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Abstract—In this paper we provide the correct tight constant
to a data-processing inequality claimed by Erkip and Cover. The
correct constant turns out to be a particular hypercontractivity
parameter of (X,Y ), rather than their squared maximal cor-
relation. We also provide alternate geometric characterizations
for both maximal correlation as well as the hypercontractivity
parameter that characterizes the data-processing inequality.

I. INTRODUCTION

Given a pair of random variables1 (X,Y ), the data-
processing inequality states that whenever U → X → Y form
a Markov chain, we have

I(U ;Y ) ≤ I(U ;X).

A natural question to ask is the following: what is the smallest
r such that the inequality

I(U ;Y ) ≤ rI(U ;X)

holds for every U whenever U → X → Y is Markov.
Erkip and Cover [3] claimed that the smallest possible r is
ρ2m(X;Y ), the squared maximal correlation between X and
Y . We show that this result is incorrect and we establish that
the right constant is related to a particular hypercontractivity
parameter of (X,Y ).

A. Definitions and preliminaries

Definition 1. For any real-valued random variable W with
finite support, and any real number p ≥ 1, define ‖W‖p :=

(E |W |p)
1
p .

Definition 2. Given random variables X and Y , the
Hirschfeld-Gebelein-Rényi maximal correlation of (X,Y ) is
defined as follows:

ρm(X;Y ) := supE[f(X)g(Y )], (1)

where the supremum is taken over all functions f, g such that

E f(X) = E g(Y ) = 0, and E f2(X),E g2(Y ) ≤ 1.

1Throughout this paper, random variables (X,Y ) take values in X × Y
with |X |,Y| < ∞. Further we assume that P(X = x) > 0 ∀x ∈ X and
P(Y = y) > 0 ∀y ∈ Y .

Definition 3. A pair of random variables (X,Y ) is said to be
(p, q)-hypercontractive for 1 ≤ q ≤ p <∞ if the inequality

‖E(g(Y )|X)‖p ≤ ‖g(Y )‖q

holds for all functions g(Y ).

Definition 4. For p ≥ 1 define q∗p(X;Y ) as

inf{q : q ≥ 1, (X,Y ) is (p, q)− hypercontractive}.

For p ≥ 1, we define the following quantity:

rp(X;Y ) :=
q∗p(X;Y )

p
.

An important property of the hypercontractivity parameter
rp(X;Y ) is the so-called tensorization property. It is known
[1] that if (X1, Y1) is independent of (X2, Y2), then

rp(X1, X2;Y1, Y2) = max{rp(X1;Y1), rp(X2;Y2)}.

The following theorem summarizes some results about the
quantity rp(X;Y ).

Theorem 1 ([1] Theorem 3a,3b). The following statements
hold:

(i) rp(X;Y ) is non-increasing in p.
(ii) rp(X;Y ) ≥ ρ2m(X;Y ) +

1−ρ2m(X;Y )
p for all p ≥ 1.

Denote
r∞(X;Y ) := inf

p≥1
rp(X;Y ). (2)

Remark 1. It is clear from Theorem 1 that

r∞(X;Y ) = lim
p→∞

rp(X;Y ) ≥ ρ2m(X;Y ). (3)

Let νX(x) and µX(x) be probability distributions on the
same finite set. We use DKL

(
νX‖µX

)
to denote the relative

entropy or the Kullback-Liebler divergence between νX(x)
and µX(x), i.e.

DKL

(
νX‖µX

)
:=
∑
x

νX(x) log
νX(x)

µX(x)
.
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Given a pair of random variables (X,Y ) ∼ µ(x, y) where
µ(x, y) denotes their probability mass function, let µ(y|x) be
the channel from X to Y induced by µ(x, y). We consider X
to be the input and Y to be the output of the channel. For
any input νX(x), let νµY (y) =

∑
x νX(x)µ(y|x) denote the

induced output distribution by the channel µ(y|x) when the
input distribution is νX . Define

d∗(X;Y ) := sup
νX 6=µX

DKL

(
νµY ‖µY

)
DKL

(
νX‖µX

) . (4)

Finally define the main quantity of interest:

m∗(X;Y ) := sup
U : U−X−Y,I(U ;X)>0

I(U ;Y )

I(U ;X)
. (5)

Here again we think of X as the input and Y as the output
of the channel characterized by µ(y|x).

Remark 2. Witsenhausen and Wyner [13] consider the trade-
off between possible values of I(U ;X) and I(U ;Y ). The
tensorization property of m∗(X;Y ) can be inferred from their
results.

B. Summary of results

We provide a proof of the following equivalence result:

Theorem 2. Given a pair of random variables (X,Y ) and the
quantities r∞(X;Y ), d∗(X;Y ), and m∗(X;Y ) as defined in
the previous section, we have

r∞(X;Y ) = d∗(X;Y ) = m∗(X;Y ).

Remark 3. The equality r∞(X;Y ) = d∗(X;Y ) was es-
tablished in [1, Theorem 5a], and only the second equality
d∗(X;Y ) = m∗(X;Y ) is new here. However we will prove
a three way equivalence in this paper as opposed to only
establishing d∗(X;Y ) = m∗(X;Y ).

Remark 4. In [3, Theorem 8] it was claimed that the following
inequality holds:

I(U ;Y ) ≤ ρ2m(X;Y )I(U ;X), ∀ U −X − Y.

It turns out that this inequality is incorrect. Indeed from
Theorem 2 and Remark 1 it is immediate that m∗(X;Y ) ≥
ρ2m(X;Y ). We will prove later in the paper that the inequality
is strict in general by providing an explicit example. The
strictness of the inequality r∞(X;Y ) ≥ ρ2m(X;Y ) in general
is known from [1, Theorem 9b]. The strictness of the inequality
m∗(X;Y ) ≥ ρ2m(X;Y ) would also alternately follow from
our Theorem 2.

In this paper we will also provide alternate geometric
characterizations of both ρ2m(X;Y ) and r∞(X;Y ). Fix a
channel µY |X(y|x), fix λ ∈ [0, 1], and consider the function2

of the probability distribution of X denoted by tλ(X) which
is defined by

tλ(X) := H(Y )− λH(X).

2We abuse notation when we write tλ(X). We really wish to think of tλ
as a function of the probability distribution of X .

We will show in Theorem 3 that ρ2m(X,Y ) is the smallest
λ such that tλ(X) has a positive semidefinite Hessian at µ(x)
and r∞(X;Y ) is the smallest λ such that tλ(X) matches its
lower convex envelope, denoted by K[tλ](X), at µX(x).

C. Organization of the paper

In Section II, we will prove Theorem 2. In Section III
we will establish the alternate geometric characterizations
for ρ2m(X;Y ) and r∞(X;Y ). The paper we uploaded on
arXiv [15] presents the key results from a slightly different
perspective.

II. PROOF OF THEOREM 2

Remark: The proof below is stitched together using a
judicious borrowing of arguments from [1], [14], and standard
techniques. In the authors’ opinion, the three way equivalence
argument elucidates the proof of the equivalence r∞(X;Y ) =
d∗(X;Y ) (in [1]). Further this proof idea allows for a natural
generalization and provides an alternate (new) characterization
of rp(X;Y ), p ≥ 1 [18].

If X and Y are independent, then it is easy to see that
rp(X;Y ) = 1

p ∀p ≥ 1; hence r∞(X;Y ) = 0. It is also easy
to see that d∗(X;Y ) = m∗(X;Y ) = 0. The theorem clearly
holds in this case.

We will assume then that X and Y are not independent.
By choosing f(x) = 1x∈A − P (X ∈ A), g(y) = 1y∈B −
P (Y ∈ B) in (1) for appropriate sets A,B, we can obtain
ρm(X;Y ) > 0. From (3), we get r∞(X;Y ) > 0.

The proof will follow from the following sequence of
implications that we will establish.
(a) r∞(X;Y ) ≤ d∗(X;Y ),
(b) d∗(X;Y ) ≤ m∗(X,Y ),
(c) m∗(X,Y ) ≤ r∞(X,Y ).

Proof of (a): Writing rp, r∞ for rp(X;Y ), r∞(X;Y )
respectively, from the definition we have the following inequal-
ity:

‖E(g(Y )|X)‖p ≤ ‖g(Y )‖rpp,

for all g(Y ) ≥ 0.
Define h(y) := g(y)rpp, and note that

‖g(Y )‖rpprpp = E(h(Y )).

We also obtain that for all p ≥ 1

‖E(g(Y )|X)‖rppp =

(∑
x

µ(x)

(∑
y

µ(y|x)h(y)
1
rpp

)p)rp
.

Using the well-known limit limr↓0 ||W ||r = exp(E log |W |),
we get that as p→∞,(∑

y

µ(y|x)h(y)
1
rpp

)p

→
∏
y

h(y)
µ(y|x)
r∞ .

Thus we have for all h(Y ) > 0(∑
x

µ(x)
∏
y

h(y)
µ(y|x)
r∞

)r∞
≤ E(h(Y )). (6)
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From the definition of r∞(X;Y ) and the continuity and
strict monotonicity of ‖ · ‖r in r for non-constant random
variables, it is immediate that it is the smallest such number
for which the above inequality holds for all h(Y ) > 0.

Therefore for any ε > 0 there exists an hε(Y ) such that(∑
x

µ(x)
∏
y

hε(y)
µ(y|x)
r∞−ε

)r∞−ε
> E(hε(Y )).

Further w.l.o.g. assume that

E(hε(Y )) = 1.

Define a probability distribution (see [1, (5.11)])

ν(x) = Cµ(x)
∏
y

hε(y)
µ(y|x)
r∞−ε ,

where C < 1 is a normalizing constant. Now, note that

ν(x) log
ν(x)

Cµ(x)
= ν(x)

∑
y

µ(y|x)
r∞ − ε

log hε(y)

=⇒
∑
x

ν(x) log
ν(x)

µ(x)
=
∑
y

νµ(y)

r∞ − ε
log hε(y) + logC.

Finally observe that since C < 1∑
x

ν(x) log
ν(x)

µ(x)

<
∑
y

νµ(y)

r∞ − ε
log hε(y)

=
∑
y

νµ(y)

r∞ − ε
log

νµ(y)

µ(y)
+

∑
y

νµ(y)

r∞ − ε
log

µ(y)hε(y)

νµ(y)

≤
∑
y

νµ(y)

r∞ − ε
log

νµ(y)

µ(y)
+

1

r∞ − ε
log(

∑
y

µ(y)hε(y))

=
∑
y

νµ(y)

r∞ − ε
log

νµ(y)

µ(y)
,

where the last equality follows since E(hε(Y )) = 1.

Thus r∞(X;Y ) − ε < D(νµ(y)||µ(y))
D(ν(x)||µ(x)) ≤ d∗(X;Y ). Since

ε > 0 is arbitrary we are done.
Proof of (b): Let Uε := {1, 2}. Fix a sufficiently small

ε > 0 and define Uε satisfying Uε −X − Y by
• P (Uε = 1) = ε, P (X = x|Uε = 1) = νδ(x),
• P (Uε = 2) = 1 − ε, P (X = x|Uε = 2) = µ(x) +

ε
1−ε (µ(x)− νδ(x)) =

1
1−εµ(x)−

ε
1−ενδ(x),

where νδ(x) 6= µ(x) is a probability distribution satisfying
D
(
νµδ (y)‖µ(y)

)
D
(
µδ(x)‖µ(x)

) > d∗(X;Y ) − δ > 0. For sufficiently small

ε > 0, we have that 1
1−εµ(x) −

ε
1−ενδ(x) is a probability

distribution (as µ(x) was assumed to have full support). Note
that

P (Uε = 1)P (X = x|Uε = 1)+

P (Uε = 2)P (X = x|Uε = 2) = µ(x) ∀x ∈ X ,

so that this specified chain Uε−X−Y has the correct marginal
distribution for (X,Y ).

For any 0 < θ < d∗(X;Y )− δ define the function

g(ε) := I(Uε;Y )− θI(Uε;X).

We have
dg(ε)

dε
= −

d

dε

(
εH(νµδ (y)) + (1− ε)H

(
1

1− ε
µ(y)−

ε

1− ε
νµδ (y)

))
+ θ

d

dε

(
εH(νδ(x)) + (1− ε)H

(
1

1− ε
µ(x)−

ε

1− ε
νδ(x)

))
= −H(νµδ (y)) +H

(
µ(y)− ενµδ (y)

1− ε

)
+ θH(νδ(x))

− θH
(
µ(x)− ενδ(x)

1− ε

)
−
∑
y

νµδ (y)− µ(y)
1− ε

log

(
µ(y)− ενµδ (y)

1− ε

)

+ θ
∑
x

νδ(x)− µ(x)
1− ε

log

(
µ(x)− ενδ(x)

1− ε

)
.

Thus

dg(ε)

dε

∣∣∣
ε=0

= D
(
νµδ (y)‖µ(y)

)
− θD

(
νδ(x)‖µ(x)

)
> 0,

where the last inequality is because 0 < θ < d∗(X;Y )−δ and
D
(
νµδ (y)‖µ(y)

)
D
(
νδ(x)‖µ(x)

) > d∗(X;Y ) − δ. Since g(0) = 0 this implies

that for some ε′ > 0 we have I(Uε′ ;Y )− θI(Uε′ ;X) > 0 or
that

m∗(X;Y ) = sup
U : U−X−Y,I(U ;Y )>0

I(U ;Y )

I(U ;X)
≥ I(Uε′ ;Y )

I(Uε′ ;X)
> θ.

Since the above holds for all θ < d∗(X;Y )− δ we have

m∗(X;Y ) ≥ d∗(X;Y )− δ.

Finally, since δ > 0 is arbitrary, we let δ → 0, and we are
done.

Proof of (c): This part uses standard typicality arguments
in information theory and our definition of (and notation for)
ε-typical sets are borrowed from [16].

For any U → X → Y let (Un, Xn, Y n) ∼
∏
i µ(ui, xi, yi).

Pick a single un ∈ T (n)
ε (U). For some ε1 > ε let An = {xn :

(un, xn) ∈ T (n)
ε1 (U,X)} and for ε2 > ε1 let Bn = {yn :

(un, yn) ∈ T (n)
ε2 (U, Y )}. Note that

P(Xn ∈ An, Y n ∈ Bn)
=E[1Xn∈An E(1Y n∈Bn |Xn)]

≤E ‖1Xn∈An‖ p
p−1
‖E(1Y n∈Bn |Xn)‖p

≤E ‖1Xn∈An‖ p
p−1

E ‖1Y n∈Bn‖rpp

=P (Xn ∈ An)1−
1
p P(Y n ∈ Bn)

1
rpp ,

where we write rp to denote rp(X;Y ) for convenience. The
first inequality follows from Hölder’s inequality and the sec-
ond inequality from the definition and tensorization property
of rp(X;Y ).

Standard calculations tell us that 1
n log2 P(X

n ∈ An) →
−I(U ;X) and 1

n log2 P(Y
n ∈ Bn) → −I(U ;Y ) as n → ∞.

From the law of large numbers we know that P(Y n ∈
Bn|Xn ∈ An) → 1 as n → ∞. Therefore, taking the
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logarithm on both sides, dividing by n and letting n → ∞
we obtain that

−I(U ;X) ≤ −
(
1− 1

p

)
I(U ;X)− 1

rpp
I(U ;Y ).

Rearranging we obtain rp(X;Y ) ≥ I(U ;Y )
I(U ;X) and since this is

true for any U , by taking the supremum on the right hand side
we obtain rp(X;Y ) ≥ m∗(X;Y ). Since the right hand side
does not depend on p, we take p→∞ to obtain r∞(X;Y ) ≥
m∗(X;Y ). This completes the proof of Theorem 2.

III. A GEOMETRIC CHARACTERIZATION OF ρ2m(X;Y ) AND
m∗(X;Y )

Let µ(y|x) be the channel transition probability from X to
Y induced by a joint distribution µ(x, y). For a fixed channel
µ(y|x), consider a function of the input distribution ν(x),

tλ(X) := H(Y )− λH(X),

where λ is a constant in [0, 1]. Observe that the function is
concave when λ = 0 and convex when λ = 1.3

We write K[tλ](X) for the lower convex envelope of tλ(X).

Proposition 1. If K[tλ](X) = tλ(X) at ν(x) for some λ then
K[tλ1

](X) = tλ1
(X) at ν(x) for all λ1 ≥ λ.

Proof. If K[tλ](X) = tλ(X) at ν(x) for some λ, then note
that for any λ1 ≥ λ

tλ1
(X) = tλ(X)− (λ1 − λ)H(X)

=⇒ K[tλ1
](X) ≥ K[tλ](X)− (λ1 − λ)H(X).

Here the inequality comes since K[f +g] ≥ K[f ]+K[g]; note
that −(λ1 − λ)H(X) is convex. Therefore at ν(x) we will
have that

tλ1
(X) ≥ K[tλ1

](X) ≥ K[tλ](X)− (λ1 − λ)H(X)

= tλ(X)− (λ1 − λ)H(X) = tλ1
(X),

establishing the proposition.

The following theorem gives a geometric interpretation of
ρ2m(X;Y ) and m∗(X;Y ) in terms of the behaviour of the
function tλ(X).

Theorem 3. Let (X,Y ) ∼ µ(x, y). The following statements
hold:

1) ρ2m(X;Y ) is the minimum value of λ such that the
function tλ(X) has a positive semidefinite Hessian at
µ(x).

2) m∗(X;Y ) is the minimum value of λ such that the
function tλ(X) touches its lower convex envelope at µ(x),
i.e. such that K[tλ](X) = tλ(X) at µ(x).

Proof of 1): The claim is straightforward when X,Y
are independent. When X,Y are not independent, Rényi’s
characterization of the maximal correlation [19] states that

ρ2m(X;Y ) = sup
f(X):E f(X)=0,E[f2(X)]=1

E[E[f(X)|Y ]2].

3This convexity at λ = 1 follows from the fact that for any U −X − Y
we have I(U ;X) ≥ I(U ;Y ) or equivalently H(Y )−H(X) ≤ H(Y |U)−
H(X|U).

Take an arbitrary multiplicative perturbation of the form
µε(x) = µ(x)(1 + εf(x)). For µε to stay a valid perturbation
we need E[f(X)] = 0. Furthermore we can normalize f by
assuming that E[f2(X)] = 1. The second derivative in ε of
H(Y )− λH(X) is equal to [7]

−E[E[f(X)|Y ]2] + λE[f2(X)] = −E[E[f(X)|Y ]2] + λ ,

which is non-negative as long as λ ≥ E[E[f(X)|Y ]2]. Thus
the minimum value λ∗ such that the second derivative is non-
negative for all local perturbations is

λ∗ = sup
f(X):E f(X)=0,E[f2(X)]=1

E[E[f(X)|Y ]2] = ρ2m(X;Y ).

Proof of 2): Consider the minimum value of λ, say λ†,
such that the function tλ(X) touches its lower convex envelope
at µ(x). Thus, we are looking for the minimum λ such that
for (X,Y ) ∼ µ(x, y) we have4

H(Y )−λH(X) ≤ H(Y |U)−λH(X|U), ∀ U : U −X−Y.

Equivalently we require the minimum λ such that,

λ ≥ I(U ;Y )

I(U ;X)
, ∀ U : U −X − Y with I(U ;X) > 0.

Thus,

λ† = sup
U : U−X−Y,I(U ;X)>0

I(U ;Y )

I(U ;X)
= m∗(X;Y ).

Remark 5. Since tλ(X) = K[tλ](X) at µ(x) implies that the
Hessian of tλ(X) at µ(x) is positive semidefinite, we have

m∗(X;Y ) ≥ ρ2m(X;Y ).

A. Counterexample to the Erkip-Cover data processing in-
equality

In [3, Theorem 8], Erkip and Cover claimed that

I(U ;Y ) ≤ ρ2m(X;Y )I(U ;X)

holds whenever U−X−Y form a Markov chain. Furthermore
they claimed that, ρ2m(X;Y ) is the minimum such constant,
i.e.

m∗(X;Y ) = ρ2m(X;Y ). (7)

We will first provide a counterexample to these claims and
then point out a gap in their argument.

1) Counterexample to (7): Let X be a binary random
variable with p(X = 0) = 1

2 . Define p(x, y) by passing X
through the asymmetric erasure channel given in Fig. 1. When
either X or Y is binary then it is known [20] that

ρ2m(X;Y ) =

[∑
x,y

p(x, y)2

p(x)p(y)

]
− 1.

We then have ρ2m(X;Y ) = 0.6. Suppose we construct U satis-
fying U −X −Y such that U |{X = 0} ∼ Ber(0.1), U |{X =
1} ∼ Ber(0.4). Then I(U ;Y ) = 0.055770... and I(U ;X) =

4Note that if U is independent of X , i.e. I(U ;X) = 0 then the above
inequality is always true.
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Fig. 1. An asymmetric erasure channel.

0.09130..., so that I(Y ;U)
I(X;U) = 0.6108... > 0.6 = ρ2m(X;Y ),

and this contradicts (7). It can be shown in a reasonably
straightforward manner, using our characterization in Theorem
3, that m∗(X;Y ) = 1

2 log2
(
12
5

)
= 0.631517... for this pair

of random variables (X,Y ).
One can show that if a measure µ(x, y) is drawn uniformly

at random from the set of all probability measures on pairs of
binary random variables, then with probability one we have
m∗(X;Y ) > ρ2m(X;Y ).

The error of the Erkip-Cover proof lies in their use of a
Taylor’s series expansion. Consider the expansion in the left
column of page 1037 of their paper [3], where they use their
equation (16) to expand around p(ṽ). It is possible that p(ṽ)
is zero for some ṽ and this causes an error as the derivative
in this direction is infinity and the Taylor’s series expansion is
no longer valid. As our counterexample shows, this seems to
be a significant but subtle error that cannot be worked around.

Some of the works that use this incorrect result of [3], such
as [21], are affected by this error. A claim similar to that of
[3], which appears in [9], is also false.5

IV. CONCLUSION

In this paper we showed the equivalence between the
optimal constant in the data-processing inequality and a hy-
percontractivity parameter connecting random variables X and
Y . This corrects an incorrect claim due to Erkip and Cover
[3]. We also presented a new geometric characterization of the
maximal correlation and of this hypercontractivity parameter.
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