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Abstract

We study the most-informative Boolean function conjecture using a differential equation approach. This leads to a formulation
of a functional inequality on finite-dimensional random variables. We also develop a similar inequality in the case of the Hellinger
conjecture. Finally, we conjecture a specific finite dimensional inequality that, if proved, will lead to a proof of the Boolean
function conjecture in the balanced case.

I. INTRODUCTION

Let Hn = {−1, 1}n denote the n-dimensional Boolean Hypercube centered at 0. The most informative Boolean function
conjecture states the following:

Conjecture 1 ([1]). Let X ∼ Unif(Hn) be a random variable distributed uniformly on the Boolean Hypercube and Y be
received after passing each bit of X through a BSC channel with cross-over probability p = 1−ρ

2 ∈ [0, 1]. Let f : Hn 7→ H
be a Boolean function that maps a Boolean sequence to a binary value. Then the following inequality holds:

I(f(X);Y) ≤ 1−H2 (p) ,

where H2(p) = −p log2(p)− (1− p) log2(1− p) is the binary entropy function.

A weaker form of the conjecture was studied in [2]. Samorodnitsky [3] demonstrated the existence of a positive constant
ρ0 such that the conjecture is true for balanced Boolean functions when |ρ| ≤ ρ0. This result was subsequently strengthened
by Lei Yu [4], who confirmed that the conjecture holds for balanced Boolean functions when |ρ| ≤ 0.44. Li and Médard
[5] investigated the Boolean function that maximizes E [|Tρf |α] for a fixed mean, where α ∈ [1, 2]. They conjectured that
the dictator function is optimal. Subsequently, Barnes and Ozgur in [6] showed that the conjecture is related to solving the
α-Non-Interactive Correlation Distillation (NICD) problem raised by Li and Médard in [5]. All of the previous approaches
view the problem as a given instance, with parameters given by the channel transition probability and the mean of the Boolean
function. In this work, we traverse a path in the space of channels and analyze our objective function along this trajectory.

It is also known that Conjecture 1 is implied by the following stronger conjecture, which we call the “Hellinger Conjecture":

Conjecture 2 ([7]). Under the same assumptions as in Conjecture 1, the following holds:√
1− E [f(X)]

2 − E
[√

1− ((Tρf)(Y))
2

]
≤ 1−

√
1− ρ2, (1)

where Tρf(y) = E [f(X)|Y = y].

Recently, [8] found a parametric class of conjectures that interpolates between Conjecture 1 and Conjecture 2. Conjecture 2
implies a conjecture about the sensitivity of Boolean functions. For a Boolean function f , the sensitivity at a point x, represented
as sf (x), is defined as the count of x’s neighbors for which the function produces a value contrary to f(x). Isoperimetric
inequalities can help set limits on this sensitivity. For example, the Talagrand isoperimetric inequality demonstrates that for
any balanced function, the following holds:

E
[√

sf (X)

]
≥ 1√

2
.

Conjecture 2 implies a strengthened version of this inequality (still unproved) as follows: for any balanced functions, we
have

E
[√

sf (X)

]
≥ 1.

The sensitivity of Boolean functions has received attention in the math community; see [9]–[12] for some related results on
the sensitivity of Boolean functions. Building on the work in [11], it was shown very recently that for all balanced functions

E
[
sβf (X)

]
≥ 1,



for all β ≥ 0.50057.
In this paper, we introduce a differential equation approach to investigate the two conjectures mentioned earlier. We consider

a path comprising Binary Symmetric Channels (BSC) with a crossover probability that evolves over time, resulting in a channel
output denoted as Yt. We compute the derivative of our objective function, which represents the mutual information between
f(X) and the output Yt along the path. By establishing bounds on the derivative, we derive new constraints on the endpoints
of this path. Observe that this approach is akin to the auxiliary receiver approach in [13] but uses a continuum of auxiliary
receivers instead of just one auxiliary receiver, i.e., BSC channels whose crossover probability is smaller than that of the given
channel.

Assume that Yt and Yt+ϵ are two channel outputs at times t and t+ ϵ. Instead of single-letterizing the difference between
mutual information terms I(f(X);Yt) − I(f(X);Yt+ϵ) using the past/future of Yt and Yt+ϵ, we take the derivative of
I(f(X);Yt) with respect to t and then combine the derivative with a natural induction technique on the dimension of the
hypercube. This process leads to a functional inequality (on finite dimensions) whose solutions provide requisite lower bounds
to the quantity of interest. In particular, backed by numerical simulations, we also conjecture that a particular function satisfies
the functional inequality induced from Conjecture 1, which, if true, would establish it for balanced functions (and perhaps
more).

This paper is organized as follows: Section II describes the differential equation framework through the example of the
most informative Boolean function conjecture. Section III applies the framework to the Hellinger conjecture. All proofs are
given in Section V.

Notation: We use the following notation in this paper. We use the bold letter X to denote the vector of random variables
X = (X1, X2, · · · , Xn). We use uppercase letter to denote random variables while their values are depicted in lowercase
letters. Let

H2(x) = x log2
1

x
+ (1− x) log2

1

1− x

be the binary entropy function,

J(x) = log2
1− x

x

be the derivative of H2(x). The inverse function H−1
2 will map [0, 1] to [0, 12 ]. Let D2(x∥y) = x log2

x
y + (1 − x) log2

1−x
1−y

be the binary KL-divergence between the distributions (x, 1− x) and (y, 1− y).

II. THE GENERAL FRAMEWORK OF THE DIFFERENTIAL EQUATION APPROACH

Consider the setting in Conjecture 1, and let

pt =
1− e−2t

2

be the crossover probability for some t ∈ [0,∞), i.e., ρt = e−2t. Let

Yt = (Yt,1, Yt,2, · · · , Yt,n)

be the output of the BSC channel with crossover probability pt. Take some arbitrary PF |X where F ∈ {−1, 1} is a binary
random variable such that PF |X(F = −1|X = x) ∈ (0, 1) for all x. Note that we are excluding the case of F being a
function of X, but the function case can be considered to be a limiting case when the probabilities tend to 0 and 1. Let
PF,X,Yt = PF |XPX,Yt . Without loss of generality, we can assume that F → X → Yt1 → Yt2 holds for any t1 < t2. Define

γ(t) = H(F |Yt).

Note that γ(0) = H(F |X), γ(∞) = H(F ), I(F ;X) = γ(∞) − γ(0) and I(F ;Yt) = γ(∞) − γ(t). The definition shows
that γ(t) = H(F )− I(F ;Yt) is an increasing function in t because of the data processing inequality. The following lemma
(whose proof is given in Section V) provides the exact derivative.

Lemma 1.
dγ(t)

dt
=

1

2n

∑
x∼y

(vx(t)− vy(t))(J(vy(t))− J(vx(t))),

where vx(t) = Pr(F = −1|Yt = x) for x ∈ Hn. Here x ∼ y stands for the Hamming distance dH(x,y) = 1 and the tuple
(x,y), (y,x) are only counted once in the summation.

Proof. We have

γ(t) = H(F |Yt) = E [H(F |Yt = y)] = E [H2(vy(t))] =
1

2n

∑
y

H2(vy(t)).



This implies that

dγ(t)

dt
=

1

2n

∑
y

J(vy(t))
dvy(t)

dt

=
1

2n

∑
y

J(vy(t)) lim
ε↓0

vy(t+ ε)− vy(t)

ε

=
1

2n

∑
y

J(vy(t)) lim
ε↓0

∑
x P (F = −1,Yt = x|Yt+ε = y)− vy(t)

ε

=
1

2n

∑
y

J(vy(t)) lim
ε↓0

∑
x vx(t)P (Yt = x|Yt+ε = y)− vy(t)

ε

=
1

2n

∑
y

J(vy(t)) lim
ε↓0

∑
x vx(t)p

dH(x,y)
ε (1− pε)

n−dH(x,y) − vy(t)

ε

=
1

2n

∑
y

J(vy(t)) lim
ε↓0

∑
x∼y

(vx(t)− vy(t))pε (1− pε)
n−1

ε
+ o(ε)

=
1

2n

∑
y

J(vy(t))
∑
x∼y

(vx(t)− vy(t))

=
1

2n

∑
x∼y

(J(vy(t))− J(vx(t)))(vx(t)− vy(t)).

Remark 1. Note that
(u− w)(J(w)− J(u)) = D2(u∥w) +D2(w∥u)

where D2 is the binary KL divergence.

Definition 1. Let Ψ be the class of all non-negative functions ψ(a, b) : (0, 1)2 7→ R that satisfy the following two conditions:
• ψ(a, b) = 0 when H2(a) ≤ b.
• ψ(1− a, b) = ψ(a, b).
• Let PX be an arbitrary distribution on X = {1, 2, 3, 4, 5}, and (ux, wx) ∈ (0, 1)2 for x ∈ X be arbitrary. Then, the

following holds:

1

2
EX [(uX − wX)(J(wX)− J(uX))] (2)

≥ ψ

(
E [uX + wX ]

2
,
E [H2(uX) +H2(wX)]

2

)
− ψ(E [uX ] ,E [H2(uX)]) + ψ(E [wX ] ,E [H2(wX)])

2
.

The following remark follows from Caratheodery’s theorem. See Section V for details.

Remark 2. Instead of imposing the third condition in Definition 1, i.e. (2), for X of cardinality size 5, we can equivalently
require it for any PX on a set X of arbitrary size.

Theorem 2. For every ψ ∈ Ψ we have

dγ(t)

dt
≥ ψ(Pr[F = −1], γ(t)). (3)

Consequently, if we let

g(x) =

∫ x

γ(0)

du

ψ(Pr[F = −1], u)
, ∀x ≥ γ(0).

we obtain
γ(t) ≥ g−1(t).

Proof. Take some arbitrary function ψ(a, b). We would like to show that

dγ(t)

dt
≥ ψ(Pr(F = −1), γ(t)).



We prove the statement by induction on n. For the base case of n = 1, we have

γ(t) =
1

2
H(v1(t)) +

1

2
H(v−1(t))

Pr(F = −1) =
1

2
v1(t) +

1

2
v−1(t),

dγ(t)

dt
=

1

2
(J(v1(t))− J(v−1(t)))(v−1(t)− v1(t)).

Thus, we need to show that

1

2
(J(v1(t))− J(v−1(t)))(v−1(t)− v1(t)) ≥ ψ

(
1

2
v1(t) +

1

2
v−1(t),

1

2
H(v1(t)) +

1

2
H(v−1(t))

)
.

By the first property of ψ, we have
ψ (vi(t), H(vi(t))) = 0, i ∈ {1,−1}

and we can rewrite the above inequality as

1

2
(J(v1(t))− J(v−1(t)))(v−1(t)− v1(t))

≥ ψ

(
1

2
v1(t) +

1

2
v−1(t),

1

2
H(v1(t)) +

1

2
H(v−1(t))

)
− 1

2
ψ (v1(t), H(v1(t)))−

1

2
ψ (v−1(t), H(v−1(t))) .

The induction basis is established.
Next, assume that the desired inequality holds for n− 1. We show it for n. Define Ỹt = (Yt,1, Yt,2, · · · , Yt,n−1) to be the

subsequence of the first n− 1 random variables in Yt. Let

v+ỹ (t) = v(ỹ,1)(t) = Pr(F = −1|Ỹt = ỹ, Yt,n = 1)

v−ỹ (t) = v(ỹ,−1)(t) = Pr(F = −1|Ỹt = ỹ, Yt,n = −1)

Let F+, F− be two binary random variables, jointly distributed with with Ỹt according to conditional laws

Pr(F+ = −1|Ỹt = ỹ) = v+ỹ (t)

and
Pr(F− = −1|Ỹt = ỹ) = v−ỹ (t)

respectively. Letting x̃, ỹ ∈ Hn−1 be the first n− 1 digits of x,y on the (n− 1)-dimensional subcube, we can write

dγ(t)

dt
=

1

2n

∑
x∼y

(J(vy(t))− J(vx(t)))(vx(t)− vy(t))

=
1

2n

∑
x̃

(J(v+x̃ (t))− J(v−x̃ (t)))(v
−
x̃ (t)− v+x̃ (t))

+
1

2n

∑
x̃∼ỹ

(J(v−ỹ (t))− J(v−x̃ (t)))(v
−
x̃ (t)− v−ỹ (t)) +

1

2n

∑
x̃∼ỹ

(J(v+ỹ (t))− J(v+x̃ (t)))(v
+
x̃ (t)− v+ỹ (t))

≥ 1

2n

∑
x̃

(J(v+x̃ (t))− J(v−x̃ (t)))(v
−
x̃ (t)− v+x̃ (t)) +

1

2
ψ
(
E
[
v+
Ỹ

]
,E
[
H2

(
v+
Ỹ

)])
+

1

2
ψ
(
E
[
v−
Ỹ

]
,E
[
H2

(
v−
Ỹ

)])
(4)

where the last step follows from the induction hypothesis. Next, from the last property of ψ for the choice of X = Ỹ,
uX = v+

Ỹ
and wX = v−

Ỹ
we obtain

1

2n

∑
x̃

(J(v+x̃ (t))− J(v−x̃ (t)))(v
−
x̃ (t)− v+x̃ (t))

≥ ψ

E
[
v+
Ỹ
+ v−

Ỹ

]
2

,
E
[
H2

(
v−
Ỹ

)
+H2

(
v+
Ỹ

)]
2

− 1

2
ψ
(
E
[
v+
Ỹ

]
,E
[
H2

(
v+
Ỹ

)])
− 1

2
ψ
(
E
[
v−
Ỹ

]
,E
[
H2

(
v−
Ỹ

)])
.

This equation, along with (4) shows that

dγ(t)

dt
=

1

2n

∑
x∼y

(J(vy(t))− J(vx(t)))(vx(t)− vy(t))



≥ ψ

E
[
v+
Ỹ
+ v−

Ỹ

]
2

,
E
[
H2

(
v−
Ỹ

)
+H2

(
v+
Ỹ

)]
2

 (5)

= ψ(Pr(F = −1), γ(t)). (6)

The proof is complete.

Lemma 3. Ψ is a non-empty closed convex set, which is also closed under pointwise maximum, i.e., if ψi ∈ Ψ for i ∈ {1, 2},
then ψ(a, b) = max(ψ1(a, b), ψ2(a, b)) ∈ Ψ. Consequently, the class Ψ has maximal element ψ∗(a, b) that pointwise dominates
all the other members of Ψ.

Proof. The proof of this Lemma can be found in Section V.

A. A conjecture

Given a function ψ, observe that verifying whether ψ belongs to Ψ requires verifying an inequality with 14 free variables.
While this is a finite-dimensional optimization problem, the space of variables is large. However, we can also think of ψ as
follows: given a four tuple (mu,mw, eu, ew) satisfying H2(mu) ≥ eu and H2(mw) ≥ ew, let

ζ(mu,mw, eu, ew) := inf
(U,W )∈S

1

2
E [(U −W )(J(W )− J(U))] ,

where the set S is the set of all pairs of random variables (U,W ) ∈ (0, 1)2 such that

E [U ] = mu,E [W ] = mw,E [H2(U)] = eu,E [H2(W )] = ew.

It follows from the definition of ζ that it is a jointly convex function on four variables, and equation (2) states a lower bound
on ζ in terms of ψ:

ζ(mu,mw, eu, ew) ≥ ψ

(
mu +mw

2
,
eu + ew

2

)
− 1

2
ψ(mu, eu)−

1

2
ψ(mw, ew).

In particular, when mu = m, mw = 1−m and eu = ew = e, we obtain

ζ(m, 1−m, e, e) ≥ ψ

(
1

2
, e

)
− ψ(m, e). (7)

Theorem 4. We have

ζ(1−m,m, e, e) = ϕ

(
1

2
, e

)
− ϕ(m, e)

where ϕ(m, e) is defined as follows: let

ϕ(x, y) =

{
Φ(y)− y

rΦ(r) H2(x) > y

0 H2(x) ≤ y

where
Φ(x) = (1− 2H−1

2 (x)) · J(H−1
2 (x)), ∀x ∈ (0, 1]

and r ∈ (0, 1] is defined as follows: if x = 1/2, we set r = 1; else if x ̸= 1
2 , r ∈ (0, 1) is the unique solution of the following

equation:
r

1− 2H−1
2 (r)

=
y

|1− 2x|
.

Proof. The proof of this Theorem can be found in Section V.

Based on the above partial characterization of the function ζ, numerical simulations, and some lower bounds on ζ, we make
the following conjecture:

Conjecture 3. The function ϕ belongs to the class Ψ.

Next, we show that the conjecture, if true, implies the most informative Boolean function conjecture in the balanced case:

Lemma 5. If Conjecture 3 holds, then Conjecture 1 holds whenever F is balanced, i.e. Pr(F = −1) = Pr(F = 1) = 1
2 .

Proof. First, observe that ϕ(x, y) = ϕ(1− x, y) and

ϕ

(
1

2
, y

)
= Φ(y)



Then,

g(x) =

∫ x

γ(0)

du

ϕ( 12 , u)

=

∫ x

γ(0)

du

(1− 2H−1
2 (u)) · J(H−1

2 (u))

=

∫ H−1
2 (x)

H−1
2 (γ(0))

dt

1− 2t
(8)

=
1

2
log

1− 2H−1
2 (γ(0))

1− 2H−1
2 (x)

where in (8), we apply the change to the variables u = H2(t). Thus, we get

g(γ(t)) ≥ t

or

e−2t
[
1− 2H−1

2 (γ(0))
]
≥ 1− 2H−1

2 (γ(t)). (9)

or

γ(t) ≥ H2

[
1

2

{
1− e−2t

[
1− 2H−1

2 (γ(0))
]}]

. (10)

Since γ(t) = 1− I(F ;Yt) and pt = 1−e−2t

2 , we can rewrite the above as

1− I(F ;Yt) ≥ H2(pt ∗H−1
2 (1− I(F ;X)))

where a ∗ b = a · (1 − b) + (1 − a) · b is the binary convolution. Given a balanced Boolean function B, define P (Fϵ =
−1|X = x) = 1 − ϵ, if B(x) = −1 and P (Fϵ = 1|X = x) = 1 − ϵ, if B(x) = 1. As ϵ → 0, we have I(Fϵ;X) → 1, and
I(Fϵ;Yt) → I(B(X);Yt), establishing the desired inequality.

Remark 3. It is possible that a similar statement can be made about unbalanced functions as well. However, in this case,
the integral of the reciprocal of ϕ does not seem to have a closed form.

Remark 4. The following natural guess for ψ(x, y) does not belong to Ψ:

ψ(x, y) = Φ(1−H2(x) + y).

It has the following counterexample: let X ∈ {1, 2, 3} be a ternary random variable with the probability distribution PX =
(0.1, 0.45, 0.45). Let (u1, u2, u3) = (0.99, 0.9999, 0.0001), (w1, w2, w3) = (0.01, 0.9999, 0.0001). One can verify that the
above example does not satisfy the inequality (2).

III. THE HELLINGER CONJECTURE

The Hellinger Conjecture states that√
1− E [f(X)]

2 − E
[√

1− ((Tρf)(Y))
2

]
≤ 1−

√
1− ρ2, (11)

where Tρf(y) = E [f(X)|Y = y]. Again, take some arbitrary PF |X where F ∈ {−1, 1} is a binary random variable such
that PF |X(F = −1|X = x) ∈ (0, 1) for all x. Let ρt = e−2t and vx(t) = Pr(F = −1|Yt = x). Let

dx(t) ≜ E [F |Yt = x] = 1− 2vx(t)

Define

r(t) = EX

√
1− (E [F |Yt = X])

2
= E

[√
1− dX(t)2

]
=

1

2n

∑
x

√
1− dx(t)2.

Observe that
r(∞) =

√
1− E [F ]

2
.

The function r(t) is increasing and direct calculation shows that its derivative can be calculated as follows:

Lemma 6. We have

r′(t) =
1

2n

∑
(x,y):x∼y

(dx − dy)

 dx√
1− d2x

− dy√
1− d2y

 .



where x ∼ y stands for the Hamming distance dH(x,y) = 1 and the tuple (x,y), (y,x) are only counted once in the
summation.

Let us define the corresponding set for the Hellinger conjecture:

Definition 2. Let ΨH be the class of all non-negative functions ψ(a, b) : (−1, 1)× [0, 1) 7→ R that satisfy the following two
conditions:

• ψ(a, b) = 0 when
√
1− a2 ≤ b.

• ψ(a, b) = ψ(−a, b).
• Let PX be an arbitrary distribution on X = {1, 2, 3, 4, 5}, and (ux, wx) ∈ (−1, 1)2 for x ∈ X be arbitrary. Then, the

following holds:

1

2
EX

[
(uX − wX)

(
uX√
1− u2X

− wX√
1− w2

X

)]
(12)

≥ ψ

E [uX + wX ]

2
,
E
[√

1− u2X +
√
1− w2

X

]
2

−
ψ
(
E [uX ] ,E

[√
1− u2X

])
+ ψ

(
E [wX ] ,E

[√
1− w2

X

])
2

.

(13)

Remark 5. The following observations from the previous section carry over almost verbatim: ΨH is a non-empty closed convex
set, which is also closed under pointwise maximum, i.e., if ψi ∈ ΨH for i ∈ {1, 2}, then ψ(a, b) = max(ψ1(a, b), ψ2(a, b)) ∈
ΨH . Consequently, the class ΨH has maximal element ψ∗

H(a, b) that pointwise dominates all the other members of ΨH .

The following lemma follows:

Theorem 7. For every ψ ∈ ΨH we have
dr(t)

dt
≥ ψ (E[F ], r(t)) .

Consequently, if we let

g(x) =

∫ x

r(0)

du

ψ(E[F ], u)
, ∀x ≥ r(0),

we obtain
r(t) ≥ g−1(t).

Proof. The proof of this theorem mimics that of Theorem 2 and is omitted.

Lemma 8. The following hold:
1) For (u,w) ∈ (−1, 1),

1

2
(u− w)

(
u√

1− u2
− w√

1− w2

)
=

(u− w

2

)2

+

(√
1− u2 −

√
1− w2

2

)2
( 1√

1− u2
+

1√
1− w2

)
.

2) For (ux, wx) ∈ (−1, 1)2

1

2
EX

[
(uX − wX)

(
uX√
1− u2X

− wX√
1− w2

X

)]

≥

(E [uX − wX ]

2

)2

+

E
[√

1− u2X −
√
1− w2

X

]
2

2

 1

E
[√

1− u2X

] + 1

E
[√

1− w2
X

]
 .

Proof. The proof of this theorem can be found in Section V.

Definition 3. Let Ψ̂H be the class of all non-negative functions ψ(a, b) : (−1, 1)× [0, 1) 7→ R that satisfy the following two
conditions:

• ψ(a, b) = 0 when
√
1− a2 ≤ b.

• ψ(a, b) = ψ(−a, b)
• For (a1, a2) ∈ (−1, 1)2 and (b1, b2) ∈ [0, 1)2, we have((

a1 − a2
2

)2

+

(
b1 − b2

2

)2
)(

1

b1
+

1

b2

)
≥ ψ

(
a1 + a2

2
,
b1 + b2

2

)
− 1

2
ψ(a1, b1)−

1

2
ψ(a2, b2).



Remark 6. The following points are worth noting:
1) From Lemma 8, it is immediate that Ψ̂H ⊆ ΨH .
2) We do not have a conjecture for the maximal element of ΨH , but we have verified that the natural choice

ψ(a, b) =
1− a2 − b2

b

has counterexamples. Let X ∈ {1, 2, 3} be a ternary random variable and consider the following setting of parameters:

PX = (0.9118, 0.0760, 0.0122),

(u1, u2, u3) = (0.9996, 0.7316, 0.2996),

(w1, w2, w3) = (0.9992, 0.1416, 0.5866).

One can show that this choice violates the constraint in (12).

IV. DISCUSSION AND CONCLUSION

The most-informative Boolean function conjecture and Talagrand’s isoperimetric inequality are well-studied questions in
information theory and combinatorics, respectively. The latter is a limiting case of the Hellinger conjecture. Despite a naturally
degraded structure with respect to the noise operator, previous studies have not explicitly used this observation. In this work,
we study both conjectures via the lens of the degraded channels and work on the derivative of the quantity of interest. This
approach yields a finite-dimensional functional inequality whose solutions provide a dimension-independent lower bound to
the original problem.
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V. PROOFS

A. Proof of Remark 2

This remark follows from Caratheodery’s theorem because, given PX one can find a distribution QX with support of size
at most five such that

EPX
[(uX − wX)(J(wX)− J(uX))] ≥ EQX

[(uX − wX)(J(wX)− J(uX))],

EPX
(wX) = EQX

(wX),

EPX
(uX) = EQX

(uX),

EPX
(H2(wX)) = EQX

(H2(wX)),

EPX
(H2(uX)) = EQX

(H2(uX)).

B. Proof of Lemma 3

Clearly ψ(a, b) = 0 for all a, b belongs to Ψ. Therefore, Ψ is non-empty. If ψ1, ψ2 ∈ Ψ, it is immediate at αψ1+(1−α)ψ2 ∈
Ψ for α ∈ [0, 1], and hence Ψ is convex.

Let ψn ∈ Ψ, n ∈ N be a sequence of functions that converge (pointwise) to ψ∞ on (0, 1)2. We have the following pointwise
inequalities

1

2
E [(uX − wX)(J(wX)− J(uX))]

≥ ψn

(
E [uX + wX ]

2
,
E [H2(uX) +H2(wX)]

2

)
− ψn(E [uX ] ,E [H2(uX)]) + ψn(E [wX ] ,E [H2(wX)])

2
,

by taking limits on both side with respect to n, we have that
1

2
E [(uX − wX)(J(wX)− J(uX))]

≥ ψ∞

(
E [uX + wX ]

2
,
E [H2(uX) +H2(wX)]

2

)
− ψ∞(E [uX ] ,E [H2(uX)]) + ψ∞(E [wX ] ,E [H2(wX)])

2
,

Therefore, Ψ is closed.
On the other hand, Ψ is closed under pointwise maximum. Let ψ1, ψ2 ∈ Ψ, and set ψ(a, b) = max(ψ1(a, b), ψ2(a, b)). We

have that for any i ∈ {1, 2}:

1

2
E [(uX − wX)(J(wX)− J(uX))]

≥ ψi

(
E [uX + wX ]

2
,
E [H2(uX) +H2(wX)]

2

)
− ψi(E [uX ] ,E [H2(uX)]) + ψi(E [wX ] ,E [H2(wX)])

2

≥ ψi

(
E [uX + wX ]

2
,
E [H2(uX) +H2(wX)]

2

)
− ψ(E [uX ] ,E [H2(uX)]) + ψ(E [wX ] ,E [H2(wX)])

2
.

By taking the maximum of the right-hand side over i ∈ {1, 2}, we get that ψ ∈ Ψ.

C. Proof of Theorem 4

1) Step 1: Existence of minimizer in the expanded space: We need the following lemma:

Lemma 9. The infimum

ζ(mu,mw, eu, ew) = inf
p(x),{ux,wx}

1

2
E [(uX − wX)(J(wX)− J(uX))]

subject to (ux, wx) ∈ (0, 1)2

E [uX ] = mu,

E [wX ] = mw,

E [H2(uX)] = eu,

E [H2(wX)] = ew,

can be written as a minimum if we expand the domain of (ux, wx) to (ux, wx) ∈ (0, 1)2 ∪{(0, 0), (1, 1)} and define (J(w)−
J(u))(u−w) = 0 when (u,w) ∈ {(0, 0), (1, 1)}. Moreover, any minimizer must satisfy the following property: if p(x1), p(x2) >
0 then one cannot simultaneously have ux1

> ux2
and wx1

< wx2
.

Proof. Fix some alphabet X and consider a sequence {(pi(x), uix, wix)} for i = 1, 2, · · · converging to the infimum defining
ζ(mu,mw, eu, ew). Since {(pi(x), uix, wix)} ∈ [0, 1]3|X | lies in a compact source, without loss of generality, we can assume



that {(pi(x), uix, wix)} converges to some sequence {(p(x), ux, wx)} ∈ [0, 1]3|X |, where p(x) is a probability distribution on
X . Let S = {x ∈ X : p(x) > 0} be the support set of X .

Observe that the limiting ux and wx might be equal to 0 or 1. Note that (u−w)(J(w)−J(u)) converges to infinity if one
of u and v converges to 0 and the other one converges to 1. Therefore, the only possible case is that the limiting (ux, wx)
might be equal to (0, 0) or (1, 1) for some x. Note that (J(w) − J(u))(u − w) ≥ 0 for every u,w ∈ (0, 1). Consequently,
if (u(x), w(x)) ∈ {(0, 0), (1, 1)} for some x ∈ S, changing the value of wix to be equal to uix for such x would decrease
(J(wxi)−J(uxi))(uxi−wxi) to 0, and cannot affect the limit of the other terms. Therefore, if (u(x), w(x)) ∈ {(0, 0), (1, 1)}
for some x ∈ S, without loss of generality we can assume that uix = wix for every i. Let

S0 = {x ∈ S : ux = wx = 0},
S1 = {x ∈ S : ux = wx = 1},
S2 = {x ∈ S : ux, wx ∈ (0, 1)}.

In this case, the infimum of the expression will be equal to

1

2

∑
x∈S2

p(x)(J(wx)− J(ux))(ux − wx).

This shows that if we extend the domain of (u,w) from (0, 1)2 to (0, 1)2∪{(0, 0), (1, 1)} and define (J(w)−J(u))(u−w) = 0
when (u,w) ∈ {(0, 0), (1, 1)}, the infimum of the expression will also be a minimum and will be attained at some p(x), ux, wx

where (ux, wx) ∈ (0, 1)2 ∪ {(0, 0), (1, 1)} for every x.
Next, let us consider a minimizer p(x), ux, wx for x ∈ X . Assume that ux1

> ux2
and wx1

< wx2
. Then, using the fact

that J(x) is a decreasing function, we have

(J(wx1)− J(wx2))(ux1 − ux2) + (J(ux1)− J(ux2))(wx1 − wx2) > 0.

Take x1 and x2 where p(x1) ≥ p(x2) > 0. Take a symbol x3 /∈ X and expand the alphabet of X as X ′ = X ∪ {x3}. Let
p(X ′ = x) = p(X = x) if x /∈ {x1, x3}, p(X ′ = x1) = p(x1)− p(x2) and p(X ′ = x3) = p(x2). Let (ûx′ , ŵx′) = (ux′ , wx′)
if x′ /∈ {x2, x3}, and (ûx2

, ŵx2
) = (ux2

, wx1
) and (ûx3

, ŵx3
) = (ux1

, wx2
). Observe that

(ux1 − wx1)(J(wx1)− J(ux1)) + (ux2 − wx2)(J(wx2)− J(ux2))

> (ux1 − wx2)(J(wx2)− J(ux1)) + (ux2 − wx1)(J(wx1)− J(ux2))

because the difference between the left-hand side and the right-hand side equals

(J(wx1
)− J(wx2

))(ux1
− ux2

) + (J(ux1
)− J(ux2

))(wx1
− wx2

).

One can then deduce that X ′ along with uX′ and wX′ will yield a smaller value of 1
2E [(uX′ − wX′)(J(wX′)− J(uX′))] than

X , uX and wX . Moreover, EûX′ = EuX , EŵX′ = EwX , EH(ûX′) = EH(uX), EH(ŵX′) = EH(wX). This contradicts
the assumption of minimality of X , uX and wX .

Let us return to the proof of Theorem 4. Suppose p(x), ux, wx is a minimizer (which exists due to the above lemma when
we allow (0, 0) and (1, 1) in the domain).

2) Step 2: finding a minimizer satisfying ux +wx = 1 for all x where (ux, wx) ∈ (0, 1)2 : We first show that one can find
another minimizer satisfying ux +wx = 1 for all x where (ux, wx) ∈ (0, 1)2. To construct the new minimizer, we first apply
a symmetrization argument. Let X ′ = X × {1, 2}. For any x′ = (x, j) where x ∈ X and j ∈ {1, 2} define

p(x′) =
1

2
p(x)

and define ux′ and vx′ as follows:
u(x,1) = ux, w(x,1) = wx

u(x,2) = 1− wx, w(x,2) = 1− ux

One can verify that

E [uX′ ] = m,

E [wX′ ] = 1−m,

E [H2(uX′)] = e,

E [H2(wX′)] = e.

Moreover,

E [(uX − wX)(J(wX)− J(uX))] = E [(uX′ − wX′)(J(wX′)− J(uX′))]



Thus, p(x′), ux′ , wx′ is also a minimizer.
Next, for every x where (ux, wx) ∈ (0, 1)2, let vx be the unique solution of

H2(vx)

2vx − 1
=
H2(ux) +H2(wx)

2(ux − wx)
.

Here, we set vx = 1/2 if ux = wx. Next, let

rx =
H2(ux) +H2(wx)

2H2(vx)
.

Lemma 10. We have that rx ∈ [0, 1]. Moreover,

rx(1− 2vx)J(vx) ≤
1

2
(ux − wx)(J(wx)− J(ux)). (14)

The proof of the lemma is given below. We use this lemma as follows: we are choosing the pair

u(x,1) = ux, w(x,1) = wx

with probability p(x)/2 and the pair
u(x,2) = 1− wx, w(x,2) = 1− ux

with probability p(x)/2. Instead, let us choose the pair (0, 0) with probability (1− rx)p(x)/2, the pair (1, 1) with probability
(1 − rx)p(x)/2 and finally the pair (vx, 1 − vx) with probability rxp(x)/2. We apply this replacement for every x where
(ux, wx) ∈ (0, 1)2. One can verify that this transformation preserves E[uX′ ], E[wX′ ] as well as E[H2(uX′)], E[H2(wX′)].
Moreover, (14) implies that the value of the objective function after the transformation is less than or equal to the original
value. Observe that after the transformation, we are using either the pairs (0, 0), (1, 1) or (vx, 1 − vx). This establishes the
statement desired in Step 2.

It remains to prove Proof of Lemma 10.

Proof of Lemma 10. Assume that ux ≥ wx (the proof for the other case is similar). In this case, vx ≥ 1/2. We have

H2(ux) +H2(wx)

2
=
H2(1− ux) +H2(wx)

2
≤ H2

(
1− ux + wx

2

)
.

Thus,

H−1
2

(
H2(ux) +H2(wx)

2

)
≤ 1− ux + wx

2

and we obtain

0 ≤ ux − wx ≤ 1− 2H−1
2

(
H2(ux) +H2(wx)

2

)
and we can write

H2(1− vx)

1− 2(1− vx)
=
H2(ux) +H2(wx)

2(ux − wx)
≥

H2(ux)+H2(wx)
2

1− 2H−1
2 (H2(ux)+H2(wx)

2 )
=
H2(H

−1
2 (H2(ux)+H2(wx)

2 ))

1− 2H−1
2 (H2(ux)+H2(wx)

2 )
.

Since H2(x)/(1− 2x) is increasing in x ∈ [0, 0.5], we get

1− vx ≥ H−1
2 (

H2(ux) +H2(wx)

2
)

Thus,

H2(vx) ≥
H2(ux) +H2(wx)

2

This completes the proof for rx ∈ [0, 1].
We now prove that

rx(1− 2vx)J(vx) ≤
1

2
(ux − wx)(J(wx)− J(ux)). (15)

From the definition of rx and vx we have
rx(2vx − 1) = (ux − wx).

We show the inequality when ux ≥ wx (which implies vx ≥ 1/2). The proof for the other case is similar. Observe that (15)
is equivalent to

−J(vx) ≤
J(wx)− J(ux)

2
.



Let

z =

√
wx(1− ux)√

wx(1− ux) +
√
ux(1− wx)

∈ (0, 0.5] . (16)

Then, one can verify that

J(z) =
J(wx)− J(ux)

2
≥ 0. (17)

We wish to show that −J(vx) = J(1− vx) ≤ J(z). Since J is a decreasing function, this is equivalent to 1− vx ≥ z. Since
H2(x)/(1− 2x) is increasing in x ∈ [0, 0.5], this inequality is equivalent to

H2(z)

1− 2z
≤ H2(1− vx)

1− 2(1− vx)
=
H2(ux) +H2(wx)

2(ux − wx)
.

To sum this up, for z defined by (16), we need to show the above inequality. Equivalently,

H2(ux) +H2(wx)

≥ 2
(√

wx(1− ux) +
√
ux(1− wx)

)2
H2

( √
wx(1− ux)√

wx(1− ux) +
√
ux(1− wx)

)
= −wx(1− ux) log2(wx(1− ux))− ux(1− wx) log2(ux(1− wx))

− 2
√
wx(1− ux)ux(1− wx) log2

√
wx(1− ux)ux(1− wx)

+
(√

ux(1− wx) +
√
wx(1− ux)

)2
log2

(√
ux(1− wx) +

√
wx(1− ux)

)2
.

By expanding the left-hand side, the inequality is equivalent to proving

2
√
wx(1− ux)ux(1− wx) log2

√
wx(1− ux)ux(1− wx)

≥ wxux log2(wxux) + (1− wx)(1− ux) log2((1− wx)(1− ux))

+
(√

ux(1− wx) +
√
wx(1− ux)

)2
log2

(√
ux(1− wx) +

√
wx(1− ux)

)2
. (18)

Let

a =
ux

1−ux
+ wx

1−wx

2
,

and
b =

√
ux

1− ux

wx

1− wx
.

Observe that we have a ≥ b ≥ 0. If we divide both sides of (18) by (1 − ux)(1 − wx) and apply a change of variable, the
inequality will be equivalent to

(1 + 2a+ b2) log2(1 + 2a+ b2)− 2(a+ b) log2(2a+ 2b) ≥ 2b2 log2 b− 2b log2(b).

Taking the derivative in a, we obtain 2 log(1 + 2a + b2) − 2 log(2a + 2b) ≥ 0. Therefore, it suffices to prove the above
inequality for a = b. In other words, we need to show that

2b log(b) + (1 + 2b+ b2) log(1 + 2b+ b2)− 2b2 log b− 4b log 4b ≥ 0.

Equivalently, we need to show that

f(b) := (1 + b)2 log(1 + b)− b2 log b− b log(b)− 2b log 4 ≥ 0.

Observe that b2f
(
1
b

)
= f(b). Therefore, it suffices to consider b ∈ (0, 1].

Note that

f ′(b) = 2(1 + b) log(1 + b)− 2b log b− log b− 2 log 4.

One can verify that there is exactly one solution for f ′′(b) = 0 in (0, 1). Further, one can observe that f(b) initially increases
and is concave, attains a maximum, then decreases, and then turns convex in the interval (0, 1). Note that f ′(1) = 0 and
hence decreasing as b ↑ 1. As f(0) = 0 and f(1) = 0, and f ′(0) = ∞, if f(b) had a local minimum with a negative value,
it must have had two local maximums in (0, 1). This contradicts that there is exactly one solution for f ′′(b) = 0 in (0, 1).
Therefore, f(b) ≥ 0 for b ∈ (0, 1), and equality only holds when b ∈ {0, 1}.



3) Step 3: Simplifying the minimizer: Assume that we have a minimizer satisfying ux+wx = 1 for all x where (ux, wx) ∈
(0, 1)2. Take x1 and x2 such that p(x1), p(x2) > 0 and ux1

+ wx1
= 1 and ux2

+ wx2
= 1. We claim that ux1

= ux2

and wx1
= wx2

. Assume that ux1
> ux2

. Then, by Lemma 9, we get wx1
≥ wx2

. This would imply 1 − ux1
≥ 1 − ux2

or ux1 ≤ ux2 which is a contradiction. Thus, ux1 = ux2 and wx1 = wx2 . This shows that we may put weights on at most
a single term (v, 1 − v). Thus, we can take the pairs (0, 0) with some probability p0, (1, 1) with some probability p1 and
(v, 1− v) for some v with some probability p2. Since E[uX ] = m and E[wX ] = 1−m, we get

vp2 + p1 = m (19)
(1− v)p2 + p1 = 1−m (20)

Summing up, we get, p2 + 2p1 = 1 which implies p0 = p1 = (1− p2)/2 and we get

vp2 + (1− p2)/2 = m. (21)

Using
e = p2H2(v)

the objective function reduces to the expression given in the statement of the theorem.

D. Proof of Lemma 8

We wish to show that

1

2
(u− w)

(
u√

1− u2
− w√

1− w2

)
=

(u− w

2

)2

+

(√
1− u2 −

√
1− w2

2

)2
( 1√

1− u2
+

1√
1− w2

)
.

Let
√
1− u2 = x and

√
1− w2 = y. Then, the desired equality can be written as, requiring to show that,

1

2
(u− w)

(uy − wx)

xy
=

((
u− w

2

)2

+

(
x− y

2

)2
)

(x+ y)

xy
.

Using u2 + x2 = 1 and w2 + y2 = 1, the desired equality can be written as, requiring to show that,

(u− w)(uy − wx) = (1− uw − xy)(x+ y).

which is immediate by expansion and using u2 + x2 = 1 and w2 + y2 = 1.
Cauchy-Schwarz implies that if Y > 0, then E

[
X2

Y

]
≥ E[X]2

E[Y ] . Now, the second part is immediate, by applying the earlier
part and expanding the expression, naturally, into four terms.
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