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An information inequality and evaluation of
Marton’s inner bound for binary input broadcast

channels
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Abstract—We establish an information inequality concerning
five random variables. This inequality is motivated by the
sum-rate evaluation of Marton’s inner bound for two receiver
broadcast channels with a binary input alphabet. We establish
that randomized time-division strategy achieves the sum-rate of
Marton’s inner bound for all binary input broadcast channels.
We also obtain an improved cardinality bound for evaluating
the maximum sum-rate given by Marton’s inner bound for all
broadcast channels. Using these tools we explicitly evaluate the
inner and outer bounds for the binary skew-symmetric broadcast
channel and demonstrate a gap between the bounds.

Index Terms—information inequality, Marton’s inner bound,
binary input alphabet

I. INTRODUCTION

A two-receiver broadcast channel models the communica-
tion scenario where two (independent) messages are to be
transmitted from a sender X to two receivers Y , Z. Each
receiver is interested in decoding its message. A transition
probability matrix given by q(y, z|x) models the stochastic
nature of the errors introduced during the communication. For
formal definitions and early results the reader can refer to
[1], [2].

A. Background

The following region obtained by Marton [3] represents the
best-known achievable region to-date:

Bound 1 (Marton’s inner bound [3]). The set of rate-pairs
(R1, R2) satisfying the following constraints:

R1 ≤ I(U,W ;Y )

R2 ≤ I(V,W ;Z)

R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}
+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

for any set of (U, V,W ) such that (U, V,W )→ X → (Y,Z)
forms a Markov chain is achievable.
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Recently Gohari and Ananthram [4] used a remarkable
perturbation-based argument to establish that it suffices to
consider (U, V,W ) with alphabet sizes bounded by |U| ≤
|X |, |V| ≤ |X |, |W| ≤ |X |+ 4 to compute the extreme points
of Bound 1. In general the computation of Marton’s inner
bound is difficult, and prior to [4], this bound was not strictly
evaluable. Even with these bounds on cardinalities, explicit
evaluation of the bounds is still a difficult task.

The following region represents the best-known outer bound
to the capacity region of the broadcast channel with private
messages.

Bound 2 (UV outer bound [5]). The union of rate-pairs
(R1, R2) satisfying the following constraints:

R1 ≤ I(U ;Y )

R2 ≤ I(V ;Z)

R1 +R2 ≤ I(U ;Y ) + I(V ;Z|U)

R1 +R2 ≤ I(V ;Z) + I(U ;Y |V )

over all pairs of random variables (U, V ) such that (U, V )→
X → (Y,Z) forms a Markov chain forms an outer bound to
the capacity region of the broadcast channel.

The capacity regions of special classes of broadcast chan-
nels have been established and in every case it turns out
that Bounds 1 and 2 agree. Though there have been attempts
to improve the outer bound, it has been shown [6] that
the new outer bounds reduced to the UV outer bound (for
private messages). In order to study whether Bounds 1 and 2
correspond to different regions or whether they are alternate
representations of the same region, [7] studied a particular
channel called the binary skew-symmetric broadcast channel
(BSSC) shown in Figure 1. The authors conjectured that for
BSSC the following inequality

I(U ;Y )+I(V ;Z)−I(U ;V ) ≤ max{I(X;Y ), I(X;Z)} (1)

holds for all (U, V ) → X → (Y, Z) that forms a Markov
chain. The authors further showed that, assuming (1) holds,
Bounds 1 and 2 differ for BSSC.

In [4], the authors established that Bounds 1 and 2 were
indeed different for BSSC without actually establishing that
(1) was true. They verified that (1) was plausible by confirming
it for a large number of (randomly-generated) samples from
the cardinality constrained space.

In this paper we establish that (1) is true not only for BSSC
but also for any binary input broadcast channel. This paper
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Fig. 1. Binary skew-symmetric broadcast channel (BSSC)

unifies the results in two papers [8], [9] and adds a few other
results, along with providing complete details of proofs.

B. Summary of results

The main results of the paper are the following:

Theorem 1. Consider a five tuple of random variables
(U, V,X, Y, Z) such that (U, V ) → X → (Y, Z) forms a
Markov chain and further let |X | = 2. Then the following
inequality holds:

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}. (2)

Given an input probability distribution p(x) and a fixed
broadcast channel q(y, z|x), define1

SR(X) := max
p(u,v,w|x):

(U,V,W )→X→(Y,Z)

min{I(W ;Y ), I(W ;Z)}

+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ).

Observe that SR(X) is the maximum achievable sum rate
using Marton’s inner bound if one imposes the constraint that
the codewords are generated using the distribution p(x).

For a given broadcast channel q(y, z|x), define

SR∗ = max
p(x)

SR(X). (3)

Theorem 2. It suffices to consider |U| ≤ |X |, |V| ≤ |X |,
and |W| ≤ |X | in the evaluation of SR(X) for any input
distribution p(x), and in the evaluation of SR∗, the maximum
value of the sum-rate achievable using Marton’s inner bound.

Remark 1. From (3), it is clear that if we establish the
cardinality bounds in Theorem 2 for SR(X) then the bounds
for SR∗ will automatically follow. Hence we will establish
the bounds for the stronger statement, i.e. SR(X).

Theorem 1 proves that the inequality in (1) is valid for
every binary input broadcast channel. Combining this result
with the cardinality bounds in Theorem 2, for binary input
broadcast channels we establish that the maximum sum-rate
given by Marton’s coding strategy matches that given by
the randomized time-division strategy [5], a much simpler
achievable strategy.

1Note that SR(X) is a function of p(x), however an abuse of notation is
made to be consistent with quantities such as H(X), I(X;Y ), etc.

Theorem 3. The maximum value of the sum-rate for Marton’s
inner bound for any binary input broadcast channel is given
by

max
p(w,x):

W→X→(Y,Z)

min{I(W ;Y ), I(W ;Z)}

+ P(W=0)I(X;Y |W=0) + P(W=1)I(X;Z|W=1)

where |W| = 2.

Theorem 4. For the broadcast channel (BSSC) shown in
Figure 1 the maximum sum-rate value for the various bounds
is given by:
• Marton’s inner bound (Bound 1) = 0.36164288... ,
• UV outer bound (Bound 2) = 0.3725562... ,
• Körner-Marton outer bound (Bound 3) = 0.3743955... .

Remark 2. We will introduce the Körner-Marton outer bound
(Bound 3) in a subsequent section.

1) Randomized time-division strategy: Randomized time-
division (R-TD) strategy [5] corresponds to an achievable
strategy for the following setting of (U, V,W ) in Bound 1:
W = 0 implies that U = X,V = ∅; and W = 1 implies
that V = X,U = ∅ (where ∅ refers to the trivial random
variable). Observe that this corresponds to a time-division
strategy except that the time slots for which communication
occurs to one receiver are drawn from a codebook (the time
slots are used to convey additional information that can be
decoded by both receivers).

2) Relationship between Theorem 1 and non-Shannon type
inequalities: Recently there has been a lot of interest in
information inequalities and the so-called Shannon-type and
non-Shannon type inequalities. The space Γ̄∗n (see Section 13.1
in [10]) refers to the closure of the space of entropic vectors
formed using n discrete random variables. An entropic vector
corresponding to a given n-tuple of discrete random variables
is a point in R2n−1

+ obtained by taking the entropy of each of
the non-empty subsets of the given n-random variables. It is
known that Γ̄∗n is a closed convex cone.

Theorem 1 refers to a subset, S, of points in Γ̄∗5: those cor-
responding to a five tuple of random variables (U, V,X, Y, Z)
such that (U, V ) → X → (Y, Z) forms a Markov chain and
with a binary constraint on the cardinality of X , i.e. |X | = 2.
Theorem 1 shows that the points in S have to lie in the union
of two half-spaces induced by the two hyperplanes:

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ I(X;Y )

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ I(X;Z).

Since the inequalities are tight, i.e. there are points lying on
the boundary of these hyperplanes, S is not a convex region
in general.

Consider the Blackwell channel shown in Figure 2.
For this channel, consider U = Y, V = Z and X ∼

[ 13 ,
1
3 ,

1
3 ]. Observe that (U, V )→ X → (Y, Z) is still Markov

and that I(U ;Y )+I(V ;Z)−I(U ;V ) = H(Y, Z) = log2 3 >
1 ≥ max{I(X;Y ), I(X;Z)}. Thus there are points in Γ∗5 that
violate the inequality implied by Theorem 1 and hence this is
an example of an inequality that cannot be deduced by even
the knowledge of Γ∗5. This is primarily due to the cardinality
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Fig. 2. Blackwell broadcast channel

constraint imposed on one of the random variables and thus
demonstrates the existence of significant inequalities beyond
the non-Shannon and Shannon-type ones usually considered
in literature.

Organization of the paper: The proof of Theorem 1 uses
a rather detailed perturbation analysis. To provide a gentler
introduction to the proofs, we will first establish Theorem 2
in the next section as its proof uses a milder form of the
perturbation arguments. We then show how Theorem 3 follows
from Theorem 1 and Theorem 2. In the subsequent sections
we will prove Theorem 1 and then establish Theorem 4.

II. PROOFS OF THEOREM 2 AND THEOREM 3

A. Preliminaries

Given an input probability distribution p(x) and a fixed
broadcast channel q(y, z|x), let2

T (X) := max
p(u,v|x):

(U,V )→X→(Y,Z)

I(U ;Y ) + I(V ;Z)− I(U ;V ).

(4)

Remark 3. From [4] (or see Fact 1 and Claim 1 in [8] for a self-
contained shorter proof) we know that it suffices to consider
|U| ≤ |X |, |V| ≤ |X |, X = f(U, V ) to evaluate T (X), where
f(·, ·) is a function that maps U × V 7→ X .

From standard Fenchel-Bunt extension to Caratheodory’s
theorem, it follows that we can restrict ourselves to |W| ≤
|X |+1 to compute SR(X). The main contribution of Theorem
2 is that one may reduce the cardinality further to |W| ≤ |X |.
This (mild but nontrivial) improvement is very useful when
one needs to explicitly evaluate the bound.

An equivalent version of the next claim is known in litera-
ture [11]. The claim asserts that in addition to the cardinality
constraints |U| ≤ |X |, |V| ≤ |X | and |W| ≤ |X |+ 1, we can
assume that a maximizer also satisfies I(W ;Y ) = I(W ;Z).
We present a proof here for completeness.

Claim 1. The function SR(X) can be attained at a
p∗(u, v, w|x) that satisfies I(W ;Y ) = I(W ;Z), |U| ≤ |X |,
|V| ≤ |X |, and |W| ≤ |X |+ 1.

Proof: Let p∗(u, v, w|x) attain the value SR(X). Sup-
pose, at p∗(u, v, w|x), we have I(U,W ;Y ) ≤ I(U,W ;Z)

2Note that T (X) is a function of p(x) for a fixed channel q(y, z|x).

then observe that

SR(X) ≤ I(U,W ;Y ) + I(V ;Z|W )− I(U ;V |W )

≤ I(U,W ;Y ) + I(V ;Z|U,W )

≤ I(V,U,W ;Z) ≤ I(X;Z).

Clearly by setting V = X , U = W = ∅ we obtain that
SR(X) ≥ I(X;Z). Thus we have SR(X) = I(X;Z). Since
V = X , U = W = ∅ attains SR(X) we have I(W ;Y ) =
I(W ;Z) = 0.

Similarly if I(V,W ;Z) ≤ I(V,W ;Y ) then SR(X) =
I(X;Y ), and we can set U = X , V = W = ∅ to achieve this
SR(X). In this case as well, I(W ;Y ) = I(W ;Z) = 0. Thus
for these two cases the claim is established.

The only case that remains is the following: at p∗(u, v, w|x)
we have I(U,W ;Y ) > I(U,W ;Z) and I(V,W ;Z) >
I(V,W ;Y ). In this case we will show that there is a maximizer
such that I(W ;Y ) = I(W ;Z).

Suppose that we have I(W ;Y ) > I(W ;Z) at a maximiz-
ing distribution. Let Q be Bernoulli(a) and independent of
(U, V,W,X). When Q = 0, set (Ũ , Ṽ , W̃ ) = (U, V,W ) as
before; and when Q = 1 set (Ũ , Ṽ , W̃ ) = (U, ∅, (V,W )). Let
W ′ = (W̃ ,Q). Now a ∈ (0, 1) is chosen such that

I(W ′;Y ) = (1− a)I(W ;Z) + aI(V,W ;Z)

= (1− a)I(W ;Y ) + aI(V,W ;Y ) = I(W ′;Z).

Note that such an a ∈ (0, 1) always exists since I(V,W ;Z) >
I(V,W ;Y ) and I(W ;Y ) > I(W ;Z).

For the new triple random variables (W ′, Ũ , Ṽ ) note that

min{I(W ′;Y ), I(W ′;Z)}+ I(Ũ ;Y |W ′)
+ I(Ṽ ;Z|W ′)− I(Ũ ; Ṽ |W ′)

= I(W ′;Z) + I(Ũ ;Y |W ′)
+ I(Ṽ ;Z|W ′)− I(Ũ ; Ṽ |W ′)

= (1− a){I(W ;Z) + I(U ;Y |W ) + I(V ;Z|W )

− I(U ;V |W )}+ a{I(V,W ;Z) + I(U ;Y |V,W )}
= (1− a)SR(X) + a{I(W ;Z) + I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W ) + I(U ;V |W,Y )}
= SR(X) + aI(U ;V |W,Y )

≥ SR(X).

Thus the distribution p(ũ, ṽ, w′|x) also achieves SR(X).
Notice that here |W ′| = 2|W| and satisfies I(W ′;Y ) =
I(W ′;Z).

Now starting from a p(x) and p(ũ, ṽ, w′|x) satisfying
I(W ′;Y ) = I(W ′;Z), we can find (a standard application
of Fenchel-Butt extension to Caratheodory’s theorem) a W
of cardinality at most |X | + 1, and a q∗(u, v, w, x) such that
p(x), −H(Y |W ) + I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W ),
−H(Z|W ) + I(U ;Y |W ) + I(V ;Z|W ) − I(U ;V |W ) are
preserved. Thus Iq∗(W ;Y ) = Iq∗(W ;Z), and q∗(u, v, w, x)
also attains SR(X). This completes the proof.

We now prove Theorem 2 using a perturbation argument.
By Claim 1, the only interesting case left is when there is a
maximizer p∗(u, v, w|x) that satisfies: I(W ;Y ) = I(W ;Z)
and |W| = |X |+ 1.
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Notation: Given a pair of random variables (X,Y ) dis-
tributed according to p(x, y) and a function L(x, y), define

HL
p (X,Y ) := −

∑
x,y

p(x, y)L(x, y) log p(x, y),

as the L-weighted entropy function. When L is omitted we
assume that L(x, y) = 1 which reduces to the standard entropy
function, and we also omit p(·) when the distribution under
consideration is evident.

B. Proof of Theorem 2

Let p∗(u, v, w|x) achieve SR(X) and satisfy |U| ≤ |X |,
|V| ≤ |X |, I(W ;Y ) = I(W ;Z) and |W| = |X |+ 1. Let

r(u, v, w, x) = q∗(u, v, w, x)(1 + εL(w)), (5)

such that
∑
w,u,v

q∗(u, v, w, x)L(w) = 0,∀x ∈ X .

Here ε is any real number such that 1 + εL(w) ≥ 0,∀w.
The conditions

∑
u,v,w q

∗(u, v, w, x)L(w) = 0,∀x imply
that the distribution of X is unchanged by the perturbation,
i.e. r(x) = q∗(x).

Observe that a nontrivial L(w) exists whenever |W| > |X |,
since L(w) is (|X | + 1)-dimensional and there are only |X |
linear constraints which equal zero.

Let A represent a generic random variable, initially dis-
tributed according to q∗(a,w), and perturbed according to

r(a,w) = q∗(a,w)(1 + εL(w))

where L(w) is the same function in (5). Observe that

Hr(AW ) = −
∑
a,w

r(a,w) log r(a,w)

= −
∑
a,w

q∗(a,w)(1 + εL(w)) log
(
q∗(a,w)(1 + εL(w))

)
= Hq∗(AW ) + εHL(AW )

−
∑
a,w

q∗(a,w)(1 + εL(w)) log(1 + εL(w))

= Hq∗(AW ) + εHL(AW ) (6)

−
∑
w

q∗(w)(1 + εL(w)) log(1 + εL(w)).

We will set A to be an appropriate subset of (U, V, Y, Z) in
the terms that appear below.

Since the perturbation L(w) preserves the distribution of
X and the channel transition probabilities q(y, z|x) are fixed,
the perturbation also fixes the distributions of Y and Z, i.e.
r(y) = q∗(y), r(z) = q∗(z).

Observe that

Ir(W ;Y ) = Hr(Y ) +Hr(W )−Hr(YW )

= Hq∗(Y ) +Hq∗(W )−Hq∗(YW )

+ ε(HL(W )−HL(YW ))

= I∗q (W ;Y ) + ε(HL(W )−HL(YW )).

Here the first equality is obtained by two applications of (6):
setting A = ∅ and A = Y respectively. Note that the term

∑
w q
∗(w)(1+εL(w)) log(1+εL(w)) cancels, leaving us with

only a linear term in ε. We also used the fact that r(y) = q∗(y).
Similarly we obtain

Ir(W ;Z) = Iq∗(W ;Z) + ε(HL(W )−HL(ZW ))

Ir(U ;Y |W ) = Iq∗(U ;Y |W ) + ε(HL(UW )

+HL(YW )−HL(UYW )−HL(W ))

Ir(V ;Z|W ) = Iq∗(V ;Z|W ) + ε(HL(VW )

+HL(ZW )−HL(V ZW )−HL(W ))

Ir(U ;V |W ) = Iq∗(U ;V |W ) + ε(HL(UW )

+HL(VW )−HL(UVW )−HL(W )).

Therefore the sum-rate corresponding to the distribution
r(u, v, w, x) is given by

min{Iq∗(W ;Y ) + ε(HL(W )−HL(YW )),

Iq∗(W ;Z) + ε(HL(W )−HL(ZW ))}
+ Iq∗(U ;Y |W ) + Iq∗(V ;Z|W )− Iq∗(U ;V |W )

+ ε(HL(UW ) +HL(YW )−HL(UYW )−HL(W ))

+ ε(HL(VW ) +HL(ZW )−HL(V ZW )−HL(W ))

− ε(HL(UW ) +HL(VW )−HL(UVW )−HL(W ))

= Iq∗(W ;Y )(= Iq∗(W ;Z))

+ Iq∗(U ;Y |W ) + Iq∗(V ;Z|W )− Iq∗(U ;V |W )

+ ε
(

min{HL(W )−HL(YW ), HL(W )−HL(ZW )}

+HL(YW )−HL(UYW )−HL(W )

+HL(ZW )−HL(V ZW ) +HL(UVW )
)
.

Since q∗(u, v, w, x) is a global maximum of the sum-rate
it implies that the factor multiplying ε must be zero. This im-
mediately implies that for any ε satisfying 1 + εL(w) ≥ 0,∀w
the sum-rate corresponding to the distribution r(u, v, w, x)
matches that of q∗(u, v, w, x). Choose ε such that minw(1 +
εL(w)) = 0. Let w0 be the minimizer, i.e. 1 + εL(w0) = 0,
then observe that r(w0) = 0. Thus there exists a distribution
r(u, v, w, x) which attains SR(X) such that |U| ≤ |X |,
|V| ≤ |X |, and |W| ≤ |X |.

Since SR∗ = maxp(x) SR(X), these cardinality constraints
also suffice to compute SR∗, the maximum value of the
sum-rate achievable using Marton’s inner bound for a given
broadcast channel.

C. Proof of Theorem 3

Let R̄ be the maximum sum-rate obtained by the random-
ized time-division strategy and R be that by Marton’s inner
bound. Note that

R̄ = max
p(w,x):

W→X→(Y,Z)

min{I(W ;Y ), I(W ;Z)}

+ P(W=0)I(X;Y |W=0) + P(W=1)I(X;Z|W=1),

where W is a binary random variable. We need to show R =
R̄. Clearly, we have R ≥ R̄ as R̄ is a restriction of the choice
of (U, V,W ).
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From Theorem 2, to evaluate the Marton’s sum-rate for a
binary input broadcast channel it suffices to look at |W| ≤ 2.
Consider a (U, V,W,X) that achieves the maximum sum-rate
R. Without loss of generality we consider two cases below.
The two remaining cases follow by interchanging the roles of
Y and Z and hence is omitted.

Case 1:

I(X;Y |W=0) ≥ I(X;Z|W=0) and
I(X;Y |W=1) ≥ I(X;Z|W=1). (7)

Clearly

R = min{I(W ;Y ), I(W ;Z)}
+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

= min{I(W ;Y ), I(W ;Z)}
+ P(W=0)

(
I(U ;Y |W=0) + I(V ;Z|W=0)− I(U ;V |W=0)

)
+ P(W=1)

(
I(U ;Y |W=1) + I(V ;Z|W=1)− I(U ;V |W=1)

)
(a)

≤ min{I(W ;Y ), I(W ;Z)}
+ P(W=0)I(X;Y |W=0) + P(W=1)I(X;Y |W=1)

≤ min{I(W ;Y ), I(W ;Z)}+ I(X;Y |W ) ≤ I(X;Y ) ≤ R̄,

where (a) follows from Theorem 1 and equations (7).

Case 2:

I(X;Y |W=0) ≥ I(X;Z|W=0) and
I(X;Y |W=1) ≤ I(X;Z|W=1). (8)

Observe that

R = min{I(W ;Y ), I(W ;Z)}
+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W )

= min{I(W ;Y ), I(W ;Z)}
+ P(W=0)

(
I(U ;Y |W=0) + I(V ;Z|W=0)− I(U ;V |W=0)

)
+ P(W=1)

(
I(U ;Y |W=1) + I(V ;Z|W=1)− I(U ;V |W=1)

)
(b)

≤ min{I(W ;Y ), I(W ;Z)}
+ P(W=0)I(X;Y |W=0) + P(W=1)I(X;Z|W=1)

≤ R̄,

where (b) follows from Theorem 1 and equations (8).
Thus R ≤ R̄ and completes the proof of Theorem 3.

III. PROOF OF THEOREM 1

Theorem 1 is an inequality concerning random variables;
however we will interpret the inequality in the language of
broadcast channels. First fix a broadcast channel q(y, z|x) and
then an input distribution p(x). Observe that Theorem 1 is
equivalent to showing that when X is binary,

T (X) = max
p(u,v|x)

(U,V )→X→(Y,Z)

I(U ;Y ) + I(V ;Z)− I(U ;V )

≤ max{I(X;Y ), I(X;Z)}.

Remark 4. As T (X), I(X;Y ), and I(X;Z) are continuous
in the transition probabilities q(y|x) and q(z|x), it suffices to
prove the inequality when q(y|x) and q(z|x) are positive.

Having transformed Theorem 1 into a maximization prob-
lem of computing T (X), we use Remark 3 and restrict our-
selves to random variables (U, V ) such that |U| ≤ |X |, |V| ≤
|X | and X = f(U, V ), a deterministic function of (U, V ).

The following claim is a statement concerning any max-
imizer p(u, v|x) that attains T (X). For this claim we only
assume that X is finite valued, not necessarily binary.

Claim 2. Let q(y|x) > 0 and q(z|x) > 0 for every x, y, z. Let
X = f(U, V ) and p.m.f. p(u, v|x) attain T (X). If p(u) > 0
and p(v) > 0 for a pair (u, v), then p(u, v) > 0.

Proof: The proof uses perturbation to show that one can
increase

I(U ;Y ) + I(V ;Z)− I(U ;V )

if the conditions in the theorem does not hold, thus contra-
dicting the maximality of p(u, v|x). To make our calculations
simpler we assume that all logarithms are to the base e.

Suppose p(u1, v1) = 0 and p(u1) > 0, p(v1) > 0. Then we
must have some v2 6= v1 such that p(u1, v2) > 0 (otherwise
p(u1) = 0). Let f(u1, v2) = x1. Perturb p at two points

q(u, v, x) =


p(u, v, x)− ε (u, v, x) = (u1, v2, x1)

ε (u, v, x) = (u1, v1, x1)

p(u, v, x) otherwise

Notice that q(u, x) = p(u, x) ∀u, x and p(v, x) = q(v, x), v /∈
{v1, v2}. Now we perform the following manipulations

Iq(U ;Y ) + Iq(V ;Z)− Iq(U ;V )

−
(
Ip(U ;Y ) + Ip(V ;Z)− Ip(U ;V )

)
= Hq(Y ) +Hq(Z) +Hq(UV )−Hq(UY )−Hq(V Z)

−
(
Hp(Y ) +Hp(Z) +Hp(UV )−Hp(UY )−Hp(V Z)

)
(a)
= Hq(UV )−Hq(V Z)−Hp(UV ) +Hp(V Z)

(b)
= −ε log ε− (p(u1, v2)− ε) log(p(u1, v2)− ε)

+ p(u1, v2) log p(u1, v2) +
∑
v,z

p(v, z) log p(v, z)

−
∑
v,z

q(v, z) log q(v, z)

= −ε log ε− ε(1 + log p(u1, v2)) + o(ε)

+
∑
v,z

p(v, z) log p(v, z)−
∑
v,z

q(v, z) log q(v, z). (9)

Here (a) follows since q(u, x) = p(u, x) and this implies
that q(u, y) = p(u, y) and q(z) = p(z) since the broadcast
channel q(y, z|x) remains fixed. Equality (b) follows from the
following observation: distribution on (U, V ) only changes for
the pairs (u1, v1) and (u1, v2).

Express the induced perturbation on the pair (V,Z) as

q(v, z) = p(v, z) + ελ(v, z).

Note that
∑

v,z λ(v, z) = 0. Since the channels have positive
transition probabilities we have p(v, z) > 0 ∀v, z. Thus we
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can expand Hq(V,Z), using Taylor series, as

−
∑
v,z

q(v, z) log q(v, z) = −
∑
v,z

p(v, z) log p(v, z)

− ε
∑
v,z

λ(v, z) log p(v, z) + o(ε). (10)

Combining equations (9) and (10) we have

Iq(U ;Y ) + Iq(V ;Z)− Iq(U ;V )

−
(
Ip(U ;Y ) + Ip(V ;Z)− Ip(U ;V )

)
= −ε log ε− ε

(
1 + log p(u1, v2)

+
∑
v,z

λ(v, z) log p(v, z)
)

+ o(ε).

Clearly, this difference becomes positive as ε→ 0, contradict-
ing the optimality of p(u, v).

In the rest of the proof we will seek maximizers p(u, v|x),
that attain T (X), of the form: U = V = {0, 1}, and X =
f(U, V ). Further we also assume that if p(u) > 0 and p(v) > 0
for a pair (u, v), then p(u, v) > 0.

Since the proof strategy is slightly unconventional, we first
outline it here. There are two equivalent forms and we will
use both forms interchangeably. The first form is the original
form which states the result as the information inequality

I(U ;Y ) + I(V ;Z)− I(U ;V ) ≤ max{I(X;Y ), I(X;Z)}. (11)

The second formulation is that of an optimization problem of
computing

T (X) = max
p(u,v|x)

(U,V )→X→(Y,Z)

I(U ;Y ) + I(V ;Z)− I(U ;V )

and then showing that T (X) ≤ max{I(X;Y ), I(X;Z)}.
The outline of the proof is as follows:
1) We first prove the inequality (11) for some special

settings, or “trivial” cases. (Section III-A)
2) We then consider all possible functions f(U, V ) and

show that it can be partitioned into 5 equivalent classes.
We then show the inequality (11) for two of these classes
and deduce that a nontrivial maximizer p(u, v|x) that
attains T (X) cannot exist in the other classes.

A. Proof under special settings

For binary input X , for brevity let

ai = P(Y=i|X=0), âi = P(Y=i|X=1), i = 1, . . . , |Y|
bi = P(Z=i|X=0), b̂i = P(Z=i|X=1), i = 1, . . . , |Z|.

Since U → X → Y and V → X → Z are Markov chains,
from data processing inequality, we know that

I(U ;Y ) ≤ I(X;Y ), I(U ;Y ) ≤ I(U ;X),

I(V ;Z) ≤ I(X;Z), I(V ;Z) ≤ I(V ;X). (12)

With these inequalities, we first prove Theorem 1 for some
special settings. Denote X ⊥⊥ Y to mean independence of
random variables.
SS1. ai ≡ âi. This implies that X ⊥⊥ Y , thus I(U ;Y ) =

I(X;Y ) = 0. From (12) and the non-negativity of
I(U ;V ) we have I(V ;Z) − I(V ;U) ≤ I(X;Z), i.e.

Theorem 1 holds. Similarly Theorem 1 holds when
bi ≡ b̂i.

SS2. U ⊥⊥ X . Then I(U ;Y ) = I(U ;X) = 0. Again from
(12) and the non-negativity of I(U ;V ) Theorem 1 holds.
Similarly when V ⊥⊥ X , Theorem 1 also holds.

B. Reduction to two nontrivial cases

Notation: We use the notation: U ∧ V (and), U ∨ V (or),
U ⊕ V (xor), Ū (not).

Since U, V , and X are binary, there are 16 possible func-
tions X = f(U, V ), and they can be classified into the
following equivalent groups
G1: X = 0, X = 1
G2: X = U,X = Ū ,X = V,X = V̄
G3: X = U ∧ V,X = Ū ∧ V,X = U ∧ V̄ , X = Ū ∧ V̄
G4: X = U ∨ V,X = Ū ∨ V,X = U ∨ V̄ , X = Ū ∨ V̄
G5: X = U ⊕ V,X = Ū ⊕ V

The reason that these are equivalent groups is that, in each
group, all the cases can be reduced to the first case using
bijections. Since bijections preserve mutual information, we
just need to prove Theorem 1 for the first function in each
group.

The case X = U ∨ V with q(u, v), can be mapped to the
case X = U ∧ V with p(u, v), using the bijection p00 ↔ q11,
p01 ↔ q01, p10 ↔ q10, p11 ↔ q00. That is, we use X =
U ∨ V ⇔ X̄ = Ū ∧ V̄ to reduce the proof of the “or” case
of one channel to the “and” case of another broadcast channel
obtained by flipping U, V , and X .

So it remains to consider the first case of all the groups
except G4.

The first two cases are trivial. When X = 0, inequality (11)
reduces to −I(U ;V ) ≤ 0, which is true.

When X = U , inequality (11) follows from I(U ;Y ) =
I(X;Y ) and data processing inequality, I(V ;Z) ≤ I(V ;U) =
I(V ;X) (see (12)).

Now for cases in G3 and G5, if p(x) = 0 for some x, then
it reduces to G1; if p(u) = 0 (or p(v) = 0) for some u (or v),
then it reduces to cases in G1 or G2. Thus we can assume that
p(u) > 0 for u ∈ {0, 1} and similarly p(v) > 0 for v ∈ {0, 1}.
Thus from Claim 2 our search for a nontrivial maximizer of
T (X) can be restricted to:
C3: X = U ∧ V with p(x) > 0 and p(u, v) > 0 for all

u, v, x.
C5: X = U ⊕ V with p(x) > 0 and p(u, v) > 0 for all

u, v, x.
We are going to prove that there is no nontrivial local maxi-
mum (by a nontrivial local maximum we mean a distribution
that does not reduce to one of the special settings discussed
above) for these two cases. Hence T (X) cannot be achieved
in either of these cases and since the inequality is true in all
other cases, we are done.

C. Proof of XOR case

Consider an additive perturbation

q(u, v, x) = p(u, v, x) + ελ(u, v, x)
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for some ε ≥ 0.
Let puv = P(U=u, V=v), py|x = P(Y=y|X=x), pz|x =

P(Z=z|X=x), λuvx = λ(u, v, x), and a similar short hand is
used for other variables as well.

For a valid perturbation, we require that λuvx ≥ 0 if the
corresponding p(u, v, x) is zero, i.e.

λuvx ≥ 0, if f(u, v) 6= x. (13)

Further let us require the perturbation maintains p(x) (hence
H(Y ) and H(Z)), that is∑

uv

λuvx = 0, ∀x ∈ X . (14)

The first derivative of Iq(U ;Y ) + Iq(V ;Z) − Iq(U ;V ) with
respect to ε can be expressed as

∑
uvx λuvxCuvx, where

Cuvx = − log puv +
∑
y

py|x log puy +
∑
z

pz|x log pvz. (15)

At a local maximum p(u, v, x) it must be true that the first
derivative cannot be positive, i.e.∑

uvx

λuvxCuvx ≤ 0, (16)

for all valid perturbations λuvx satisfying (13) and (14).
For x ∈ X , choose one pair (ux, vx) such that f(ux, vx) =

x. This is possible since p(x) > 0. Using (14), we express
λuxvxx using other λuvx variables as

λuxvxx = −
∑

uv 6=uxvx

λuvx.

The equation (16) can be now written as∑
uvx:uv 6=uxvx

λuvx(Cuvx − Cuxvxx) ≤ 0.

As the above inequality needs to hold for any signed {λuvx :
f(u, v) = x, (u, v) 6= (ux, vx)} and any nonnegative {λuvx :
f(u, v) 6= x}, we must have

Cuvx = Cuxvxx, if f(u, v) = x,

Cuvx ≤ Cuxvxx, if f(u, v) 6= x.

The conditions above can be re-written as follows:

Claim 3. Let f(u, v) = x. For any (u1, v1) we have Cu1v1x ≤
Cuvx, that is

log
pu1v1

puv
≥
∑
y

py|x log
pu1y

puy
+
∑
z

pz|x log
pv1z
pvz

We are now ready to prove a claim that is central to the
proof of XOR case.

Claim 4. If f(u1, v1) = f(u2, v2) = x, then

pu1v1pu2v2 ≤ pu1v2pu2v1

where the equality holds iff Cu1v2x = Cu2v1x = Cu1v1x(=
Cu2v2x).

Proof: Two uses of Claim 3 yield Cu1v1x + Cu2v2x ≥
Cu1v2x + Cu2v1x. Substituting for the terms from (15) and
canceling common terms we obtain

− log pu1v1 − log pu2v2 ≥ − log pu1v2 − log pu2v1 .

From Claim 3 and above it is clear that equality holds iff
Cu1v2x = Cu2v1x = Cu1v1x(= Cu2v2x).

Remark 5. Note that the two claims above hold for any
maximizer of T (X) and does not require that X is binary.

Now return to X = U ⊕V , notice that f(0, 0) = f(1, 1) =
0, hence by Claim 4 we have for puv that p00p11 ≤ p01p10;
also f(0, 1) = f(1, 0) = 1, hence p00p11 ≥ p01p10. Thus we
have

p00p11 = p01p10 (17)

and by Claim 4, this holds iff C010 = C100 = C000 = C110

and C001 = C111 = C011 = C101. In particular, C000 = C010

and C001 = C011 imply that

log
p00
p01

=
∑

bi log
bip00 + b̂ip10

bip11 + b̂ip01
=
∑

b̂i log
bip00 + b̂ip10

bip11 + b̂ip01

Taking a weighted sum, we get

(p00 + p10) log
p00
p01

=
∑

(bip00 + b̂ip10) log
bip00 + b̂ip10

bip11 + b̂ip01

From above and using K-L divergence, we have

log
p00
p01
≥ log

p00 + p10
p11 + p01

= log
p00
p01

where the last step holds since p00p11 = p01p10. Now that the
K-L divergence inequality is indeed an equality, we require

bip00 + b̂ip10

bip11 + b̂ip01
≡ p00
p01

.

From the above we obtain

(p01 − p11)(bi − b̂i) ≡ 0.

Similarly from C100 = C110 and C101 = C111, we can obtain

(p10 − p11)(ai − âi) ≡ 0.

Now we have two cases

1) bi ≡ b̂i, or ai ≡ âi. In this case the Theorem holds
(special setting SS1).

2) p01 = p11, p10 = p11. Combining this with p00p11 =
p01p10 (from (17)) one obtains that puv = 1/4, and
as a result U, V and X are mutually independent. The
Theorem holds (special setting SS2).

If neither of these two cases is satisfied, there would be no
local maxima.

D. Proof of AND case

We will show that nontrivial local maxima can’t be achieved
when p(x) > 0 and p(u, v) > 0. In this case, P(X=1) = p11.
Now we fix p11 ∈ (0, 1). Take (p10, p01) as the free variables,
with p00 = 1− p11− p01− p10. Notice that H(Y ) and H(Z)
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are fixed, the local maxima of I(U ;Y ) + I(V ;Z)− I(U ;V )
is the same as that of

J(p10, p01) := H(U, V )−H(U, Y )−H(V,Z)

= −p00 log p00 − p01 log p01 − p10 log p10 − p11 log p11

+
∑

ai(p00 + p01) log[ai(p00 + p01)]

+
∑

(aip10 + âip11) log[aip10 + âip11]

+
∑

bi(p00 + p10) log[bi(p00 + p10)]

+
∑

(bip01 + b̂ip11) log[bip01 + b̂ip11].

At any local interior maximum, the gradient ∇J and Hes-
sian matrix ∇2J must satisfy

∇J = ~0, ∇2J � 0, (18)

where ∇2J � 0 denotes that ∇2J is negative semi-definite.
We now compute the gradient and the Hessian to investigate
locations of the local maxima.

1. First Derivative:
Differentiating w.r.t. the free variables we obtain:

∂J

∂p10
= log

p00
p10
−
∑

ai log
ai(p00 + p01)

aip10 + âip11
∂J

∂p01
= log

p00
p01
−
∑

bi log
bi(p00 + p10)

bip01 + b̂ip11
.

The condition ∇J = ~0 implies that

log
p00
p10

=
∑

ai log
ai(p00 + p01)

aip10 + âip11
(19)

log
p00
p01

=
∑

bi log
bi(p00 + p10)

bip01 + b̂ip11
. (20)

Remark 6. Equalities above are obvious from Claim 3 by
noticing that 0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0. This is expected
as Claim 3 is a result from first derivative.

Using the concavity of logarithm, we have

p00
p10
≤
∑ a2i (p00 + p01)

aip10 + âip11
,

p00
p01
≤
∑ b2i (p00 + p10)

bip01 + b̂ip11
, (21)

where the equalities hold iff

ai ≡ caâi, bi ≡ cbb̂i,

for some constants ca, cb respectively. However since
∑

i ai =∑
i âi = 1 we obtain that ca = 1 (similarly cb = 1). Thus

equalities hold iff

ai ≡ âi, bi ≡ b̂i. (22)

2. Second Derivative:
We now compute the Hessian G := ∇2J , The second

derivatives are

G11 =
∂2J

∂p210
= − 1

p00
− 1

p10
+

1

p00 + p01
+
∑ a2

i

aip10 + âip11

G12 = G21 = − 1

p00

G22 =
∂2J

∂p201
= − 1

p00
− 1

p01
+

1

p00 + p10
+
∑ b2i

bip01 + b̂ip11

As p01 > 0, we have

G11 ≤ −
1

p00
− 1

p10
+

1

p00 + p01
+

1

p10
< 0.

Similarly we have G22 < 0. For G with G11 < 0 and G22 < 0
to be negative semi-definite, it is necessary and sufficient that
det(G) ≥ 0.

From (21) we have

G11 ≥ −
1

p00
− 1

p10
+

1

p00 + p01
+

p00
p10(p00 + p01)

= − p01(p00 + p10)

p00p10(p00 + p01)
.

And similarly

G22 ≥ −
p10(p00 + p01)

p00p01(p00 + p10)
.

It is clear that equalities in the above two inequalities hold iff
(22) holds.

Since G11, G22 < 0 we have

G11G22 ≤
p01(p00 + p10)

p00p10(p00 + p01)
· p10(p00 + p01)

p00p01(p00 + p10)

=
1

p200
= G2

12,

with equality holding only if (22) holds.
Thus a local maximum may exist only when the channel pa-

rameters satisfy (22). However when (22) holds, the inequality
is true from the special setting SS1.

This completes the proof of Theorem 1.

IV. SUM-RATE EVALUATIONS OF INNER AND OUTER
BOUNDS FOR BSSC

We shall evaluate the inner and outer bounds for the BSSC
(Figure 1). Apart from completeness, this section serves some
purposes:
• We correct a minor typo in the evaluation of the maxi-

mum sum-rate of the outer bound [5].
• We also explicitly compute the maximum sum-rate ob-

tained via the Körner-Marton outer bound for the BSSC.

A. Sum-rate evaluation of Marton’s inner bound

We are evaluting the optimization problem described in The-
orem 3 for BSSC. A simple calculation shows that I(X;Y ) ≥
I(X;Z) iff P(X=0) ≤ 1

2 .
If P(X=0|W=0),P(X=0|W=1) ≤ 1

2 then

min{I(W ;Y ), I(W ;Z)}+ P(W=0)I(X;Y |W=0)

+ P(W=1)I(X;Z|W=1)

≤ min(I(W ;Y ), I(W ;Z)) + I(X;Y |W )

≤ I(X;Y )

≤ C

where C = h(0.2) − 0.4 = 0.321928... is the single channel
capacity. Similarly if 1

2 ≤ P(X=0|W=0), P(X=0|W=1) ≤
1 then the sum-rate will be bounded by C.
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Assume 0 ≤ P(X=0|W=0) ≤ 1
2 ≤ P(X=0|W=1) ≤ 1.

Let

d := max
p(x)

I(X;Y )− I(X;Z)

= max
x∈[0,1]

h
(x

2

)
− h

(
1− x

2

)
+ 1− 2x,

where P(X = 0) = x and h(·) is the binary entropy function.
We can solve the above explicitly and obtain xopt = 0.5 −√

105/30 and d = 0.1007295... . Now observe that

min{I(W ;Y ), I(W ;Z)}+ P(W=0)I(X;Y |W=0)

+ P(W=1)I(X;Z|W=1)

≤ I(X;Y ) + P(W=1)(I(X;Z|W=1)

− I(X;Y |W=1))

≤ I(X;Y ) + P(W=1)d.

Similarly

min{I(W ;Y ), I(W ;Z)}+ P(W=0)I(X;Y |W=0)

+ P(W=1)I(X;Z|W=1)

= I(X;Z) + P(W=0)(I(X;Y |W=0)

− I(X;Z|W=0))

≤ I(X;Z) + P(W=0)d.

By adding the above two inequalities we obtain

min{I(W ;Y ), I(W ;Z)}+ P(W=0)I(X;Y |W=0)

+ P(W=1)I(X;Z|W=1)

≤ 1

2

(
I(X;Y ) + I(X;Z) + d

)
.

Thus from Theorem 3 we have that SR∗, the maximum value
of sum-rate given by Marton’s inner bound, satisfies

SR∗ ≤ max
p(x)

1

2

(
I(X;Y ) + I(X;Z) + d

)
.

The maximum of I(X;Y )+I(X;Z) = 0.6225562... occurs
when P(X=0) = 1

2 and hence substituting we obtain that
SR∗ ≤ 0.36164288... .

To show that it is indeed on the boundary of the achievable
region consider the joint distribution on X and W as follows:

P(W=0) = P(W=1) =
1

2

P(X=0|W=0) = P(X=1|W=1) = 0.5−
√

105/30.

For this distribution we achieve the above value and hence
SR∗ = 0.36164288... .

B. Sum-rate evaluations of the outer bounds for BSSC

1) Bound 2: To evaluate maximum of the sum-rate of
Bound 2 it was shown [5] that it suffices to consider
P(X=0) = 1

2 . (It is immediate using the skew-symmetry of
the channel and the inherent symmetry of the outer bound
expressions.)

The sum-rate maximum is hence given by

max
p(u,x),P(x=0)= 1

2

U→X→(Y,Z)

I(U ;Y ) + I(X;Z|U)

or in other words maximizing

max
p(u,x),P(x=0)= 1

2

U→X→(Y,Z)

I(X;Y ) + I(X;Z|U)− I(X;Y |U).

Let P(X=0) = x. In [7] it was shown that the curve

f(x) = I(X;Y )− I(X;Z) = h
(x

2

)
− h

(
1− x

2

)
+ 1− 2x

is concave when x ∈ [0, 12 ] and convex when x ∈ [ 12 , 1].
Further it was also shown that the lower convex envelope3

was given by

g(x) =

{
5x
4 f
(
4
5

)
0 ≤ x ≤ 4

5

f(x) 4
5 ≤ x ≤ 1

.

From the definition of the lower convex envelope, we know
that when x = 1

2

I(X;Y |U)− I(X;Z|U) ≥ g
(

1

2

)
and it easy to see that there is a binary U that achieves the
equality.

Therefore

max
p(u,x),P(x=0)= 1

2

U→X→(Y,Z)

I(X;Y ) + I(X;Z|U)− I(X;Y |U)

= h

(
1

4

)
− 0.5− g

(
1

2

)
= 0.3725562... .

This is a correction to the implicit error we made in [5]
while calculating the lower convex envelope and obtained a
bound of 0.37111....

2) Körner-Marton outer bound:

Bound 3 (Körner-Marton outer bound [3]). The union of rate-
pairs (R1, R2) satisfying the following constraints:

R1 ≤ I(U ;Y )

R2 ≤ I(X;Z)

R1 +R2 ≤ I(U ;Y ) + I(X;Z|U)

over all random variables such that U → X → (Y,Z) forms
a Markov chain forms an outer bound to the capacity region
of the broadcast channel.

Denote this region as OB1. Similarly one can interchange
the roles of the receivers Y and Z and will lead to yet another
outer bound, and let this region be OB2. The intersection of
these two regions is normally termed as the Körner-Marton
outer bound.

Note that if (a, b) ∈ OB1∩OB2 then by skew symmetry of
BSSC we will have that (b, a) ∈ OB1∩OB2. Since the region
OB1 ∩OB2 is convex, this implies that

(
a+b
2 , a+b

2

)
∈ OB1 ∩

OB2. Thus, to compute the maximum sum-rate, it suffices to
consider the points of the form (a, a) ∈ OB1 ∩ OB2.

Repeating the above observation, if a point (R1, R2) =
(a, a) belongs to OB1, by the skew-symmetry of BSSC, it

3more precisely, in [7] the upper concave envelope was characterized, and
the characterization of the lower convex envelope follows by symmetry.
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will also belong to OB2, hence to the intersection of the two
regions.

Suppose we wish to compute

max
p(u,x):

U→X→(Y,Z)

I(X;Y ) + I(X;Z|U)− I(X;Y |U)

then from the earlier discussion, this will be the maximum
over x ∈ [0, 1] of

h
(x

2

)
− x− g(x)

It is easy to see that the global maximum occurs when x ∈
[0, 45 ] (otherwise maximum occurs when U is trivial and equals
I(X;Z)). Taking derivatives we obtain that maximum occurs
when

1

2
log2

2− x
x
− 1− 5

4
f

(
4

5

)
= 0,

i.e.
x∗ =

2

1 + 2c
= 0.4571429...,

where c = 2
(
1 + 5

4f
(
4
5

))
= 1.7548875...

Thus the maximum sum-rate of Körner-Marton outer bound,
SRKMOB satisfies

SRKMOB ≤ max
p(u,x):

U→X→(Y,Z)

I(X;Y ) + I(X;Z|U)− I(X;Y |U)

= 0.3743955... . (23)

Consider a pair (U,X) such that

P(U=0) = 1− a, P(X=0|U=0) = 0,

P(U=1) = a, P(X=0|U=1) =
4

5

where 0.8 ∗ a = x∗(defined above) or a = 0.5714286... .
Observe that for this choice

I(U ;Y ) = h

(
x∗

2

)
− ah(0.4) = 0.2206837... ,

I(X;Z|U) = 0.1537118... ,

I(X;Z) = 0.3006499... .

Hence (R1, R2) = (0.1871978..., 0.1871978...) lies on the
boundary of the Körner-Marton outer bound. Note that the
above point matches the bound given by (23). In summary,
the maximum sum-rate given by Körner-Marton outer bound
for the BSSC is 0.3743955... .

Historical remarks

Perturbation method as a tool in computing bounds on
cardinalities of auxiliary random variables were used by Amin
Gohari and Venkat Anantharam [4]. The perturbations used
in their work were support-preserving (or multiplicative) in
nature. In [8], the authors used the perturbation technique
(including the additive perturbation) to compute the local
maximas of I(U ;Y ) + I(V ;Z) − I(U ;V ) for the BSSC
channel. Using this technique they established the inequality
in Theorem 1 for the BSSC channel. Working on a related
problem, one of the authors realized that the inequality may
be more generally true for all binary input broadcast channels.

A (nontrivial) modification of the arguments in [8] yielded
a proof for this fact, which was then presented in [9]. To
present a complete picture to the community, it was decided
to combine the related proofs in [8], [9] into a single paper.

V. CONCLUSION

An information theoretic inequality is established for some
collections of five random variables. This inequality is used
to show that the sum-rate given by Marton’s inner bound
is indeed equivalent to that given by the randomized time-
division strategy. The inequality fails when |X | ≥ 3 so a
natural question is whether there is a correct generalization for
higher cardinality input-alphabets. It would also be useful to
find a more intuitive (geometric) argument to shed more light
into the actual counting of the sizes of typical sets. Here is an
equivalent formulation which is related to the sizes of certain
typical sets. It can be shown that the information inequality is
equivalent to showing that

H(U |Y ) +H(V |Z) ≥ min{H(U, V |Y ), H(U, V |Z)}

whenever (U, V )→ X → (Y,Z) forms a Markov chain, X =
f(U, V ) and |X | = 2.

ACKNOWEDGEMENTS

The authors are grateful to a number of comments on this
work from Abbas El Gamal and Amin Gohari. The authors
are also thankful for valuable suggestions from the anonymous
reviewers as well as Wei Yu, the associate editor.

REFERENCES

[1] T. Cover, “Broadcast channels,” IEEE Trans. Info. Theory, vol. IT-18,
pp. 2–14, January, 1972.

[2] ——, “Comments on broadcast channels,” IEEE Trans. Info. Theory,
vol. IT-44, pp. 2524–2530, October, 1998.

[3] K. Marton, “A coding theorem for the discrete memoryless broadcast
channel,” IEEE Trans. Info. Theory, vol. IT-25, pp. 306–311, May, 1979.

[4] A. A. Gohari and V. Anantharam, “Evaluation of Marton’s inner bound
for the general broadcast channel,” IEEE Transactions on Information
Theory, vol. 58, no. 2, pp. 608–619, 2012.

[5] C. Nair and A. El Gamal, “An outer bound to the capacity region of the
broadcast channel,” IEEE Trans. Info. Theory, vol. IT-53, pp. 350–355,
January, 2007.

[6] C. Nair, “A note on outer bounds for broadcast channel,” Presented at
International Zurich Seminar, 2010.

[7] C. Nair and Z. V. Wang, “On the inner and outer bounds for 2-
receiver discrete memoryless broadcast channels,” Proceedings of the
ITA Workshop, 2008.

[8] V. Jog and C. Nair, “An information inequality for the bssc channel,”
Proceedings of the ITA Workshop, 2010.

[9] C. Nair, Z. V. Wang, and Y. Geng, “An information inequality and
evaluation of Marton’s inner bound for binary input broadcast channels,”
International Symposium on Information Theory, 2010.

[10] R. W. Yeung, Information Theory and Network Coding, 1st ed. Springer
Publishing Company, Incorporated, 2008.

[11] S. I. Gelfand and M. S. Pinsker, “Capacity of a broadcast channel with
one deterministic component,” Probl. Inform. Transm., vol. 16(1), pp.
17–25, Jan. - Mar., 1980.

Yanlin Geng Yanlin Geng received his B.Sc. (mathematics) and M.Eng.
(signal and information processing) from Peking University, and Ph.D. (in-
formation engineering) from The Chinese University of Hong Kong in 2006,
2009, and 2012, respectively. He is currently a postdoctoral researcher in the
information engineering department at The Chinese University of Hong Kong.



LEFT HEADER 11

Varun Jog Varun Jog received his Bachelor of Technology (B.Tech) degree in
Electrical Engineering from the Indian Institute of Technology (IIT), Bombay
in 2010. Since then he has been with the EECS department in University of
California, Berkeley as a graduate student. His research interests are in fields
of information theory and optimal transport.

Chandra Nair Chandra Nair received his Bachelor of Technology (B.Tech)
degree in Electrical Engineering from the Indian Institute of Technology (IIT),
Madras in 1999. Concurrently, he also completed a four year nurture program
in Mathematics at the Institute of Mathematical Sciences (IMSc) under the
auspices of the National Board of Higher Mathematics (NBHM). He received
a Masters (2002) and PhD (2005) in electrical engineering from Stanford
University. Subsequently he was a postdoctoral fellow at the theory group in
Microsoft Research (Redmond) for two years. Following this he joined the
IE department, CUHK, as an assistant professor in Fall 2007. His research
interests are on fundamental problems in various interdisciplinary pursuits
involving information theory, combinatorial optimization, statistical physics,
and algorithms.

Zizhou Vincent Wang Vincent Wang is a system engineer at Altai Technolo-
gies located in the Hong Kong Science and Technology Park. He obtained
his PhD from the department of Information Engineering at the Chinese
University of Hong Kong in 2010. His research work mainly consisted of
studying inner and outer bounds for two and three receiver broadcast channels.


	Introduction
	Background
	Summary of results
	Randomized time-division strategy
	Relationship between Theorem 1 and non-Shannon type inequalities


	Proofs of Theorem 2 and Theorem 3
	Preliminaries
	Proof of Theorem 2
	Proof of Theorem 3

	Proof of Theorem 1
	Proof under special settings
	Reduction to two nontrivial cases
	Proof of XOR case
	Proof of AND case

	Sum-rate evaluations of inner and outer bounds for BSSC
	Sum-rate evaluation of Marton's inner bound
	Sum-rate evaluations of the outer bounds for BSSC
	Bound 2
	 Körner-Marton outer bound


	Conclusion
	References
	Biographies
	Yanlin Geng
	Varun Jog
	Chandra Nair
	Zizhou Vincent Wang


