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Abstract

Korner and Marton established the capacity region for thec2iver broadcast channel with degraded message
sets. Recent results and conjectures suggest that a sfoaigdrd extension of the Kérner-Marton region to more
than 2 receivers is optimal. This paper shows that this isthetcase. We establish the capacity region for a
class of 3-receiver broadcast channels with 2-degradedagessets and show that it can be strictly larger than
the straightforward extension of the Kérner-Marton regi®he idea is to split the private message into two parts,
superimpose one part onto the “cloud center” representiaggdmmon message, and superimpose the second part
onto the resulting “satellite codeword”. One of the receviinds the common message directly by decoding the
“cloud center,” a second receiver findsntirectly by decoding a satellite codeword, and a third receiver hytljpi
decoding the transmitted codeword. This idea is then usedtablish new inner and outer bounds on the capacity
region of the general 3-receiver broadcast channel withewn three degraded message sets. We show that these
bounds are tight for some nontrivial cases. The results estgtpat finding the capacity region of the 3-receiver
broadcast channel with degraded message sets is as atddaatdafinding as the capacity region of the general
2-receiver broadcast channel with common and private rmgessa
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. INTRODUCTION

A broadcast channel with degraded message sets is a modebrfomunication scenarios where a
sender wishes to communicate a common messagk teceivers, a first private message to a first subset
of the receivers, a second private message to a second sifitiketfirst subset and so on. Such scenario
can arise, for example, in video or music broadcasting oweireless network at varying levels of quality.
The common message represents the lowest quality versibe &ent to all receivers, the first private
message represents the additional information needetéddirst subset of receivers to decode the second
lowest quality version, and so on. What is the set of simeiaisly achievable rates for communicating
such degraded message sets over the network?

This question was first studied by Korner and Marton in 19117 They considered a general 2-receiver
discrete-memoryless broadcast channel with seddeand receiversy; and Y,. A common message
M, € [1: 2] is to be sent to both receivers and a private mesddge [1 : 2"#1] is to be sent only to
receiverY;. They showed that the capacity region is given by the setloftg pairs(R,, ;) such that

Ry < I(X;YA|U)

for somep(u,x). These rates are achieved using superposition coding [#. ddmmon message is
represented by the auxiliary random variableand the private message is superimposed to gendrate
The main contribution of [1] is proving a strong conversengsihe technique of images-of-a-set [3].
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The Korner-Marton characterization does not include tneoad term inside the min in the first inequalifyi; Y1). Instead it includes
the boundRy + R1 < I(X;Y1). It can be easily shown that the two characterizations avévaignt.



Extending the Korner-Marton result to more than 2 recaivess remained open even for the simple
case of 3 receiver¥, Y5, Y3 with 2-degraded message sets, where a common messageto be sent
to all receivers and a private message is to be sent only to receivér;. The straightforward extension
of the Korner-Marton region to this case yields the achiwaate region consisting of the set of all rate
pairs (R, R,) such that

RO S mln{](Ua)/l)vl(Uv}/?)v](Ua YE’»)}? (2)
Ry < I(X;Y4|U)

for somep(u, x). Is this region optimal?

In [4], it was shown that the above region (and its naturakesion tok > 3 receivers) is optimal
for a class of product discrete-memoryless and Gaussiadbast channels, where each of the receivers
who decode only the common message is a degraded versior ainthue receiver that also decodes
the private message. In [5], it was shown that a straightiodwextension of Korner-Marton region is
optimal for the class of linear deterministic broadcastnecieds, where the operations are performed in
a finite field. In addition to establishing the degraded mgssset capacity for this class the authors
gave an explicit characterization of the optimal auxiliaapdom variables. In a recent paper Borade et
al. [6] introducedmultilevel broadcast channels, which combine aspects of degradeddastachannels
and broadcast channels with degraded message sets. Tablysestd an achievable rate region as well as
a “mirror-image” outer bound for these channels. Their ecéidle rate region is again a straightforward
extension of the Korner-Marton regiontereceiver multilevel broadcast channels. In particulam@cture
5 of [6] states that the capacity region for the 3-receiveltileuel broadcast channels depicted in Figure 1
is the set of all rate pair&Ry, R;) such that

Ry < I(X;1|U)

for somep(u, z). Note that this region, henceforth referred tal@sBZT region, is the same as (2) because
in the multilevel broadcast channk} is a degraded version &f, and therefore (U;Y;) < I(U; Y;).
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Fig. 1. Multilevel 3-receiver broadcast channels. Messafjeis to be sent to all receivers and messade is to be sent only td4.

In this paper we show that the straightforward extensiorhefKorner-Marton region to more than 2
receivers is not in general optimal. We establish the c@paegion of the multilevel broadcast channels
depicted in Figure 1 as the set of rate pdif%, R;) such that

Ro < min{I(U;Y2), I(V;Y3)},
Ro+ Ry < I(V;Y3) + I(X; Y41]V)
for somep(u)p(v|u)p(z|v) (i.e. U — V — X forms a Markov chain), and show that it can be strictly

larger than the BZT region. In our coding scheme, the commessage\/, is represented by/ (the
cloud centers), part of/; is superimposed ofy to obtainl’ (satellite codewords), and the rest bf;



is superimposed oY to yield X. ReceiverY; finds M,, M; by decodingX. ReceiverY; finds M, by
decodingU, whereas receivers finds M, indirectly by decoding a satellite codewoid.

Although it seems surprising that higher rates can be aeliby havingY; decode more than it needs
to, this result can be explained by the fact that for a ger@ralceiver broadcast chann&l — (Y7,Y5),
one can have the condition§U;Y,) < I(U;Y>2) and I(X;Y1) > I(X;Y,) hold simultaneously [13].
Now, considering our 3-receiver broadcast channel sagnauppose we have a choice @fsuch that
I(U;Y3) < I(U;Ys). In this case, requiring both, andY; to directly decodd/ necessitates that the rate
of the common message be less tliéki; Y3). From the above fact, & may exist such thal — V' — X
and/(V;Y;) > I(V;Y3), in which case the rate of the common message can be increaséd; Y>) and
Y3 can still findU indirectly by decoding/. Thus, although the additional “degree-of-freedom” resgl
from the introduction ofi” comes at the expense of haviifg decode more than it is required to, it can
yield higher achievable rates.

The rest of the paper is organized as follows. In Section B, pwovide needed definitions. In Sec-
tion 1ll, we establish the capacity region for the multileteoadcast channel in Figure 1 (Theorem 1).
In Section IV, we show through an example that the capacijorefor the multilevel broadcast channel
can be strictly larger than the BZT region. In Section V, weeer the results on the multilevel broadcast
channel to establish inner and outer bounds on the capaaipnr of the general 3-receiver broadcast
channel with 2 degraded message sets (Propositions 5 alidke@how that these bounds are tight when
Y7 is less noisy than; (Proposition 7), which is a more relaxed condition than tegrddedness condition
of the multilevel broadcast channel model. We then exterdirther bound to 3-degraded message sets
(Theorem 2). Although Proposition 5 is a special case of T2, it is presented earlier for clarity of
exposition. Finally, we show that the inner bound of TheoBwhen specialized to the case of 2-degraded
message sets, wherd, is to be sent to all receivers and; is to be sent tdr; andYj, reduces to the
straightforward extension of the Korner-Marton regiorof@lary 1). We show that this inner bound is
tight for deterministic broadcast channels (PropositiG) &nd wheny; is less noisy thary; and Y5 is
less noisy thary; (Proposition 11).

[I. DEFINITIONS

Consider a discrete-memoryless 3-receiver broadcashehannsisting of an input alphabat, output
alphabets);, )» and s, and a probability transition functiop(y, v, y3|x).

A (2nfo ontr )y 2-degraded message set code for a 3-receiver broadcast channel consists of (i) & pai
of messagesM,, M) uniformly distributed overl : 27%] x [1 : 27f1], (ii) an encoder that assigns a
codewordz™(mg, m;), for each message pdimg, m;) € [1 : 2"%] x [1 : 2"%], and (iii) three decoders,
one that maps each receivgfl sequence into an estimatéy;, 1) € [1 : 2"%] x [1 : 2"%1], a second that
maps each received’ sequence into an estimafey, € [1 : 2"/%], and a third that maps each received
Y;' sequence into an estimate; € [1 : 2],

The probability of error is defined as

P™ = P{M, # M, or My, # M, for k = 1,2, or 3}.

A rate tuple(Ry, R,) is said to be achievable if there exists a sequenc&®fo, 2" n) 2-degraded
message set codes with™ — 0. The capacity region of the broadcast channel is the closutee set
of achievable rates.

A 3-receivermultilevel broadcast channel [6] is a 3-receiver broadcast channkl2xitegraded message
sets Where(yi, ya, ys|x) = p(y1, ys|z)p(y=|y:) for every (x, yi, y2, y3) € X x Y1 x V2 x V5 (see Figure 1).

In addition to considering the multilevel 3-receiver broast channel and the general 3-receiver broad-
cast channel with 2-degraded message sets, we shall als@eothe following two scenarios:

1) 3-receiver broadcast channel with 3 message sets, wiigiie to be sent to all receiverd/; is to

be sent taY; and Y3, and M, is to be sent only td4.



2) 3-receiver broadcast channel with 2-degraded messagiendeerelV/, is to be sent to all receivers
and M, is to be sent td; andYs.
Definitions of codes, achievability and capacity regionstfese cases are straightforward extensions of
the above definitions. Clearly, the 2-degraded messageceraisos are special cases of the 3-degraded
message set. Nevertheless, we shall begin with the spéasa of multilevel broadcast channel because
we are able to establish its capacity region.

[1l. CAPACITY OF 3-RECEIVER MULTILEVEL BROADCAST CHANNEL
A key result of this paper is given in the following theorem.

Theorem 1: The capacity region of the 3-receiver multilevel broadadsinnel in Figure 1 is the set
of rate pairs(Ry, R1) such that

Ry < min{I(U; Y2), I(V;Y3)},
R < I(X;vi|U), @
Ro+ Ry < I(V;Y3) + I(X; Y3|V)

for somep(u)p(v|u)p(z|v), where the cardinalities of the auxiliary random varialslessfy| /|| < || X||+4
and [[V[| < [[X]* + 5] x| + 4.

Remark 3.1: It is straightforward to show by setting = V' in the above theorem that the BZT
region (3) is contained in the capacity region (4). We showvthim next section that the capacity region
(4) can be strictly larger than the BZT region.

Remark 3.2: It is straightforward to show that the above region is conaex therefore there is no
need to use a time-sharing auxiliary random variable.

The proof of Theorem 1 is given in the following subsectiov first prove the converse. In Subsec-
tion 111-B, we prove achievability, and in Subsection ll|-@e establish the bounds on the cardinalities
of the auxiliary random variables.

A. Converse of Theorem 1

We show that the region in Theorem 1 forms an outer bound tedpeacity region. The proof is quite
similar to previous weak converse and outer bound proof@-f@ceiver broadcast channels (e.g., see [7],
[8], [9]). Suppose we are given a sequence of codes for thélewel broadcast channel witR™ — 0.

For each code, we form the empirical distribution fag, M, X™.

Since X — Y; — Y; forms aphysically degraded broadcast channel, it follows that the code rate pair

(Ro, Ry) must satisfy the inequalities

Ry < I(X;|U)

for somep(u, z), whereU, X, Y1,Y, are defined as follows [7], [12]. Ldt; = (M, Y™ ), i=1,...,n,
and let() be a time-sharing random variable uniformly distributedrahe sef1, 2, ..., n} and independent
of X" Y'Y Yo' We then setU = (Q,Ugp) and X = Xg, V) = Yig, andY; = Ys,. Thus, we have
established the bounds in 5.

Next, since the decoding requirements of the broadcastnethath — (Y7, Y3) makes it a broadcast
channel with degraded message sets, the code rate pair atigéy she inequalities

Ry < min{I(V;Y3), I(V, Y1)},
Ry + Ry < I(V;Y3) + I(X;Y1|V)

for somep(v, z) [8], where U, is identified as follows. LeV; = (M, Yy ™", Y; ), i = 1,...,n, then
we setV = (Q, Vp).



Combining the above two outer bounds, we see that V — X forms a Markov chain. Observe that
this Markov nature of the auxiliary random variables alonighvwhe degraded nature of — Y; — Y,
implies that/(V;Yy) > I(V;Ys2) > I(U; Y3).

Thus we have shown that the code rate p&¥, R;) must be in region (4). This establishes the converse
to Theorem 1.

B. Achievability of Theorem 1

The interesting part of the proof of Theorem 1 is achievgbilVe split the rate of the private message
M, into two partsiMy,, M, with ratesSy, So, respectively. Thus®; = S; + S5. The common message
M, is represented by/, (M, M;,) is represented by, and (M,, M;) is represented by. ReceiverY;
finds (M,, M;) by decodingX, receiverY; finds M, by decodingl, and receiver; finds M, indirectly
by decodingV. We now provide details of the proof.

Code Generation:

Fix a distributionp(u)p(v|u)p(x|v). Randomly and independently generaté® sequences:”(my),
mo € {1,2,...,2"%} .= [1 : 27%] each distributed uniformly over the set etypical’ u" sequences.
For eachu”(mg), randomly and independently gener&e' sequences™(myg,s:1), s; € [1 : 2™,
each distributed uniformly over the set of conditionadlyypical v sequences given™(m,). For each
v"(myg, s1) randomly and independently generae™ sequences™(my, s1,s2), so € [1 : 2"%2], each
distributed uniformly over the set of conditionaliytypical ™ sequences given'(my, s1).

Encoding:
To send the message pditg, m;) € [1 : 2] x [1 : 2"f1], the sender expresses, by the pair
(s51,82) € [1:2"1] x [1:272] and sends:™(my, 51, 52).

Decoding and Analysis of Error Probability:

1) ReceiverY; declares thatn, is sent if it is the unique message such thatm,) andys are jointly
e-typical. It is easy to see that this can be achieved withtiantlly small probability of error if

Ry < I(U;Y5). (6)

2) ReceiverY; declares thatm,, s1, s2) is sent if it is the unique triple such that (my, s;, s2) and
y7 are jointly e-typical. It is easy to see using joint-decoding that thisatkng succeeds with high
probability as long as

R0+Sl +Sg < I<X7}/i),
S+ Sy < I(X;11|U), (7)
Sy < I(X;Y4|V).
3) ReceiverY; finds mg as follows. It declares thaty, € [1 : 2"%] is sent if it is the unique index
such thatv™(mo, s;) andyy are jointly e-typical for somes; € [1 : 2"%1].
We claim that receivel’; can correctly decode:, with arbitrarily small probability of error if
Ry + 51 < I(V;Y3). (8)

Since Ry + 51 < I(V;Y3), there existss > 0 such thatR, + S; < I(V;Y;) — 20. Suppose

(1,1) € [1: 2] x [1: 2] is the message pair sent, then the probability of error geeraver

fWe assume strong typicality [10] throughout this paper.



the choice of codebooks can be upper bounded as follows

P™ < P{(V™(1,1),Y:) are not jointlye-typical}
+ P{(V"(mo, s1), Ys") are jointly e-typical for somem, # 1}

< & + Z ZP{ (mo, 1), Ys") jointly e-typical}

mo#l s1

@ 5/_'_2n(R0+S1)2—n(1(V§YS)_5)
(c)
S 5/+2—n57

where(a) follows by the union of events boun¢h) follows by the fact that forn, # 1, V" (my, s1)
and Yy are generated completely independently and thus each hplibpderm under the sum is
upper bounded by U (Vi¥3)=9) [10] asn — oo, (c) follows from Ry + S, < I(V;Ys) — 25. We
know thaté’ — 0 ase — 0 and therefore with arbitrarily high probability, afy”(my, s;) jointly
e-typical with the receivedyy* sequence must be of the forin"(1,s;). Hence receively; can
correctly decodeVl, with arbitrarily small probability of error if

R0+Sl < ](V7Y},)

Thus, from (6), (7), and (8), all receivers can decode th&iended messages with arbitrarily small
probability of error if
Ry < I(U;Ya),
R0—|—Sl —|—SQ < I(X,Yi),
S1+ S < I(X;Y4|U),
Sy < I(X;M|V),
Ro +Sl < I(V7Y},)
SubstitutingS; + 5> = R; and using the Fourier-Motzkin procedure [17] to elimin&teand S5 shows

that any rate paif Ry, R;), satisfying the conditions in 4, is achievable. This cortgsethe proof of
achievability of Theorem 1.

We shall refer to the decoding step Bf asindirect decoding, since the receiver decodésindirectly
by decodingl’. Do we achieve the same region by havirigjointly decode M,, M1;? To answer this
guestion, note that for the joint decoder, the probabilitewor can be made arbitrarily small if

Ry + 51 < I(V;Y3),
S1 < I(V; Y3|U).
Since bounding the probability of error for the indirect deer requires only the first inequality, it is in
general less restrictive than the joint decoder.
Now, combining the conditions for the joint decoder to swctevith (6) and (7) and performing

Fourier-Motzkin to eliminates; and S,, we obtain the set of rate pai(®, ;) satisfying

Ry < min{I(U;Y3),1(V;Y3)},

Ry < I(X;Y1|U),

Ro+ Ry < I(V;Y3) + I(X; Y1|V),
Ry <I(V;Y3|U) + 1(X; Y1[V)

for somep(u)p(v|u)p(z|v).



Note that this region involves one more inequality than tapacity region given by (4). However, by
optimizing the choice oi/ for each given/ we can show that this inequality is not necessary. There are
two cases:

I(U;Ys) < I(U;Y3): In this case it is easy to see that the optimal choice is td’setU. Thus, indirect
decoding and joint decoding yield the same region.

I(U;Ys) > I(U;Y3): In this case for any/; at the corner point of the indirect decoding region préxadi
by the pair of random variable§U, V), we have R} = [(X;Yi|V) + min{/(V;Y1|U),[(V;Y3) —
min[/(U;Y3), I(V;Y3)]}. Clearlymin{I(U;Y5), I(V;Y3)} > I(U;Ys), which implies that

Ry < I(V;Y3|U) + I(X; 11| V),

i.e., R} satisfies the additional constraint that joint decoding asgs and hence the corner point is in
the joint decoding region. Thus the regions obtained viaréed decoding and those obtained via joint
decoding are equal.

Remark 3.3: In spite of this equivalence, indirect decoding offers s@deantages over joint decoding:

1) Indirect decoding yields less inequalities than jointating, and thus results in simpler achievable
rate region descriptions. This is akin to the equivalentdiuipler description of the Han-Kobayashi
achievable rate region for the interference channel in.[15]

2) Proving the converse for the joint decoding region dlyeseems very difficult. Using indirect
decoding (which shows that the extra inequality in the dpson of the joint decoding region is
superfluous) makes proving the converse quite straigh#iaw

3) As we generalize achievability to broadcast channelb wérious message set requirements, it is
not clear that the extra inequalities imposed by joint dewgpavould still be redundant. Hence, it
is conceivable that indirect decoding can outperform joi@toding in general.

C. Proof of Cardinality Bounds in Theorem 1

The bounds on the cardinality of the auxiliary random vddalare based on a strengthened version of
Carathéodory’s theorem by Fenchel and Eggleston statgd ]nThe strengthened Carathéodory theorem
along with standard arguments [12] imply that for any cha¢he auxiliary random variablé’, there
exists a random variabl&; with cardinality bounded by|X|| + 1 such that/(U;Y;) = I(U;;Y>) and
I(X;Yh|U) = I(X;Y1|Uy). Similarly for any choice ofl/, one can obtain a random variablg with
cardinality bounded by|X'|| + 1 such that/(V;Y3) = I(Vy;Y3) and I(X;Y3|V) = I(X;Y1|Vi). While
these cardinality-bounded random variables do not chahgentimerical value of the bounds in (4), it
is not clear that they preserve the Markov condition — V; — X. To circumvent this problem and
preserve the Markov chain, we adapt arguments from [11] +evbiee authors dealt with the same issue
- to establish the cardinality bounds stated in Theorem t.cBmpleteness, we provide an outline of the
argument.

This argument is proved in two steps. In the first step a randamable/; and transition probabilities
p(v|uy) are constructed such that the following are held constami; the marginal probability(X') (and
hencep(Y1), p(Y2), p(Y3)), H(Y1|U), H(Y2|U), H(Y3|U), H(Y3|V,U), and H(Y;|V,U). Using standard
arguments [12], [11], there exists a random varidBlgwith cardinality of U; bounded by|X'|| 4+ 4) and
transition probabilitiew(v|u,) that satisfies the above constraints. Note that the disivibwf V' is not
necessarily preserved and hence denote the resultingmaadoable as/”’.

We thus have random variablés — V' — X such that

I(U;Yz) = 1(Uy; Ya),

(U;Ys) = I(U;Ys),
I(X;n|U) = (X Yi|th), ()
HV;n|U) = I(V'5 Y[ Uy).



In the second step, for eadh = u; a new random variabl&; (u;) is found such that the following
are held constan(x|u, ), the marginal distribution oX" conditioned onlU; = uy, H(Y1|V', Uy = wy),
and H (Ys|V’', U; = uy). Again standard arguments imply that there exists a randammaleV; (u,) (with
cardinality of /; bounded by||X|| + 1) and transition probabilitiep(z|v,(u,)) that satisfies the above
constraints. This in particular implies that

I(Vi(Uh); Ya|Uh) = I(V'; Y3|Un) = I(V: Y3|U), (10)
[(Vi(Uh): Ya|Uy) = I(VE YU = 1V Y3 |U).
Now, setV; = (U, V1(U;)) and observe the following as a consequence of Equationsn(®)X0).
I(Vi;Ys) = I(U; Ys) + I(Vi(Un); Y3|Uh) = L(U; Y3) + I(V; Y3|U) = I(V; Y3),
I(X;Y3VA) = (X YA|Uy) — T(A(Uy s YilUy) = DX A |U) = TV VA |U) = T(X: Y |V).

We thus have the required random varialllgsV; satisfying the cardinality boundsY'|| +4 and (|| X|| +
4)(||X]| + 1), respectively as desired. Furthermore, observe that f(V;) and hencd/; — V; — X
forms a Markov chain.

IV. MULTILEVEL PRODUCT BROADCAST CHANNEL

In this section we show that the BZT region can be strictlyllan¢han the capacity region in Theorem 1.
Consider the product of two 3-receiver broadcast channeendy the Markov relationships

X1HY31HY11HY217
Xo — Yo — Yo (11)

In Appendix I, we derive the following simplified charactations for the capacity and the BZT regions.

Proposition 1: The BZT region for the above product channel reduces to thefsate pairs(Ry, ;)
such that

Ry < I(Uy; Ya1) + 1(Us; Ya2), (12a)
Ry < I(Uy; Ya), (12b)
Ry < I(X1; Yii|Uy) + I(Xo; Yia|Us) (12c)

for somep(u1)p(us)p(z1|ui)p(z|uz).

Proposition 2: The capacity region for the product channel reduces to thefsete pairs(Ry, R;)
such that

Ro < I(Uy; Ya1) + 1(Us; Yaa), (13a)
Ry < I(V1;Ys1), (13Db)
Ry < I(X0; Yu|Uy) + 1(Xy; Yia|Us), (13c)
Ro+ Ry < I(Va; Yar) + 1(X; Y [Vi) + 1(Xa; Yia|Us) (13d)

for somep(u:)p(v1|ur)p(z1|or)p(us)p(@2|us).
Now we compare these two regions via the following examples.
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Fig. 2. Product multilevel broadcast channel example.

Discrete-Memoryless Example:

Consider the multilevel product broadcast channel exampleigure 2, whereX; = X, = Vi =
Vo1 = {0,1}, andyll = V31 = V3o = {O,E,l}, Y3 = Xy, Yo = Xo, the ChﬁnnEl%l — Y1 and
Y1, — Y, are binary erasure channels (BEC) with erasure probabﬁlitynd the channeY;; — Y5
is given by the transition probabilitie®{Y5, = E|Y); = E} = 1, P{Yy = E|Y};; = 0} = P{Ys =
E|lYy =1} =2/3, P(Yy =0|Yy; =0} = P{Yy = 1]Y}; = 1} = 1/3. Therefore, the channel; — Yy,
is effectively a BEC with erasure probability/6.

The BZT region can be simplified to the following.

Proposition 3: The BZT region for the above example reduces to the set opaite( Ry, R, ) satisfying
. [P  q
Ro < min {§ + 3.7},
o < min 6 + 5 p
1—
Ri<—F+1-g (14)

for some0 < p,q < 1.

The proof of this proposition is given in Appendix I. It is ¢eistraightforward to see thak,, R,) =
(3,13) lies on the boundary of this region.

The capacity region can be simplified to the following
Proposition 4: The capacity region for the channel in Figure 2 reduces tomkeate pairs(Ry, ;)
satisfying
Ry < min{% + f,t},

2
1—r

R, < +1—s, (15)

1—1
R0+R1§t+T+1—S
forsomel <r <t<1,0<s< 1.

The proof of this proposition is also given in Appendix |I. Mdhat substituting = ¢ yields the BZT
region. By setting- = 0,s = 1,¢t = 1 it is easy to see thdtR,, ;) = (1/2,1/2) lies on the boundary of
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the capacity region. On the other hand, f&y = 1/2, the maximum achievabl®&; in the BZT region is
5/12. Thus the capacity region is strictly larger than the BZTioag

1. T
=+ KM region
—e— Capacity region

Ry

05+

0 0.1 0.2 0.3 0.4 0.5 0.6 (2/510) 0.7
Ry
Fig. 3. The BZT and the capacity regions for the channel iufe@.

Figure 3 plots the BZT region and the capacity region for tkangple channel. Both regions are
specified by two line segments. The boundary of the BZT regmmsists of the line segment$; 3/2)
to (0.6,0.2) and(0.6,0.2) to (2/3,0). The capacity region on the other hand is formed by the pdinef
segments(0,3/2) to (1/2,1/2) and (1/2,1/2) to (2/3,0). Note that the boundaries of the two regions
coincide on the line segment joinir(@.6,0.2) to (2/3,0).

Gaussian Example:
Consider a 3-receiver Gaussian product multilevel brostdclaannel, where

Yo =X+ 2y, Y11 =Ys + 2y, Yo =Y + Zs,
Yio = Xo+ 2y, Yoo = Y19+ Zs.

The power of noise componeit is NV, for i = 1,2,...,5. We assume a total average power constraint
PonX = (Xl,Xg).
Using Gaussian signaling, it can be easily shown that the BXjion is the set of al(R,, R;) such

that
ab B(P — P) )
Ry <C e = , 16
0= <ozPl+N1+N2+N3>+ <B(P—P1)+N4+N5 (16)

OéPl
< -
Fo<C <aP1 +N1) ’
aP; B(P— P)
<
Ry C<N1 N2)+C( N, ,

forsome0 < P, <P, 0<a,B<1.
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Now using Gaussian signaling to evaluate region (13), wainlihe achievable rate region consisting
of the set of all( Ry, R1) such that

CLPl b(P—P1> )
Ro<C c-
0= Qa+m+m+m)+(ﬂ94m+m+m’

a—+ ap P1
Ry <C
0 1—CL—CL1P1—|—N1)

Ry+ R <C

CLP1+N1+N2+N3 B(P—P1)+N4—|—N5

(i
(

C(cml) (MP_RO’ an
(

Ny + Ny Ny

a+a1 Pl (1—&—&1)P1)
+c +
) < N1+ N

Ry+ R <C
JURE 1—(1,—@1P1+N1

o)

for some0 < P, < P and0 < a,ay,b,a+a; < 1.

Now consider the above regions with the parameters valbdes:1, N; = 0.4, N, = N3 = 0.1, Ny, =
0.5, N; = 0.1. Fixing R; = 0.510g(0.49/0.3), we can show that the maximum achievalitg in the
Gau33|an BZT region i8.51og(2.2033957..). This is attained using the valué3 = 0.5254962.., aP =
0.02003176.., and 3P, = 0.2852085...

On the other hand, setting; = 0.03, P, = 0.5204962, and retaining the valuesP, = aP, =
0.02003176.., bP, = P, = 0.2852085.., the inequalities for region 17 reduce to

Ry < 0.51log 2.2038147..
Ry < 0.51log 2.2761073....
Ry + Ry <0.510g2.2038138.. 4+ 0.510g(0.49/0.3)
Ry + Ry <0.510g2.276102975.. + 0.51log 1.5842896.. = 0.510g 2.2077631.. 4+ 0.510g(0.49/0.3).

Therefore the rate paifSRy, R1) = (0.510g 2.2038147..,0.510g(0.49/0.3)) is achievable (which is outside
the BZT region).

Remark 4.1: Note that the BZT region can be viewed as a restriction of #pacity region onta; = 0
plane. At the above extreme point of the BZT region it can beaghthat: if we keep the productsr,
(P, constant, then any small perturbation?, < 0, Aa; > 0,0.1P, (P, +0.4)/(z(z —0.1))Aa; > —AP,
wherex = aP; + 0.5, leads to a strict increase iR, for a fixed R;. The improvement presented is
obtained by takingA P, = —0.005, and Aa; = 0.03, respectively.

Thus restricted to Gaussian signalling the BZT region (&2&tiictly contained in region (13). However,
we have not been able to prove that Gaussian signaling ismaptor either the BZT region or the capacity
region.

Remark 4.2: The reader may ask why we did not consider the more generduptrahannel

X1HY31HY11HY217
Xy — Y12 — Yoy — Yo

In fact we considered this more general class at first but weeble to show that the capacity region
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conditions reduce to the separated form

Ry < I(Uy; Yor) + 1(Uy; Yaa),
Ro < I(Vi;Yar) + 1(Va; Ysa),
Ro+ Ry < I(Uy; Yar) + I(Us; Yoz ) + I(Xy; Y11 |Ur) + I(Xy; Yi2|Us),
Ry + Ry < I(Vi; Yar) + 1(Va; Yag) + I( X5 Yiu [Vi) + 1(Xo; Yia|Va)
)

for somep(uy)p(v:|ur)p(a1|v1)p(ue)p(velus)p(aa|vs).

V. GENERAL 3-RECEIVER BROADCAST CHANNEL WITH DEGRADED MESSAGESETS

In this section we extend the results in Section Ill to obtainer and outer bounds on the capacity
region of general 3-receiver broadcast channel with degiadessage sets. We first consider the same
2-degraded message set scenario as in Section Il but witheucondition thatY — Y; — Y, form a
degraded broadcast channel. We establish inner and outeidbdor this case and show that they are
tight when the channek — Y] is less noisy than the channeK — Y5, which is a more general class
than degraded broadcast channels [13]. We then extend sultsdo the case of 3-degraded message
sets, wherel/, is to be sent to all receiverd/; is to be sent to receiverg, andY; and M, is to be
sent only to receivel;. A special case of this inner bound gives an inner bound tac#pacity of the
2-degraded message set scenario wilégds to be sent to all receivers ard; is to be sent to receivers
Y; andY; only.

A. Inner and Outer Bounds for 2 Degraded Message Sets
We use rate splitting, superposition coding, indirect di#ng, and the Marton achievability scheme for
the general 2-receiver broadcast channels [14] to estatties following inner bound.

Proposition 5: A rate pair (R, R;) is achievable in a general 3-receiver broadcast channél 2vit
degraded message sets if it satisfies the following inetgsli

Ry < min{[I(Va; Y2), I(V3; Y3)},
2Ry < I(Va; Ya) 4 (Vs Ys) — I(Va; Va|U),
Ry + Ry <min{I(X; Y1), I(Va; Ya) + I(X; V1| Va), I(Va; Ya) + I(X; V1| V3) 1, (18)
2Ry + Ry < I(Va; Ya) + I(Va; Ya) + I(X; Y1 [Va, Va) — I(Va; V3|U),
2Ry + 2Ry < I(Vo; Yo) + I(X; Yi Vo) + I (Vs Ys) + I(X: Y [V3) — I(Va; V3|U),
2Ry + 2R, < I(Va; Ya) + 1(Va; Ya) + I(X; V1 |U) + I(X; V1| Va, Va) — I(Va; Va|U),

for somep(u, vy, v3, x) = p(u)p(ve|u)p(z, v3|ve) = p(w)p(vs|u)p(z, v2|vs) (Or in other words, botl/ —
Vo — (V3, X) andU — Vi — (V;, X) form Markov chains).

Proof: The general idea is to splid/; into four independent partsi/iq, Mq1, Myo, and M;s.
The message paiM,, M) is represented by/. Using superposition and Marton coding, the message
triple (Mo, Mo, Mi2) is represented by, and the message triple\/y, Mo, Mi3) is represented bys.
Finally using superposition coding, the message (i, M) is represented by. ReceiverY; decodes
U, V5, V3, X, receiversy; andYs; find M, via indirect decoding of;, and Vs, respectively, as in Theorem 1.

We now provide a more detailed outline of the proof

Code Generation: Let Ry = Sy + S1 + Sy + S3, where theS;, > 0,7 = 0,1,2,3 and Ty, > 5,
T3 > S3. Fix a probability mass function of the required fogtu, vy, v3, ) = p(u)p(va|u)p(x, v3|ve) =
p(u)p(vs|u)p(z, va|vs).

Randomly and independently generatg’o+%) sequences:(my, so), mo € [1 : 2], 50 € [1 :
27%] each distributed uniformly over the set of typical sequences. For eaalt(my,s;) randomly
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and independently generatgr) 2"™> sequencesy (mo, so, t2), t2 € [1 : 2772] each distributed uniformly
over the set of conditionally typicaly sequences, angh) 2" sequencesy (my, so, t3), t3 € [1 : 2773]
each distributed uniformly over the set of conditionallpital v7 sequences. Randomly partition t?r&>
sequencesy (my, so, t2) into 252 equal size bins and the"”s % (my, so,3) Sequences int@™: equal
size bins. To ensure that each product bin contains a jotgfical pair (v (mo, so, t2), V5 (mo, So, t3))
with arbitrarily high probability, we require that (see [1f6r the proof)

Sy + S5 < Ty + Ty — I(Va; V3| U). (19)

Finally for each chosen jointly typical paiws(mo, so,t2), v5(mo, so,t3)) in each product binss, s3),
randomly and conditionally independently gener2ité: sequences™(my, s, s2, S3,51), 51 € [1 : 271,
each distributed uniformly over the set of conditionallpityal 2™ sequences.

Encoding:
To send the message pdimng, m;), we expressn; by the quadruplg(sy, s1, s2,s3) and send the
codewordX™(my, So, S2, S3, S1)-

Decoding:

1) ReceiverY; declares tha{my, so, s2, s3, 1) iS sent if it is the unique rate tuple such thgt is
jO|ntIy typ|Cal with ((U”(mo, So), U;L(mo, S0, tg), ’Ug(mo, So, tg), x”(mo, S0, S2, S3, 81)), and s, is the
product bin number ot (my, so, t2) andss is the product bin number af} (mq, so, t3). ASsuming
(mo, S0, S1, S2,83) = (1,1,1,1,1) is sent, we partition the error event into the following egen

) Y ) Y

a) Error event corresponding 0, so) # (1, 1) occurs with arbitrarily small probability provided
R0+So+51+52+53<I(X;1/1). (20)

b) Error event corresponding tag = 1,50 = 1,59 # 1,s3 # 1 occurs with arbitrarily small
probability provided
S1+ Sy + S3 < I(X; Yh|U). (21)

c) Error event corresponding @y, = 1,50 = 1,85 = 1,83 # 1 occurs with arbitrarily small
probability provided
S1+ S5 < I(X;Y1|U, Vi) = I(X; Y1 Va). (22)

The equality follows from the fact thdf — V, — (V5, X)) form a Markov Chain.
d) Error event corresponding teg = 1,59 = 1,82, # 1,s3 = 1 occurs with arbitrarily small
probability provided
Si+ Sy < I(X;Y4|U, V3) = I(X; Y1 V5). (23)

The above equality uses the fact tliat— V5 — (14, X)) forms a Markov chain.
e) Error event corresponding teg = 1,s9 = 1,85 = 1,83 = 1,57 # 1 occurs with arbitrarily
small probability provided

St < I(X;YA|U, Vo, Va) = I(XY3|Va, V3). (24)
Note that the equality here uses a weaker Markov strucdture (15, V3) — X.

Thus receiverY; decodes(my, so, s2, s3, s1) With arbitrarily small probability of error provided
equations (20)-(24) hold.

2) ReceiverY, decodes(my, sg) (and hencem,) via indirect decoding usin@} (my, so,t2) (as in
Theorem 1). This can be achieved with arbitrarily small jaiaibty of error provided

Ry + So+ T < I(Va;Ys). (25)
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3) ReceiverY; decodes(my, so) (and hencem,) via indirect decoding usin@j (my, so,t3) (as in
Theorem 1). This can be achieved with arbitrarily small aiaibty of error provided
R0+50+T3 < ](V},,Y},) (26)
Combining equations (19)-(26) we obtain the following

Sy < T,
Sy < T,
Sy + 83 KTy + Ty — I(Va; Va|U),
Ro+ Ry < I(X; Y1),
S+ Sy + 83 < I(X;|U),
S1+ 83 < I(X; V1| Va),
Si+ Sy < I(X;Y1|V3), (27)
S < I(X;Y1|V2,V3),
Ro + So + Ty < I(Va;Y5),
Ry + So + T3 < I(V3;Y3)
for somep(u, v, v3,x) = p(u)p(va|v)p(z, v3|ve) = p(u)p(vs|vy)p(z, v2|vs). Using the Fourier-Motzkin
procedure to eliminatés, 75, .51, S,, and Sz, we obtain the inequalities in (18). [ |

Remark 5.1: The above achievability scheme can be adapted to any josttitition p(u, ve, vs, ).
However by lettingl, = (V;, U) and lettingV; = (V3, U) we observe that the region remains unchanged.
Hence, without loss of generality we assume the structutieeofuxiliary random variables as described in
the proposition. Further, using the constructiorl/fV; observe that one can restrict to triplgg V5, V3),
whereU = f(V3) = g(V3), and f and g are two deterministic mappings. Note that the auxiliaryd@n
variables in the outer bound described in the next subseelsn possess the same structure.

Remark 5.2: A special choice of the auxiliary random variables is tolgeor V5 equal toU (i.e., only
one of the the receivers tries to indirectly decadg), say letV, = U. This reduces the inequalities in
Proposition 5 (after removing the redundant ones) to:

Ry < min{I(U;Y2), I(V3;Y3)},
Ry + Ry <min{I(X;Y3), [(Va; Ys) + I(X; Y1|V3), [(U; Ya) + 1(X; Y4|U) }, (28)
whereU — V3 — X form a Markov chain.
This region includes the capacity region of the multileva$e in Theorem 1 and hence is tight in this
setting.
Remark 5.3: Note that the rate splitting scheme we used in the proof ofptie@osition includesate
transfer, where part of the split messagé/{;,, is combined with), and encoded usin@/. This rate

transfer can be used also in the Korner-Marton 2-receiveadrast channel with degraded message sets.
Recall that without rate-splitting, we obtain the decodaugpstraints

Ry < I(U;Y5),
Ro+ Ry < I(X; Y1), (29)
Ry < I(X;Y|U).

Using rate splitting, we dividel/; into two independent parts at ratég, and R,;, and setS; =
Ry + Ry, Sz = Ry;. This yields the decoding constraints constraints:

RQ+R10 <I(U;Y§),
Ro+ R0+ R < I(X; Y1),
Ry < I(X,YHU)
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Performing Fourier-Motzkin procedure, we obtain

Ry + Ry < I(X; Y1), (30)
Ro+ Ry < I(U;Y3) + I1(X;Y1|U).

It is easy to see that the region given by the new rate sglitirguments is identical to the original
region. However the form of the new region is more conduaivthe establishment of the weak converse.
The same equivalence holds for the 3-receiver broadcasnehavith 2-degraded message sets discussed
in Section Il

Similar rate transfer arguments have been used before.nBtanice, Liang [19] used it for the two-
receiver broadcast channels to obtain a region that is @t l@s large as the Marton’s region. The
equivalence of the region obtained by Liang to the originartdn’s region was later established in
[18].

We now establish the following outer bound.

Proposition 6: Any achievable rate paifR,, R,) for the general 3-receiver broadcast channel with
2-degraded message sets must satisfy the conditions:

Ro < min{I(U; Y1), I(Va; Ya) — I(Vas VA |U), (Vi Ya) — I(V YA|U)},
Ry < I(X;V4|U),

for somep(u, ve, v3, x) = p(u)p(va|u)p(z, vs|u) = p(u)p(vs|u)p(z, ve|vs), i.€., the same structure of the
auxiliary random variables as in Proposition 5. Further oae restrict the cardinalities @f, V5, V5 to:
U] < [[X]] + 6, [Vall < ([[X]] + D([[X]] +6), and [[Vs]| < (| X ]| + 1) (|| X]] + 6).

Proof: The proof follows largely standard arguments. The auxillandom variables are identified as
Ui = (Mo, Y{7Y), Vay = (U, Yy ), Vi = (U;, Y37, ). With this identification inequalitie®y < 1(U;Y;)
and R, < I(X;Y,|U) is immediate. The other two inequalities also follow frorartard arguments and
is briefly outlined here.

nRy < ne, + Z T(Mo; YailY5 i1 1)

<nen + Y T(Mo, Yy 'ty Y75 Vo) = TV Yar| Mo, Yy )

e+ 3 1Mo, Yyt Vi Vi) = 1Yy s Yial Mo, Vi)

= nen + > 1 (Uzi; Yai) — I(Uni; Yii| Us),

wheree,, — 0 asn approaches infinity, anth) follows by the Csiszar sum equality.

The cardinality bounds are established using a similarraegut as in I1I-C. To create a set of new
auxiliary random variables with the bounds of Propositionw@ first replacel, by (15, U) and Vs by
(V3,U). Itis easy to see from the Markov chain relationships- V, — (V3, X) andU — V3 — (V3, X)
that the following region is same as the that of Proposition 6

Ro < min{I(U; Y1), I(U, Va; Ya) + I(X; Y|U, V) — I(X : Y1|U),
I(U, Vs;Y3) + 1(X; YA|U, Vs) — I(X - Y1|U) L, (31)
Ry < I(X:Wh|U).
Then using standard arguments one can replaty U* satisfying||i/*|| < ||X|| + 6, such that the distri-

bution of X and H (Y1|U), H(V1|U, Va), H(Y1|U, V), H(Ys|U), H(Ys|U, V2), H(Y>|U), and H (Y2|U, Vs)
are preserved. Now for eadf* = « one can find/;*(«) with cardinality less thaf{ X’|| + 1 each such that
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the distribution of X' conditioned onU* = u, H(Y,|U* = u, V), and H(Y2|U* = u,V;) are preserved.
Similarly one can find for eacl/* = u, a random variabld/;*(u) with cardinality less than|X|| + 1
each such that the distribution &f conditioned onU* = u, H(Y1|U* = u, V3), and H(Y3|U} = u, V3)
are preserved. This yields random variablés Vi, V5 that preserve the region in (31). (Note that as
the distribution of X' conditioned onU = u is preserved by both,(u) and Vy'(u), it is possible to
get a consistent triple of random variablgs, V5, V5".) Finally settingl = U*, V, = (U*, V5 (U*)) and

Vs = (U*, V5F(U*)) gives the desired bounds on cardinality as well as the ak8fi@kov relations. ®

Remark 5.4: The above outer bound appears to be very different from theribound of Proposition 5.
However, by taking appropriate sums of the inequalitiesnitgdi the region of Proposition 6, we arrive
at the conditions:

Ry < min{l(Va; Ya) — I(V; YA|U), 1(Va; Ya) — 1(Va; Y1 |U ),
Ry + By < min{I(X; Y1), 1(Va; Y2) + 1(X; Y1|Va), 1(V5; Ys) + 1(X5 11| Vs) ),
2Ry + Ry < I(Va; Ya) + I1(Va; Y3) + 1(X; Ya|Va, Va) — I(Va; V3|Uy) + I(Va; V3| Y3, U)

2Ry + 2Ry < I(Va; Ya) + I(V3; Ys) + I(Xs Y1 |U) + 1(X; V1| Va, Va) — I(Va; Va|Un) + 1(Va; V3|1, U)
These conditions, which include some redundancy, are rclosgructure to the inequalities defining the
inner bound of Proposition 5.

Remark 5.5 The outer bound in Proposition 6 reduces to the capacityorefyir the multilevel case
in Theorem 1. To see this observe that wheén— Y; — Y, form a Markov chain,

Ry < I(Va;Ya) = I(Va; Yi|U) < 1(Va;Ya) — 1(Va: Ya|U) = I(U; Ya). (32)

Thus any rate paifRy, R;) satisfying the constraints of Proposition 6 must satisfy
Ry < min{I(U;Y2), 1(Vs; Y)}, (33)
Ry < I(X;1|U), (34)

Ro+ Ry < I(Vy; V) + (X3 Y| V3).

However, any rate pair satisfying these constraints iseselile as shown in Theorem 1 and hence the
outer bound of Proposition 6 is tight for this setting.

The inner and outer bounds matchYif is less noisy tharY; [13], that is if I(U;Y,) < I(U;Y;) for
all p(u)p(xz|u). As shown in [13], this condition is more general than degdaekss. As such, it defines
a larger class than multilevel broadcast channels.

Proposition 7: The capacity region for the 3-receiver broadcast channidl 24degraded message sets
whenY; is aless noisy receiver thar; is given by the set of rate pai(sz,, R;) such that

Ry < min{I(U;Y2), [(V;Y3)}, (35)
Ry < I(X;Y1|U), (36)
Ro+ Ry < I(V;Y3) + I(X; Y4]V)

for somep(u)p(v|u)p(z|v).

From the definition of less noisy receivers [13], we hdy®’; Y5|U = u) < I(V;Y,|U = u) for every
choice ofu and thusl (V; Y5|U) < I(V; Y;|U) for everyp(u)p(v|u)p(x|v). Using (32), it follows that the
general outer bound is contained in (33). Any rate pair saitig (35) also satisfies (under the less noisy
assumption) the constraints in (28) and thus is achievapleehingV, = U in the region of Proposition
5.
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B. Inner Bound for 3-Degraded Message Sets

We establish an inner bound to the capacity region of thedwast channel with 3-degraded message
sets wherel/, is to be sent to all three receiverd]; is to be sent only td; andY5, and M, is to be
sent only toY;. We then specialize the result to the case of 2-degradedagesets scenario, wheié,
is to be sent to all receivers and; is to be sent tar; andY; and establish optimality for two classes
of channels.

The achievability proof of the region for the above scenasi@losely related to that of Proposition
5. To explain the connection, consider the more generalkc8wer broadcast channel scenario, where
message\/, is to be decoded by all receivers, messagg is to be decoded by receiveyrs, Y, message
M5 is to be decoded by receivel§, Y3, and messagé/,; is to be decoded by receivéf,. Observe
that letting R1» = R13 = 0 yields the 2-degraded message set scenario consideredpodition 5, and
letting R13 = 0 yields the 3-degraded message set requirement under ecaisith. Thus the region in
Proposition 5 and the region for the 3-degraded messageyisets in Theorem 2 below can be thought
of as lower dimensional projections of the region for the engeneral broadcast channel scenario with
message sets in the union of these two message sets. Witmahistion, we identify each message set
in the superset by the subset of receivers that are requirdeédode it, and associate with each receiver
subset an auxiliary random variable as follows:

U:{Y1,Y2, Y3}, Vo {V1, Yo}, Vo {1, Y5} WY

Since receivery; is required to decode all messages, one can show that s8ttirg.X is optimal. We
also use theate transfer technique alluded to in Remark 5.3 to establish the achlevagion.

Let Ry = Ryp + Ry and Ry, = Sy + S1 + S, + S35 be the rate splitting as proposed in Proposition 5.
Code generation proceeds similar to Proposition 5 , i.e.filwegenerate(fo+H0+5) 4 sequences.
For eachu™ sequence, we generate’ o' sequences angl'’> v sequences and then partition them into
2n(fu+S2) and 2% hins, respectively. We then find a jointly typicaly, v}) pair in each product bin, and

generate2™t 2" sequences for each such pair.

Decoding proceeds in a similar way; decodesM,, M, M, by decodingX, Y; decodesM,, M; by
decodingVs, and Y3 decodesM, by indirectly decodingl from V3. To ensure that the encoding and
decoding is successful with high probability, we impose fibllowing constraints on the rates:

Ry + 5, < T,
Sy < T3,
Ryy + Sy + Sy < Ty + T3 — I(Va; V5|U),
Ro+ Ry + Ry < I(X; Y1),
Ry + 81+ S+ S5 < (X Y1|U),

S1+ S5 < I(X;Yh|U, Va) = I(X; Yq|Va),
S1+ S+ Ry < I(XsW|U, Vs) = I1(X; Y| Vs), (37)

Ro+So+ Rig+15 <1
Ty <1

U, VoY) = 1(Va; Y3),
Va; Ya|U),
U, Vs;Ys) = I(V3;Ys)

o~ o~ o~ o~ o~ o~

for somep(u, vy, v3, x) = p(u)p(va|v1)p(x, v3|va) = p(u)p(vs|vr)p(x, v2|vs).
Eliminating Sy, S1, Ss, S3, R19, R11, 15 and T3 via the Fourier-Motzkin procedure with the rate splitting
constraintsR, = Sy + S1 + Sz + .S3 and Ry = Ryo + R11, we obtain the following achievable rate region.
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Theorem 2: A rate triple (R, R1, R») is achievable in a general 3-receiver broadcast channél wit
3-degraded message sets if it satisfies the conditions

Ry < I(V5;Y3),
Ro+ Ry < min{I(Va; Ya), I(Va; Yo|U) 4 1(Vs; Ys) — I(Va; V5|U) Y,
2Ry + Ry < I(Va; Ya) + I1(Vs;Ys) — I(Va; Vi|U),
Ro + Ry + Ry <min{I(X; Y1), [(Va; Ya) + 1(X; Y1[Va), I(Va; Ya) + 1(X; V1| V3),
I1(Va; Ya|U) + 1(Va; Ys) + 1(X; Y1|Va, Va) — I(Va; V3|U) b, (38)
2Ry + Ry + Ry < I(Vy; Ya) + 1(Va; Ys) 4 1(X; Y|V, Vi) — I(Va; V5|U),
2Ro + 2Ry + Ry < I(Va;Ya) + 1(Va; Ya) + T(X; Y1 |Vs) — I(Va; Va|U),
2Ry + 2Ry + 2Ry < min{I(Va; Ya) + I(Va; Y3) + I(X; Y1 [Va) + I(X; Y1 [Vs) — I(Va; V3| U),
I(Va; Ya|U) + I(Va; Ys) + I(X; YA|U) + 1(X; Y1 |V, Vi) — I(Va; V3|U) }

for some p(uy, uz, us, @) = p(ur)p(uzlur)p(z, usluz) = p(ur)p(us|ui)p(z, uslus), i.e., as before both
Uy — Uy — (Us, X) andU; — Us — (U, X ) form Markov chains).

Proposition 8: The region of Theorem 2 reduces to the inner bound of Prapogtby settingk; = 0.
Proof: To show this, denote bR 4 the rate region prescribed by the constraints in (27),7dpdhe
rate region prescribed by the constraints in (37). Note itn&R7) the rateR,, which corresponds to the
rate of the private message to receivgiis denoted a$;, i.e., we need to compare the rate paiRs, R»)
from (37) to the rate pair§R,, R;) from (27). We compare the set of constraints in (27) and if) {@ren
Ry =0, i.e., Ry = Ry;; = 0. Observe that (37) has exactly one extra constrdint: 1(V5; Y|U), when
compared to the constraints in (27). Theref®g C R 4. Hence it suffices to show th&® 4 C Rp.

Consider any rate paifRo, So, S1, 52, S3) and random variable, V5, V5 satisfying the constraints in
(27). We consider two cases:

Case 1. Ry + Sy > I(U;Ys). Since Ry + Sy + Ty < 1(Va;Ys), this implies that the rates and the
corresponding auxiliary random variables also sati&fy< I(15;Y>3|U), and hence belong t®5.

Case 2. Ry+5y < I(U;Y3). Consider the following identification?y, = Ry, Sy = Sy, S1 = S1+52, 52 =
0,53 =935, U=U,T, =0,T3,53, Vo = U, V3 = V3. It is easy to see that the rate paiis,, R,) satisfy
all the required constraints in (37) and hence belongRto Thus,R, C Ry as desired. [ ]

Remark 5.6: Indeed a natural extension of this argument implies thatregéeon in Proposition 5 does
not change under the addition of the constraififs< I(V5;Y2|U), and T3 < I(Vs;Y5|U). Therefore a
joint decoding strategy would have resulted in the sameregs the indirect decoding strategy. However
as mentioned in part 3 of Remark 3.3 it is not clear to the astiadether this is always the case.

We now consider a 2-degraded message set scenario Wheieto be sent to all receivers and; is
to be sent to receivers, andY;. The following inner bound follows from Theorem 2 by settiRg = 0.

Corollary 1: A rate pair (Ry, R;) is achievable in a 3-receiver broadcast channel with 2 degra
message sets, whefd, is to be decoded by all three receivers avd is to be decoded only by; and
Y, if it satisfies the following conditions:

Ro+ Ry <min{I(U;Y3) + I[(X;Y1|U), I(U;Y3) + I[(X; Y5|U)}, (39)
Ry + Ry <min{/(X;Y1), [(X;Y2)}

for somep(u)p(z|u).

This region is the straightforward extension of the KofNerton scheme to the current scenario.

Proposition 9: The region described by Corollary 1 coincides with the reglescribed by Theorem 2
when Ry = 0.
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Proof: By settingR, = 0, V5, = X, and V3 = U, the region in Theorem 2 reduces to (39). Thus
region in (39) is contained in region (38). There it sufficeshow that the projection of the region (38)
to the planeR; = 0 is contained in region (39). To prove this, observe that

Ry + Ry < I(Va; Yo|U) + 1(V3; Ys) — 1(Va; V3|U),
= I(Vs;Ys) + I(Va; Ya|U) + I(Va; Ya|Va) — I(Vs; Ya|Va) — I(Va; Va|U),
= 1(V3;Y3) + 1(Va; Yo|V3) — 1(Va; Vol Y2, U),
< I(Vs;Ys) 4 1(X; Yo|Vs).
Thus the rate pairs must satisfy the following inequalities
Ro+ Ry < min{I(V3; Y3) + I(X; Ya|V3), I(V3: Y3) + 1(X; Ya[V3) (40)
Ry + Ry < min{/(X;Y3), [(X;Y1)}.

Clearly this is contained inside region (39) and hence re¢®8) reduces to the one in Corollary 1 when
Ry =0. [ |

Inner bound (Corollary 1) is optimal for the following two espal classes of broadcast channels.
Proposition 10: Achievable region (39) is tight for deterministic 3-recaibroadcast channels. Indeed
it is tight as long as the channd&l — Y3 is deterministic.

Proof: By settingU = Y3 in (39), we see that rate paif®,, ;) is achievable if
RO S H(}/Ei)u
Ry + Ry <min{H(Y7), H(Y2)}

for somep(x). Clearly these constraints also constitute an outer bowmaddh&nce they provide a tight
characterization of the capacity region. [ ]

Proposition 11: Achievable region (39) is optimal wheYj, is a less noisy receiver thaxy andY; is
a less noisy receiver thar.

Proof: To show optimality, we set/; = (M,, Yy ™") and thus the only non-trivial inequality in the
converse isRy + Ry < I(U;Ys) + min{I(X;Y1|U), I(X;Y3|U)}. To prove this, observe that

nky < ZI(MﬁYii\MoaYlnHl)
< Z](Ml§}qi|MOv}/ini+lv}/g_l) + 21(5/;_1; Yii| Mo, Y{"41))
© Z T(My, Yy Yas Mo, Yyt — Z T(Y) 0 Yasl Mo, Y1) + Z T(YY 405 Yai Mo, Y5)
< D I(XG; Vi My, Y371,

where (a) follows by the Csiszar sum equality aritl) uses the assumption that is a less noisy than
Y3, which implies thatl (Y{",, 1; Yai| Mo, Y3 ) < I(Y{,1; Yii| Mo, Y{™1). The boundR;, < I(X;Ys|U)
can be proved similarly. [ |

Remark 5.7: Note that this result generalizes Theroem 3.2 in [4], whieeealuthors assume the receivers
Y, andY; are degraded versions &f.
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VI. CONCLUSION

Recent results and conjectures on the capacity regiofkof 2)-receiver broadcast channels with
degraded message sets [6], [4], [5] have lent support toghergl belief that the straightforward extension
of the Korner-Marton region for the 2-receiver case ismjli This paper shows that this is not the case.
We showed that the capacity region of the 3-receiver bradddaannels with 2-degraded message sets
can be strictly larger than the straightforward extensibrihe Korner-Marton region. Achievability is
proved using rate splitting and superposition coding. Wewsld that a simpler characterization of the
capacity region results using indirect decoding insteagbioft decoding. Using these ideas, we devised
a new inner bound to the capacity of the general 3-receiveadmast channel with 3-degraded message
sets and showed that it is tight in some cases.

The results in this paper suggest that the capacity ofkthe 2-receiver broadcast channels with
degraded message sets is at least as hard to characterizsiriglexletter way as the capacity region
of the general 2-receiver broadcast channel with one comamahone private message sets. However,
it would be interesting to explore the optimality of our nemnér bounds for classes where capacity is
known for the general 2-receiver case, such as deternurastil vector Gaussian broadcast channels. It
would also be interesting to investigate applications direct decoding to other problems, for example,
the 3-receiver broadcast channels with confidential message[5EL

Our results also show that a straighforward extension oftd/és achievable rate region to more than
2 receivers is not in general optimal. The structure of theli@any random variables in the inner bounds
can be naturally extended to 3 or more receivers with aryitreesage set requirements as will be detailed
in a future publication.
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APPENDIX |
PROOF OFPROPOSITIONS], 2, 3,AND 4

To prove Propositions 1, 2, note that it is straightforwardhow that each simplified characterization is
contained in the original region as the characterizatiorsoatained by using the channels independently.
So we only prove the other non-trivial direction.

Proof of Proposition 1.

We prove that for the product broadcast channel given by (fi&)BZT region (3) reduces to the
expression (12).

Consider the first term in the BZT region

Ry < I(U;Ys)

I(UQ Y21,Y22)

I(U; Y1) + I(U; Yoo Ya1)
I(

1

U; Y1) 4+ 1(U, Yar; Yao)
(U; Y1) + I(U, Y11; Yoo).

VANVAN

Now setU; = U andU, = (U, Y1;1). Thus the above inequality becomes
Ry < I(Uy;Yor) + 1(Us; Yao).

This inequality is the first term (12a) in (12). To complete tbquivalence, we have to show that the
remaining constraints of (12) are also satisfied by our &bic= U andU, = (U, Y11).
Observe that
Ry < I(U;Y3) = I(Uy; Ya1).

Finally, consider the last term

Ry < I(X;Y|U) = I(X1, Xa; Y11, Yio|U)
= H(Y11,Y12|U) — H(Y11, Y12| X1, X5, U)
= H(Yu|U) + H(Y12|U, Y1) — H(Y1u|X1,U) — H(Y12| X2, U)
= [(X; Yu|U) + H(Y12|U, Y1) — H(Y12| X2, U, Y11)
= I(X1; Y11 |Ur) + 1(X3; Yi2|Us).

This implies that all constraints of (12) are satisfied by ¢heiceU; = U andU, = (U, Y1;). The fact
that p(uy)p(us)p(z1|ui)p(xe|us) suffices follows from the structure of the mutual informati@rms.

Proof of Proposition 2:

We prove that for the product broadcast channel (11) theaiigpaegion given by Theorem 1 reduces
to the expression (13).

Consider the first term (13a) in the capacity region

Ry < I(U;Y2) = I(U; Yo, Ya2)

I(U; Y1) + I(U; Yo |Yor)
I(U; Ya1) + 1(U, Yay; Yop)
I(U;Ya1) + I(U, Y11; Yoz).

<
<

Now setU; = U and U, = (U, Y13).

The second term (13b) in the capacity regiorRis< I(V; Y3;). Now setl; = V and fromU — V —
(X1, X2) we havelU; — V; — X;. Thus the second term can be rewritten/as< I(V3; Ys;)
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Consider the third term in the capacity region
Ry < I(X1, Xo; Y11, Yio|U)

= I(X1; Yu|U) + I(X2; Y12|U, Y11)

= I(X1; Yuu|Ur) + I(X2; Y12|Us)
Finally consider the last term in the capacity region

Ry + Ry < I(V;Yay) + I( X1, Xo; Y11, Yio|V)

I(V;Ys1) + (X Y1 [V) 4 I(Xo; Yio|V, Y1u)
< IV Ys) + I(Xq; Y V) + 1(Xo; Yao|U, Yi1)
I(V1;Ys1) + I( Xy Yiu | Vi) + 1(Xa; Yia|Us)
2)p )

(z2|us) suffices follows from the structure of the mutual informatio

The fact thap(u; )p(vy)p(x1|v1)p(u
terms.

In the proof of propositions 3 and 4 we shall make use of thieviehg simple fact about the entropy
function [10].
H(Cl,p, 1 2 (1 - a)p) = H(p7 1 _p) +pH(aa 1 —CL).

Proof of Proposition 3:

We prove that the region given by (12) reduces to (14) for tihary erasure channel described by the
example in Section IV.

Let P{Ul = ’L} = o4, P{X1 = 0|U1 = Z} = . Then,

) . Qi fly ? ai(l_,ui) _ 4 Hi ? I —
I(Ul,m—H(Xij ; ,6,;76 EijazH =5 g
1 1
=g (Z ity » a1 — #i)) ~ % > aiH (i, 1 — i),
I(U; Y1) = (Z azuz,Zaz 1— ) = aiH (i, 1= ),
I(X1; Y1 |Uy) Z (Y o S| 11 =Y (1 - p)H L]
7 2 - 272 - 22
= 52%'}[(/%1—#@)-
Similarly, let P{U, =i} = ;, P{Xy =0|U; =i} = v;. Then
1
I(Uy; Yoo) = —H (Z@M;Zﬁz Z > - 5;@'1‘[(%1 — V),

(X3 Y1a|Us) = Zﬁz (i, 1 = wi).
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Now setting> >, 3;H (v;,1 —v;) =1 —¢q, and) . o, H (15,1 — p1;) = 1 — p, we obtain

)
I(UI;Y21 _é <Zazﬂzazaz1_Nz>_ézaiH(Ni71_/~Li)
<z(1-(-p)=%

I(Uy; V) = H (Zazuz,Zaz 1 — ) = oiH (i, 1 — )

<l-(1-p)=p,

1_
[(X1; Y |Uy) = Tp

(Z%““ZO‘Z 1 — ) —éZQiH(Mul—M)

(1-(1—-gq)=
](Xz;Y12|U2) =1—gq
Therefore, any rate pair in the BZT region must satisfy thedtons

D

](UQa )/21

l\:>|}—l @I}—t

Ry < mm{g + %p}

1 —
R1 S Tp +1-— q.
for some0 < p,q < 1.
It is easy to see that equality is achieved when the margofal§ are given byP{U; = 0} = P{U; =
1} = p/2, P{U, = E} = 1 — p and the marginals of;, are given byP{U, = 0} = P{U, = 1} =
q/2,P{Uy = E} =1 — ¢, (see Figure 4).

p/2 0 0 q/2 0 0
1/2 1/2
1-p EQO 1-¢ EO
1/2 1/2
p/2 1 1 q/2 1 1
Vi X, Va Xo

Fig. 4. Auxiliary channels that achieve the boundary of th&rBegion.

Proof of Proposition 4.
We prove that the region (13) reduces to region (15) for tmadyi erasure channel described by the

example in Section IV.
Assume thatP{U1 = Z} = ai,P{Xl = 0|U1 = Z} = ILLZ,P{UQ = Z} = ﬁZ,P{XQ = 0|U2 = ’L} =
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vi, P{Vi =i} = ~;, P{ X, = 0|V} =i} = w;. Further, there exist, s,t € [0, 1] such that
X1|U1 Zaz /~L2> ui)zl—T,

H(X,|Up) = Zﬁz (i 1=v) =1—5,
Xl“/l Z’}/Z wl, Z):l—t

Clearly from the Markov conditio®/; — V; — X, we requirel — ¢ < 1 — r or equivalentlyr < ¢.
We can also establish the following in a similar fashion.

I(Uy;Ya1) = %H (Zaim,zai(l — M ) - —Zaz (hir 1= i) < %,
I<U27}/é2 = _H (Z/GszZﬁz Vi ) - 5;/621{(7/271 - Vi) S g;
I(VhY}ﬂ (Z%M;Z% 1 —Ww; ) —Z%H(wi,l _Wi) <t,

1—r
I(Xh}/ll‘Ul Zal /*’LZ? Z) = 2 )

I(X; Yia|Un) Zﬁz (vil—v)=1-s,

1-—1
I(Xy;Yu|V) = Z% (Wil = wi) = ——.

Thus any rate pair in the capacity region must satisfy
T S
Ry < mi {— —,t} ,
o < min 6 + 5
1—r

Rlé +1_57

1—1
RO_'_RlSt_'_T_'_l_S,

for some0 <r <t < 1,0 <s < 1. Note that substituting = ¢ yields the BZT region.
Equality in the above conditions is achieved by the choideauxiliary random variables shown in
Figure 5, and thus the above region is the capacity region.

r/2 s/2 0 0
1/2
7 5 EQ
1/2
r/2 /2 1 1
Vi Var X Via X5

Fig. 5. Auxiliary channels that achieve the boundary of thpacity region.



