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Abstract

We propose a new characterization of inner and outer bounds of some network information
theoretic regions in terms of upper concave envelopes of certain functions of mutual information.
While this characterization is related to the characterization using auxiliary random variables,
it is shown that the new characterization can make computations of boundary points much
simpler. Further this representation also leads to some new kinds of factorization inequalities
concerning information theoretic quantities. It also provides some new pathways into proving
optimality of certain achievable rate regions.

1 Introduction

In multiterminal information theory problems one wishes to compute optimal communication rates
over a noisy network subject to some decoding constraints. A lot of the basic problems in this
field has been open for more than three decades. In this paper we mainly focus on the broadcast
channel [1], though some of the ideas presented here have also been applied to obtain new results
in the interference channel, and can be applied to other settings as well. A focus of this paper is to
formulate some of the inner and outer bounds using the language of concave envelopes, and then
show that this formulation has some advantages over the traditional approach, i.e. using auxiliary
random variables. Indeed this work is motivated by recent results [2, 3, [4, [5] regarding explicit
computation of inner and outer bounds in some examples.

A broadcast channel refers to a communication scenario where a single sender wishes to com-
municate different messages to multiple receivers over a noisy medium. Let us consider the simple
case of a two-receiver broadcast channel. In this setting a sender X wishes to communicate two
messages, say M, Ma, to two receivers Y, Z over a discrete memoryless channel q(y, z|x) so that
receiver Y can decode message M7 with high probability and receiver Z can decode My with high
probability.
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Figure 1: A broadcast channel

Let the channel have an input alphabet X and output alphabets ), Z respectively. We assume
that |X|,|V],|Z| < co. A rate pair (Ry, Rg) is said to be achievable if there exists a sequence of
codes consisting of



e An encoder which maps a message pair (m1, mz) according to © : [1 : 271 x [1 : 2nf2] 1y X1,
e A decoder (at receiver Y') that maps a received sequence Y according to ¥ : Y™+ [1 : 27f1],

e A decoder (at receiver Z) that maps a received sequence Z" according to ® : Z"  [1 : 2nf2],
so that the probability of error defined as

PO = max  P((W(Y"),®(27) # (mi,ma)| X" = O(my,m))
my €[1:27F1],
ma€[1:27F2]

goes to zero as n goes to infinity.

Remark 1. Here we require that the maximal probability of error goes to zero. However it is
known[6] that the region corresponding to average probability of error, i.e. the decoding error
averaged over a uniform distribution of the message pairs, matches the region corresponding to the
maximal probability of error.

The closure of the set of all achievable rate pairs is known as the capacity region. A computabl
characterization of the capacity region for the two-receiver broadcast channel is still unknown, and
is one of the most fundamental open problems in the field of multi-user information theory. In
particular there are computable inner bounds and outer bounds to the capacity region of the two-
receiver broadcast channel.

Motivation

The motivation for this work comes from the following observation: recently established capacity
regions [7, [§] in the broadcast channels rely on the properties of the extremal auxiliary random
variables, i.e. auxiliary random variables that result in points on the boundary of the capacity
region. These auxiliary random variables were shown to possess additional properties and the
establishment of the capacity regions utilized these properties. Similarly, in a few other cases as
well, the extremal auxiliary random variables were observed to have a simple structure (examples
will be given in later sections) while the proofs of these were quite involved. In this work we
present a different representation using the idea of concave envelopes. While concave envelopes (or
convex hulls) and auxiliary random variables were always known to be connected (for example, the
use of Caratheodory’s theorem in bounding the cardinality of the auxiliary random variables); the
principle advantage of this representation is that the only auxiliary random variables that show up
in computation of the concave envelopes are the extremal ones. In some sense this is an interchange
of operations: traditionally one writes a region in terms of auxiliary random variables and then
solves an optimization problem if one is interested in computing the boundary points; in the current
form, we first obtain the concave envelopes (indirectly an optimization over the auxiliary random
variables) and then write the region in terms of concave envelopes. As we shall see below (an
interested reader may also refer to the related work in [9] 10, [I1]) this representation has some
definite advantages.

Outline

In the next section we will revisit superposition coding region, one of the earliest examples to use
the auxiliary random variables idea, and discuss some properties of extremal distributions in some

LA rate region is said to be computable if for every e > 0, one can find a bounded time 7. such that the region
can be approximated to within € in time Tk.



well-known examples here. Then we will give an equivalent representation using concave envelopes
and show how this representation yields simple proofs of the previously mentioned extremal dis-
tributions. In the next section, we will briefly mention other settings where the concave envelope
representations naturally arise. Subsequently we will introduce the factorization property of some
of the concave envelopes discussed previously and show the role of these factorization inequalities
in establishing the optimality of the regions involved. We also present a conjecture, which if es-
tablished, would yield the capacity region of a degraded message setting with three receivers, a
problem that has been open for some time.

2 Superposition coding region

The superposition coding strategy [I] was introduced for the degraded broadcast channel, i.e. the
receiver Z is a noisier version of receiver Y or mathematically X — Y — Z forms a Markov chain.

2.1 Superposition coding region for degraded broadcast channel

Superposition coding region, S, for a degraded broadcast channel is the union of all non-negative
rate pairs (Rp, Ry) satisfying:

Ry <I(V;Z)
R <I(X;Y|V),

over all (V, X) such that V — X — Y — Z forms a Markov chain. Note that by the data-processing
inequality we have I(V;Y) > I(V;Z). (This inequality allows receiver Y to decode the message
Ms.) In the absence of such an ordering one usually requires the constraint Ry + Ry < I(X;Y) as
well.

The superposition region for degraded broadcast channels satisfies certain properties:

1. S is a convex, closed and bounded set belonging to the positive quadrant.

2. For a fixed pu let

V,= max R;+ uRs.
i (R1,R2)€S LT [t

Then we can recast S as

S = ﬁuzl{(Rl,Rg) S R?i- R+ pRy < VH}‘

The second condition says that the region can be considered as the intersection of the supporting
hyperplanes, which follows from the convexity.

Remark 2. The reason for not considering p < 1 is the following: due to the degraded nature of
the receivers, note that if (Ry, R2) € S then (Ry + R2,0) € S. When p < 1 note that Ry + puRg <
(R1 + R2) + -0 = Ry + 1 Ry. Thus there will not be any new boundary point obtained by
considering p < 1. Geometrically if R; is plotted along the X-axis and Ry along the Y-axis, then
the slope of the tangent to the capacity region with the X-axis will be at least 135 degrees. Hence
we only need to consider supporting hyperplanes of the form Ry + pRo with g > 1.



2.2 Superposition coding region for some examples

In this section, we exhibit the superposition coding region for some known examples. Note the
simplicity of the structure of the optimal (V, X) in all of these examples. In the following examples
we are interested in computing V), which in turn characterizes S as mentioned earlier.

Remark: The previously known rigorous proofs of the optimality of the (V, X) in each of these
cases were non-trivial exercises.

Example 1: The degraded BSC channel

Consider the following degraded broadcast channel depicted in the Figure 2l The superposition
coding region can be obtained by considering just V' — X ~ BSC(s), shown by Wyner and Ziv
[12] as predicted by Cover [1]. This in particular implies that

V: max R—l— R:maxhs* _h + 1—h8>k % ’
(R1,R2)€S LR 5€[0,3] (s p) (p) ,u( (s*p q))

where “x” refers to binary convolution defined as a*b = a(1 —b)+b(1—a), and h(x) := —zlogya —
(1 — z)logy(1 — ) refers to the binary entropy function.

The proof of this fact turned out to be non-trivial and involved showing the convexity of the
following function: h(p+*h~!(x)) in z. Further more, this technique could not be extended towards
other symmetric channels.

Recently [8, [13], a new symmetrization based argument, proved that to maximize Ry + pRs for
any p > 1 it suffices to consider V' — X to be BSC(s). Further, this proof could also be generalized
to binary input symmetric output channels. In the next section, we will use a similar idea but give
an even simpler proof of this same result.

Figure 2: A degraded BSC

Example 2: The degraded Z channel

Consider the degraded Z-channel shown in Figure Bl It turns out that max R; + uRs can be
computed [I4] by just considering V' — X being another Z-channel. This is again a very arduous
proof. We will show a very simple proof of this fact in the next section.
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Figure 3: A degraded Z-channel



That is, in particular,

V= ,oex vh((1=s)(1=p)) —v(1=s)h(1=p)+p (h(v(l = )1 - p)(1 = q)) —vh((1 = s)(1 —p)(1 - q))),

where v = P(V = 1).

Example 3: Degraded Gaussian channel

Consider the degraded additive Gaussian channel shown in Figure[dl Here Y = X+ Ny, Z =Y + N,
where Ny, Ny are independent Gaussian random variables. To compute the superposition coding
region it suffices [I5] to consider X = U + V where U and V are independent Gaussian random
variables. The proof of this result uses entropy power inequality, a highly non-trivial result.

The technique we employ can again be used to show this result without needing to resort to
the Entropy Power Inequality. This argument can be inferred from the results in [11].
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Figure 4: A Gaussian degraded broadcast channel

2.3 A representation of the region using concave envelopes
2.3.1 On upper concave envelopes

Let f(x) be a function defined on a convex subset D of some Hilbert space. The notation €[f(x)]
refers to the upper concave envelope of a function f(x) (on the domain D). The upper concave
envelope, g(x), of the function f(x) can be expressed in many equivalent ways:

e g(x) is the smallest concave function such that g(x) > f(x), V& € D. Here smallest is defined
in a point-wise sense.

e g(x) =sup,, [ fdps, where p, is the set of all probability measures on (D, Xp) (where Xp is
the Borel o-field) with mean value x. If D is a subset of some finite d-dimensional Euclidean
space, then by Caratheodory’s theorem

d+1

g(z) =sup > _pif(:)

where {p;} is a (d + 1)-dimensional probability vector and Zfill pix; = .

In general, computing the upper concave envelope is a global operation and hence it is probably
best represented by the supporting hyperplanes to the original function.



2.3.2  Superposition coding region using concave envelopes

Given a broadcast channel and g > 1 consider the following function of p(x) defined as
S(X) = I(X;Y) — pl(X; Z)).
Note, the set D used here is the set of all probability distributions on X.

Claim 1. For a degraded broadcast channel X —Y — Z and p > 1

max Rj + uRe = max (ul(X;2) + C[I(X;Y) — ul(X; 2)]) .
(R1,Rz)€C p(z)

A standalone proof (i.e. not dependent on the current proofs by explicitly identifying the

auxiliaries in the usual representation) is not known, and is a very interesting question to explore.

Proof. This proof directly follows from our explicit knowledge of the capacity region characteriza-
tion using auxiliary random variables.

max Rj;+ uRo
(R1,R2)eC

= max pl(V;2)+I1(X;Y|V)
V—Sgim()}ﬁz)

= max ul(X;2)+I(X;Y|V)—pl(X;Z|V)
V—Sgim()}ﬁz)

= max (WI(X: 2) + max (106G YIV) = wI(X:21V)))
px p(v|T

=1;1(g§<(I(X;Z)+¢[I(X;Y) —pl(X;2))).

Thus we have expressed V), in an alternate form according to

Vi 21;1(3§<(MI(X;Z) + (XY — pl(X; Z)]) -

Remark 3. As said in the motivation, it is clear that the only auxiliary random variables that show
up in the computation of the concave envelopes are the extremal ones. As mentioned previously,
some of the recent capacity results that were established for broadcast channels [7, [§] exploited
the properties of the extremal auxiliary random variables to fashion a converse. Hence focusing
on extremal random variables, we hope to extract more insight into the finer properties of the
boundary points of the various regions.

2.4 Evaluation of the superposition coding using the concave envelope representation

In all of these examples, we wish to compute for p > 1,

max ul(X; Z) + €[I(X;Y) — ul(X; Z)].

p(z)

Further we also wish to compute the optimal (V*, X*) that yield €[I(X;Y) — pI(X;Z)] at the
optimal input distribution.
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Figure 5: I(X;Y) — pl(X; Z): Degraded BSC with p =0.1,¢ =0.1,u = 1.6

Example 1: Degraded BSC

Consider the channel in Figure 2l Observe that

max (ul(X; Z) + C[I(X;Y) — pl(X; Z)))

p(z)

< m(a§<,uI(X;Z) +In(a§<€[I(X;Y) —ul(X;2)).
bz plx

Now observe that I(X;Z) attains its global maximum at P(X = 0) = 1. Further, note that
C[I(X;Y) — ul(X; Z)] also attains the global maximum at P(X = 0) = g, due to symmetry of
I(X;Y) —pl(X; Z) about P(X = 0) = 5. This is because the function I(X;Y") — uI(X; Z) attains
a global maximum at points P(X = 0) = s,P(X = 0) = 1 — s for some 0 < s < 3. Further
(V,X) is a doubly symmetric binary source. Hence consider a binary and uniform V* such that
P(X =0[V* =0) = s and P(X = 0|]V* = 1) = 1 —s. Note that with this choice we attain the
global maximum of €[I(X;Y) — pl(X; Z)] at P(X =0) = 1.

In Figure 2.4 we plot the function I(X;Y)— puI(X; Z) and its concave envelope (in red) for the
choice of parameters p = 0.1, = 0.1, x = 1.6. Notice the symmetry about P(X = 0) =

Thus, we obtain in a very simple fashion, the well-known result

1
3

V: max R—l— R:maxhs* _h + 1—h8>k % )
(R1,R2)€S LR s€[0,3] (s p) () ,u( (s*p q))

Example 2: Degraded Z-channel
Consider the channel in Figure Bl Observe that if P(X = 1) = z then

f@) = I(X;Y) — pI(X; Z) = h(zp) — xh(p) — p(h(2pq) — xh(pq)).

Here p=1—p, §=1— q. Consider the second derivative of f(x) and we obtain that

" _ p Pq
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Figure 6: I(X;Y) — pul(X; Z): Degraded Z with p =0.1,¢ = 0.5, 0 = 2.3

Observe that this function has at most one zero in = € [0, 1], and this zero occurs when 0 < pug—1 <
pq(p— 1). For this regime of parameters observe that whenever 0 < z < x, := %__11) the function
f(x) is convex and beyond that it is concave. Therefore its concave envelope will be of the following
form: for 0 < x < x4, the concave envelope will be a straight line, tangential to f(x) at z:(> xy)
and after that it will follow the curve.

Hence for any P(X = 1) € [0, 1], the concave envelope is either the function f(x) at P(X =
1) = z or it is a convex combination of two points 1 = 0,22 = x4, i.e. P(X = 1|V =0) =0,P(X =
1|V = 1) = x; and the distribution on V satisfies x; P(V = 1) = . Thus the optimal V' — X is
also a Z-channel.

In Figure [6l we plot the function I(X;Y) — uI(X; Z) and its concave envelope (in red) for the
choice of parameters p = 0.1,¢ = 0.5, u = 2.3.

Remark 4. The degraded Gaussian example has been be dealt with in [I1] for a much more general
setting. The key idea of the proof is to show the optimality of Gaussian using a factorization of
concave envelopes. Notice that the proofs of the optimality we developed in this section using
concave envelopes is much simpler than the original proofs. Further the concave envelopes have a
reasonably simple characterization. This is a key and continuing observation across other examples.

3 Concave envelopes arising in other settings

Here we consider a couple of other network information theory settings and we define the ap-
propriate concave envelopes that characterize the various regions. Please see [16] for the various
definitions of the settings and proofs of their optimality.

3.1 Channels with state known non-causally at the encoder

This setting, shown in Figure[d represents a communication scenario over a state-dependent channel
where the state distribution varies i.i.d. according to a fixed distribution p(s). The goal is for a
single sender X to maximize the reliable transmission rate to a receiver Y over this state dependent



channel. One also assumes that the entire state sequence S™ is known non-causally at the encoder,
like in a scenario of coding over memory with defects.

M Xn yn M
——> Encoder p(y|z, s) Decoder p—

Figure 7: Point-to-point system with state information at encoder
Here the capacity[17] or maximum achievable rate is given by

max [(U;Y)—1(U;9)

plu.ls)
= max H(Y)—H(S)+ (H(S|U) - HY|V))
= max H(Y) — H(S) + €[H(S) — H(Y)].

Thus max, ) H(Y)—H(S)+€[H(S)—H(Y)] yields an alternate representation of the capacity.

Given a p(s) the function H(S) — H(Y) is a function of p(x|s), i.e. it is a function of |S|
probability vectors of size |X|. Hence the concave envelope is taken over this domain. Further
H(S)— H(Y) is a convex function of p(z|s) and hence the concave envelope of (H(S) — H(Y)) is
supported at its extreme points. This implies that it suffices to consider p(z|u, s) to be an vertex
of the probability simplex, or in other words z = f(u, s), a deterministic function of u and s.

3.2 Wiretap Channel

This setting first considered in a seminal paper by Wyner [18], shown in Figure [§ represents a

scenario where a sender X wishes to communicate a message M reliably to a receiver Y while
keeping it secret from an eavesdropper Z.

n A
Y Decoderf— M

Xn
M —{ Encoder p(y, 2|z

ZTL

Eavesdropper

Figure 8: The wiretap channel



The maximal achievable secrecy rate [19] is given by

1?180; I(U;Y)-1(U; 2)
UX o (.2)

= ax I(U;Y|Q) - I(U; Z|Q)
QU SX o (v.2)

=maxC[I[(X;Y) - I(X;2)+ €[I(X; Z) — I(X;Y)]].

p(z)

Thus max,,) €[I(X;Y)—I1(X; Z)+€[I(X; Z) — I(X;Y)]] yields an alternate expression to the

p(z)
secrecy rate.

Remark 5. Tt is worth noting that although the expressions for the capacity rate look similar in terms
of auxiliary random variables for both the above settings, the concave envelope representations are
different and so is the domain on which the concave envelope is computed.

In the previous sections we described how one may obtain alternate representations of the
various capacity regions and rates using the concave envelope representation. In the next section
we will describe how one may verify the optimality of such representations using the factorization
approachﬁ.

4 Factorization of concave envelopes

Testing of the optimality of expressions using concave envelopes follows a reasonably straightforward
path in general. The first step is to verify that the n-letter forms of the expressions approach
capacity (this is the easy part, which usually follows from Fano’s inequality). The second step is
to verify that normalized two-letter form of the concave envelope expression does not improve on
the single-letter expression rate. Then by repeated application of this doubling idea, we show that
there is not increase along the dyadic powers and hence combining this with the first observation,
we have the required optimality.

We generalize the second step to say that a particular concave envelope expression F;(X) defined
over the input distributions of a channel possesses the factorization property if the corresponding
expression defined over the joint input distributions of a product channel q; X gqo satisfy

Fqlxqg (X17X2) < FCI1 (Xl) + Fflz (X2)7

where the first function Fy, «q, (X1, X2) is evaluated at p(z1,z2) and the functions Fy, (X1), Fy, (X2)
are evaluated at the marginal distributions py(z1) := >, p(1,%2),p2(z2) := >, p(x1, 72) respec-
tively.

Remark 6. Note that factorization property in particular implies that the normalized two-letter
form of the concave envelope expression does not improve on the single-letter expression. However,
it is stronger than that, as it establishes the sub-additivity with respect to any product channel
and for any pair of distributions and not just the maximizers.

Remark 7. The factorization inequalities have, to the best of the knowledge of the author, not been
observed earlien? for the functions that we describe in the sections below. These are inequalities

2The factorization approach was briefly developed in [J] and [10]; and it was exploited further in [IT].
30ne of these inequalities is mentioned in a related work of the author|[1T] while different factorization inequalities
have also been proved for special classes of channels in [9], [10].
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observed by the concave envelopes and not by the underlying functions. The proofs of the factor-
ization inequalities here are motivated by the usual converses and in particular the Csiszar-sum
lemma. However the statement of the inequalities themselves suggest the existence of alternate
proof forms.

4.1 lllustrations of optimality

In this section we will illustrate the above general technique for the three settings for which we
derived the concave envelope representations earlier.

4.1.1 Degraded broadcast channel
We wish to show that, when p > 1,
Ry + pRy < pl(X;Z) + CI(X3Y) — pl(X; Z)], (1)

for any rate pair (Ry, Rg) that belongs to the capacity region.

Remark 8. The above statement, in fact, holds for any broadcast channel and it is only for the
achievability of the rate pairs that we require that the broadcast channel be degraded.

First note the following from Fano’s inequality:

Ry + pRy < = (pI(Ma; Z™) + I(My; Y™ |Ms)) + €,
pl (M, My; Z7) + I(My; Y| Ma) — pl (My; Z" | Ma)) + €n

< = (WI(X™Z7) + I(X™ Y| M) — pI (X" Z" [ Ma)) + en

o~ o~ o~ o~

< = (pI(X™Z27) + CI(X™Y™) — pI (X Z™M)]) + €n,

SIm3I|IRr3Ir3Ir

where the last inequality follows from the definition of the concave envelope. Since ¢, — 0 as
n — oo we have that the normalized n-letter version is indeed an outer bound.

Thus, the single-letter inequality in () will follow (from 2-letter to 2*-letter is just a repeated
application to larger channels) if we show that for any product broadcast channel we have

pl(X1, Xo; Z1, Z) + €I (X1, Xo; Y1, Y2) — pl (X1, Xo; Z1, Z3)]
< pl(X1; Z1) + CI(Xq; Y1) — pd (X5 Z1)] + pl(Xa; Z2) + €[1(X2; V) — pul(Xo; Z2)).

Since the channel is a product channel we have 71 — X7 — X9 — Z5 forming a Markov chain,
implying that

I(Xl,XQ; Zl, ZQ) = [(Xl; Zl) + [(XQ; ZQ) — I(Zl; ZQ) § I(Xl; Zl) + I(XQ; ZQ).
The proof is completed if we show that

CI( X1, Xo; Y1, Ya) — pl (X1, Xo; Z1, Z2)]
S X1 Y1) — pd (X3 Z1)] + €I(X2; Ya) — pl (Xa; Z2)].

11



Observe that for any U — (Xl,XQ) — (Yl,Yg,Zl,Zg) where (Yl,Zl) — X7 = X9 — (YQ,ZQ)
is Markov (i.e. the underlying channel is a product channel) we have by routine manipulations

I(Xl,XQ;Yl,Y2|U) — ,LLI(Xl,XQ;Zl,ZﬂU)

@) I(X1;Y1|U,Ys) + 1(Xo; Ya|U) — pl (X1; Z1|U) — pl (Xo; Z2|U, Z1)

b
© (X3 YU, Ya) — pI (X1; Z4|U, o)

+ 1(X2; Ya|U, Z1) — pl(Xa; Zo|U, Z1) — (1 — 1)1(Z1; Y2|U)
< QI(X1;3 Y1) — pl (X5 Z1)] + €[I(X; Ya) — pl (Xo; Z2)],
where the last inequality follows from the definition of the concave envelope and that (U,Ys3) —
X1 - N,21) and (U,Z1) — X9 — (Ya,Z2) form Markov chains. The equality (a) follows
from chain rule and the following Markov chains: (U, X»,Y3) — X7 — Y7, (U, X7) —» X2 — Yo,
(U, X1,71) = X9 — Zy, and (U, X3) — X1 — Z;. These Markov chains are in turn a consequence
of the following two Markov chains: U — (X3, Xo) — (Y1,Ys, Z1, Z5) and (Y1,21) = X7 — X2 —
(Y2, Z3). For equality (b) as (U, Z1) — X2 — Y3 is Markov we have I(Xo; Y2|U) = I(Xo; Y2|U, Z1) +
I(Z1;Y2|U). Similarly I(X1; Z1|U) = I(X1; Z1|U, Y2) + I(Y2; Z1|U).
Maximizing the left hand side over the choices of U we obtain that
CI( X1, Xo; Y1, Y2) — pl (X1, Xo; Z1, Zo)]
< CI(X1; Y1) — pd (X3 Z1)] + €[I(Xy; Yz) — pd (Xa; Z2))],

as desired.

4.1.2 Channels with state known non-causally at the encoder

Here we wish to show that the maximum sum-rate is bounded above by

max H(Y) = H(S) + €[H(S) ~ H(Y)]

Clearly from Fano’s inequality

R< %(I(M; Y™ — I(M; S”)) + e

= (HO™) — H(S™) + (H(S"|M) ~ HO M) + e
g%@ﬂww—ﬂw%+qﬂw%—HWﬂD+%.

The proof is completed if we show the factorization over product channelss. Towards this end
first observe that H(Y1,Y2) — H(S1,S2) < H(Y1) — H(S1) + H(Y2) — H(S2), since independence of
state realizations implies H(S1,S2) = H(S1) + H(S2). Further observe that

H(S1,8:|U) — H(Y1,Y2|U)
= H(S1|U,Ys) — HY1|U,Y2) + H(S2|U, S1) — H(Y2|U, S1)
< C[H(S1) — HM)] + €[H(S2) — H(Y2)],

and by taking the maximum over all choices of U — (S, S2, X1, X2) — (Y7,Y2) we get the desired
inequality. The equality above follows from H(S1|U) — H(Y2|U) = H(S1|U,Y2) — H(Y2|U, S1).

12



4.1.3 Wiretap Channel

In this case we wish to show that

C<maxC[I(X;Y)—-I(X;Z)+C[I(X;Z) — I(X;Y)]].

p(z)

Again from Fano’s inequality and the secrecy constraints we have that
C < —(I(My;Y™) = I(M1; Z")) + €

< —(I(X™Y™) = I(X™ 2% + I(X™ 20| My) — I(X™; Y M) + €n
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< Ee:[.r(X"; Y™ = I(X™ Z™) + CI(X™ Z27) — I(X™ Y™)]] + €n.
To show the factorization, i.e.

C[I(X1, Xo; Y1,Ya) — I(X1, Xo; 21, Za) + C[I(Xy, Xo; Z1, Z2) — (X1, X2; Y1, Ya)]]
< CI(X1; Y1) — (X1 Z1) + ClI(Xy; Zy) — 1(X1; )]
+ C[I(X2;Ya) — I(Xy; Za) + €[I(X2; Zo) — I(Xo; Ya)]],

observe that for any (Q,U) — (X1, X2) — (Y1,Ys, Z1, Z5) where (Y1,721) — X5 — Xo — (Y2, Z2)
is Markov (i.e. the underlying channel is a product channel) we have by routine manipulations

I(X1, X2; Y1, Y2|Q) — I(Xy, Xo; Z1, Z2|Q) + (X1, Xo; Z1, Z|U, Q) — 1(X1, X2; Y1, Y2|U, Q)
= I1(X1;:11(Q.Y2) — I(X1; Z1|Q) + I(X1; Z1|U, Q) — I(X1;: Y1|U, Q, Y2)
+ I(X2;Y2|Q) — I(X2; 22|Q, Z1) + 1(X2; Z2|U, Q, Z1) — 1(X2; Y2|U, Q)
=I1(X1;11(Q,Y2) — I(X1; Z1|Q. Y2) + [(X1; Z1|U, Q. Y2) — I(X1; Y1|U, @, Y2)
+ 1(X2;Y2|Q, Z1) — 1(X2; Z2|Q, Z1) + 1(X2; Z2|U, Q, Z1) — I(X9; Ya|U, Q, Z1)
< C[I(X1: Y1) — I(X1; Z1) + CI(X13 Z1) — I(X1; Y1)
+ C[1(X2:Y2) — I(X2; Zo) + €[I(Xa; Z2) — (X2 Y2)]].

Thus taking maximum over ), U we obtain the desired factorization inequality. The first equality
above follow from our Markov chain assumptions similar to the equality labeled (a) in Section [A.1.T],
while the second equality follows since the following two inequalities

I(X2;Y5|Q) — I(X1; Z1|1Q) = 1(X2;Y2|Q, Z1) — 1(X1; Z1]Q, Y2),
I(X27Y2‘U7 Q) - I(X17 Zl’Uv Q) = I(X27Y2’U7Q7 Zl) - I(X17 Zl’U7Q7Y2)7

hold from our Markov chain assumptions similar to the equality labeled (b) in Section EI.1]

In the next section we present a factorization inequality that appears to be true from numerical
simulations and whose establishment would solve an interesting problem that has been open for
about three decades.

4.2 A conjecture

We now present a conjecture that is related to showing the optimality of superposition coding for
a three receiver broadcast channel with two degraded message sets. In this communication setting,
message M is required to be decoded by all three receivers Y7, Ys, Y3 while the message M is only
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required to be decoded by receivers Y7, Ys. The best known achievable region in this scenario is
given by the following: the union of rate pairs Ry, R; satisfying the following constraints

Ry < I(U;Y3)
Ro+ Ry < I(U;Y3) + I(X;Y1|U)
Ro+ Ry < I(U;Y3) + I(X;Y2|U) (2)
Ro + Ry < I(X; Y1)
Ro + Ry < I(X;Ya)

over all choices of random variables U — X — (Y7,Y5,Y3) is achievable. The achievability follows
from superposition coding strategy [1]. Unfortunately the optimality of this scheme has remained
unsolved for over three decades.

Conjecture 1. Let X — (Y1,Y3,Y3) be a discrete memoryless broadcast channel whose transition
probability is given by q(y1,y2,ys|x). For 0 < X< 1,u > 1 consider the function (on p(x)) defined
by

Ty (X) := CAL(X; Y1) + (1 = NI(X;Y2) — pl(X;Y3)].

For a product broadcast channel q1(y11,Y21,Y31|71) X q2(Y12, Y22, ys2|x2), let Tfluxqz (X1, X2) be de-
fined by

TV (X1, Xa) = CAL(X1, Xo; Yin, Vi) + (1= NI(X1, Xo; Yau, Yao) — pl (X1, X2; Va1, Yao).
We claim that the following factorization inequality holds:

T)\q’luxqz(Xl,Xz) < Tj}“(Xl) + T)\qiu(Xz)

If Conjecture [1lis valid then it is immediate that the following function
(a1+a2+a3)I(X; Yg)—i—@[&gl(X; Y1)+a3[(X; Yo)— (a1 +ag+as3)(X; Yg)]+a4[(X; Y1)+a5I(X; Ys)

factorizes for any «; > 0,4 = 1,...,5. This in turn implies that the normalized two-letter version
of the region in equations (2]) reduces to the single-letter form. Since the normalized n-letter form
of the region given by (2)) approaches capacity (easy to see using Fano’s inequality), we obtain the
optimality of superposition coding region.

Thus showing the optimality of the superposition coding region has been reduced to establishing
the veracity of an information inequality involving concave envelopes of linear combination of
mutual information terms. Similar statements can also be made for some other instances in network
information theoretic settings.

5 Conclusion

In this article, we describe a novel way of representing achievable regions using concave envelopes.
This representation has been shown to vastly simplify explicit calculations of the regions in several
instances. One of the major achievements of this line of work, going beyond existing known facts,
is in establishing the capacity region of the two receiver MIMO Gaussian broadcast channel in [IT].
In this work, we present the preliminary observations that indeed precede the above mentioned
result. Further we also propose a conjecture which would help resolve an important open problem.

14



Acknowledgments

The author wishes to thank several of his collaborators for various discussions that eventually led to
some concrete observations and connections between various problems. In particular, the author is
thankful to Venkat Anantharam, Abbas El Gamal, Yanlin Geng, and Amin Gohari for the various
interesting discussions related to this topic. The author is also thankful to the anonymous referees
for various suggestions that improved the presentation of this manuscript.

The work of Chandra Nair was partially supported by the following: an area of excellence

grant (Project No. AoE/E-02/08) and two GRF grants (Project Nos. 415810 and 415612) from the
University Grants Committee of the Hong Kong Special Administrative Region, China.

References

1]

2]

[10]

[11]

T. Cover, “Broadcast channels,” IEEFE Trans. Info. Theory, vol. IT-18, pp. 2-14, January,
1972.

C. Nair and A. El Gamal, “An outer bound to the capacity region of the broadcast channel,”
IEEE Trans. Info. Theory, vol. IT-53, pp. 350-355, January, 2007.

C. Nair and Z. V. Wang, “On the inner and outer bounds for 2-receiver discrete memoryless
broadcast channels,” Proceedings of the ITA Workshop, 2008, cs.IT/0804.3825.

C. Nair and Z. V. Wang, “On the inner and outer bounds of 3-receiver broadcast channels with
2-degraded message sets,” International Symposium on Information Theory, pp. 1844—1848,
2009, http://arXiv.org/abs/0806.4415.

C. Nair, Z. V. Wang, and Y. Geng, “An information inequality and evaluation of Marton’s
inner bound for binary input broadcast channels,” International Symposium on Information
Theory, 2010.

F. M. J. Willems, “The maximal-error and average-error capacity region of the broadcast
channel are identical,” Problems of Control and Information Theory, vol. 19, no. 4, pp. 339—
347, 1990.

H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of the gaussian multiple-
input multiple-output broadcast channel,” Information Theory, IEEE Transactions on, vol. 52,
pp. 3936 —3964, sept. 2006.

C. Nair, “Capacity regions of two new classes of two-receiver broadcast channels,” Information
Theory, IEEFE Transactions on, vol. 56, pp. 4207-4214, sep. 2010.

Y. Geng, A. Gohari, C. Nair, and Y. Yu, “On Marton’s inner bound for two receiver broadcast
channels,” Presented at ITA Workshop, 2011.

Y. Geng, A. Gohari, C. Nair, and Y. Yu, “The capacity region of classes of product broadcast
channels,” Proceedings of IEEE International Symposium on Information Theory, pp. 1549—
1553, 2011.

Y. Geng and C. Nair, “The capacity region of the two-receiver vector gaussian broadcast
channel with private and common messages,” Feb. 2012, 1202.0097.

15



[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

A. Wyner and J. Ziv, “A theorem on the entropy of certain binary sequences and applications:
Part 1,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 769-772, Nov 1973.

Y. Geng, C. Nair, S. Shamai, and Z. V. Wang, “On broadcast channels with binary inputs
and symmetric outputs,” International Symposium on Information Theory, 2010.

B. Xie, M. Griot, A. Casado, and R. Wesel, “Optimal transmission strategy and explicit
capacity region for broadcast z channels,” Information Theory, IEEE Transactions on, vol. 54,
pp- 4296 —4304, sept. 2008.

P. F. Bergmans, “Coding theorem for broadcast channels with degraded components,” IFEE
Trans. Info. Theory, vol. IT-15, pp. 197-207, March, 1973.

A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge University Press, 2012.

S. I. Gel'fand and M. S. Pinsker, “Coding for Channel with Random Parameters,” Probl.
Pered. Inform., vol. 9, pp. 19-31, 1980.

A. D. Wyner, “The Wire-tap Channel,” Bell Systems Technical Journal, vol. 54, pp. 1355—
1387, Jan. 1975.

I. Csizar and J. Korner, “Broadcast channels with confidential messages,” IEFE Trans. Info.
Theory, vol. IT-24, pp. 339-348, May, 1978.

16



	Introduction
	Superposition coding region
	Superposition coding region for degraded broadcast channel
	Superposition coding region for some examples
	A representation of the region using concave envelopes
	On upper concave envelopes
	Superposition coding region using concave envelopes

	Evaluation of the superposition coding using the concave envelope representation

	Concave envelopes arising in other settings
	Channels with state known non-causally at the encoder
	Wiretap Channel

	Factorization of concave envelopes
	Illustrations of optimality
	Degraded broadcast channel
	Channels with state known non-causally at the encoder
	Wiretap Channel

	A conjecture

	Conclusion

