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Abstract—In this paper we provide the correct tight constant
to a data-processing inequality claimed by Erkip and Cover. The
correct constant turns out to be a particular hypercontractivity
parameter of (X,Y), rather than their squared maximal cor-
relation. We also provide alternate geometric characterizations
for both maximal correlation as well as the hypercontractivity
parameter that characterizes the data-processing inequality.

I. INTRODUCTION

Given a pair of random variables' (X,Y), the data-
processing inequality states that whenever U — X — Y form
a Markov chain, we have

I(U;Y) < I(U; X).

A natural question to ask is the following: what is the smallest
r such that the inequality

IU,Y) <rI(U; X)

holds for every U whenever U — X — Y is Markov.
Erkip and Cover [3] claimed that the smallest possible r is
02 (X;Y), the squared maximal correlation between X and
Y. We show that this result is incorrect and we establish that
the right constant is related to a particular hypercontractivity
parameter of (X,Y).

A. Definitions and preliminaries

Definition 1. For any real-valued random variable W with
finite support, and any real number p > 1, define |W |, :=
E[WIP)?.

Definition 2. Given random variables X and Y, the

Hirschfeld-Gebelein-Rényi maximal correlation of (X,Y) is
defined as follows:

pm(X;Y) = sup E[f(X)g(Y)], (D
where the supremum is taken over all functions f,g such that
E f(X)

=Eg(Y) =0, and E f*(X),E¢g*(Y) < 1.

"Throughout this paper, random variables (X,Y") take values in X x )
with |X|, Y| < oo. Further we assume that P(X = z) > 0 Vz € X and
PY =y)>0Vye).
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Definition 3. A pair of random variables (X,Y') is said to be
(p, q)-hypercontractive for 1 < q < p < oo if the inequality

IEQ)X)]p < lg(¥)llq
holds for all functions g(Y").
Definition 4. For p > 1 define q;(X;Y) as
inf{q:q>1,(X,Y) is (p,q) — hypercontractive}.
For p > 1, we define the following quantity:
()= EEE

An important property of the hypercontractivity parameter
ro(X;Y) is the so-called fensorization property. It is known
[1] that if (X,Y7) is independent of (X5,Y3), then

T'p(Xl, XQ; Yl, YQ) = max{rp(Xl; Yl), TP(XQ; YQ)}

The following theorem summarizes some results about the
quantity r,(X;Y).
Theorem 1 ([1] Theorem 3a,3b). The following statements
hold:

(i) ro(X;Y') is non-increasing in p.

(i) ro(X;Y) > p2 (X;Y) + Mfor all p > 1.
Denote
Too(X;Y) := inf rp(X;Y). (2)
p=>1

Remark 1. It is clear from Theorem I that

Too(X;Y) = lim 7,(X;Y) > p? (X;Y). 3)

p—o0

Let vx(x) and px(z) be probability distributions on the
same finite set. We use Dy (vx |ux) to denote the relative
entropy or the Kullback-Liebler divergence between vy (x)
and px(x), ie.

vx (x)
px ()

- Yoo

Dir(vx|lpx) 10%



Given a pair of random variables (X,Y) ~ p(z,y) where
wu(z,y) denotes their probability mass function, let p(y|z) be
the channel from X to Y induced by u(x,y). We consider X
to be the input and Y to be the output of the channel. For
any input vx(z), let v§:(y) = >, vx(z)p(y|z) denote the
induced output distribution by the channel p(y|z) when the
input distribution is vx. Define

Dicr, (v |lpy)

d(X;Y) = . “)
vx#nx Drr(vx|lpx)
Finally define the main quantity of interest:
1(U;Y
m.(X;Y) = sup 1U:Y) ®)

U: U-X— YI(UX)>OI(U X)

Here again we think of X as the input and Y as the output
of the channel characterized by u(y|x).

Remark 2. Witsenhausen and Wyner [13] consider the trade-
off between possible values of I(U;X) and I(U;Y). The
tensorization property of m.(X;Y') can be inferred from their
results.

B. Summary of results

We provide a proof of the following equivalence result:

Theorem 2. Given a pair of random variables (X,Y') and the
quantities 7o (X;Y), do(X;Y), and m.(X;Y) as defined in
the previous section, we have

Too(X;Y) = do(X;Y) = mu(X;Y).

Remark 3. The equality roo(X;Y) = do(X;Y) was es-
tablished in [1, Theorem 5a], and only the second equality
d(X;Y) = mu(X;Y) is new here. However we will prove
a three way equivalence in this paper as opposed to only
establishing d.(X;Y) = m.(X;Y).

Remark 4. In [3, Theorem 8] it was claimed that the following
inequality holds:

I(U;Y) < p,(X;Y)I(U; X), VU = X - Y.

It turns out that this inequality is incorrect. Indeed from
Theorem 2 and Remark 1 it is immediate that m.(X;Y) >
02, (X;Y). We will prove later in the paper that the inequality
is strict in gemneral by providing an explicit example. The
strictness of the inequality 1o (X;Y) > p2,(X;Y) in general
is known from [1, Theorem 9b]. The strictness of the inequality
m(X;Y) > p2(X;Y) would also alternately follow from
our Theorem 2.

In this paper we will also provide alternate geometric
characterizations of both p? (X;Y) and ro(X;Y). Fix a
channel py|x (y|z), fix A € [0,1], and consider the function?
of the probability distribution of X denoted by ¢5(X) which

is defined by
tA(X):=H(Y) - H(X).

2We abuse notation when we write ¢ (X). We really wish to think of #
as a function of the probability distribution of X.

We will show in Theorem 3 that p2 (X,Y) is the smallest
A such that ¢5(X) has a positive semidefinite Hessian at p(x)
and 7o (X;Y) is the smallest A such that ¢)(X) matches its
lower convex envelope, denoted by K[t2](X), at ux (z).

C. Organization of the paper

In Section II, we will prove Theorem 2. In Section III
we will establish the alternate geometric characterizations
for p2 (X;Y) and ro(X;Y). The paper we uploaded on
arXiv [15] presents the key results from a slightly different
perspective.

II. PROOF OF THEOREM 2

Remark: The proof below is stitched together using a
judicious borrowing of arguments from [1], [14], and standard
techniques. In the authors’ opinion, the three way equivalence
argument elucidates the proof of the equivalence 1o, (X;Y) =
d.(X;Y) (in [1]). Further this proof idea allows for a natural
generalization and provides an alternate (new) characterization
of ro(X;Y),p>1[18].

If X and Y are independent, then it is easy to see that
ro(X;Y) = % Vp > 1; hence 7o (X;Y) = 0. It is also easy
to see that d.(X;Y) = m.(X;Y) = 0. The theorem clearly
holds in this case.

We will assume then that X and Y are not independent.
By choosing f(z) = lzea — P(X € A),g(y) = lyen —
P(Y € B) in (1) for appropriate sets A, B, we can obtain
pm(X;Y) > 0. From (3), we get roo(X;Y) > 0.

The proof will follow from the following sequence of
implications that we will establish.

(@) 7o (X;Y) < di(X;Y),
(®) d.(X;Y) < m.(X,Y),
(©) m.(X,Y) <ro(X,Y).

Proof of (a): Writing 75,700 for 7,(X;Y),re(X;Y)
respectively, from the definition we have the following inequal-
ity:

IE@)X)lp < lg(Y)lrpp,
for all g(Y') > 0.
Define h(y) := g(y)"™P, and note that

lg(¥)lrp = E(h(Y)).
We also obtain that for all p > 1

1Y) X)[|° = (Zu (meh(y)*w)) .

Using the well-known limit lim,. ¢ ||[W]|, = exp(Elog|W]),
we get that as p — oo,

(Zu(yfv)h T“) %H )

Thus we have for all h(Y) > 0

(Z w) [T h(y)‘“ﬂf) <EM(Y).  (©



From the definition of r.(X;Y’) and the continuity and
strict monotonicity of || - |, in r for non-constant random
variables, it is immediate that it is the smallest such number
for which the above inequality holds for all A(Y") > 0.

Therefore for any € > 0 there exists an h.(Y") such that

(Z (@) [ e (w)

Further w.l.o.g. assume that

E(h(Y)) = 1.

p(ylz)

m> ) > E(he(Y)).

Define a probability distribution (see [1, (5.11)])
H he(

where C' < 1isa normahzlng constant. Now, note that

plylz)
roc 3

V() o )y K 10g 1, ()
— Z f;) Z r]: (—)e log he(y) + log C.

Finally observe that since C' < 1

vix) 1o V(x)
2 (”gm

x

<Z

SSpt T
y

(y) 1
<Zroo—6 u(y) s
:mem

1(y)
where the last equality follows since E(h.(Y)) = 1.

D(v*
Thus roo(X;Y) — € < Sl < g, (x;
€ > 0 is arbitrary we are done.
Proof of (b): Let U, := {1,2}. Fix a sufficiently small

€ > 0 and define U, satisfying U. — X — Y by

logh Y)

w(y)he(y)
vi(y)

“log(Y _ u(y)he(y)

’

Y’). Since

e P{U . =1)=¢ P(X =z|U. =1) = vs(x),
o P(U. :2):176,P(X—SC‘U =2) = plx) +
= (u(x) = vs(2) = v p(e) — 15 vs(@),

where vs(x) # p(x) is a probability dlstrlbutlon satisfying
M > d.(X;Y) — § > 0. For sufficiently small
D (s (@) llu(x))

€ > 0, we have that 11 p(z) (z) is a probability
distribution (as p(x) was assumed to have full support). Note
that

P(U. = 1)P(X = z|U. = 1)+

PU.=2)P(X =z|U. =2) = u(z) Vx € X,

so that this specified chain U.—X —Y has the correct marginal
distribution for (X,Y).

For any 0 < # < d*(X;Y) — § define the function

gle) =I1({U;Y)—0I(Ue; X).
We have
dz(:) = _% (eH(ug(y)) +(1—oH (1 i “HY) = 5 - er(y)D
020 (<ts@) + 1= 9t (oute) - (@)

—61/”
— _HG W)+ H (u(y)1 s ()

o (%) Sy

+QZ V(s(w) bg( y(ﬂﬁ)—sms(ac)) _

) + 0 (s(a)
w(y) log (u(y) - evg(y)>

1—e¢

1—e€
Thus
W) = D Wn) — 0D (s nta)) > 0,

where the last inequality is because 0 < § < d*(X;Y)—4 and

D(vEW)llu()) S d(X:Y)
D (vs(@)lln(x))
that for some ¢ > 0 we have I[(U.;Y) — 0I(Uo; X) > 0 or
that

— 0. Since g(0) = 0 this implies

1U;Y)  I(UesY)
m(X;Y sup > > 0.
( )= U: U—x—v,1(U;v)>0 L(U; X) — I(Uer; X)
Since the above holds for all § < d,.(X;Y) — 0 we have

m.(X;Y) > d(X;Y) — 6.

Finally, since 6 > 0 is arbitrary, we let 6 — 0, and we are
done.

Proof of (c): This part uses standard typicality arguments
in information theory and our definition of (and notation for)
e-typical sets are borrowed from [16].

Forany U — X — Y let (U™, X", Y") ~ [, p(us, zi, vs).
Pick a single u™ € ﬁ(")(U). For some ¢; > ¢ let A, = {z":
(u™, z") € 7Z(ln)(U,X)} and for e2 > ¢ let B, = {y"
(u™,y") € T(U,Y)}. Note that

P(X" e A,,Y" € B,)
=E[lxneca, E(lyres, [X")]
SE[[Ixnea,ll 2 [E(lynes, [X™)[p
<E[1xnea,ll 2 Elllyres, [lrp

=P(X" e ,4")1—; P(Y" € B,)™,

where we write 7, to denote r,(X;Y") for convenience. The
first inequality follows from Holder’s inequality and the sec-
ond inequality from the definition and tensorization property
of rp(X;Y).

Standard calculations tell us that + ~logy, P(X™ € A,) —
—I(U; X) and Llog, P(Y" € B,) 5 —I(U;Y) as n — oo.
From the law of large numbers we know that P(Y"™ €
B,|X™ € A,) — 1 as n — oo. Therefore, taking the



logarithm on both sides, dividing by n and letting n — oo
we obtain that
1 1
-IU; X) < — <1 — > I(U;X)— —I(U;Y).
p TpP

Rearranging we obtain 7,(X;Y) > I{Eg? and since this is

true for any U, by taking the supremum on tfle right hand side
we obtain 7,(X;Y) > m,(X;Y). Since the right hand side
does not depend on p, we take p — oo to obtain 1o, (X;Y) >
m,(X;Y). This completes the proof of Theorem 2.

III. A GEOMETRIC CHARACTERIZATION OF p2, (X;Y) AND
m*(X;Y)
Let u(y|z) be the channel transition probability from X to
Y induced by a joint distribution u(x,y). For a fixed channel
u(y|x), consider a function of the input distribution v(z),

t\(X) = H(Y) — NH(X),

where X is a constant in [0, 1]. Observe that the function is
concave when A = 0 and convex when \ = 1.3
We write KC[t)](X) for the lower convex envelope of ¢ (X).

Proposition 1. If KC[t\|(X) = t\(X) at v(z) for some X then
K[t )(X) = t, (X) at v(zx) for all \y > \.

Proof. If K[tA](X) = tA(X) at v(z) for some A, then note
that for any A\; > A

tx (X) =tx(X) — (M = MH(X)
Klta (X)) = KIEAJ(X) = (A = M H(X).
Here the inequality comes since K[f + g] > K[f]+ Klg]; note

that —(A\; — A\)H(X) is convex. Therefore at v(z) we will
have that

tx, (X) = K[ta, )(X) = Kt (X) = (A = M H(X)
= tA(X) — (A~ VH(X) = 15, (X),
establishing the proposition. O

=

The following theorem gives a geometric interpretation of
P2, (X;Y) and m,(X;Y) in terms of the behaviour of the
function ¢y (X).

Theorem 3. Let (X,Y) ~ p(x,y). The following statements
hold:

1) p2(X;Y) is the minimum value of \ such that the
Sunction tx\(X) has a positive semidefinite Hessian at
().

2) m.(X;Y) is the minimum value of \ such that the
Sunction ty(X) touches its lower convex envelope at j1(x),
i.e. such that K[t)\](X) = tA(X) at p(x).

Proof of 1): The claim is straightforward when X,Y
are independent. When X,Y are not independent, Rényi’s
characterization of the maximal correlation [19] states that

P (X;Y) = sup E[E[f(X)[Y]?).
SOOI F(X)=0.E[f2(X)]=1

3This convexity at A = 1 follows from the fact that for any U — X — Y
we have I(U; X) > I(U;Y) or equivalently H(Y) — H(X) < H(Y|U) —
H(X|U).

Take an arbitrary multiplicative perturbation of the form
te(x) = p(z)(1 + ef(x)). For ue to stay a valid perturbation
we need E[f(X)] = 0. Furthermore we can normalize f by
assuming that E[f?(X)] = 1. The second derivative in ¢ of
H(Y)— MAH(X) is equal to [7]

—BE[f(X)Y]] + AE[f*(X)] = —BEf(X)Y]] + X,
which is non-negative as long as A\ > E[E[f(X)|Y]?]. Thus

the minimum value \* such that the second derivative is non-
negative for all local perturbations is

)}ZlE[E[f(X)lYF] = P (X;Y).

A= sup
F(X):E f(X)=0,E[f2(X -

Proof of 2): Consider the minimum value of )\, say Af,
such that the function ¢ (X) touches its lower convex envelope
at p(x). Thus, we are looking for the minimum A such that
for (X,Y) ~ u(x,y) we have*
HY)-AH(X)<HY|U)-AH(X|U), VU:U—-X-Y.
Equivalently we require the minimum A such that,

I(U;Y) .
A>——=, VU:U—-X-Y with I(U; X) > 0.
= I(U; X)’ with (U X) >
Thus,
1(U;Y
A= sup M
U: U=X-Y,I(U;X)>0 I(U; X)
Remark 5. Since t5(X) = K[tA](X) at u(x) implies that the
Hessian of t,\(X) at u(x) is positive semidefinite, we have

m.(X;Y) > p2,(X;Y).

=m.(X;Y). [ ]

A. Counterexample to the Erkip-Cover data processing in-
equality
In [3, Theorem 8], Erkip and Cover claimed that

I(U;Y) < p2 (X;YV)I(U; X)

holds whenever U — X —Y form a Markov chain. Furthermore
they claimed that, p2 (X;Y) is the minimum such constant,
ie.

m.(X;Y) = pr, (X;Y). (7)

We will first provide a counterexample to these claims and
then point out a gap in their argument.

1) Counterexample to (7): Let X be a binary random
variable with p(X = 0) = 3. Define p(z,y) by passing X
through the asymmetric erasure channel given in Fig. 1. When
either X or Y is binary then it is known [20] that

Z p(z,y)? 1
2 p(@)p(w)
We then have p2, (X;Y) = 0.6. Suppose we construct U satis-

fying U — X — Y such that U|{X = 0} ~ Ber(0.1),U{X =
1} ~ Ber(0.4). Then I(U;Y) = 0.055770... and I(U; X) =

pL(X;Y) =

“Note that if U is independent of X, i.e. I(U; X) = 0 then the above
inequality is always true.



X Y

Fig. 1. An asymmetric erasure channel.

0.09130..., so that 73 = 0.6108... > 0.6 = p2,(X;Y),

and this contradicts (7’). It can be shown in a reasonably
straightforward manner, using our characterization in Theorem
3, that m,(X;Y) = $log, () = 0.631517... for this pair
of random variables (X,Y).

One can show that if a measure p(z,y) is drawn uniformly
at random from the set of all probability measures on pairs of
binary random variables, then with probability one we have
my(X;Y) > pp (X3Y).

The error of the Erkip-Cover proof lies in their use of a
Taylor’s series expansion. Consider the expansion in the left
column of page 1037 of their paper [3], where they use their
equation (16) to expand around p(¥). It is possible that p(?)
is zero for some v and this causes an error as the derivative
in this direction is infinity and the Taylor’s series expansion is
no longer valid. As our counterexample shows, this seems to
be a significant but subtle error that cannot be worked around.

Some of the works that use this incorrect result of [3], such
as [21], are affected by this error. A claim similar to that of
[3], which appears in [9], is also false.’

IV. CONCLUSION

In this paper we showed the equivalence between the
optimal constant in the data-processing inequality and a hy-
percontractivity parameter connecting random variables X and
Y. This corrects an incorrect claim due to Erkip and Cover
[3]. We also presented a new geometric characterization of the
maximal correlation and of this hypercontractivity parameter.
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