ON MARTON’S ACHIEVABLE REGION: LOCAL TENSORIZATION FOR PRODUCT
CHANNELS WITH A BINARY COMPONENT

CHANDRA NAIR

ABSTRACT. We show that Marton’s achievable rate region for product broadcast channels with one binary
component satisfies a property called local tensorization. If a corresponding global tensorization property
held for the same setting, then this would be equivalent to showing the optimality of Marton’s achievable
region for any two receiver broadcast channel with binary inputs.

1. INTRODUCTION

Network information theory studies the feasibility of transmitting multiple sources reliably over a network
of users to their intended receivers. The point-to-point setting was considered by Shannon in his seminal
paper [1]. In this setting, Shannon demonstrated that it was possible to do a source-channel separation, i.e.
to decouple the compression of source to remove redundancy, and to expand the compressed source to combat
channel errors. While such a source-channel separation usually does not hold in a multi-user setting, it is
nevertheless interesting, both from a mathematical as well as an engineering perspective, to decouple the two
problems. In the latter problem, called the channel-coding setting, determining a computable characterization
of the capacity region for several fundamental scenarios remain open (see open problems in [2]).

For some of these settings, there are natural achievable regions whose optimality has not been determined.
For certain other settings, for instance the capacity region of the interference channel and a three receiver
broadcast channel with degraded message sets (see open problems 6.4 and 8.2 in [2]), the author and his
collaborators have shown that a natural achievable rate region is strictly sub-optimal (see [3,4]). The sub-
optimality was demonstrated, in both instances, by taking a particular channel instantiation where the
two-letter extension of the achievable region strictly outperformed the single-letter region.

However there are several problems for which the optimality of natural achievable regions are unknown.
Here is a partial list, taken essentially from among the open problems listed in [2], whose answer is not yet
determined:

5.1 Is superposition coding region optimal for less-noisy broadcast channels with four or more receivers?
6.1 Is the Han—Kobayashi scheme with Gaussian signaling tight for the two user scalar Gaussian Inter-
ference channel with weak interference?
8.3 Does the Marton inner bound achieve the sum-capacity of the binary skew-symmetric broadcast chan-
nel?
8.4 Is the Marton inner bound tight in general for broadcast channels?
To show the sub-optimality (or optimality), in each of the instance above as well as other similar instances,

one can reduce the question to showing the additivity (or tensorization) of an associated functional. This
article deals with such a question for the two-receiver broadcast channel.

1.1. Two receiver broadcast channel. A two receiver broadcast channel models communication from
a single sender X to two receivers, say Y and Z, as shown in Figure 1. An (n, Ry, R2)-code, C, for this
setting consists of an encoder that maps [1 : 2"f1] x [1 : 27f2] s X" and two decoders that map received
sequences Y™+ [1: 2] and Z" + [1 : 2"12], respectively. The probability of error for a given code, P(Ce),
is defined to be P((My, My) # (My, My)) when (M, My) is uniformly distributed over [1 : 27F1] x [1 : 242,
A non-negative rate pair (R, Rg) is said to be achievable if there exists a sequence (in blocklength n) of
(n, R1, Rg)-codes C,, such that P((f;)" — 0 as n — oo. The closure of the set of achievable rate pairs is called
the capacity region for the broadcast channel (W, (y|z), Wy(z|z)).
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Wa(ylz) P Decoder 1 ——> M

(My1,M;) — Encoder
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FIGURE 1. Discrete memoryless broadcast channel (no common message)

Theorem 1.1 (Marton’s inner bound, [5]). A non-negative rate pair (Ry, R2) is achievable if it satisfies
Ry < I(U,Q;11)
Ry < I(V,Q;Y3)
Ry + Ry < min{I(Q; Y1), 1(Q; Y2)} + I(U; Y1|Q) + I(V; Y2|Q) — I(U; V]Q)
for some p(q,u,v,x) such that (Q,U,V) — X — (Y, Z) is Markov.

If we denote this region as Mc(W,, Wp), then it is easy to see that Marton’s region is the capacity region
for any broadcast channel if and only if

(1) Mc(W, @ Wo, Wy @ Wy) = Mc(Wo, W) @ Mc(Wo, Wy), YW, Wy,
where @ denotes the Minkowski sum of the two regions.

Remark 1.2. This follows from the fact that n-letter extension of Marton’s region tends to capacity from
which the above condition for optimality is rather immediate.

Let (W,, W;) and (W, W3) be two (not necessarily identical) broadcast channels from X; — (Y3, Z1) and
Xo — (Y2, Z2) respectively. For A > 1 and « € [0, 1], define the following:

FO () i= max —(A— a)I(X1;Y1) — oI (X1: Z1) + M(U; Y1) + I(V; Zy) — I(U; V) — E(n(X1))

pPuvx,
FM(Q) = max —(A = a)I(X1:Y1) = I (X3; 20) + AU Y1) + I(V: Zy) = I(U3 V) = B(((X2))
2
Ffé\’a)(% €)= pmax —(A—a)I(X1X9;Y1Y2) — ol (X1 Xo; Z122) + M(U; Y1Yo) + I(V; Z125)
142

— I(U;V) = E(n(X1)) — E(¢(X2)),

where 7(X7) and ((X3) are any two functions. In [6] it was shown that one can restrict to the set of simplices
satisfying |U| + |V| < |X1] + 1 to compute the first maximum, [U| + |V| < |Xs| + 1 to compute the second
maximum, and [U] + [V| < |X1]|Xz| + 1 to compute the third maximum.

It follows from Lemma 2 in [6] that (1) would follow if we show the following statement:

(2) Fn,Q) = F () + FM(©) ¢

Remark 1.3. This implication follows from a dual representation of an upper concave envelope which follows
via Fenchel duality. This statement is slightly more general than is needed to establish (1). On the other
hand such a statement with non-identical components will be useful as can be seen later in this article.

Consider the following functionals defined by:
FfA’a’n)(vaxl) = (A=) [(X;Y1) —ad(X1; Z1) + M(U; Y1) + IV Zy) — I(U; V) — E(n(X1))
EP ) (puvx,) = —(A = a)[(X13 1) — al (X33 20) + MU Y1) + 1(Vi Z4) = (U3 V) = B(C(Xz))
F " (puvx,x,) = —(A — a)[(X1 Xo; Y1Ya) — al (X1 X2; Z1 Zo) + M (U; 1Y) + 1(V'; Z1 Z)
—1(U; V) — E(n(X1)) — E(C(X2)),
Note that the equality in (2) is equivalent to requiring that if pj; v, x, is a maximizer of Fl(’\’a’") (puvx,)
and p}hVQXQ is a maximizer of FQ(/\’Q’C) (Puvx,) then py; v v, ®pTUQV2X2, with U = (U, Us) and V = (Vq, V),

is a maximizer of F{3"*™ (puvx,x,). In other words, the product of the maximizing distributions in the

marginal spaces is a maximizer of the joint distribution. This leads us to the following definition.
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Definition 1.4. We say that Mdrton’s achievable region satisfies a global tensorization property if (2) holds
for all functions n, .

As said earlier, since establishing the global tensorization property would establish the optimality of Mar-
ton’s achievable region, one step towards verifying this property would be to verify if the distribution
Pivix, © Pinvax, 1S a local-mazimizer of F ™) (pryx,x,). An issue is that one has to identify the

maximizers of Fl(A,am) (puvx,) and FQ(’\’O"C)(pUV X, ). Alternately, one could hypothesize a more general
statement which is called the local tensorization property.

Definition 1.5. We say that Mdrton’s achievable region satisfies a local tensorization property if: let pf; v x,

be a local mazximizer of Fl(’\’a’n)(vaxl) and p{,QWXz be a local mazximizer of FZ(X’Q’O (puvx,), then we require

that pj; v, x, ®pJ{JQV2X2, with U = (Uy,Us) and V = (V1,V3), be a local mazimizer of F1(2>\7a,n70 (puv x,x,) for
all n, C.

Remark 1.6. The following points are worth noting:

o The local tensorization property can be tested using the local behaviour of a function, for instance using
first and second order conditions, and there is no need for the identification of global mazximizers of
the non-convex functional in the marginal spaces.

e In all the network information theory settings that we have studied so far, it appears that for an
associated functional, similar to the one considered here, either both the local tensorization property
and the global tensorization property holds, or neither holds.

2. THE LOCAL TENSORIZATION PROPERTY
Below, we list some properties of local maximizers of Fl(’\’a’") (puvx, ) that has been esyablished in previous

works (see [6] and references there in).

Proposition 2.1. Let py,v, x, be a local mazimizer of Fl(/\,am) (puvx,). Then we can assume that

o Ui+ W] <X +1
e X is a function of (U, V1), i.e. H(X1|U1V1) =0

First order conditions. Let py,v, x, be a local maximizer of Fl(A,oz,n) (puvx,), w.lo.g. satisfying the properties
in Proposition 2.1. We have the following first order conditions for local optimality that

P (@1)p* (urys)p(v1z1)e” ") > =C p(ui,vi,z1) >0
*(y1)p'—( Zl):pA *(z1y1)p*(w121)p*~ 1 (ua)p(urvi) <C oplu,vi,z1) =0

Z Wa( y1|x1)Wb(Z1|:C1)log(

Y121

It is also immediate that C' = F 1()"0‘) (n). A similar first order conditions for local optimality also holds for the

local maximizer of F2()‘ Q’O(

a,n)(

PUVX,). Therefore, it follows by summing these conditions that if pf; y, x, is a local

maximizer of Fl()" puvx,) and p]LUQVQX2 is a local maximizer of FQ()"O"C)(pUVXZ), then py; v, x, ®p};zV2X2,
with U = (U, Uz) and V = (V1, Va), will also satisfy the first order conditions for local optimality.

Remark 2.2. The above observation is generically true for all such functionals arising in the test of opti-
mality of achievable regions. It is the second order conditions listed below that are seen to fail for instances
where the achievable regions are sub-optimal.

Second order conditions. Let py,v, x, be alocal maximizer of Fl(’\’a’")(pUVXI). Let L(u1,v1,21) be a function
such that E(L) = 0. Then pf; v, x, = pryvix, (1 + €l) defines a perturbation in the space of probability
distributions, for € small enough. Let us define

fr(e) = F (05, v, x,).

From Proposition 2.1 we know that it suffices to consider X; to be a function of Uy, V;. Hence we can w.l.o.g.
assume that the perturbation L is a function of (U, V7) only for testing second order conditions.

Lemma 2.3. Let pf; v, x, be a mazimizer of Feen

E(L2) + (A — 1) B(E(L|U1)%) — AE(E(L|U, 1)?) = 0.

puvx,). Then for any L(Uy, V1) we have
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Proof. Define a new distribution with U, = (Uy, Q), where Q is binary and

ip*(ur,v1,21)(1 + €L(ur,v1)) ¢=0
ip*(u1,v1,21)(1 — €L(ug,v1)) g=1

p(e)((ulaQ)vvl’xl) = {

Hence p'9 (vy,21) = p*(v1, x1). Therefore
Ao, € A, ~ ~
FND (0 ) = F (pyvix,) = (Hyo (01, Vi) = Hys Uy, V1) + (A = 1) (Hyo (T1) = Hy (U))
— MH,y (U1, Y1) = Hp- (U1, V1))

e2

= S (\BB(LIUL, Y1)?) — (A= D E(B(LIU)?) - (L)) + O(e).
The lemma then follows from the maximality of p;, v, x,- O

The second order conditions for py, v, x, to be a local maximizer is that f}/(0) < 0 for all L(Uy, V1) such
that E(L) = 0. A bit of elementary calculations shows that this is equivalent to requiring that

(3)  AE(E(LIX1)?) + AE(E(L|U1Y1)?) + E(E(L|V1Z1)?) — aB(E(L|Y1)?) — (1 — a) E(E(L|Z1)?)
— (A= a)E(E(L|X1Y1)?) — « B(E(L|X1Z1)?) — (A = 1) E(E(L|U1)?) — E(E(L|U1V1)?) <0,
for all L(Uy, V1) such that E(L) = 0. Since (U1,V1) — X1 — (Y1,Z1) is Markov, we have E(L|X;) =
E(L|X1,Y1) = E(L|X1, Z1). Further any function L(Uy, V;) can be expressed as L1 (U, V1) +a, with E(Ly) =
0. Since the coefficients in (3) add to zero, the constant term a vanishes for a generic L(Uy, V7). Combining
these three observations together, the second order conditions can be equivalently expressed as requiring
AE(E(L|U1Y1)?) + E(E(L|V121)?) — « E(E(L|Y1)?) - (1 — @) E(E(L|Z1)?)
(4) — (A =1 E(E(L|U1)*) - B(E(L|U1V1)?) <0,
for all L(Uy, V7). We now have a quadratic form which can be represented using the matrices of size |U; || V1] %
U [Vl
For any L(Uy, V1) we can represent:
E(E(L|UW)?) = LT Ay, v, L, E(E(L|IU\Y1)?) = LT Ay,yv, L, EE(L|V1Z,)*) = LT Ay, 4, L,
E(E(LV1)?) = L"Ay,L, E(E(L|Z1)?) = L" Az L,E(E(L|U,)?) = LT Ay, L

where the matrices (of size |U;||V1] X [U1]|V1]) are defined by

(i) Ay,v, is a diagonal matrix with entries p(uq,v1)

(1) Av,y, is a matrix with entries >, p(u1,v1,y1)p(1]u1,y1) at location ((u1,v1), (u1,91)), and zeroes

elsewhere
(44i) Avyz, is a matrix with entries . p(u1,v1,21)p(t1vi, 21) at location ((u1,v1), (i1,v1)), and zeroes
elsewhere

(iv) Ay, is a matrix with entries >, p(u1,v1,y1)p(d1, 91]y1) at location ((u1,v1), (41, 91))

(v) Ag, is a matrix with entries ). p(u1,v1, 21)p(i1,91]21) at location ((u1,v1), (i1, 01))

(vi) Ay, is a matrix with entries p(u1,v1)p(91|u1) at location ((u1,v1), (u1,91)) and zeroes elsewhere.

The first two orderings are immediate from the definition in terms of their quadratic forms, and the third
one, holds for a maximizer, follows from Lemma 2.3:

(5a) Av,v, = Auyyy, = Auy, Ay, =0
(5b) Avyvy = Avyzy = Az, =0
(5¢) Avvy + (A= 1Ay, = My, y,

Remark 2.4. Note apart from being positive semi-definite the matrices above also satisfy additional proper-
ties: all the entries are non-negative, and they are a convex combination of completely positive matrices.

In terms of these matrices one can rewrite the second order conditions in (4) as

(6) AU1V1 + (>‘ - 1)AU1 + aAYl + (1 - a)AZI = >‘AU17Y1 + AVIZI'
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. . A . . A
Suppose p;, v, x, is alocal maximizer of F1( M (prvx, ) and p}L]QVZ)XZ is a local maximizer of F2(

then we know that

pUVXz)v

Q bov + (A= DAG, + Ay, + (1-a)Ay, = Ap, y, + Az,
(8) AJI[J?VQ + (>\ N 1)AJ{J2 + aALz + (1 - a)ATZz = >\A1l-]27Y2 + ATVzZz'

from the previous section we know that pf; 1. x, ®pJ{]2 v, Satisfies the first order conditions for local optimality

of Fl(g‘ ’a’”’C)(pUV X, X,)- To check if it satisfies the second order conditions, a bit of algebra shows that we
have to verify if the following holds:

9) A ® ALy, + (A= 1DA7, ® AL+ aAy, @ Al + (1 —a)Ay, ® AL = MAD, v, ® Al, 3, + ATz, ® Al 5.

Remark 2.5. There are positive semi-definite matrices A* and A', of size 2 x 2, that satisfy (7) and satisfy
the ordering in (5), but fail to satisfy (9). Such an example, albeit with some negative entries in matrices,
was discovered in collaboration with Venkat Anantharam, Amin Gohari, and Ali Yekhekhany. Therefore it
seems essential that we need to use further properties of the matrices to establish the second order conditions.

2.1. Restriction to binary input broadcast channels. Suppose we wish to seek the optimality of Mar-
ton’s achievable region for broadcast channels where |X| = 2, then it suffices to prove the global-tensorization
property for product channels (as in (2)) where one of the component, say Xs, is binary. This is because we
can split an n-letter of a binary channel extension into the product of an (n —1)-letter extension and a binary
component. Hence if the global-tensorization property holds when one of the components is binary, then we
would demonstrate the optimality of Marton’s achievable region for broadcast channels where |X| = 2.

Therefore it is natural to ask if we can prove the local-tensorization property for product channels where
one of the component, say X5, is binary. The following proposition is the main result of this article.

Proposition 2.6. Consider a product broadcast channel where Xs is binary. Then for product of mazximizers

of Fl()"a’n)(vaxl) and FQ(/\’Q’O (puvx,), the second order conditionals for local optimality as stated in (9)
are satisfied.

Remark 2.7. Since the first order conditions are more widely satisfied, it follows that it we have a product

broadcast channel where Xy is binary, then for product of mazimizers of Fl(A,am)(vaxl) and FQ(/\’(X’O (ruvx,)

, o Xaun,
is a local maximizer of F1(2 o) (PUuvx,x,)-

Proof. From proposition 2.1 we know that at any local maximizer py, v, x, we can assume that |Us|+ Vo] <
| X2]+1 = 3. Hence it follows that either (i)Us = X5 and V5 is a constant; or (i)Va = X3 and Us is a constant.
We treat the two cases separately below.

Case 1: At pJ{]QV2 x,» We have Uz = X5 and V5 is a constant. This, in particular, implies that
T gt _ AT gt
AU27V2 - AU27Y2 - AU2 - AXQ’

where AE(Z is a 2 x 2 diagonal matrix with entries px,. Further since V5 is a constant we have AL% 7, = ATZQ.
Substituting the above, and using (8) obtain

(10) AL, = Al = A} 0.
Putting these together observe that
b @ AL L+ (A= 1DAY, @ AL +ady, @ AL + (1 - a)Ay, @ A, — NADy, @ ALy, — A, @ A,
= Ay, @ A, + (A= 1Ay, @ A, + Ay, @ AL + (1 - a)Ay, @ AL, — Ay, @ Ak, — Ay, 5, ® AL,
= (Afy + A= DAY, = My @ A, +ady, @ Al + (1 - )4y, @ A, — A7, @ Al
= (Afy, + (A= DAG, =M y) © (A, — AL) + (A5 7, — (1 - Az © (A}, - AL)

+(Afy, + (A= DAY, + Ay + (1—a)Ay — MY, y, — Ay 4) © Al
> 0.

The last inequality is a consequence of the fact that if B,C » 0, then B® C * 0, and conditions (5), (6),
and (10).
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Case 2: At pE2V2X2, we have Vo = X5 and Us is a constant. This, in particular, implies that

1 _ gt _ AT gt T
AU27V2 - AV27Z2 - AVz - AXz = AZz’

where AEQ is a 2 x 2 diagonal matrix with entries px,. Further since Us is a constant we have AZ,%YZ =

:
Al = AL

Substituting the above, and using (8) obtain
(11) 1-a)Al = (A —1)(AL — AL )+ (1 -a)A], =o0.
or equivalently (1 — 04)(AJ[Z2 - AJ{JQ) == oz)(Ai/2 — A;rjz). As A > 1, the above observations also implies
Al = Al = AL = Al -0
Now, using the above, we have
i ® ALy, + (A= 1DAL, @ Al +ady, @ Al + (11— 0)Ay, @ A — My, ® Ay, — A}, 5, ® Al 4,
= (A7,v, — Ay z,) ® Ak, + (@A}, — My, ® AL + (A= DAY, @ A, + (1 - a)Ay, ® A}
= (Afv, + (A= DAY, +ad} + (1 — @) Ay, — MY, v, — Az, © AL
+(Af, — Al z) ® (A, — AL — (ML, —ady) @ (A], — AL) + (1 - a)Ay, ® (A, — Al)
= (A, + A= DAY, +ady, + (1 - a)Ay, — A, y, — Al z) ® Al
+ Ay, @ (1—a)(Al, — Al) — (A —a)(4], - A])
+(Afy, — Alz) @ (A, — AL) = WAy, — ad}) ® (A), — AL )+ (A — )43, ® (A}, - 4],)
= (A, + A= DAY, + a4y, + (1 —a)Ay, — M, y, — A}, 5) @ Al
+ Az, @ (1—a)(A], — Al) = (A —a)(AL, — A]) + (A7,v, — AT, z,) ® (A, — AL)
+ (Afv, — Atnz,) @ (AL, — AL — WAy, — ady,) @ (AL — AT + (A - a)Ay, ® (4], — A])
= (Al — Afuz) ® (AL, — AL) = (MApy, — ady,) @ (4], — Al + (A — a)Ay, @ (4], - A],).

The last inequality is a consequence of the fact that if B,C = 0, then B ® C = 0, and conditions (5), (6),

and (11).
Using (1 — a)(ATZz - AL2) (A= a)(A{/2 - A;rjz) which follows from (11), we have

(Af v — Az,) © (AL, — Al ) — (MAfy, — ad}) @ (AL, — AL )+ (A — @) Ay, © (A, — Al )

A—a * * * * *
= (l—a( Ui V1Z1) + (A=) Zy (>\AU1Y1 - aA}q)) ® (A{/Z - AJ{JZ)-

Therefore to show the second order conditions, it suffices to show that

A—o, .,

1o A = Az, + (1 - 2)Az) — M,y —ady,) = 0.
Using (6) we have
A—a, . . . .
1— Oé( Uvi AV1Z1 + (]‘ - a)Azl) - (>‘AU1Y1 - aAYl)
A—« . . . . .
= 1—a AApy, —ady, = (A= 1Ap,) — (My,y, —ady,)
A—1 . y .
= 1 ()\AU1Y1 - OéAYI - (>\ - OZ) Ul) t 0
-«

since A > 1, € (0,1) and Ay, y, = A3, Aj; . This completes the proof of the Proposition 2.6. d
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SUMMARY

In this article we show that a particular functional associated with testing the optimality of Marton’s inner
bound for the capacity region of a two-receiver broadcast channel satisfies a local-tensorization property, if
one of the components is binary. In other words, we show that a product distribution obtained by taking
the maximizers in each component channel is a local maximizer in the space of joint distributions. If the
same distribution were a global maximizer, then this would imply the optimality of Marton’s inner bound for
binary input broadcast channels. Further it is not known whether there are other non-trivial local maximizers
in the space of joint distributions.

In previous works in network information theory, it had been observed that the local maximizer condition
and the global maximizer condition seemed to go hand in hand for similar functionals. Indeed it was by
observing examples where the local condition failed that the author and his co-authors were able to find
counter examples to the optimality of achievable regions in other fundamental network information theory
settings, as reported in [3], [4].

Acknowledgements. The author owes immense gratitude for various discussions on this very same problem
to Amin Gohari, Venkat Anantharam, Ali Yekkhekhany, Yannan Wang, and Liu Hang. The initial efforts
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