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Abstract

Körner and Marton established the capacity region for the 2-receiver broadcast channel with degraded message
sets. Recent results and conjectures suggest that a straightforward extension of the Körner-Marton region to more
than 2 receivers is optimal. This paper shows that this is notthe case. We establish the capacity region for a
class of 3-receiver broadcast channels with 2-degraded message sets and show that it can be strictly larger than
the straightforward extension of the Körner-Marton region. The idea is to split the private message into two parts,
superimpose one part onto the “cloud center” representing the common message, and superimpose the second part
onto the resulting “satellite codeword”. One of the receivers finds the common message directly by decoding the
“cloud center,” a second receiver finds itindirectly by decoding a satellite codeword, and a third receiver by jointly
decoding the transmitted codeword. This idea is then used toestablish new inner and outer bounds on the capacity
region of the general 3-receiver broadcast channel with twoand three degraded message sets. We show that these
bounds are tight for some nontrivial cases. The results suggest that finding the capacity region of the 3-receiver
broadcast channel with degraded message sets is as at least as hard finding as the capacity region of the general
2-receiver broadcast channel with common and private message.

Index Terms

broadcast channel, capacity, degraded message sets

I. INTRODUCTION

A broadcast channel with degraded message sets is a model forcommunication scenarios where a
sender wishes to communicate a common message toall receivers, a first private message to a first subset
of the receivers, a second private message to a second subsetof the first subset and so on. Such scenario
can arise, for example, in video or music broadcasting over awireless network at varying levels of quality.
The common message represents the lowest quality version tobe sent to all receivers, the first private
message represents the additional information needed for the first subset of receivers to decode the second
lowest quality version, and so on. What is the set of simultaneously achievable rates for communicating
such degraded message sets over the network?

This question was first studied by Körner and Marton in 1977 [1]. They considered a general 2-receiver
discrete-memoryless broadcast channel with senderX and receiversY1 and Y2. A common message
M0 ∈ [1 : 2nR0] is to be sent to both receivers and a private messageM1 ∈ [1 : 2nR1 ] is to be sent only to
receiverY1. They showed that the capacity region is given by the set of all rate pairs(R0, R1) such that1

R0 ≤ min{I(U ; Y1), I(U ; Y2)}, (1)

R1 ≤ I(X; Y1|U)

for somep(u, x). These rates are achieved using superposition coding [2]. The common message is
represented by the auxiliary random variableU and the private message is superimposed to generateX.
The main contribution of [1] is proving a strong converse using the technique of images-of-a-set [3].
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1The Körner-Marton characterization does not include the second term inside the min in the first inequality,I(U ; Y1). Instead it includes

the boundR0 + R1 ≤ I(X; Y1). It can be easily shown that the two characterizations are equivalent.
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Extending the Körner-Marton result to more than 2 receivers has remained open even for the simple
case of 3 receiversY1, Y2, Y3 with 2-degraded message sets, where a common messageM0 is to be sent
to all receivers and a private messageM1 is to be sent only to receiverY1. The straightforward extension
of the Körner-Marton region to this case yields the achievable rate region consisting of the set of all rate
pairs (R0, R1) such that

R0 ≤ min{I(U ; Y1), I(U ; Y2), I(U ; Y3)}, (2)

R1 ≤ I(X; Y1|U)

for somep(u, x). Is this region optimal?
In [4], it was shown that the above region (and its natural extension tok > 3 receivers) is optimal

for a class of product discrete-memoryless and Gaussian broadcast channels, where each of the receivers
who decode only the common message is a degraded version of the unique receiver that also decodes
the private message. In [5], it was shown that a straightforward extension of Körner-Marton region is
optimal for the class of linear deterministic broadcast channels, where the operations are performed in
a finite field. In addition to establishing the degraded message set capacity for this class the authors
gave an explicit characterization of the optimal auxiliaryrandom variables. In a recent paper Borade et
al. [6] introducedmultilevel broadcast channels, which combine aspects of degraded broadcast channels
and broadcast channels with degraded message sets. They established an achievable rate region as well as
a “mirror-image” outer bound for these channels. Their achievable rate region is again a straightforward
extension of the Körner-Marton region tok-receiver multilevel broadcast channels. In particular, Conjecture
5 of [6] states that the capacity region for the 3-receiver multilevel broadcast channels depicted in Figure 1
is the set of all rate pairs(R0, R1) such that

R0 ≤ min{I(U ; Y2), I(U ; Y3)}, (3)

R1 ≤ I(X; Y1|U)

for somep(u, x). Note that this region, henceforth referred to asthe BZT region, is the same as (2) because
in the multilevel broadcast channelY2 is a degraded version ofY1 and thereforeI(U ; Y2) ≤ I(U ; Y1).

X
p(y1, y3|x)

Y1

p(y2|y1)
Y2

Y3

Fig. 1. Multilevel 3-receiver broadcast channels. MessageM0 is to be sent to all receivers and messageM1 is to be sent only toY1.

In this paper we show that the straightforward extension of the Körner-Marton region to more than 2
receivers is not in general optimal. We establish the capacity region of the multilevel broadcast channels
depicted in Figure 1 as the set of rate pairs(R0, R1) such that

R0 ≤ min{I(U ; Y2), I(V ; Y3)},

R1 ≤ I(X; Y1|U),

R0 + R1 ≤ I(V ; Y3) + I(X; Y1|V )

for somep(u)p(v|u)p(x|v) (i.e. U → V → X forms a Markov chain), and show that it can be strictly
larger than the BZT region. In our coding scheme, the common messageM0 is represented byU (the
cloud centers), part ofM1 is superimposed onU to obtainV (satellite codewords), and the rest ofM1



3

is superimposed onV to yield X. ReceiverY1 finds M0, M1 by decodingX. ReceiverY2 finds M0 by
decodingU , whereas receiverY3 finds M0 indirectly by decoding a satellite codewordV .

Although it seems surprising that higher rates can be achieved by havingY3 decode more than it needs
to, this result can be explained by the fact that for a general2-receiver broadcast channelX → (Y1, Y2),
one can have the conditionsI(U ; Y1) < I(U ; Y2) and I(X; Y1) > I(X; Y2) hold simultaneously [13].
Now, considering our 3-receiver broadcast channel scenario, suppose we have a choice ofU such that
I(U ; Y3) < I(U ; Y2). In this case, requiring bothY2 andY3 to directly decodeU necessitates that the rate
of the common message be less thanI(U ; Y3). From the above fact, aV may exist such thatU → V → X
andI(V ; Y3) > I(V ; Y2), in which case the rate of the common message can be increasedto I(U ; Y2) and
Y3 can still findU indirectly by decodingV . Thus, although the additional “degree-of-freedom” resulting
from the introduction ofV comes at the expense of havingY3 decode more than it is required to, it can
yield higher achievable rates.

The rest of the paper is organized as follows. In Section II, we provide needed definitions. In Sec-
tion III, we establish the capacity region for the multilevel broadcast channel in Figure 1 (Theorem 1).
In Section IV, we show through an example that the capacity region for the multilevel broadcast channel
can be strictly larger than the BZT region. In Section V, we extend the results on the multilevel broadcast
channel to establish inner and outer bounds on the capacity region of the general 3-receiver broadcast
channel with 2 degraded message sets (Propositions 5 and 6).We show that these bounds are tight when
Y1 is less noisy thanY2 (Proposition 7), which is a more relaxed condition than the degradedness condition
of the multilevel broadcast channel model. We then extend the inner bound to 3-degraded message sets
(Theorem 2). Although Proposition 5 is a special case of Theorem 2, it is presented earlier for clarity of
exposition. Finally, we show that the inner bound of Theorem2 when specialized to the case of 2-degraded
message sets, whereM0 is to be sent to all receivers andM1 is to be sent toY1 andY2, reduces to the
straightforward extension of the Körner-Marton region (Corollary 1). We show that this inner bound is
tight for deterministic broadcast channels (Proposition 10) and whenY1 is less noisy thanY3 and Y2 is
less noisy thanY3 (Proposition 11).

II. DEFINITIONS

Consider a discrete-memoryless 3-receiver broadcast channel consisting of an input alphabetX , output
alphabetsY1, Y2 andY3, and a probability transition functionp(y1, y2, y3|x).

A (2nR0 , 2nR1, n) 2-degraded message set code for a 3-receiver broadcast channel consists of (i) a pair
of messages(M0, M1) uniformly distributed over[1 : 2nR0] × [1 : 2nR1], (ii) an encoder that assigns a
codewordxn(m0, m1), for each message pair(m0, m1) ∈ [1 : 2nR0 ] × [1 : 2nR1 ], and (iii) three decoders,
one that maps each receivedyn

1 sequence into an estimate(m̂01, m̂1) ∈ [1 : 2nR0]× [1 : 2nR1 ], a second that
maps each receivedY n

3 sequence into an estimatêm02 ∈ [1 : 2nR0 ], and a third that maps each received
Y n

2 sequence into an estimatêm03 ∈ [1 : 2nR0].
The probability of error is defined as

P (n)
e = P{M̂1 6= M1 or M̂0k 6= M0 for k = 1, 2, or 3}.

A rate tuple(R0, R1) is said to be achievable if there exists a sequence of(2nR0 , 2nR1, n) 2-degraded
message set codes withP (n)

e → 0. The capacity region of the broadcast channel is the closureof the set
of achievable rates.

A 3-receivermultilevel broadcast channel [6] is a 3-receiver broadcast channel with 2-degraded message
sets wherep(y1, y2, y3|x) = p(y1, y3|x)p(y2|y1) for every(x, y1, y2, y3) ∈ X ×Y1×Y2×Y3 (see Figure 1).

In addition to considering the multilevel 3-receiver broadcast channel and the general 3-receiver broad-
cast channel with 2-degraded message sets, we shall also consider the following two scenarios:

1) 3-receiver broadcast channel with 3 message sets, whereM0 is to be sent to all receivers,M1 is to
be sent toY1 andY3, andM2 is to be sent only toY1.
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2) 3-receiver broadcast channel with 2-degraded message sets, whereM0 is to be sent to all receivers
andM1 is to be sent toY1 andY3.

Definitions of codes, achievability and capacity regions for these cases are straightforward extensions of
the above definitions. Clearly, the 2-degraded message set scenarios are special cases of the 3-degraded
message set. Nevertheless, we shall begin with the special class of multilevel broadcast channel because
we are able to establish its capacity region.

III. CAPACITY OF 3-RECEIVER MULTILEVEL BROADCAST CHANNEL

A key result of this paper is given in the following theorem.

Theorem 1: The capacity region of the 3-receiver multilevel broadcastchannel in Figure 1 is the set
of rate pairs(R0, R1) such that

R0 ≤ min{I(U ; Y2), I(V ; Y3)},

R1 ≤ I(X; Y1|U), (4)

R0 + R1 ≤ I(V ; Y3) + I(X; Y1|V )

for somep(u)p(v|u)p(x|v), where the cardinalities of the auxiliary random variablessatisfy‖U‖ ≤ ‖X‖+4
and‖V ‖ ≤ ‖X‖2 + 5‖X‖ + 4.

Remark 3.1: It is straightforward to show by settingU = V in the above theorem that the BZT
region (3) is contained in the capacity region (4). We show inthe next section that the capacity region
(4) can be strictly larger than the BZT region.

Remark 3.2: It is straightforward to show that the above region is convexand therefore there is no
need to use a time-sharing auxiliary random variable.
The proof of Theorem 1 is given in the following subsections.We first prove the converse. In Subsec-
tion III-B, we prove achievability, and in Subsection III-C, we establish the bounds on the cardinalities
of the auxiliary random variables.

A. Converse of Theorem 1

We show that the region in Theorem 1 forms an outer bound to thecapacity region. The proof is quite
similar to previous weak converse and outer bound proofs for2-receiver broadcast channels (e.g., see [7],
[8], [9]). Suppose we are given a sequence of codes for the multilevel broadcast channel withP (n)

e → 0.
For each code, we form the empirical distribution forM0, M1, X

n.
SinceX → Y1 → Y2 forms aphysically degraded broadcast channel, it follows that the code rate pair

(R0, R1) must satisfy the inequalities

R0 ≤ I(U ; Y2), (5)

R1 ≤ I(X; Y1|U)

for somep(u, x), whereU, X, Y1, Y2 are defined as follows [7], [12]. LetUi = (M0, Y
i−1
1 ), i = 1, . . . , n,

and letQ be a time-sharing random variable uniformly distributed over the set{1, 2, ..., n} and independent
of Xn, Y n

1 , Y n
3 , Y n

2 . We then setU = (Q, UQ) and X = XQ, Y1 = Y1Q, andY2 = Y2Q. Thus, we have
established the bounds in 5.

Next, since the decoding requirements of the broadcast channel X → (Y1, Y3) makes it a broadcast
channel with degraded message sets, the code rate pair must satisfy the inequalities

R0 ≤ min{I(V ; Y3), I(V, Y1)},

R0 + R1 ≤ I(V ; Y3) + I(X; Y1|V )

for somep(v, x) [8], whereU2 is identified as follows. LetVi = (M0, Y
i−1
1 , Y n

3 i+1), i = 1, . . . , n, then
we setV = (Q, VQ).
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Combining the above two outer bounds, we see thatU → V → X forms a Markov chain. Observe that
this Markov nature of the auxiliary random variables along with the degraded nature ofX → Y1 → Y2

implies thatI(V ; Y1) ≥ I(V ; Y2) ≥ I(U ; Y2).
Thus we have shown that the code rate pair(R0, R1) must be in region (4). This establishes the converse

to Theorem 1.

B. Achievability of Theorem 1

The interesting part of the proof of Theorem 1 is achievability. We split the rate of the private message
M1 into two partsM11, M12 with ratesS1, S2, respectively. ThusR1 = S1 + S2. The common message
M0 is represented byU , (M0, M11) is represented byV, and (M0, M1) is represented byX. ReceiverY1

finds (M0, M1) by decodingX, receiverY2 finds M0 by decodingU, and receiverY3 finds M0 indirectly
by decodingV. We now provide details of the proof.
Code Generation:

Fix a distributionp(u)p(v|u)p(x|v). Randomly and independently generate2nR0 sequencesun(m0),
m0 ∈ {1, 2, . . . , 2nR0} := [1 : 2nR0 ], each distributed uniformly over the set ofǫ-typical† un sequences.
For eachun(m0), randomly and independently generate2nS1 sequencesvn(m0, s1), s1 ∈ [1 : 2nS1 ],
each distributed uniformly over the set of conditionallyǫ-typical vn sequences givenun(m0). For each
vn(m0, s1) randomly and independently generate2nS2 sequencesxn(m0, s1, s2), s2 ∈ [1 : 2nS2 ], each
distributed uniformly over the set of conditionallyǫ-typical xn sequences givenvn(m0, s1).

Encoding:
To send the message pair(m0, m1) ∈ [1 : 2nR0] × [1 : 2nR1 ], the sender expressesm1 by the pair

(s1, s2) ∈ [1 : 2nS1 ] × [1 : 2nS2] and sendsxn(m0, s1, s2).

Decoding and Analysis of Error Probability:
1) ReceiverY2 declares thatm0 is sent if it is the unique message such thatun(m0) andyn

2 are jointly
ǫ-typical. It is easy to see that this can be achieved with arbitrarily small probability of error if

R0 < I(U ; Y2). (6)

2) ReceiverY1 declares that(m0, s1, s2) is sent if it is the unique triple such thatxn(m0, s1, s2) and
yn

1 are jointly ǫ-typical. It is easy to see using joint-decoding that this decoding succeeds with high
probability as long as

R0 + S1 + S2 < I(X; Y1),

S1 + S2 < I(X; Y1|U), (7)

S2 < I(X; Y1|V ).

3) ReceiverY3 finds m0 as follows. It declares thatm0 ∈ [1 : 2nR0 ] is sent if it is the unique index
such thatvn(m0, s1) andyn

3 are jointly ǫ-typical for somes1 ∈ [1 : 2nS1].
We claim that receiverY3 can correctly decodem0 with arbitrarily small probability of error if

R0 + S1 < I(V ; Y3). (8)

Since R0 + S1 < I(V ; Y3), there existsδ > 0 such thatR0 + S1 ≤ I(V ; Y3) − 2δ. Suppose
(1, 1) ∈ [1 : 2nR0 ] × [1 : 2nS1 ] is the message pair sent, then the probability of error averaged over

†We assume strong typicality [10] throughout this paper.
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the choice of codebooks can be upper bounded as follows

P (n)
e ≤ P{(V n(1, 1), Y n

3 ) are not jointlyǫ-typical}

+ P{(V n(m0, s1), Y
n
3 ) are jointly ǫ-typical for somem0 6= 1}

(a)
< δ′ +

∑

m0 6=1

∑

s1

P{(V n(m0, s1), Y
n
3 ) jointly ǫ-typical}

(b)

≤ δ′ + 2n(R0+S1)2−n(I(V ;Y3)−δ)

(c)

≤ δ′ + 2−nδ,

where(a) follows by the union of events bound,(b) follows by the fact that form0 6= 1, V n(m0, s1)
and Y n

3 are generated completely independently and thus each probability term under the sum is
upper bounded by2−n(I(V ;Y3)−δ) [10] as n → ∞, (c) follows from R0 + S1 ≤ I(V ; Y3) − 2δ. We
know thatδ′ → 0 as ǫ → 0 and therefore with arbitrarily high probability, anyV n(m0, s1) jointly
ǫ-typical with the receivedY n

3 sequence must be of the formV n(1, s1). Hence receiverY3 can
correctly decodeM0 with arbitrarily small probability of error if

R0 + S1 < I(V ; Y3).

Thus, from (6), (7), and (8), all receivers can decode their intended messages with arbitrarily small
probability of error if

R0 < I(U ; Y2),

R0 + S1 + S2 < I(X; Y1),

S1 + S2 < I(X; Y1|U),

S2 < I(X; Y1|V ),

R0 + S1 < I(V ; Y3).

SubstitutingS1 +S2 = R1 and using the Fourier-Motzkin procedure [17] to eliminateS1 andS2 shows
that any rate pair(R0, R1), satisfying the conditions in 4, is achievable. This completes the proof of
achievability of Theorem 1.

We shall refer to the decoding step ofY3 as indirect decoding, since the receiver decodesU indirectly
by decodingV . Do we achieve the same region by havingY3 jointly decode M0, M11? To answer this
question, note that for the joint decoder, the probability of error can be made arbitrarily small if

R0 + S1 < I(V ; Y3),

S1 < I(V ; Y3|U).

Since bounding the probability of error for the indirect decoder requires only the first inequality, it is in
general less restrictive than the joint decoder.

Now, combining the conditions for the joint decoder to succeed with (6) and (7) and performing
Fourier-Motzkin to eliminateS1 andS2, we obtain the set of rate pairs(R0, R1) satisfying

R0 < min{I(U ; Y2), I(V ; Y3)},

R1 < I(X; Y1|U),

R0 + R1 < I(V ; Y3) + I(X; Y1|V ),

R1 < I(V ; Y3|U) + I(X; Y1|V )

for somep(u)p(v|u)p(x|v).
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Note that this region involves one more inequality than the capacity region given by (4). However, by
optimizing the choice ofV for each givenU we can show that this inequality is not necessary. There are
two cases:
I(U ; Y2) < I(U ; Y3): In this case it is easy to see that the optimal choice is to setV = U . Thus, indirect
decoding and joint decoding yield the same region.
I(U ; Y2) > I(U ; Y3): In this case for anyV ; at the corner point of the indirect decoding region prescribed
by the pair of random variables(U, V ), we haveR∗

1 = I(X; Y1|V ) + min{I(V ; Y1|U), I(V ; Y3) −
min[I(U ; Y2), I(V ; Y3)]}. Clearly min{I(U ; Y2), I(V ; Y3)} ≥ I(U ; Y3), which implies that

R∗
1 ≤ I(V ; Y3|U) + I(X; Y1|V ),

i.e., R∗
1 satisfies the additional constraint that joint decoding imposes and hence the corner point is in

the joint decoding region. Thus the regions obtained via indirect decoding and those obtained via joint
decoding are equal.

Remark 3.3: In spite of this equivalence, indirect decoding offers someadvantages over joint decoding:
1) Indirect decoding yields less inequalities than joint decoding, and thus results in simpler achievable

rate region descriptions. This is akin to the equivalent butsimpler description of the Han-Kobayashi
achievable rate region for the interference channel in [15].

2) Proving the converse for the joint decoding region directly seems very difficult. Using indirect
decoding (which shows that the extra inequality in the description of the joint decoding region is
superfluous) makes proving the converse quite straightforward.

3) As we generalize achievability to broadcast channels with various message set requirements, it is
not clear that the extra inequalities imposed by joint decoding would still be redundant. Hence, it
is conceivable that indirect decoding can outperform jointdecoding in general.

C. Proof of Cardinality Bounds in Theorem 1

The bounds on the cardinality of the auxiliary random variables are based on a strengthened version of
Carathéodory’s theorem by Fenchel and Eggleston stated in[11]. The strengthened Carathéodory theorem
along with standard arguments [12] imply that for any choiceof the auxiliary random variableU , there
exists a random variableU1 with cardinality bounded by‖X‖ + 1 such thatI(U ; Y2) = I(U1; Y2) and
I(X; Y1|U) = I(X; Y1|U1). Similarly for any choice ofV , one can obtain a random variableV1 with
cardinality bounded by‖X‖ + 1 such thatI(V ; Y3) = I(V1; Y3) and I(X; Y1|V ) = I(X; Y1|V1). While
these cardinality-bounded random variables do not change the numerical value of the bounds in (4), it
is not clear that they preserve the Markov conditionU1 → V1 → X. To circumvent this problem and
preserve the Markov chain, we adapt arguments from [11] - where the authors dealt with the same issue
- to establish the cardinality bounds stated in Theorem 1. For completeness, we provide an outline of the
argument.

This argument is proved in two steps. In the first step a randomvariableU1 and transition probabilities
p(v|u1) are constructed such that the following are held constant:p(x), the marginal probabilityp(X) (and
hencep(Y1), p(Y2), p(Y3)), H(Y1|U), H(Y2|U), H(Y3|U), H(Y3|V, U), andH(Y1|V, U). Using standard
arguments [12], [11], there exists a random variableU1 (with cardinality ofU1 bounded by‖X‖+4) and
transition probabilitiesp(v|u1) that satisfies the above constraints. Note that the distribution of V is not
necessarily preserved and hence denote the resulting random variable asV ′.

We thus have random variablesU1 → V ′ → X such that

I(U ; Y2) = I(U1; Y2),

I(U ; Y3) = I(U1; Y3),

I(X; Y1|U) = I(X; Y1|U1), (9)

I(V ; Y1|U) = I(V ′; Y1|U1).
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In the second step, for eachU1 = u1 a new random variableV1(u1) is found such that the following
are held constant:p(x|u1), the marginal distribution ofX conditioned onU1 = u1, H(Y1|V

′, U1 = u1),
andH(Y3|V

′, U1 = u1). Again standard arguments imply that there exists a random variableV1(u1) (with
cardinality of V1 bounded by‖X‖ + 1) and transition probabilitiesp(x|v1(u1)) that satisfies the above
constraints. This in particular implies that

I(V1(U1); Y3|U1) = I(V ′; Y3|U1) = I(V ; Y3|U), (10)

I(V1(U1); Y1|U1) = I(V ′; Y1|U1) = I(V ; Y1|U).

Now, setV1 = (U1, V1(U1)) and observe the following as a consequence of Equations (9) and (10).

I(V1; Y3) = I(U1; Y3) + I(V1(U1); Y3|U1) = I(U ; Y3) + I(V ; Y3|U) = I(V ; Y3),

I(X; Y1|V1) = I(X; Y1|U1) − I(V1(U1); Y1|U1) = I(X; Y1|U) − I(V ; Y1|U) = I(X : Y1|V ).

We thus have the required random variablesU1, V1 satisfying the cardinality bounds‖X‖+4 and(‖X‖+
4)(‖X‖ + 1), respectively as desired. Furthermore, observe thatU1 = f(V1) and henceU1 → V1 → X
forms a Markov chain.

IV. M ULTILEVEL PRODUCT BROADCAST CHANNEL

In this section we show that the BZT region can be strictly smaller than the capacity region in Theorem 1.
Consider the product of two 3-receiver broadcast channels given by the Markov relationships

X1 → Y31 → Y11 → Y21,

X2 → Y12 → Y22. (11)

In Appendix I, we derive the following simplified characterizations for the capacity and the BZT regions.

Proposition 1: The BZT region for the above product channel reduces to the set of rate pairs(R0, R1)
such that

R0 ≤ I(U1; Y21) + I(U2; Y22), (12a)

R0 ≤ I(U1; Y31), (12b)

R1 ≤ I(X1; Y11|U1) + I(X2; Y12|U2) (12c)

for somep(u1)p(u2)p(x1|u1)p(x2|u2).

Proposition 2: The capacity region for the product channel reduces to the set of rate pairs(R0, R1)
such that

R0 ≤ I(U1; Y21) + I(U2; Y22), (13a)

R0 ≤ I(V1; Y31), (13b)

R1 ≤ I(X1; Y11|U1) + I(X2; Y12|U2), (13c)

R0 + R1 ≤ I(V1; Y31) + I(X1; Y11|V1) + I(X2; Y12|U2) (13d)

for somep(u1)p(v1|u1)p(x1|v1)p(u2)p(x2|u2).

Now we compare these two regions via the following examples.
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X1 Y31 Y11 Y21

X2 Y12
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Fig. 2. Product multilevel broadcast channel example.

Discrete-Memoryless Example:

Consider the multilevel product broadcast channel examplein Figure 2, where:X1 = X2 = Y12 =
Y21 = {0, 1}, andY11 = Y31 = Y32 = {0, E, 1}, Y31 = X1, Y12 = X2, the channelsY31 → Y11 and
Y12 → Y22 are binary erasure channels (BEC) with erasure probability1

2
, and the channelY11 → Y21

is given by the transition probabilities:P{Y21 = E|Y11 = E} = 1, P{Y21 = E|Y11 = 0} = P{Y21 =
E|Y11 = 1} = 2/3, P(Y21 = 0|Y11 = 0} = P{Y21 = 1|Y11 = 1} = 1/3. Therefore, the channelX1 → Y21

is effectively a BEC with erasure probability5/6.
The BZT region can be simplified to the following.

Proposition 3: The BZT region for the above example reduces to the set of ratepairs(R0, R1) satisfying

R0 ≤ min
{p

6
+

q

2
, p
}

,

R1 ≤
1 − p

2
+ 1 − q (14)

for some0 ≤ p, q ≤ 1.
The proof of this proposition is given in Appendix I. It is quite straightforward to see that(R0, R1) =

(1
2
, 5

12
) lies on the boundary of this region.

The capacity region can be simplified to the following

Proposition 4: The capacity region for the channel in Figure 2 reduces to setof rate pairs(R0, R1)
satisfying

R0 ≤ min
{r

6
+

s

2
, t
}

,

R1 ≤
1 − r

2
+ 1 − s, (15)

R0 + R1 ≤ t +
1 − t

2
+ 1 − s

for some0 ≤ r ≤ t ≤ 1, 0 ≤ s ≤ 1.

The proof of this proposition is also given in Appendix I. Note that substitutingr = t yields the BZT
region. By settingr = 0, s = 1, t = 1 it is easy to see that(R0, R1) = (1/2, 1/2) lies on the boundary of
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the capacity region. On the other hand, forR0 = 1/2, the maximum achievableR1 in the BZT region is
5/12. Thus the capacity region is strictly larger than the BZT region.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

 

 

KM region
Capacity region

(0.5,0.5)

(0.6,0.2)

 (2/3,0)

R
1

R0

Fig. 3. The BZT and the capacity regions for the channel in Figure 2.

Figure 3 plots the BZT region and the capacity region for the example channel. Both regions are
specified by two line segments. The boundary of the BZT regions consists of the line segments:(0, 3/2)
to (0.6, 0.2) and(0.6, 0.2) to (2/3, 0). The capacity region on the other hand is formed by the pair ofline
segments:(0, 3/2) to (1/2, 1/2) and (1/2, 1/2) to (2/3, 0). Note that the boundaries of the two regions
coincide on the line segment joining(0.6, 0.2) to (2/3, 0).

Gaussian Example:

Consider a 3-receiver Gaussian product multilevel broadcast channel, where

Y31 = X1 + Z1, Y11 = Y31 + Z2, Y21 = Y11 + Z3,

Y12 = X2 + Z4, Y22 = Y12 + Z5.

The power of noise componentZi is Ni for i = 1, 2, . . . , 5. We assume a total average power constraint
P on X = (X1, X2).

Using Gaussian signaling, it can be easily shown that the BZTregion is the set of all(R0, R1) such
that

R0 ≤ C

(

αP1

ᾱP1 + N1 + N2 + N3

)

+ C

(

β(P − P1)

β̄(P − P1) + N4 + N5

)

, (16)

R0 ≤ C

(

αP1

ᾱP1 + N1

)

,

R1 ≤ C

(

ᾱP1

N1 + N2

)

+ C

(

β̄(P − P1)

N4

)

,

for some0 ≤ P1 ≤ P , 0 ≤ α, β ≤ 1.
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Now using Gaussian signaling to evaluate region (13), we obtain the achievable rate region consisting
of the set of all(R0, R1) such that

R0 ≤ C

(

aP1

āP1 + N1 + N2 + N3

)

+ C

(

b(P − P1)

b̄(P − P1) + N4 + N5

)

,

R0 ≤ C

(

(a + a1)P1

(1 − a − a1)P1 + N1

)

,

R0 + R1 ≤ C

(

aP1

āP1 + N1 + N2 + N3

)

+ C

(

b(P − P1)

b̄(P − P1) + N4 + N5

)

+

C

(

āP1

N1 + N2

)

+ C

(

b̄(P − P1)

N4

)

, (17)

R0 + R1 ≤ C

(

(a + a1)P1

(1 − a − a1)P1 + N1

)

+ C

(

(1 − a − a1)P1

N1 + N2

)

+

+ C

(

b̄(P − P1)

N4

)

for some0 ≤ P1 ≤ P and0 ≤ a, a1, b, a + a1 ≤ 1.
Now consider the above regions with the parameters values:P = 1, N1 = 0.4, N2 = N3 = 0.1, N4 =

0.5, N5 = 0.1. Fixing R1 = 0.5 log(0.49/0.3), we can show that the maximum achievableR0 in the
Gaussian BZT region is0.5 log(2.2033957..). This is attained using the valuesP1 = 0.5254962.., ᾱP1 =
0.02003176.., and β̄P̄1 = 0.2852085...

On the other hand, settinga1 = 0.03, P1 = 0.5204962, and retaining the values̄aP1 = ᾱP1 =
0.02003176.., b̄P̄1 = β̄P̄1 = 0.2852085.., the inequalities for region 17 reduce to

R0 ≤ 0.5 log 2.2038147..

R0 ≤ 0.5 log 2.2761073....

R0 + R1 ≤ 0.5 log 2.2038138.. + 0.5 log(0.49/0.3)

R0 + R1 ≤ 0.5 log 2.276102975.. + 0.5 log 1.5842896.. = 0.5 log 2.2077631.. + 0.5 log(0.49/0.3).

Therefore the rate pairs(R0, R1) = (0.5 log 2.2038147.., 0.5 log(0.49/0.3)) is achievable (which is outside
the BZT region).

Remark 4.1: Note that the BZT region can be viewed as a restriction of the capacity region ontoa1 = 0
plane. At the above extreme point of the BZT region it can be shown that: if we keep the products̄αP1,
β̄P̄1 constant, then any small perturbation∆P1 < 0, ∆a1 > 0, 0.1P1(P1 +0.4)/(x(x−0.1))∆a1 > −∆P1,
where x = ᾱP1 + 0.5, leads to a strict increase inR0 for a fixed R1. The improvement presented is
obtained by taking∆P1 = −0.005, and∆a1 = 0.03, respectively.

Thus restricted to Gaussian signalling the BZT region (12) is strictly contained in region (13). However,
we have not been able to prove that Gaussian signaling is optimal for either the BZT region or the capacity
region.

Remark 4.2: The reader may ask why we did not consider the more general product channel

X1 → Y31 → Y11 → Y21,

X2 → Y12 → Y22 → Y32.

In fact we considered this more general class at first but wereunable to show that the capacity region
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conditions reduce to the separated form

R0 ≤ I(U1; Y21) + I(U2; Y22),

R0 ≤ I(V1; Y31) + I(V2; Y32),

R0 + R1 ≤ I(U1; Y21) + I(U2; Y22) + I(X1; Y11|U1) + I(X2; Y12|U2),

R0 + R1 ≤ I(V1; Y31) + I(V2; Y32) + I(X1; Y11|V1) + I(X2; Y12|V2)

for somep(u1)p(v1|u1)p(x1|v1)p(u2)p(v2|u2)p(x2|v2).

V. GENERAL 3-RECEIVER BROADCAST CHANNEL WITH DEGRADED MESSAGESETS

In this section we extend the results in Section III to obtaininner and outer bounds on the capacity
region of general 3-receiver broadcast channel with degraded message sets. We first consider the same
2-degraded message set scenario as in Section III but without the condition thatX → Y1 → Y2 form a
degraded broadcast channel. We establish inner and outer bounds for this case and show that they are
tight when the channelX → Y1 is less noisy than the channelX → Y2, which is a more general class
than degraded broadcast channels [13]. We then extend our results to the case of 3-degraded message
sets, whereM0 is to be sent to all receivers,M1 is to be sent to receiversY1 and Y2 and M2 is to be
sent only to receiverY1. A special case of this inner bound gives an inner bound to thecapacity of the
2-degraded message set scenario whereM0 is to be sent to all receivers andM1 is to be sent to receivers
Y1 andY2 only.

A. Inner and Outer Bounds for 2 Degraded Message Sets

We use rate splitting, superposition coding, indirect decoding, and the Marton achievability scheme for
the general 2-receiver broadcast channels [14] to establish the following inner bound.

Proposition 5: A rate pair (R0, R1) is achievable in a general 3-receiver broadcast channel with 2-
degraded message sets if it satisfies the following inequalities:

R0 ≤ min{I(V2; Y2), I(V3; Y3)},

2R0 ≤ I(V2; Y2) + I(V3; Y3) − I(V2; V3|U),

R0 + R1 ≤ min{I(X; Y1), I(V2; Y2) + I(X; Y1|V2), I(V3; Y3) + I(X; Y1|V3)}, (18)

2R0 + R1 ≤ I(V2; Y2) + I(V3; Y3) + I(X; Y1|V2, V3) − I(V2; V3|U),

2R0 + 2R1 ≤ I(V2; Y2) + I(X; Y1|V2) + I(V3; Y3) + I(X; Y1|V3) − I(V2; V3|U),

2R0 + 2R1 ≤ I(V2; Y2) + I(V3; Y3) + I(X; Y1|U) + I(X; Y1|V2, V3) − I(V2; V3|U),

for somep(u, v2, v3, x) = p(u)p(v2|u)p(x, v3|v2) = p(u)p(v3|u)p(x, v2|v3) (or in other words, bothU →
V2 → (V3, X) andU → V3 → (V2, X) form Markov chains).

Proof: The general idea is to splitM1 into four independent parts,M10, M11, M12, and M13.
The message pair(M0, M10) is represented byU . Using superposition and Marton coding, the message
triple (M0, M10, M12) is represented byV2 and the message triple(M0, M10, M13) is represented byV3.
Finally using superposition coding, the message pair(M0, M1) is represented byX. ReceiverY1 decodes
U, V2, V3, X, receiversY2 andY3 find M0 via indirect decoding ofV2 andV3, respectively, as in Theorem 1.

We now provide a more detailed outline of the proof

Code Generation: Let R1 = S0 + S1 + S2 + S3, where theSi ≥ 0, i = 0, 1, 2, 3 and T2 ≥ S2,
T3 ≥ S3. Fix a probability mass function of the required formp(u, v2, v3, x) = p(u)p(v2|u)p(x, v3|v2) =
p(u)p(v3|u)p(x, v2|v3).

Randomly and independently generate2n(R0+S0) sequencesun
1(m0, s0), m0 ∈ [1 : 2nR0 ], s0 ∈ [1 :

2nS0], each distributed uniformly over the set of typicalun
1 sequences. For eachun(m0, s0) randomly
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and independently generate:(a) 2nT2 sequencesvn
2 (m0, s0, t2), t2 ∈ [1 : 2nT2 ] each distributed uniformly

over the set of conditionally typicalvn
2 sequences, and(b) 2nT3 sequencesvn

3 (m0, s0, t3), t3 ∈ [1 : 2nT3 ]
each distributed uniformly over the set of conditionally typical vn

3 sequences. Randomly partition the2nT2

sequencesvn
2 (m0, s0, t2) into 2nS2 equal size bins and the2nT3 vn

3 (m0, s0, t3) sequences into2nS3 equal
size bins. To ensure that each product bin contains a jointlytypical pair (vn

2 (m0, s0, t2), v
n
3 (m0, s0, t3))

with arbitrarily high probability, we require that (see [16] for the proof)

S2 + S3 < T2 + T3 − I(V2; V3|U). (19)

Finally for each chosen jointly typical pair(vn
2 (m0, s0, t2), v

n
3 (m0, s0, t3)) in each product bin(s2, s3),

randomly and conditionally independently generate2nS1 sequencesxn(m0, s0, s2, s3, s1), s1 ∈ [1 : 2nS1 ],
each distributed uniformly over the set of conditionally typical xn sequences.

Encoding:
To send the message pair(m0, m1), we expressm1 by the quadruple(s0, s1, s2, s3) and send the

codewordXn(m0, s0, s2, s3, s1).

Decoding:
1) ReceiverY1 declares that(m0, s0, s2, s3, s1) is sent if it is the unique rate tuple such thatyn

1 is
jointly typical with ((un(m0, s0), v

n
2 (m0, s0, t2), v

n
3 (m0, s0, t3), x

n(m0, s0, s2, s3, s1)), and s2 is the
product bin number ofvn

2 (m0, s0, t2) ands3 is the product bin number ofvn
2 (m0, s0, t3). Assuming

(m0, s0, s1, s2, s3) = (1, 1, 1, 1, 1) is sent, we partition the error event into the following events.
a) Error event corresponding to(m0, s0) 6= (1, 1) occurs with arbitrarily small probability provided

R0 + S0 + S1 + S2 + S3 < I(X; Y1). (20)

b) Error event corresponding tom0 = 1, s0 = 1, s2 6= 1, s3 6= 1 occurs with arbitrarily small
probability provided

S1 + S2 + S3 < I(X; Y1|U). (21)

c) Error event corresponding tom0 = 1, s0 = 1, s2 = 1, s3 6= 1 occurs with arbitrarily small
probability provided

S1 + S3 < I(X; Y1|U, V2) = I(X; Y1|V2). (22)

The equality follows from the fact thatU → V2 → (V3, X) form a Markov Chain.
d) Error event corresponding tom0 = 1, s0 = 1, s2 6= 1, s3 = 1 occurs with arbitrarily small

probability provided
S1 + S2 < I(X; Y1|U, V3) = I(X; Y1|V3). (23)

The above equality uses the fact thatU → V3 → (V2, X) forms a Markov chain.
e) Error event corresponding tom0 = 1, s0 = 1, s2 = 1, s3 = 1, s1 6= 1 occurs with arbitrarily

small probability provided

S1 < I(X; Y1|U, V2, V3) = I(X; Y1|V2, V3). (24)

Note that the equality here uses a weaker Markov structureU → (V2, V3) → X.

Thus receiverY1 decodes(m0, s0, s2, s3, s1) with arbitrarily small probability of error provided
equations (20)-(24) hold.

2) ReceiverY2 decodes(m0, s0) (and hencem0) via indirect decoding usingvn
2 (m0, s0, t2) (as in

Theorem 1). This can be achieved with arbitrarily small probability of error provided

R0 + S0 + T2 < I(V2; Y2). (25)



14

3) ReceiverY3 decodes(m0, s0) (and hencem0) via indirect decoding usingvn
3 (m0, s0, t3) (as in

Theorem 1). This can be achieved with arbitrarily small probability of error provided

R0 + S0 + T3 < I(V3; Y3). (26)

Combining equations (19)-(26) we obtain the following

S2 ≤ T2,

S3 ≤ T3,

S2 + S3 ≤ T2 + T3 − I(V2; V3|U),

R0 + R1 ≤ I(X; Y1),

S1 + S2 + S3 ≤ I(X; Y1|U),

S1 + S3 ≤ I(X; Y1|V2),

S1 + S2 ≤ I(X; Y1|V3), (27)

S1 ≤ I(X; Y1|V2, V3),

R0 + S0 + T2 ≤ I(V2; Y2),

R0 + S0 + T3 ≤ I(V3; Y3)

for somep(u, v2, v3, x) = p(u)p(v2|v1)p(x, v3|v2) = p(u)p(v3|v1)p(x, v2|v3). Using the Fourier-Motzkin
procedure to eliminateT2, T3, S1, S2, andS3, we obtain the inequalities in (18).

Remark 5.1: The above achievability scheme can be adapted to any joint distribution p(u, v2, v3, x).
However by lettingṼ2 = (V2, U) and lettingṼ3 = (V3, U) we observe that the region remains unchanged.
Hence, without loss of generality we assume the structure ofthe auxiliary random variables as described in
the proposition. Further, using the construction ofṼ2, Ṽ3 observe that one can restrict to triples(U, V2, V3),
whereU = f(V2) = g(V3), andf andg are two deterministic mappings. Note that the auxiliary random
variables in the outer bound described in the next subsection also possess the same structure.

Remark 5.2: A special choice of the auxiliary random variables is to setV2 or V3 equal toU (i.e., only
one of the the receivers tries to indirectly decodeM0), say letV2 = U . This reduces the inequalities in
Proposition 5 (after removing the redundant ones) to:

R0 ≤ min{I(U ; Y2), I(V3; Y3)},

R0 + R1 ≤ min{I(X; Y1), I(V3; Y3) + I(X; Y1|V3), I(U ; Y2) + I(X; Y1|U)}, (28)

whereU → V3 → X form a Markov chain.
This region includes the capacity region of the multilevel case in Theorem 1 and hence is tight in this

setting.
Remark 5.3: Note that the rate splitting scheme we used in the proof of theproposition includesrate

transfer, where part of the split message,M10, is combined withM0 and encoded usingU . This rate
transfer can be used also in the Körner-Marton 2-receiver broadcast channel with degraded message sets.
Recall that without rate-splitting, we obtain the decodingconstraints

R0 < I(U ; Y2),

R0 + R1 < I(X; Y1), (29)

R1 < I(X; Y1|U).

Using rate splitting, we divideM1 into two independent parts at ratesR10 and R11, and setS1 =
R0 + R10, S2 = R11. This yields the decoding constraints constraints:

R0 + R10 < I(U ; Y2),

R0 + R10 + R11 < I(X; Y1),

R11 < I(X; Y1|U).
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Performing Fourier-Motzkin procedure, we obtain

R0 < I(U ; Y2),

R0 + R1 < I(X; Y1), (30)

R0 + R1 < I(U ; Y3) + I(X; Y1|U).

It is easy to see that the region given by the new rate splitting arguments is identical to the original
region. However the form of the new region is more conducive to the establishment of the weak converse.
The same equivalence holds for the 3-receiver broadcast channel with 2-degraded message sets discussed
in Section III.

Similar rate transfer arguments have been used before. For instance, Liang [19] used it for the two-
receiver broadcast channels to obtain a region that is at least as large as the Marton’s region. The
equivalence of the region obtained by Liang to the original Marton’s region was later established in
[18].

We now establish the following outer bound.
Proposition 6: Any achievable rate pair(R0, R1) for the general 3-receiver broadcast channel with

2-degraded message sets must satisfy the conditions:

R0 ≤ min{I(U ; Y1), I(V2; Y2) − I(V2; Y1|U), I(V3; Y3) − I(V3; Y1|U)},

R1 ≤ I(X; Y1|U),

for somep(u, v2, v3, x) = p(u)p(v2|u)p(x, v3|u) = p(u)p(v3|u)p(x, v2|v3), i.e., the same structure of the
auxiliary random variables as in Proposition 5. Further onecan restrict the cardinalities ofU, V2, V3 to:
‖U‖ ≤ ‖X‖ + 6, ‖V2‖ ≤ (‖X‖ + 1)(‖X‖ + 6), and‖V3‖ ≤ (‖X‖ + 1)(‖X‖ + 6).

Proof: The proof follows largely standard arguments. The auxiliary random variables are identified as
Ui = (M0, Y

i−1
1 ), V2i = (Ui, Y

n
2 i+1), V3i = (Ui, Y

n
3 i+1). With this identification inequalitiesR0 ≤ I(U ; Y1)

andR1 ≤ I(X; Y1|U) is immediate. The other two inequalities also follow from standard arguments and
is briefly outlined here.

nR0 ≤ nǫn +
∑

i

I(M0; Y2i|Y
n

2 i+1)

≤ nǫn +
∑

i

I(M0, Y
n

2 i+1, Y
i−1
1 ; Y2i) − I(Y i−1

1 ; Y2i|M0, Y
n

2 i+1)

(a)
= nǫn +

∑

i

I(M0, Y
n

2 i+1, Y
i−1
1 ; Y2i) − I(Y n

2 i+1; Y1i|M0, Y
i−1
1 )

= nǫn +
∑

i

I(U2i; Y2i) − I(U2i; Y1i|Ui),

whereǫn → 0 asn approaches infinity, and(a) follows by the Csiszár sum equality.
The cardinality bounds are established using a similar argument as in III-C. To create a set of new

auxiliary random variables with the bounds of Proposition 6, we first replaceV2 by (V2, U) and V3 by
(V3, U). It is easy to see from the Markov chain relationshipsU → V2 → (V3, X) andU → V3 → (V2, X)
that the following region is same as the that of Proposition 6.

R0 ≤ min{I(U ; Y1), I(U, V2; Y2) + I(X; Y1|U, V2) − I(X : Y1|U),

I(U, V3; Y3) + I(X; Y1|U, V3) − I(X : Y1|U)}, (31)

R1 ≤ I(X; Y1|U).

Then using standard arguments one can replaceU by U∗ satisfying‖U∗‖ ≤ ‖X‖+6, such that the distri-
bution ofX andH(Y1|U), H(Y1|U, V2), H(Y1|U, V3), H(Y3|U), H(Y3|U, V2), H(Y2|U), andH(Y2|U, V3)
are preserved. Now for eachU∗ = u one can findV ∗

2 (u) with cardinality less than‖X‖+1 each such that
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the distribution ofX conditioned onU∗ = u, H(Y1|U
∗ = u, V2), andH(Y2|U

∗ = u, V2) are preserved.
Similarly one can find for eachU∗ = u, a random variableV ∗

3 (u) with cardinality less than‖X‖ + 1
each such that the distribution ofX conditioned onU∗ = u, H(Y1|U

∗ = u, V3), andH(Y3|U
∗
1 = u, V3)

are preserved. This yields random variablesU∗, V ∗
2 , V ∗

3 that preserve the region in (31). (Note that as
the distribution ofX conditioned onU = u is preserved by bothV ∗

2 (u) and V ∗
3 (u), it is possible to

get a consistent triple of random variablesU∗, V ∗
2 , V ∗

3 .) Finally settingŨ = U∗, Ṽ2 = (U∗, V ∗
2 (U∗)) and

Ṽ3 = (U∗, V ∗
3 (U∗)) gives the desired bounds on cardinality as well as the desired Markov relations.

Remark 5.4: The above outer bound appears to be very different from the inner bound of Proposition 5.
However, by taking appropriate sums of the inequalities defining the region of Proposition 6, we arrive
at the conditions:

R0 ≤ min{I(V2; Y2) − I(V2; Y1|U), I(V3; Y3) − I(V3; Y1|U)},

R0 + R1 ≤ min{I(X; Y1), I(V2; Y2) + I(X; Y1|V2), I(V3; Y3) + I(X; Y1|V3)},

2R0 + R1 ≤ I(V2; Y2) + I(V3; Y3) + I(X; Y1|V2, V3) − I(V2; V3|U1) + I(V2; V3|Y1, U)

2R0 + 2R1 ≤ I(V2; Y2) + I(V3; Y3) + I(X; Y1|U) + I(X; Y1|V2, V3) − I(V2; V3|U1) + I(V2; V3|Y1, U)

These conditions, which include some redundancy, are closer in structure to the inequalities defining the
inner bound of Proposition 5.

Remark 5.5: The outer bound in Proposition 6 reduces to the capacity region for the multilevel case
in Theorem 1. To see this observe that whenX → Y1 → Y2 form a Markov chain,

R0 ≤ I(V2; Y2) − I(V2; Y1|U) ≤ I(V2; Y2) − I(V2; Y2|U) = I(U ; Y2). (32)

Thus any rate pair(R0, R1) satisfying the constraints of Proposition 6 must satisfy

R0 ≤ min{I(U ; Y2), I(V3; Y3)}, (33)

R1 ≤ I(X; Y1|U), (34)

R0 + R1 ≤ I(V3; Y3) + I(X; Y1|V3).

However, any rate pair satisfying these constraints is achievable as shown in Theorem 1 and hence the
outer bound of Proposition 6 is tight for this setting.

The inner and outer bounds match ifY1 is less noisy thanY2 [13], that is if I(U ; Y2) ≤ I(U ; Y1) for
all p(u)p(x|u). As shown in [13], this condition is more general than degradedness. As such, it defines
a larger class than multilevel broadcast channels.

Proposition 7: The capacity region for the 3-receiver broadcast channel with 2-degraded message sets
whenY1 is a less noisy receiver thanY2 is given by the set of rate pairs(R0, R1) such that

R0 ≤ min{I(U ; Y2), I(V ; Y3)}, (35)

R1 ≤ I(X; Y1|U), (36)

R0 + R1 ≤ I(V ; Y3) + I(X; Y1|V )

for somep(u)p(v|u)p(x|v).

From the definition of less noisy receivers [13], we haveI(V ; Y2|U = u) ≤ I(V ; Y1|U = u) for every
choice ofu and thusI(V ; Y2|U) ≤ I(V ; Y1|U) for everyp(u)p(v|u)p(x|v). Using (32), it follows that the
general outer bound is contained in (33). Any rate pair satisfying (35) also satisfies (under the less noisy
assumption) the constraints in (28) and thus is achievable by settingV2 = U in the region of Proposition
5.
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B. Inner Bound for 3-Degraded Message Sets

We establish an inner bound to the capacity region of the broadcast channel with 3-degraded message
sets whereM0 is to be sent to all three receivers,M1 is to be sent only toY1 and Y2, andM2 is to be
sent only toY1. We then specialize the result to the case of 2-degraded message sets scenario, whereM0

is to be sent to all receivers andM1 is to be sent toY1 andY2 and establish optimality for two classes
of channels.

The achievability proof of the region for the above scenariois closely related to that of Proposition
5. To explain the connection, consider the more general 3-receiver broadcast channel scenario, where
messageM0 is to be decoded by all receivers, messageM12 is to be decoded by receiversY1, Y2, message
M13 is to be decoded by receiversY1, Y3, and messageM11 is to be decoded by receiverY1. Observe
that lettingR12 = R13 = 0 yields the 2-degraded message set scenario considered in Proposition 5, and
letting R13 = 0 yields the 3-degraded message set requirement under consideration. Thus the region in
Proposition 5 and the region for the 3-degraded message setsgiven in Theorem 2 below can be thought
of as lower dimensional projections of the region for the more general broadcast channel scenario with
message sets in the union of these two message sets. With thismotivation, we identify each message set
in the superset by the subset of receivers that are required to decode it, and associate with each receiver
subset an auxiliary random variable as follows:

U : {Y1, Y2, Y3}, V2 : {Y1, Y2}, V3 : {Y1, Y3}, W : Y1.

Since receiverY1 is required to decode all messages, one can show that settingW = X is optimal. We
also use therate transfer technique alluded to in Remark 5.3 to establish the achievable region.

Let R1 = R10 + R11 andR2 = S0 + S1 + S2 + S3 be the rate splitting as proposed in Proposition 5.
Code generation proceeds similar to Proposition 5 , i.e., wefirst generate2n(R0+R10+S0) un sequences.

For eachun sequence, we generate2nT2 vn
2 sequences and2nT3 vn

3 sequences and then partition them into
2n(R11+S2) and2nS3 bins, respectively. We then find a jointly typical(vn

2 , vn
3 ) pair in each product bin, and

generate2nS1 xn sequences for each such pair.
Decoding proceeds in a similar way.Y1 decodesM0, M1, M2 by decodingX, Y2 decodesM0, M1 by

decodingV2, and Y3 decodesM0 by indirectly decodingU from V3. To ensure that the encoding and
decoding is successful with high probability, we impose thefollowing constraints on the rates:

R11 + S2 ≤ T2,

S3 ≤ T3,

R11 + S2 + S3 ≤ T2 + T3 − I(V2; V3|U),

R0 + R1 + R2 ≤ I(X; Y1),

R11 + S1 + S2 + S3 ≤ I(X; Y1|U),

S1 + S3 ≤ I(X; Y1|U, V2) = I(X; Y1|V2),

S1 + S2 + R11 ≤ I(X; Y1|U, V3) = I(X; Y1|V3), (37)

S1 ≤ I(X; Y1|U, V2, V3) = I(X; Y1|V2, V3),

R0 + S0 + R10 + T2 ≤ I(U, V2; Y2) = I(V2; Y2),

T2 ≤ I(V2; Y2|U),

R0 + S0 + R10 + T3 ≤ I(U, V3; Y3) = I(V3; Y3)

for somep(u, v2, v3, x) = p(u)p(v2|v1)p(x, v3|v2) = p(u)p(v3|v1)p(x, v2|v3).
EliminatingS0, S1, S2, S3, R10, R11, T2 andT3 via the Fourier-Motzkin procedure with the rate splitting

constraintsR2 = S0 + S1 + S2 + S3 andR1 = R10 + R11, we obtain the following achievable rate region.
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Theorem 2: A rate triple (R0, R1, R2) is achievable in a general 3-receiver broadcast channel with
3-degraded message sets if it satisfies the conditions

R0 ≤ I(V3; Y3),

R0 + R1 ≤ min{I(V2; Y2), I(V2; Y2|U) + I(V3; Y3) − I(V2; V3|U)},

2R0 + R1 ≤ I(V2; Y2) + I(V3; Y3) − I(V2; V3|U),

R0 + R1 + R2 ≤ min{I(X; Y1), I(V2; Y2) + I(X; Y1|V2), I(V3; Y3) + I(X; Y1|V3),

I(V2; Y2|U) + I(V3; Y3) + I(X; Y1|V2, V3) − I(V2; V3|U)}, (38)

2R0 + R1 + R2 ≤ I(V2; Y2) + I(V3; Y3) + I(X; Y1|V2, V3) − I(V2; V3|U),

2R0 + 2R1 + R2 ≤ I(V2; Y2) + I(V3; Y3) + I(X; Y1|V3) − I(V2; V3|U),

2R0 + 2R1 + 2R2 ≤ min{I(V2; Y2) + I(V3; Y3) + I(X; Y1|V2) + I(X; Y1|V3) − I(V2; V3|U),

I(V2; Y2|U) + I(V3; Y3) + I(X; Y1|U) + I(X; Y1|V2, V3) − I(V2; V3|U)}

for some p(u1, u2, u3, x) = p(u1)p(u2|u1)p(x, u3|u2) = p(u1)p(u3|u1)p(x, u2|u3), i.e., as before both
U1 → U2 → (U3, X) andU1 → U3 → (U2, X) form Markov chains).

Proposition 8: The region of Theorem 2 reduces to the inner bound of Proposition 5 by settingR1 = 0.
Proof: To show this, denote byRA the rate region prescribed by the constraints in (27), andRB the

rate region prescribed by the constraints in (37). Note thatin (27) the rateR2, which corresponds to the
rate of the private message to receiverY1 is denoted asR1, i.e., we need to compare the rate pairs(R0, R2)
from (37) to the rate pairs(R0, R1) from (27). We compare the set of constraints in (27) and in (37) when
R1 = 0, i.e., R10 = R11 = 0. Observe that (37) has exactly one extra constraint,T2 < I(V2; Y2|U), when
compared to the constraints in (27). ThereforeRB ⊆ RA. Hence it suffices to show thatRA ⊆ RB.

Consider any rate pair(R0, S0, S1, S2, S3) and random variablesU, V2, V3 satisfying the constraints in
(27). We consider two cases:

Case 1: R0 + S0 > I(U ; Y2). SinceR0 + S0 + T2 < I(V2; Y2), this implies that the rates and the
corresponding auxiliary random variables also satisfyT2 ≤ I(V2; Y2|U), and hence belong toRB.

Case 2: R0+S0 ≤ I(U ; Y2). Consider the following identification:̃R0 = R0, S̃0 = S0, S̃1 = S1+S2, S̃2 =
0, S̃3 = S3, Ũ = U, T̃2 = 0, T̃3, S3, Ṽ2 = U, Ṽ3 = V3. It is easy to see that the rate pairs(R0, R2) satisfy
all the required constraints in (37) and hence belongs toRB. Thus,RA ⊆ RB as desired.

Remark 5.6: Indeed a natural extension of this argument implies that theregion in Proposition 5 does
not change under the addition of the constraintsT2 < I(V2; Y2|U), and T3 < I(V3; Y3|U). Therefore a
joint decoding strategy would have resulted in the same region as the indirect decoding strategy. However
as mentioned in part 3 of Remark 3.3 it is not clear to the authors whether this is always the case.

We now consider a 2-degraded message set scenario whereM0 is to be sent to all receivers andM1 is
to be sent to receiversY1 andY2. The following inner bound follows from Theorem 2 by settingR2 = 0.

Corollary 1: A rate pair (R0, R1) is achievable in a 3-receiver broadcast channel with 2 degraded
message sets, whereM0 is to be decoded by all three receivers andM1 is to be decoded only byY1 and
Y2 if it satisfies the following conditions:

R0 ≤ I(U ; Y3),

R0 + R1 ≤ min{I(U ; Y3) + I(X; Y1|U), I(U ; Y3) + I(X; Y2|U)}, (39)

R0 + R1 ≤ min{I(X; Y1), I(X; Y2)}

for somep(u)p(x|u).
This region is the straightforward extension of the Körner-Marton scheme to the current scenario.

Proposition 9: The region described by Corollary 1 coincides with the region described by Theorem 2
whenR2 = 0.
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Proof: By settingR2 = 0, V2 = X, andV3 = U, the region in Theorem 2 reduces to (39). Thus
region in (39) is contained in region (38). There it suffices to show that the projection of the region (38)
to the planeR2 = 0 is contained in region (39). To prove this, observe that

R0 + R1 ≤ I(V2; Y2|U) + I(V3; Y3) − I(V2; V3|U),

= I(V3; Y3) + I(V3; Y2|U) + I(V2; Y2|V3) − I(V3; Y2|V2) − I(V3; V2|U),

= I(V3; Y3) + I(V2; Y2|V3) − I(V3; V2|Y2, U),

≤ I(V3; Y3) + I(X; Y2|V3).

Thus the rate pairs must satisfy the following inequalities

R0 ≤ I(V3; Y3),

R0 + R1 ≤ min{I(V3; Y3) + I(X; Y2|V3), I(V3; Y3) + I(X; Y1|V3)}, (40)

R0 + R1 ≤ min{I(X; Y2), I(X; Y1)}.

Clearly this is contained inside region (39) and hence region (38) reduces to the one in Corollary 1 when
R2 = 0.

Inner bound (Corollary 1) is optimal for the following two special classes of broadcast channels.
Proposition 10: Achievable region (39) is tight for deterministic 3-receiver broadcast channels. Indeed

it is tight as long as the channelX → Y3 is deterministic.

Proof: By settingU = Y3 in (39), we see that rate pairs(R0, R1) is achievable if

R0 ≤ H(Y3),

R0 + R1 ≤ min{H(Y1), H(Y2)}

for somep(x). Clearly these constraints also constitute an outer bound and hence they provide a tight
characterization of the capacity region.

Proposition 11: Achievable region (39) is optimal whenY1 is a less noisy receiver thanY2 andY3 is
a less noisy receiver thanY2.

Proof: To show optimality, we setUi = (M0, Y
i−1
3 ) and thus the only non-trivial inequality in the

converse isR0 + R1 ≤ I(U ; Y3) + min{I(X; Y1|U), I(X; Y3|U)}. To prove this, observe that

nR1 ≤
∑

i

I(M1; Y1i|M0, Y
n
1 i+1)

≤
∑

i

I(M1; Y1i|M0, Y
n
1 i+1, Y

i−1
3 ) +

∑

i

I(Y i−1
3 ; Y1i|M0, Y

n
1 i+1))

(a)
=
∑

i

I(M1, Y
n
1 i+1; Y1i|M0, Y

i−1
3 ) −

∑

i

I(Y n
1 i+1; Y1i|M0, Y

i−1
3 ) +

∑

i

I(Y n
1 i+1; Y3i|M0, Y

i−1
3 )

(b)

≤
∑

i

I(Xi; Y1i|M0, Y
i−1
3 ),

where(a) follows by the Csiszár sum equality and(b) uses the assumption thatY1 is a less noisy than
Y3, which implies thatI(Y n

1 i+1; Y3i|M0, Y
i−1
3 ) ≤ I(Y n

1 i+1; Y1i|M0, Y
i−1
3 ). The boundR1 ≤ I(X; Y2|U)

can be proved similarly.
Remark 5.7: Note that this result generalizes Theroem 3.2 in [4], where the authors assume the receivers

Y2 andY1 are degraded versions ofY3.
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VI. CONCLUSION

Recent results and conjectures on the capacity region of(k > 2)-receiver broadcast channels with
degraded message sets [6], [4], [5] have lent support to the general belief that the straightforward extension
of the Körner-Marton region for the 2-receiver case is optimal. This paper shows that this is not the case.
We showed that the capacity region of the 3-receiver broadcast channels with 2-degraded message sets
can be strictly larger than the straightforward extension of the Körner-Marton region. Achievability is
proved using rate splitting and superposition coding. We showed that a simpler characterization of the
capacity region results using indirect decoding instead ofjoint decoding. Using these ideas, we devised
a new inner bound to the capacity of the general 3-receiver broadcast channel with 3-degraded message
sets and showed that it is tight in some cases.

The results in this paper suggest that the capacity of thek > 2-receiver broadcast channels with
degraded message sets is at least as hard to characterize in asingle-letter way as the capacity region
of the general 2-receiver broadcast channel with one commonand one private message sets. However,
it would be interesting to explore the optimality of our new inner bounds for classes where capacity is
known for the general 2-receiver case, such as deterministic and vector Gaussian broadcast channels. It
would also be interesting to investigate applications of indirect decoding to other problems, for example,
the 3-receiver broadcast channels with confidential message sets [11].

Our results also show that a straighforward extension of Marton’s achievable rate region to more than
2 receivers is not in general optimal. The structure of the auxiliary random variables in the inner bounds
can be naturally extended to 3 or more receivers with arbitrary mesage set requirements as will be detailed
in a future publication.
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APPENDIX I
PROOF OFPROPOSITIONS1, 2, 3,AND 4

To prove Propositions 1, 2, note that it is straightforward to show that each simplified characterization is
contained in the original region as the characterizations are obtained by using the channels independently.
So we only prove the other non-trivial direction.

Proof of Proposition 1:
We prove that for the product broadcast channel given by (11)the BZT region (3) reduces to the

expression (12).
Consider the first term in the BZT region

R0 ≤ I(U ; Y2) = I(U ; Y21, Y22)

= I(U ; Y21) + I(U ; Y22|Y21)

≤ I(U ; Y21) + I(U, Y21; Y22)

≤ I(U ; Y21) + I(U, Y11; Y22).

Now setU1 = U andU2 = (U, Y11). Thus the above inequality becomes

R0 ≤ I(U1; Y21) + I(U2; Y22).

This inequality is the first term (12a) in (12). To complete the equivalence, we have to show that the
remaining constraints of (12) are also satisfied by our choice U1 = U andU2 = (U, Y11).

Observe that
R0 ≤ I(U ; Y3) = I(U1; Y31).

Finally, consider the last term

R1 ≤ I(X; Y |U) = I(X1, X2; Y11, Y12|U)

= H(Y11, Y12|U) − H(Y11, Y12|X1, X2, U)

= H(Y11|U) + H(Y12|U, Y11) − H(Y11|X1, U) − H(Y12|X2, U)

= I(X1; Y11|U) + H(Y12|U, Y11) − H(Y12|X2, U, Y11)

= I(X1; Y11|U1) + I(X2; Y12|U2).

This implies that all constraints of (12) are satisfied by thechoiceU1 = U andU2 = (U, Y11). The fact
that p(u1)p(u2)p(x1|u1)p(x2|u2) suffices follows from the structure of the mutual information terms.

Proof of Proposition 2:
We prove that for the product broadcast channel (11) the capacity region given by Theorem 1 reduces

to the expression (13).
Consider the first term (13a) in the capacity region

R0 ≤ I(U ; Y2) = I(U ; Y21, Y22)

= I(U ; Y21) + I(U ; Y22|Y21)

≤ I(U ; Y21) + I(U, Y21; Y22)

≤ I(U ; Y21) + I(U, Y11; Y22).

Now setU1 = U andU2 = (U, Y11).

The second term (13b) in the capacity region isR0 ≤ I(V ; Y31). Now setV1 = V and fromU → V →
(X1, X2) we haveU1 → V1 → X1. Thus the second term can be rewritten asR0 ≤ I(V1; Y31)
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Consider the third term in the capacity region

R1 ≤ I(X1, X2; Y11, Y12|U)

= I(X1; Y11|U) + I(X2; Y12|U, Y11)

= I(X1; Y11|U1) + I(X2; Y12|U2)

Finally consider the last term in the capacity region

R0 + R1 ≤ I(V ; Y31) + I(X1, X2; Y11, Y12|V )

= I(V ; Y31) + I(X1; Y11|V ) + I(X2; Y12|V, Y11)

≤ I(V ; Y31) + I(X1; Y11|V ) + I(X2; Y12|U, Y11)

= I(V1; Y31) + I(X1; Y11|V1) + I(X2; Y12|U2)

The fact thatp(u1)p(v1)p(x1|v1)p(u2)p(x2|u2) suffices follows from the structure of the mutual information
terms.

In the proof of propositions 3 and 4 we shall make use of the following simple fact about the entropy
function [10].

H(ap, 1 − p, (1 − a)p) = H(p, 1 − p) + pH(a, 1 − a).

Proof of Proposition 3:
We prove that the region given by (12) reduces to (14) for the binary erasure channel described by the

example in Section IV.
Let P{U1 = i} = αi, P{X1 = 0|U1 = i} = µi. Then,

I(U1; Y21) = H

(

∑

i

αiµi

6
,
5

6
,
∑

i

αi(1 − µi)

6

)

−
∑

i

αiH

(

µi

6
,
5

6
,
1 − µi

6

)

=
1

6
H

(

∑

i

αiµi,
∑

i

αi(1 − µi)

)

−
1

6

∑

i

αiH(µi, 1 − µi),

I(U1; Y31) = H

(

∑

i

αiµi,
∑

i

αi(1 − µi)

)

−
∑

i

αiH(µi, 1 − µi),

I(X1; Y11|U1) =
∑

i

αiH

(

µi

2
,
1

2
,
1 − µi

2

)

−
∑

i

αiµiH

(

1

2
,
1

2

)

−
∑

i

αi(1 − µi)H

(

1

2
,
1

2

)

=
1

2

∑

i

αiH(µi, 1 − µi).

Similarly, let P{U2 = i} = βi, P{X2 = 0|U2 = i} = νi. Then

I(U2; Y22) =
1

2
H

(

∑

i

βiνi,
∑

i

βi(1 − νi)

)

−
1

2

∑

i

βiH(νi, 1 − νi),

I(X2; Y12|U2) =
∑

i

βiH(νi, 1 − νi).
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Now setting
∑

i βiH(νi, 1 − νi) = 1 − q, and
∑

i αiH(µi, 1 − µi) = 1 − p, we obtain

I(U1; Y21) =
1

6
H

(

∑

i

αiµi,
∑

i

αi(1 − µi)

)

−
1

6

∑

i

αiH(µi, 1 − µi)

≤
1

6
(1 − (1 − p)) =

p

6
,

I(U1; Y31) = H

(

∑

i

αiµi,
∑

i

αi(1 − µi)

)

−
∑

i

αiH(µi, 1 − µi)

≤ 1 − (1 − p) = p,

I(X1; Y11|U1) =
1 − p

2
,

I(U2; Y21) =
1

6
H

(

∑

i

αiµi,
∑

i

αi(1 − µi)

)

−
1

6

∑

i

αiH(µi, 1 − µi)

≤
1

2
(1 − (1 − q)) =

q

2
,

I(X2; Y12|U2) = 1 − q.

Therefore, any rate pair in the BZT region must satisfy the conditions

R0 ≤ min
{p

6
+

q

2
, p
}

,

R1 ≤
1 − p

2
+ 1 − q.

for some0 ≤ p, q ≤ 1.
It is easy to see that equality is achieved when the marginalsof V1 are given byP{U1 = 0} = P{U1 =

1} = p/2, P{U1 = E} = 1 − p and the marginals ofV2 are given byP{U2 = 0} = P{U2 = 1} =
q/2, P{U2 = E} = 1 − q, (see Figure 4).

1/2

1/2

V1 X1

0

E

1

0

1

0

E

1

0

1

1/2

1/2

V2 X2

p/2

1 − p

p/2

q/2

1 − q

q/2

Fig. 4. Auxiliary channels that achieve the boundary of the BZT region.

Proof of Proposition 4:
We prove that the region (13) reduces to region (15) for the binary erasure channel described by the

example in Section IV.
Assume thatP{U1 = i} = αi, P{X1 = 0|U1 = i} = µi, P{U2 = i} = βi, P{X2 = 0|U2 = i} =
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νi, P{V1 = i} = γi, P{X1 = 0|V1 = i} = ωi. Further, there existr, s, t ∈ [0, 1] such that

H(X1|U1) =
∑

i

αiH(µi, 1 − µi) = 1 − r,

H(X2|U2) =
∑

i

βiH(νi, 1 − νi) = 1 − s,

H(X1|V1) =
∑

i

γiH(ωi, 1 − ωi) = 1 − t.

Clearly from the Markov conditionU1 → V1 → X1, we require1 − t ≤ 1 − r or equivalentlyr ≤ t.
We can also establish the following in a similar fashion.

I(U1; Y21) =
1

6
H

(

∑

i

αiµi,
∑

i

αi(1 − µi)

)

−
1

6

∑

i

αiH(µi, 1 − µi) ≤
r

6
,

I(U2; Y22) =
1

2
H

(

∑

i

βiνi,
∑

i

βi(1 − νi)

)

−
1

2

∑

i

βiH(νi, 1 − νi) ≤
s

2
,

I(V1; Y31) = H

(

∑

i

γiωi,
∑

i

γi(1 − ωi)

)

−
∑

i

γiH(ωi, 1 − ωi) ≤ t,

I(X1; Y11|U1) =
1

2

∑

i

αiH(µi, 1 − µi) =
1 − r

2
,

I(X2; Y12|U2) =
∑

i

βiH(νi, 1 − νi) = 1 − s,

I(X1; Y11|V1) =
1

2

∑

i

γiH(ωi, 1 − ωi) =
1 − t

2
.

Thus any rate pair in the capacity region must satisfy

R0 ≤ min
{r

6
+

s

2
, t
}

,

R1 ≤
1 − r

2
+ 1 − s,

R0 + R1 ≤ t +
1 − t

2
+ 1 − s,

for some0 ≤ r ≤ t ≤ 1, 0 ≤ s ≤ 1. Note that substitutingr = t yields the BZT region.
Equality in the above conditions is achieved by the choices of auxiliary random variables shown in

Figure 5, and thus the above region is the capacity region.
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Fig. 5. Auxiliary channels that achieve the boundary of the capacity region.


