E(E(L|Z)2)

and hence the second derivative being zero (at ε = 0) implies
that

E(E(L|Y,Z)2)− E(E(L|Z)2) = 0.

Since E(L|Z) = EY (E(L|Y, Z)) the above equality can
be written as E [E(L|Y, Z)− E(L|Z)]

2
= 0, thus E(L|Y =

y, Z = z) = E(L|Z = z) whenever p(y, z) > 0.

1The upper concave envelope of a function f(x) denoted by C[f ](x) is the
smallest concave function that dominates f(x).

Observe that Hpε(Y |Z) is equal to

−
∑

yz:p(y,z)>0

p(y, z)(1 + εE(L|Y = y, Z = z))

× log
p(y, z)(1 + εE(L|Y = y, Z = z))

p(z)(1 + εE(L|Z = z))

= −
∑

yz:p(y,z)>0

p(y, z)(1 + εE(L|Y = y, Z = z))

× log
p(y, z)(1 + εE(L|Z = z))

p(z)(1 + εE(L|Z = z))

= −
∑

yz:p(y,z)>0

p(y, z)(1 + εE(L|Y = y, Z = z)) log p(y|z).

Note E(L|Y = y, Z = z) = E(L|Z = z) implies the second
equality. Thus Hpε(Y |Z) is linear in ε.

II. MAIN

Consider the following maximization problem: Given α1 ≥
0, α2 > 0 and λ ∈ [0, 1] determine maxp(u,v,x) T (p(u, v, x)
where

T (p(u, v, x)) := −(α1 + α2λ)H(Y )− λ̄α2H(Z) (3)

+ (α1 + α2)I(U ;Y ) + α2(I(V ;Z)− I(V ;U))−
∑
x

cxp(x).

Theorem 2. Let (U, V ) be a cardinality minimal pair (in the
sense of |U|+ |V|) such that p(u, v, x) is a maximizer of (3).
Then one cannot find δ1(u) and δ2(v) such that δ1(u) and
δ2(v) are not simultaneously zero for all u and v and further∑

u

p(u)δ1(u) = 0,
∑
v

p(v)δ2(v) = 0,

∑
uv

p(u, v, x)δ1(u)−
∑
uv

p(u, v, x)δ2(v) = 0 ∀x.

Proof: For the main part of the proof, we will assume
that λ ∈ (0, 1). The extreme cases are rather easy and will be
taken care of in Remark 2.

Suppose are given that p(u, v, x) is a (cardinality-minimal)
global maximizer of T (p(u, v, x)). Let us first consider per-
turbations of the form p

(1)
ε (u, v, x) = p(u, v, x)(1 + εδ1(u))

such that
∑
u p(u)δ1(u) = 0. In this case we are preserving

p(v, x|u) and perturbing the marginal distribution of U . Ex-
press T (p(x, y, z)) as follows:

= α2λ̄(H(Y )−H(Z))− (α1 + α2)H(Y |U)

+ α2(H(V |U)−H(V |Z))−
∑
x

cxp(x).

The terms H(V |U), H(Y |U),
∑
x cxpx are linear in ε since

we are preserving p(v, x|u), and the terms −H(V |Z),−H(Y )
are convex in ε. The first derivative for this perturbation has
to be zero, and the second derivative has to be non-positive.
Since α2λ̄ > 0 for the second derivative to be non-positive
we must have

d2

dε2
[H(Y )−H(Z)]ε=0 ≤ 0. (4)

Note that the above second derivative depends solely on
p
(1)
ε (x) =

∑
uv p(u, v, x)(1 + εδ1(u)).

Next consider perturbations of the form p
(2)
ε (u, v, x) =

p(u, v, x)(1 + εδ2(v)) such that
∑
v p(v)δ2(v) = 0. In this



case we are preserving p(u, x|v) and perturbing the marginal
distribution of V . Express T (p(x, y, z)) as follows:

α2λ(H(Z)−H(Y ))− α1H(Y |U)− α2H(U |Y )

+ α2H(U |V )− α2H(Z|V )−
∑
x

cxp(x).

The terms H(U |V ), H(Z|V ),
∑
x cxpx are linear in

ε since we are preserving p(u, x|v) and the terms
−H(Y |U),−H(U |Y ),−H(Z) are convex in ε. The first
derivative for this perturbation has to be zero, and the second
derivative has to be non-positive. Since we assumed that
λα2 > 0 we can conclude that

d2

dε2
[H(Z)−H(Y )]ε=0 ≤ 0, (5)

and the above second derivative depends solely on p(2)ε (x) =∑
uv p(u, v, x)(1 + εδ2(v)).
Now let us assume that one can find δ1(u) and δ2(v) such

that δ1(u) and δ2(v) are not simultaneously zero for all u and
v and further∑

u

p(u)δ1(u) = 0,
∑
v

p(v)δ2(v) = 0,∑
uv

p(u, v, x)δ1(u)−
∑
uv

p(u, v, x)δ2(v) = 0 ∀x.

We will arrive at a contradiction.
Considering the two perturbations induced by the non-trivial

pair δ1(u) and δ2(v). Since we are at a global maximum, the
second derivatives with respect to both of these perturbations
have to be non-positive. By our choice we know that they
induce a common perturbation in p(x), defined according to

pε(x) =
∑
uv

p(u, v, x)(1 + εδ2(v))

=
∑
uv

p(u, v, x)(1 + εδ1(u)).

Hence, for both perturbations, from (4), (5) we have,

d2

dε2
[H(Z)−H(Y )]ε=0 = 0.

Further for the perturbation using δ1(u), we must have

d2

dε2
[H(V |Z)]ε=0 = 0,

and for the perturbation using δ2(v), we must have

d2

dε2
[H(U |Y )]ε=0 =

d2

dε2
[α1H(Y |U)]ε=0 = 0.

Lemma 3 implies that for the perturbation using δ1(u) the
term H

p
(1)
ε

(V |Z) is linear in ε, and for the perturbation using
δ2(v), the terms H

p
(2)
ε

(U |Y ) and α1Hp
(2)
ε

(Y |U) are linear in
ε.

Now express H(Y )−H(Z) as a function of ε induced by
the common pε(x). Note that in both perturbations we have
the term H(Y )−H(Z) multiplied by a constant, plus a linear
term in ε that may depend on the perturbations. In other words,
we can write T (p

(1)
ε (u, v, x)) as follows:

α2λ̄(H(Y )−H(Z))pε(x) + a1ε+ b1,

and we can write T (p
(2)
ε (u, v, x)) as follows:

λα2(H(Z)−H(Y )) + a2ε+ b2.

Now, by pulling out the linear term and the constant terms
from (H(Y )−H(Z))pε(x), we can write this difference of the
entropies as g(ε) + aε+ b, i.e. g(0) = 0 and d

dεg(ε) |ε=0= 0.
Hence we can write T (p

(1)
ε (u, v, x)) as

(1− λ)(α0 + α2)g(ε) + a′1ε+ b′1,

and T (p
(2)
ε (u, v, x)) as

−λ(α0 + α2)g(ε) + a′2ε+ b′2,

for some appropriately defined constants a′1, a
′
2, b
′
1, b
′
2.

Since p(u, v, x) attains a global maximum and hence w.r.t.
to ε for both perturbations, we have that the first derivative
is zero in each perturbation, i.e. a′1 = a′2 = 0. Further at
ε = 0 we have g(0) = 0 and p

(1)
ε (u, v, x) = p

(2)
ε (u, v, x) =

p(u, v, x). This implies that b′1 = b′2, say equal to b′.
Since T (p

(1)
ε (u, v, x)) has a global maximum at ε = 0

and λ ∈ (0, 1), we must have g(ε) ≤ 0; similarly since
T (p

(2)
ε (u, v, x)) has a global maximum at ε = 0, we must

have g(ε) ≥ 0; thus we have g(ε) = 0.
Thus, T (p(u, v, x)) remains constant under both perturba-

tions. Now if we take a non-trivial perturbation, say δ1(u) and
take ε to its upper or lower limit (attained when one of the
probabilities reaches zero), we get a distribution on U whose
support is smaller than that for ε = 0 while the value of
T (p(u, v, x)) has been preserved. Thus we have been able to
reduce |U|+ |V|, which is a contradiction.
Remark 2. The case when λ = 0 or λ = 1 is much simpler.
For λ = 0 observe that for any perturbation of the type
p(u, v, x)(1 + εδ2(v)), the resultant expression is convex in ε,
and hence we can take the limiting epsilon (either the upper or
lower limit) and reduce the cardinality of V . Indeed, it is not
hard to see that an optimal choice is V = 0. Thus combining
with the previously known bound of |U| ≤ |X |; we have the
desired claim.

Lemma 4. For any p(u, v, x) where |U|+ |V| > |X |+ 1, one
can find δ1(u) and δ2(v) such that δ1(u) and δ2(v) are not
simultaneously zero for all u and v and further∑

u

p(u)δ1(u) = 0,
∑
v

p(v)δ2(v) = 0,∑
uv

p(u, v, x)δ1(u)−
∑
uv

p(u, v, x)δ2(v) = 0 ∀x.

Proof: These are |X |+2 equations in total but one of the
equations is redundant since∑

x

∑
uv

p(u, v, x)δ1(u) =
∑
u

p(u)δ1(u) = 0

=
∑
v

p(v)δ2(v) =
∑
x

∑
uv

p(u, v, x)δ2(v).

Thus∑
x

(∑
uv

p(u, v, x)δ1(u)−
∑
uv

p(u, v, x)δ2(v)

)
= 0.



Thus, there are |X | + 1 independent equations at most. The
choice δ1(u) = δ2(v) = 0 for all u, v solves the above system
of linear equations. Therefore the system of linear equations
is not inconsistent. Since the total number of free variables is
|U|+ |V| which is strictly larger than the number of equations,
i.e. |X |+ 1 we must have a non-trivial solution for δ1(u) and
δ2(v).

A. Proof of Theorem 1

Choose a p∗(u, v, w, x) such that it achieves the maximum
value of the min - max and max - min simultaneously in
Claim 1. Theorem 2 and Lemma 4 together implies that
one can assume |U| + |V| ≤ |X | + 1 to compute the upper
concave envelope at any p(x) denoted in (1), hence it suffices
to consider |U|+ |V| ≤ |X |+ 1 to achieve any exposed point
in E ⊆ RM . Hence by continuity of the terms, it suffices to
consider |U| + |V| ≤ |X | + 1 to achieve any extreme point
of RM . Note that the exposed points not belonging to E
already satisfy this cardinality constraint. Since any point
on the boundary is a convex combination of extreme points,
and this convex combination can be attained by choosing
W ′ = (W,Q), this does not alter that cardinality bounds un
U and V . To get the cardinality bound on W , we use the
Fenchel-Bunt extension of Caratheodory’s theorem. Choose
points p(u, v, x|w) with probabilities p(w) so as to preserve
p(x), H(Y |W ), H(Z|W ), I(U ;Y |W ), I(V ;Z|W ), I(U ;V |W ).
This can be done using a W of size at most |X | + 4. This
choice preserves all the terms that appear in Bound 2 and
hence these cardinality bounds suffice to compute RM .

B. Binary input broadcast channels

Theorem 2 establishes Conjecture 1 in [6]. In particular
when X = {0, 1} we have that |U| + |V| ≤ 3. Thus, it
is immediate that it suffices to consider U = X,V = 0
or V = X,U = 0. Thus Marton’s region for binary input
broadcast channels reduce to:

Bound 2. The union of non-negative rate pairs R1, R2 satis-
fying the constraints

R1 ≤ I(W ;Y ) +

k∑
i=1

pkI(X;Y |W = i)

R2 ≤ I(W ;Z) +

l∑
i=k+1

pkI(X;Z|W = i),

R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}+
k∑
i=1

pkI(X;Y |W = i),

l∑
i=k+1

pkI(X;Z|W = i),

over random variable W , with |W| = l ≤ 5 such that W →
X → (Y,Z) is Markov.

Note that the reduction to |W| = l ≤ 5 is possible since
I(U ;V |W ) = 0 whenever U or V is a constant. Thus we do
not need to preserve this average when using Caratheodory’s
theorem. It may be further possible to reduce the cardinality

of W in the binary setting. The main objective of this paper
was to obtain sharper bounds on U and V .

CONCLUSION

In this paper we improved the cardinality bounds on the
auxiliary random variables used in Marton’s inner bound. We
also resolved a conjecture, made by us, in [6] relating to binary
input broadcast channels. Exhaustive numerical simulations,
made possible by the results in this paper, indicate that the
second conjecture in [6] is valid for binary input broadcast
channels. This yields a stronger evidence towards the potential
validity of the second conjecture in [6], implying optimality
of Marton’s inner bound for the broadcast channel. The
techniques introduced here can be used potentially to extract
more properties of auxiliary random variables that achieve the
boundary of Marton’s inner bound beyond yielding improved
cardinality bounds.
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