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Abstract

In this paper we derive an inequality relating linear combinations of mutual information between subsets of mutually
independent random variables and an auxiliary random variable. As corollaries of this inequality, we obtain new results
and generalizations and new proofs of known results.

1 Introduction

In this paper we obtain an information inequality relating linear combinations of mutual information between
subsets of mutually independent random variables and an auxiliary random variable. Our main result is a
rather elementary inequality which surprisingly implies a variety of non-trivial inequalities and yields new
inequalities. We are directly motivated by the work of Balister and Bollobás [1] who present generalizations of
Shearer’s lemma [2, 3], Han’s inequality [4], and the Madiman–Tetali inequality [5]. We obtain a compression
type inequality similar to Theorem 4.2 of [1], generalizing the work in [6]. We are also motivated by the work
of Courtade [7] who presents an elementary proof of monotonicity of entropy power and Fisher information
which was originally established by Artstein, Ball, Barthe and Naor [8]. Using a certain perturbative auxiliary,
we recover the generalized Stam’s inequality [9], which extends Stam’s inequality for Fisher information [10]
and the Artstein–Ball–Barthe–Naor inequality [8], as a corollary of our main result. We also extend the results
involving maximal correlation by Dembo–Kagan–Shepp [11], strong data processing constants in [6], and obtain
new Kullback–Leibler (KL) divergence convexity results.

1.1 Main results

Throughout this article we adapt the following notations. We denote by [a : b] the set of integers ≥ a and ≤ b.
We denote by |T | the cardinality of a set T . For random variables X1, . . . , Xn and for T ⊆ [1 : n], we write
XT := {Xi}i∈T , the tuple consisting of Xi where i ∈ T .

We define the notion of compression of multisets, as defined in [1], whereas we view a multiset as the finite
sequence of its multiplicities. The relation “is a compression of” defines a partial order on the collection of
multisets in [1 : n]. A finite sequence of non-negative real numbers {βT }T indexed by T ⊆ [1 : n] is minimal
under this partial order (i.e. cannot be further compressed) if and only if the set {T ⊆ [1 : n] : βT 6= 0} is totally
ordered under set inclusion.

Definition 1. Let n be a positive integer and let {αT }T , {βT }T be two finite sequences of non-negative real
numbers indexed by T ⊆ [1 : n]. We call {βT }T an elementary compression of {αT }T if there exist A,B ⊆ [1 : n]
with A 6⊆ B and B 6⊆ A, and 0 < δ ≤ min{αA, αB} such that for all T ⊆ [1 : n] we have

βT =


αT − δ if T = A or T = B,

αT + δ if T = A ∪B or T = A ∩B,

αT otherwise.

The result of a finite sequence of elementary compressions of {αT }T is called a compression of {αT }T .

The following lemma is rather immediate but forms the basis of most of the results in this paper.

Lemma 1. Let X1, . . . , Xn be random variables that are mutually independent conditioned on a random variable
S∅, and let U be any auxiliary random variable. Then the following hold:

(i) I(U ;S∅, XA) + I(U ;S∅, XB) ≤ I(U ;S∅, XA∪B) + I(U ;S∅, XA∩B) for all A,B ⊆ [1 : n].

(ii)
∑
T⊆[1:n] αT I(U ;S∅, XT ) ≤

∑
T⊆[1:n] βT I(U ;S∅, XT ), for any non-negative real numbers αT , βT (T ⊆ [1 :

n]) such that {βT } is a compression of {αT }.
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(iii)
∑
T⊆[1:n] βT I(U ;S∅, XT ) ≤ I(U ;S∅, X[1:n]) + (c− 1)I(U ;S∅), where βT (T ⊆ [1 : n]) are non-negative real

numbers satisfying
∑
T⊆[1:n]:T3i βT ≤ 1 for all i = 1, . . . , n, and c :=

∑
T⊆[1:n] βT .

Proof. Suppose A,B ⊆ [1 : n]. Then

I(U ;S∅, XB)− I(U ;S∅, XA∩B) = I(U ;XB\A|S∅, XA∩B)

≤ I(U,XA\B ;XB\A|S∅, XA∩B)

(a)
= I(U,XA\B ;XB\A|S∅, XA∩B)− I(XA\B ;XB\A|S∅, XA∩B)

= I(U ;XB\A|S∅, XA)

= I(U ;S∅, XA∪B)− I(U ;S∅, XA),

where (a) holds by the mutual independence of the Xi’s conditioned on S∅. Rearranging gives

I(U ;S∅, XA) + I(U ;S∅, XB) ≤ I(U ;S∅, XA∪B) + I(U ;S∅, XA∩B),

which is (i).
If {βT } is an elementary compression of {αT }, then the inequality in (ii) follows from (i) by canceling like

terms on both sizes. Since a compression is obtained as a sequence of elementary compressions, (ii) follows.
We will show (iii) by induction on n. Indeed the base case n = 1 is trivial. Note that (i) gives

I(U ;S∅, X[1:n−1]) + I(U ;S∅, XT∪{n}) ≤ I(U ;S∅, X[1:n]) + I(U ;S∅, XT )

for all T ⊆ [1 : n − 1]. Suppose βT (T ⊆ [1 : n]) are non-negative real numbers satisfying
∑
T⊆[1:n]:T3i βT ≤ 1

for all i = 1, . . . , n. Then∑
T⊆[1:n]

βT I(U ;S∅, XT ) =
∑

T⊆[1:n−1]

(
βT I(U ;S∅, XT ) + βT∪{n}I(U ;S∅, XT∪{n})

)
≤

∑
T⊆[1:n−1]

(
βT I(U ;S∅, XT ) + βT∪{n}(I(U ;S∅, X[1:n])− I(U ;S∅, X[1:n−1]) + I(U ;S∅, XT ))

)
(a)

≤ I(U ;S∅, X[1:n])− I(U ;S∅, X[1:n−1]) +
∑

T⊆[1:n−1]

(βT + βT∪{n})I(U ;S∅, XT )

(b)

≤ I(U ;S∅, X[1:n])− I(U ;S∅, X[1:n−1]) + I(U ;S∅, X[1:n−1]) + (c− 1)I(U ;S∅)

= I(U ;S∅, X[1:n]) + (c− 1)I(U ;S∅),

where (a) holds since
∑
T⊆[1:n−1] βT∪{n} ≤ 1, and (b) follows by applying the induction hypothesis to the

non-negative real numbers
{
βT + βT∪{n}

}
T⊆[1:n−1].

Definition 2. Let Xi (i = 1, . . . , n) and ST (T ⊆ [1 : n]) be random variables. We call {ST }T a layered function
family on X1, . . . , Xn if S∅ is independent of X[1:n], and for every non-empty T ⊆ [1 : n] and i ∈ T there is a
function gT,i such that ST = gT,i(ST\{i}, Xi).

Remark 1. Clearly a trivial example of a layered function family is given by ST := (S∅, XT ). A canonical
example of a layered function family is given by ST := S∅+

∑
i∈T fi(Xi), where fi’s are functions taking values

in some Abelian monoid. In particular,

(i) ST := S∅ +
∑
i∈T Xi, where S∅, Xi ∈ Rd;

(ii) ST := max({S∅} ∪ {Xi}i∈T ), where S∅, Xi ∈ R;

are examples of layered function families.

Remark 2. Layered function families play a similar role as that of partition-determined functions in [12] and
it may be possible that they are intrinsically trying to capture a similar behaviour and dependence structure.
For our results, we prefer to stick with the definition of layered function families. Note that [12] deals with
dependent random variables while here our main focus is on mutually independent random variables.

Lemma 2. Let {ST }T be a layered function family on mutually independent random variables X1, . . . , Xn.
Suppose U → S[1:n] → (S∅, X[1:n]) forms a Markov chain. Then the following hold:
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(i) U → ST → (S∅, XT ) forms a Markov chain for all T ⊆ [1 : n].

(ii) I(U ;ST ) = I(U ;S∅, XT ) for all T ⊆ [1 : n].

Proof. Suppose T ⊆ [1 : n]. Consider

0
(a)
= I(U ;S∅, X[1:n]|S[1:n])

= I(U ;S∅, XT , X[1:n]\T |S[1:n])

(b)
= I(U ;S∅, XT , X[1:n]\T , ST |S[1:n])

≥ I(U ;S∅, XT |S[1:n], X[1:n]\T , ST )

(c)
= I(U ;S∅, XT |X[1:n]\T , ST )

(d)
= I(U ;S∅, XT |X[1:n]\T , ST ) + I(X[1:n]\T ;S∅, XT |ST )

= I(U,X[1:n]\T ;S∅, XT |ST )

≥ I(U ;S∅, XT |ST )

≥ 0,

where (a) holds since U → S[1:n] → (S∅, X[1:n]) forms a Markov chain, (b) holds since ST is a function of
(S∅, XT ), (c) holds since S[1:n] is a function of (ST , X[1:n]\T ), and (d) holds since X[1:n]\T and (S∅, XT , ST ) are
independent. This shows (i). Furthermore,

I(U ;ST )
(a)
= I(U ;ST , S∅, XT )

(b)
= I(U ;S∅, XT ),

where (a) holds since U → ST → (S∅, XT ) forms a Markov chain, and (b) holds since ST is a function of
(S∅, XT ). This shows (ii).

We now state the main theorem. The proof is an immediate application of Lemma 2 to Lemma 1.

Theorem 1. Let {ST }T be a layered function family on mutually independent random variables X1, . . . , Xn.
Suppose U → S[1:n] → (S∅, X[1:n]) forms a Markov chain. Then the following hold:

(i) I(U ;SA) + I(U ;SB) ≤ I(U ;SA∪B) + I(U ;SA∩B) for all A,B ⊆ [1 : n].

(ii)
∑
T⊆[1:n] αT I(U ;ST ) ≤

∑
T⊆[1:n] βT I(U ;ST ), for any non-negative real numbers αT , βT (T ⊆ [1 : n]) such

that {βT } is a compression of {αT }.

(iii)
∑
T⊆[1:n] βT I(U ;ST ) ≤ I(U ;S[1:n])+(c−1)I(U ;S∅), where βT (T ⊆ [1 : n]) are non-negative real numbers

satisfying
∑
T⊆[1:n]:T3i βT ≤ 1 for all i = 1, . . . , n, and c :=

∑
T⊆[1:n] βT .

It turns out the freedom in choosing the auxiliary random variable U plays a rather important role in the
development of the inequalities.

1.2 Two families of perturbative auxiliaries

In this section we will present two families of auxiliaries that will turn out to be useful for obtaining corollaries
to Theorem 1.

Lemma 3. Let {ST }T be a layered function family on mutually independent random variables X1, . . . , Xn.
Suppose f is an Rd-valued bounded measurable function, defined on the set of values of S[1:n], such that

E[f(S[1:n])] = 0. Then there exists a family of random variables {U (ε)}ε, indexed by small enough ε > 0,

such that U (ε) → S[1:n] → (S∅, X[1:n]) forms a Markov chain and

I(U (ε);ST ) =
1

2
ε2 E[‖E[f(S[1:n])|ST ]‖2] +O(ε3)

for all T ⊆ [1 : n].
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Proof. Let p̃(·) be the probability mass function of the uniform distribution on the Boolean hypercube {±1}d.
For small enough ε > 0, define the random variable U (ε) taking values in {±1}d, satisfying the Markov chain
U (ε) → S[1:n] → (S∅, X[1:n]), according to

pU(ε)|S[1:n]
(u|s) := p̃(u)(1 + ε〈f(s), u〉).

Note that pU(ε)(u) = p̃(u) (which follows from E[f(S[1:n])] = 0), E[U (ε)] = 0 and E[U (ε)U (ε)ᵀ] = I. For any

T ⊆ [1 : n], since U (ε) → S[1:n] → ST forms a Markov chain,

pU(ε)|ST (u|ST ) = E[pU(ε)|S[1:n]
(u|S[1:n])|ST ]

= p̃(u)(1 + ε〈E[f(S[1:n])|ST ], u〉).

Then we have

I(U (ε);ST ) = EU(ε),ST

[
log

p(U (ε)|ST )

p(U (ε))

]
= EU(ε),ST

[
log(1 + ε〈E[f(S[1:n])|ST ], U (ε)〉)

]
= EST

[∑
u

p̃(u)(1 + ε〈E[f(S[1:n])|ST ], u〉) log(1 + ε〈E[f(S[1:n])|ST ], u〉)

]

= EST

[∑
u

p̃(u)

(
ε〈E[f(S[1:n])|ST ], u〉+

1

2
ε2〈E[f(S[1:n])|ST ], u〉2 +O(ε3)

)]

=
1

2
ε2 tr

(
E[E[f(S[1:n])|ST ] E[f(S[1:n])|ST ]ᵀ] ·

∑
u

p̃(u)uuᵀ

)
+O(ε3)

=
1

2
ε2 E[‖E[f(S[1:n])|ST ]‖2] +O(ε3).

Lemma 4. Let {ST }T be a layered function family on mutually independent random variables X1, . . . , Xn.
Suppose q(·) is a distribution that is absolutely continuous and has a bounded Radon–Nikodym derivative with
respect to the distribution of S[1:n]. Then there exists a family of random variables {U (ε)}ε, indexed by small

enough ε > 0, such that U (ε) → S[1:n] → (S∅, X[1:n]) forms a Markov chain and

I(U (ε);ST ) = εDKL(pS̃T ‖pST ) +O(ε2)

for all T ⊆ [1 : n], where the random variable S̃T is defined by

pS̃T (s̃) :=
∑
s

pST |S[1:n]
(s̃|s)q(s).

Proof. Let f(s) := q(s)/pS[1:n]
(s) be the Radon–Nikodym derivative. For small enough ε > 0, define the random

variable U (ε) taking values in {0, 1}, satisfying the Markov chain U (ε) → S[1:n] → (S∅, X[1:n]), according to

pU(ε)|S[1:n]
(u|s) :=

{
1− εf(s) if u = 0,

εf(s) if u = 1.

Note that E[f(S[1:n])] = 1 and

pU(ε)(u) =

{
1− ε if u = 0,

ε if u = 1.

For any T ⊆ [1 : n], since U (ε) → S[1:n] → ST forms a Markov chain,

pU(ε)|ST (u|ST ) = E[pU(ε)|S[1:n]
(u|S[1:n])|ST ]

=

{
1− εE[f(S[1:n])|ST ] if u = 0,

εE[f(S[1:n])|ST ] if u = 1.



2 Some consequences of the main result 5

Then we have

I(U (ε);ST )

= EU(ε),ST

[
log

p(U (ε)|ST )

p(U (ε))

]
= EST

[
εE[f(S[1:n])|ST ] log E[f(S[1:n])|ST ] + (1− εE[f(S[1:n])|ST ]) log

1− εE[f(S[1:n])|ST ]

1− ε

]
= εEST

[
pS̃T (ST )

pST (ST )
log

pS̃T (ST )

pST (ST )

]
+ EST

[
(1− εE[f(S[1:n])|ST ])(ε(1− E[f(S[1:n])|ST ]) +O(ε2))

]
= εDKL(pS̃T ‖pST ) +O(ε2).

Remark 3. These two families of perturbative auxiliaries are not new here and have been used extensively
in [13,14] and references therein.

2 Some consequences of the main result

In this section we will outline some existing results, extensions of existing results, as well as the new ones that
we obtain as consequences of Theorem 1.

2.1 Entropy power inequalities and Fisher information inequalities

2.1.1 Historical remark

The celebrated entropy power inequality (EPI) as originally postulated by Shannon [15] states that if X,Y are
independent random variables in Rd then

e
2
dh(X+Y ) ≥ e 2

dh(X) + e
2
dh(Y ),

and equality holds if and only if both X,Y are Gaussian with proportional covariance matrices. Stam [10]
showed that the EPI is a consequence of

1

J(X + Y )
≥ 1

J(X)
+

1

J(Y )
.

Lieb [16] showed the following two (respectively) equivalent forms of the above two inequalities,

h(
√
tX +

√
1− tY ) ≥ th(X) + (1− t)h(Y ),

J(
√
tX +

√
1− tY ) ≤ tJ(X) + (1− t)J(Y ),

for any t ∈ (0, 1), and equality holds if and only if both X,Y are Gaussian with the same covariance matrix.
Several other proofs for the EPI were discoverd by Guo–Shamai–Verdu [17] (via MMSE), Rioul [18], and
Courtade [19].

Lieb’s form of the EPI implies that

h

(
X + Y√

2

)
≥ 1

2
(h(X) + h(Y )) .

Lieb [16] conjectured that if X1, . . . , Xn are mutually independent and identically distributed real-valued random

variables, then h
(
X1+···+Xn√

n

)
is non-decreasing in n. This conjecture was resolved by Artstein–Ball–Barthe–

Naor [8] who showed the following inequality: If a1, . . . , an+1 ≥ 0 satisfies
∑n+1
i=1 a

2
i = 1 then

h

(
n+1∑
i=1

aiXi

)
≥
n+1∑
i=1

1− a2i
n

h

 1√
1− a2i

n+1∑
j=1
j 6=i

ajXj

 ,
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and in particular,

h

(
1√
n+ 1

n+1∑
i=1

Xi

)
≥ 1

n+ 1

n+1∑
i=1

h

 1√
n

n+1∑
j=1
j 6=i

Xj

 .

Their proof was simplified and extended in a series of works, e.g. Madiman–Barron [9] and Madiman–Ghassemi
[20]. The best known version is the fractional partition form of the EPI:

e
2
dh(

∑n
i=1Xi) ≥

∑
T⊆[1:n]
T 6=∅

βT e
2
dh(

∑
i∈T Xi),

for any mutually independent random variables X1 . . . , Xn in Rd with densities, and fractional partition {βT }T ,
i.e. a finite collection indexed by T ⊆ [1 : n], T 6= ∅, of non-negative real numbers satisfying

∑
T⊆[1:n]:T3i βT = 1

for every i ∈ [1 : n]. This was derived as a consequence of the following Fisher information inequality, that we
shall refer to as the generalized Stam’s inequality :

1

J(S[1:n])
≥

∑
T⊆[1:n]

βT
1

J(ST )
,

where ST :=
∑
i∈T Xi.

Remark 4. Unlike the n = 2 setting, the implication that the generalized Stam’s inequality implies the fractional
partition form of the EPI did not have a straightforward proof. In this article, we use convex duality to show
a straightforward proof of this implication.

2.1.2 Alternate proof of generalized Stam’s inequality

In this subsection, we derive the generalized Stam’s inequality involving Fisher information as an immediate
consequence of our mutual information inequality. While a similar proof technique that we employ has been
used by Courtade in [7] for the case of mutually independent and identically distributed random variables, as
noted in [21] (Future work, item 4), the extension of the ideas to independent random variables is of independent
interest.

Remark 5. To avoid technical issues, we will deal with random variables X with density function fX that is
smooth and rapidly decaying such that | log fX | has at most polynomial growth at infinity.

Definition 3. Let X be a random variable in Rd with density fX . The score function ρX of X is defined by

ρX :=
∇fX
fX

= ∇ log fX .

The Fisher information J(X) of X is defined by

J(X) := E[‖ρX(X)‖2].

Remark 6. Let X,Z be independent random variables in Rd such that Z ∼ N (0, I). We have the following
basic properties of Fisher information:

(i) J(aX) = a−2J(X) for all a > 0.

(ii) 1
2J(X +

√
tZ) = ∂

∂th(X +
√
tZ) for all t ≥ 0.

(iii) If X has a (finite) covariance matrix then

h(X) =
d

2
log 2πe− 1

2

∫ ∞
0

(
J(X +

√
tZ)− d

1 + t

)
dt.

Property (ii) is also called de Bruijn’s identity (e.g. [10]). Property (iii) is a consequence of (ii) and is originally
shown by Barron [22] (cf. Lemma 3 of [9]).

Our proof employs the following theorem.
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Theorem 2 (Stam [10]). Suppose X1, . . . , Xn are mutually independent random variables in Rd with densities,
and write Sk := X1 + · · ·+Xk. Then

ρSn(Sn) = E[ρSk(Sk)|Sn]

for all k = 1, . . . , n.

Consequently we have
E[‖E[ρSk(Sk)|Sn]‖2] = J(Sn).

We now use Cauchy–Schwarz inequality to obtain an upper bound on the squared norm of the reversed
conditional expectation.

Lemma 5. Let X1, . . . , Xn be mutually independent random variables in Rd with densities. For k = 1, . . . , n
we write Sk := X1 + · · ·+Xk. Then

E[‖E[ρSn(Sn)|Sk]‖2] ≥ J(Sn)2

J(Sk)

for all k = 1, . . . , n.

Proof. Consider

J(Sn) = E[‖ρSn(Sn)‖2]

= E[〈ρSn(Sn),E[ρSk(Sk)|Sn]〉]
= E[E[〈ρSn(Sn), ρSk(Sk)〉|Sn]]

= E[〈ρSn(Sn), ρSk(Sk)〉]
= E[E[〈ρSn(Sn), ρSk(Sk)〉|Sk]]

= E[〈E[ρSn(Sn)|Sk], ρSk(Sk)〉]
(a)

≤ E[‖E[ρSn(Sn)|Sk]‖2]1/2 E[‖ρSk(Sk)‖2]1/2

= E[‖E[ρSn(Sn)|Sk]‖2]1/2J(Sk)1/2,

where (a) follows from the Cauchy–Schwarz inequality. This gives the result.

Proposition 1 (Generalized Stam’s inequality, Theorem 2 of [9]). Let X1, . . . , Xn be mutually independent
random variables in Rd with densities. Suppose βT (T ⊆ [1 : n]) are non-negative real numbers satisfying∑
T⊆[1:n]:T3i βT ≤ 1 for all i = 1, . . . , n. If E[‖ρS[1:n]

‖2] <∞, then

1

J(S[1:n])
≥

∑
T⊆[1:n]

βT
1

J(ST )
,

where ST :=
∑
i∈T Xi.

Proof. Note that S∅ = 0. Let us first assume that ‖ρS[1:n]
‖ is bounded. An application of Lemma 3 (with

f = ρS[1:n]
) gives the existence of a family of random variables {U (ε)}ε, indexed by small enough ε > 0, such

that U (ε) → S[1:n] → X[1:n] forms a Markov chain and

I(U (ε);ST ) =
1

2
ε2 E[‖E[ρS[1:n]

(S[1:n])|ST ]‖2] +O(ε3) (1)

for all T ⊆ [1 : n]. Then Theorem 1 (iii) implies∑
T⊆[1:n]

βT I(U (ε);ST ) ≤ I(U (ε);S[1:n]). (2)

Now consider

J(S[1:n]) = E[‖ρS[1:n]
(S[1:n])‖2]

(a)

≥
∑

T⊆[1:n]

βT E[‖E[ρS[1:n]
(S[1:n])|ST ]‖2]

(b)

≥
∑

T⊆[1:n]

βT
J(S[1:n])

2

J(ST )
,
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where (a) is obtained by putting (1) into (2), dividing by 1
2ε

2 and then taking ε → 0, and (b) follows from
Lemma 5. The result then follows from rearranging.

If ‖ρS[1:n]
‖ is not bounded, then we define fB := min

{
1, B
‖ρS[1:n]

‖

}
ρS[1:n]

and the proof proceeds as before

with ρS[1:n]
replaced by fB till inequality (a). Now, we use dominated convergence theorem (since E[‖ρS[1:n]

‖2] <
∞ and let B →∞) to recover the form as above with the score functions.

2.1.3 From generalized Stam’s inequality to fractional entropy power inequality

The first two lemmas that we present below are well-known and are the ”Lieb-type-equivalent” forms of the
fractional EPI and the generalized Stam’s inequality. We present a proof here for completeness.

Lemma 6. Let X1, . . . , Xn be mutually independent random variables in Rd. Let ST :=
∑
i∈T Xi. Suppose βT

(T ⊆ [1 : n], T 6= ∅) are non-negative real numbers satisfying
∑
T⊆[1:n]:T3i βT ≤ 1 for all i ∈ [1 : n]. Then the

following are equivalent.

(i) It holds that

e
2
dh(S[1:n]) ≥

∑
T⊆[1:n]
T 6=∅

βT e
2
dh(ST ).

(ii) For all non-negative real numbers wT (T ⊆ [1 : n], T 6= ∅) with
∑
T⊆[1:n]
T 6=∅

wT = 1, it holds that

h(S[1:n]) ≥
∑

T⊆[1:n]
T 6=∅

wTh

(√
βT
wT

ST

)
.

Proof. We first show (i) implies (ii). Indeed,

∑
T⊆[1:n]
T 6=∅

wTh

(√
βT
wT

ST

)
(a)

≤ d

2
log

 ∑
T⊆[1:n]
T 6=∅

wT e
2
dh
(√

βT
wT

ST
)

=
d

2
log

 ∑
T⊆[1:n]
T 6=∅

βT e
2
dh(ST )


(b)

≤ h(S[1:n]),

where (a) follows from concavity of log(·) and (b) follows from (i).

Now we show (ii) implies (i). Set wT := βT e
2
dh(ST )

(∑
T̃⊆[1:n]
T̃ 6=∅

βT̃ e
2
dh(ST̃ )

)−1
. Note that

h

(√
βT
wT

ST

)
=
d

2
log

βT e
2
dh(ST )

wT
=
d

2
log

 ∑
T̃⊆[1:n]
T̃ 6=∅

βT̃ e
2
dh(ST̃ )


is independent of choice of T , and hence (i) follows immediately from (ii).

Lemma 7. Let X1, . . . , Xn be mutually independent random variables in Rd. Let ST :=
∑
i∈T Xi. Suppose βT

(T ⊆ [1 : n], T 6= ∅) are non-negative real numbers satisfying
∑
T⊆[1:n]:T3i βT ≤ 1 for all i ∈ [1 : n]. Then the

following are equivalent.

(i) It holds that

1

J(S[1:n])
≥

∑
T⊆[1:n]
T 6=∅

βT
1

J(ST )
.
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(ii) For all non-negative real numbers wT (T ⊆ [1 : n], T 6= ∅) with
∑
T⊆[1:n]
T 6=∅

wT = 1, it holds that

J(S[1:n]) ≤
∑

T⊆[1:n]
T 6=∅

wTJ

(√
βT
wT

ST

)
.

Proof. We first show (i) implies (ii). Indeed,

∑
T⊆[1:n]
T 6=∅

wTJ

(√
βT
wT

ST

)
(a)

≥

 ∑
T⊆[1:n]
T 6=∅

wT
1

J
(√

βT
wT
ST

)

−1

=

 ∑
T⊆[1:n]
T 6=∅

βT
1

J(ST )


−1

(b)

≥ J(S[1:n]),

where (a) follows from convexity of (·)−1 and (b) follows from (i).

Now we show (ii) implies (i). Set wT := βT
1

J(ST )

(∑
T̃⊆[1:n]
T̃ 6=∅

βT̃
1

J(ST̃ )

)−1
. Note that

J

(√
βT
wT

ST

)
=
wT
βT

J(ST ) =

 ∑
T̃⊆[1:n]
T̃ 6=∅

βT̃
1

J(ST̃ )


−1

is independent of choice of T , and hence (i) follows immediately from (ii).

Lemma 8 below is the crucial component of our proof. The lemma is used to show that by restricting our
attention to optimal fractional partitions, we can essentially extend the proof for n = 2 to larger values of n.

Lemma 8. Let wT (T ⊆ [1 : n], T 6= ∅) be non-negative real numbers. Then the maximization

max
βT≥0∑
T3i βT≤1

∑
T⊆[1:n]
T 6=∅

wT log βT

is attained at βT = wT∑
i∈T λi

, for some λi > 0 (i ∈ [1 : n]), with
∑
T⊆[1:n]:T3i βT = 1 for all i ∈ [1 : n].

Proof. Consider

max
βT≥0∑
T3i βT≤1

∑
T⊆[1:n]
T 6=∅

wT log βT
(a)
= min

λi≥0
max
βT≥0

 ∑
T⊆[1:n]
T 6=∅

wT log βT +

n∑
i=1

λi

(
1−

∑
T3i

βT

)

= min
λi≥0

 n∑
i=1

λi + max
βT≥0

∑
T⊆[1:n]
T 6=∅

(
wT log βT − βT

∑
i∈T

λi

)
(b)
= min

λi≥0

 n∑
i=1

λi +
∑

T⊆[1:n]
T 6=∅

(
wT log

wT∑
i∈T λi

− wT
) ,

where (a) holds by strong duality since Slater’s condition (see Theorem 3.2.8 in [23] for instance) is satisfied
for the maximization on the left hand side, and (b) holds since the maximum is attained at βT = wT∑

i∈T λi
.
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The minimization on the last line is a convex problem and is attained at some λ∗i ’s satisfying the first-order
condition

∑
T3i

wT∑
j∈T λ

∗
j

= 1 (i ∈ [1 : n]). Let β∗T := wT∑
i∈T λ

∗
i
. Then

max
βT≥0∑
T3i βT≤1

∑
T⊆[1:n]
T 6=∅

wT log βT ≤
n∑
i=1

λ∗i +
∑

T⊆[1:n]
T 6=∅

(
wT log β∗T − β∗T

∑
i∈T

λ∗i

)

=
∑

T⊆[1:n]
T 6=∅

wT log β∗T +

n∑
i=1

λ∗i −
n∑
i=1

(
λ∗i
∑
T3i

β∗T

)

=
∑

T⊆[1:n]
T 6=∅

wT log β∗T ,

hence the maximization on the left hand side of the first line is attained at βT = β∗T .

The following lemma shows that the dual variables λi in the proof of Lemma 8 represent the variances of
the Gaussians while extending the proof from n = 2 to larger n using an approach of calculus of variations.

Lemma 9. Let X1, . . . , Xn be mutually independent random variables in Rd. Let ST :=
∑
i∈T Xi. Let wT

(T ⊆ [1 : n], T 6= ∅) be non-negative real numbers satisfying
∑
T⊆[1:n]
T 6=∅

wT = 1. Let βT (T ⊆ [1 : n], T 6= ∅) be

non-negative real numbers satisfying
∑
T⊆[1:n]:T3i βT ≤ 1 for all i ∈ [1 : n]. Then (i) implies (ii).

(i) For all X1, . . . , Xn, {wT } and {βT } it holds that

J(S[1:n]) ≤
∑

T⊆[1:n]
T 6=∅

wTJ

(√
βT
wT

ST

)
.

(ii) For all X1, . . . , Xn, {wT } and {βT } it holds that

h(S[1:n]) ≥
∑

T⊆[1:n]
T 6=∅

wTh

(√
βT
wT

ST

)
.

Proof. It suffices to show that (ii) holds for the βT ’s that maximize the right hand side. In view of Lemma 8 we
can write βT = wT∑

i∈T λi
for some λi > 0 (i ∈ [1 : n]) such that

∑
T⊆[1:n]:T3i βT = 1 is satisfied for all i ∈ [1 : n].

Consequently, we have

n∑
i=1

λi =

n∑
i=1

(
λi
∑
T3i

βT

)
=

∑
T⊆[1:n]
T 6=∅

(
βT
∑
i∈T

λi

)
=

∑
T⊆[1:n]
T 6=∅

wT = 1.

Now for t ∈ [0, 1] define

f(t) := h
(√

1− tS[1:n] +
√
tZ
)
−

∑
T⊆[1:n]
T 6=∅

wTh

(√
βT
wT

√
1− tST +

√
tZ

)
,
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where Z ∼ N (0, 1). Note that f(1) = 0 and hence it suffices to show f ′(t) ≤ 0 for all 0 ≤ t ≤ 1. Indeed

f ′(t) =
1

2

1

1− t

J (√1− tS[1:n] +
√
tZ
)
−

∑
T⊆[1:n]
T 6=∅

wTJ

(√
βT
wT

√
1− tST +

√
tZ

)

=
1

2

1

1− t

J
√1− tS[1:n] +

√√√√ n∑
i=1

λi
√
tZ

− ∑
T⊆[1:n]
T 6=∅

wTJ

(√
βT
wT

√
1− tST +

√
βT
wT

∑
i∈T

λi
√
tZ

)

=
1

2

1

1− t

J
(

n∑
i=1

Xi,t

)
−

∑
T⊆[1:n]
T 6=∅

wTJ

(√
βT
wT

∑
i∈T

Xi,t

)
(a)

≤ 0,

where we have set Xi,t :=
√

1− tXi +
√
λitZi, where Zi ∼ N (0, 1), and (a) follows from (i).

2.2 Discrete convexity, strong data processing constant and maximal correlation

In this subsection, we establish some discrete convexity results and consequently some results about strong data
processing constants and maximal correlations of joint distributions generalizing results in [6] and [11].

The following is a subclass of layered function families that we will also be considering in this section.

Definition 4. Let {ST }T be a layered function family on mutually independent and identically distributed
random variables X1, . . . , Xn. We call the layered function family {ST }T symmetric if for all permutations π
of [1 : n] the distributions of (S[1:n], S∅, X1, . . . , Xn) and (S[1:n], S∅, Xπ(1), . . . , Xπ(n)) are the same.

Remark 7. If X1, . . . , Xn are mutually independent and identically distributed random variables, Remark 1 (i)
and (ii) are examples of symmetric layered function families.

Lemma 10 (Discrete convexity). Suppose ϕk (k = 0, 1, . . . , n) are real numbers satisfying

ϕk−1 + ϕk+1 ≥ 2ϕk (3)

for all k = 1, . . . , n− 1. Then

ϕk ≤
n− k
n− l

ϕl +
k − l
n− l

ϕn

for all l = 0, 1, . . . , n− 1, and k satisfying l ≤ k ≤ n.

Proof. Note that k = n and l = k are immediate, so we assume l < k < n. Observe that ϕk − ϕk−1 is
nondecreasing in k. Then

ϕn − ϕk = (ϕn − ϕn−1) + (ϕn−1 − ϕn−2) + · · ·+ (ϕk+1 − ϕk)

≥ (n− k)(ϕk+1 − ϕk)

≥ (n− k)(ϕk − ϕk−1)

≥ n− k
k − l

((ϕk − ϕk−1) + (ϕk−1 − ϕk−2) + · · ·+ (ϕl+1 − ϕl))

=
n− k
k − l

(ϕk − ϕl).

The result follows by rearranging.

Proposition 2. Let {ST }T be a symmetric layered function family on mutually independent and identically
distributed random variables X1, . . . , Xn. Suppose U is a random variable such that U → S[1:n] → (S∅, X[1:n])
forms a Markov chain. Then I(U ;ST ) is a function of |T |, and we have

I(U ;ST ) + I(U ;ST∪{i,j}) ≥ I(U ;ST∪{i}) + I(U ;ST∪{j})
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for all T ⊆ [1 : n] and distinct elements i, j in [1 : n] \ T . Furthermore,

I(U ;ST ) ≤ n− |T |
n

I(U ;S∅) +
|T |
n
I(U ;S[1:n])

for all T ⊆ [1 : n].

Proof. We first show that I(U ;ST ) is a function of |T |. It suffices to establish I(U ;ST ) = I(U ;S[1:|T |]) for all
T ⊆ [1 : n]. Take a permutation π of [1 : n], that is increasing on [1 : |T |], such that T = {π(i)}i=1,...,|T |. From
the definition of symmetric layered function family and the Markov chain U → S[1:n] → (S∅, X1, . . . , Xn), we

have that the distributions of (U, S∅, X1, . . . , Xn) and
(
U, S∅, Xπ(1), . . . , Xπ(n)

)
are the same. In particular, the

distributions of
(
U, S∅, X[1:|T |]

)
and (U, S∅, XT ) are the same. Hence Lemma 2 (ii) gives

I(U ;ST ) = I(U ;S∅, XT )

= I(U ;S∅, X[1:|T |])

= I(U ;S[1:|T |]).

Now we show that ϕk := I(U ;ST ), where T is any subset of [1 : n] of cardinality k, satisfies (3). For any
k = 1, . . . , n− 1, take any T ⊆ [1 : n] with |T | = k − 1 and distinct elements i, j in [1 : n] \ T , and we have

ϕk−1 + ϕk+1 = I(U ;ST ) + I(U ;ST∪{i,j})

(a)

≥ I(U ;ST∪{i}) + I(U ;ST∪{j})

= 2ϕk,

where (a) follows from (i) of Theorem 1. Hence (3) is satisfied. Then an application of Lemma 10 (with l = 0)
yields

ϕk ≤
n− k
n

ϕ0 +
k

n
ϕn,

or equivalently,

I(U ;ST ) ≤ n− |T |
n

I(U ;S∅) +
|T |
n
I(U ;S[1:n])

for all T ⊆ [1 : n].

Corollary 1. Let {ST }T be a symmetric layered function family on mutually independent and identically
distributed random variables X1, . . . , Xn. Then the following hold:

(i) Suppose f is an Rd-valued bounded measurable function, defined on the set of values of S[1:n], such that
E[f(S[1:n])] = 0. Then

E[‖E[f(S[1:n])|ST ]‖2] ≤ n− |T |
n

E[‖E[f(S[1:n])|S∅]‖2] +
|T |
n

E[‖f(S[1:n])‖2]

for all T ⊆ [1 : n].

(ii) Suppose q(·) is a distribution absolutely continuous and with bounded Radon–Nikodym derivative with
respect to the distribution of S[1:n]. For T ⊆ [1 : n] let the random variable S̃T be defined by

pS̃T (s̃) :=
∑
s

pST |S[1:n]
(s̃|s)q(s).

Then

DKL(pS̃T ‖pST ) +DKL(pS̃T∪{i,j}‖pST∪{i,j}) ≥ DKL(pS̃T∪{i}‖pST∪{i}) +DKL(pS̃T∪{j}‖pST∪{j})

for all T ⊆ [1 : n] and distinct elements i, j in [1 : n] \ T . Furthermore,

DKL(pS̃T ‖pST ) ≤ n− |T |
n

DKL(pS̃∅‖pS∅) +
|T |
n
DKL(pS̃[1:n]

‖pS[1:n]
)

for all T ⊆ [1 : n].
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Proof. (i) and (ii) are direct applications of Lemma 3 and 4, respectively, to Proposition 2.

Definition 5. Let S be a function on mutually independent and identically distributed random variables
X1, . . . , Xn. We call S cyclically symmetric if for all cyclic shifts π of [1 : n] the distributions of (S,X1, . . . , Xn)
and (S,Xπ(1), . . . , Xπ(n)) are the same.

Remark 8. The function S :=
∑n
i=1XiXi+1 (with Xn+1 := X1), where Xi’s are mutually independent and

identically distributed random variables in R, is an example of cyclically symmetric function.

Proposition 3. Let S be a cyclically symmetric function on mutually independent and identically distributed
random variables X1, . . . , Xn. Suppose U is a random variable such that U → S → X[1:n] forms a Markov
chain. Then for all k = 1, . . . , n− 1 we have

I(U ;X[1:k−1]) + I(U ;X[1:k+1]) ≥ 2I(U ;X[1:k]).

Furthermore,

I(U ;X[1:k]) ≤
k

n
I(U ;S)

for all k = 0, 1, . . . , n.

Proof. Since U → S → X[1:n] forms a Markov chain and S is a function of X[1:n], we have I(U ;S) = I(U ;X[1:n]).
Further from the cyclic symmetry of S and the Markov chain U → S → X[1:n], we have that the distributions
of (U, S,X1, X2, . . . , Xn) and (U, S,Xn, X1, . . . , Xn−1) are the same. Consequently, for all k = 0, . . . , n − 1 we
have I(U ;X[1:k+1]) = I(U ;X[1:k]∪{n}). Hence for k = 1, . . . , n− 1,

I(U ;X[1:k+1])− I(U ;X[1:k]) = I(U ;X[1:k]∪{n})− I(U ;X[1:k])

= I(U ;Xn|X[1:k])

(a)
= I(U ;Xn|X[1:k]) + I(Xk;Xn|X[1:k−1])

= I(U,Xk;Xn|X[1:k−1])

≥ I(U ;Xn|X[1:k−1])

= I(U ;X[1:k−1]∪{n})− I(U ;X[1:k−1])

= I(U ;X[1:k])− I(U ;X[1:k−1]),

where (a) holds since Xk is independent of X[1:k−1]∪{n}. Now ϕk := I(U ;X[1:k]) satisfies (3) and hence by
Lemma 10 (with l = 0) we have

I(U ;X[1:k]) ≤
k

n
I(U ;X[1:n])

=
k

n
I(U ;S)

as required.

2.2.1 Strong data processing constant

Definition 6. The strong data processing constant s∗(X;Y ) of two random variables X,Y is defined by

s∗(X;Y ) := sup
p(u|x)

I(U ;X)6=0

I(U ;Y )

I(U ;X)
.

Corollary 2. Let {ST }T be a symmetric layered function family on mutually independent and identically
distributed random variables X1, . . . , Xn. Then

s∗(S[1:n];ST ) ≤ n− |T |
n

s∗(S[1:n];S∅) +
|T |
n

for all T ⊆ [1 : n].
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Proof. Fix any U satisfying the Markov chain U → S[1:n] → ST . Define a random variable Ũ , satisfying the

Markov chain Ũ → S[1:n] → (S∅, X[1:n]), according to

pŨ |S[1:n]
(u|s) := pU |S[1:n]

(u|s).

Indeed Ũ also satisfies the Markov chain Ũ → S[1:n] → ST since ST is a function of (S∅, X[1:n]). Hence the

distributions of (U, S[1:n], ST ) and (Ũ , S[1:n], ST ) are the same. Therefore,

I(U ;ST )

I(U ;S[1:n])
=

I(Ũ ;ST )

I(Ũ ;S[1:n])

(a)

≤ n− |T |
n

I(Ũ ;S∅)

I(Ũ ;S[1:n])
+
|T |
n

≤ n− |T |
n

s∗(S[1:n];S∅) +
|T |
n

,

where (a) is an application of Proposition 2.

Remark 9. Observe that this result generalizes the one in [6] from sums of mutually independent and identically
distributed random variables to the more general symmetric layered function families. The proof technique used
here is clearly motivated by the arguments in [6].

Corollary 3. Let S be a cyclically symmetric function on mutually independent and identically distributed
random variables X1, . . . , Xn. Then s∗(S;X[1:k]) ≤ k

n for all k = 1, . . . , n.

Proof. This is immediate from Proposition 3.

2.2.2 Maximal correlation

The Hirschfeld–Gebelein–Rényi maximal correlation measures the dependence between two random variables
in a general probability space. This quantity is first introduced by Hirschfeld [24] and Gebelein [25] and then
studied by Rényi [26].

Definition 7. The Hirschfeld–Gebelein–Rényi maximal correlation ρm(X;Y ) of two random variables X,Y is
defined by

ρm(X;Y ) := sup
f, g real-valued measurable

E[f(X)]=E[g(Y )]=0

E[f(X)2]=E[g(X)2]=1

E[f(X)g(Y )].

An alternative expression for the quantity is formulated by Rényi [26] as follows.

Proposition 4 (Rényi [26]). Let X,Y be random variables. Then

ρm(X;Y ) = sup
f real-valued measurable

E[f(X)]=0

E[f(X)2]=1

E[E[f(X)|Y ]2]1/2.

Corollary 4. Let {ST }T be a symmetric layered function family on mutually independent and identically
distributed random variables X1, . . . , Xn. Then

ρm(S[1:n];ST )2 ≤ n− |T |
n

ρm(S[1:n];S∅)
2 +
|T |
n

for all T ⊆ [1 : n].

Proof. By Corollary 1 (i), for any bounded real-valued measurable function f such that E[f(S[1:n])] = 0 and
E[f(S[1:n])

2] = 1 we have

E[E[f(S[1:n])|ST ]2] ≤ n− |T |
n

E[E[f(S[1:n])|S∅]2] +
|T |
n

E[f(S[1:n])
2]

≤ n− |T |
n

ρm(S[1:n];S∅)
2 +
|T |
n

.

Taking supremum over f yields the result.
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2.2.3 KL divergence inequality

The KL divergence inequalities obtained in Corollary 1 (ii) imply, by choosing X1, . . . , Xn to follow Poisson
distribution, certain new convexity results concerning the KL divergence of binomial distribution given a Poisson
distribution. Our results have a similar flavor to a conjecture of Yu (Conjecture 1 of [27]) who conjectured that
N 7→ DKL

(
Binomial

(
N, λN

)∥∥Poisson (λ)
)

is completely monotonic. Even the convexity of this function is yet
to be proven.

Lemma 11. Suppose X1 ∼ Poisson(λ1) and X2 ∼ Poisson(λ2) are independent and Y ∼ Binomial(N,µ). Then
the random variable Ỹ defined by

pỸ (ỹ) :=
∑
y

pX1|X1+X2
(ỹ|y)pY (y)

satisfies Ỹ ∼ Binomial
(
N, λ1

λ1+λ2
µ
)

.

Proof. We first compute

pX1|X1+X2
(ỹ|y) =

pX1
(ỹ)pX2

(y − ỹ)

pX1+X2
(y)

=

(
y

ỹ

)
λỹ1λ

y−ỹ
2

(λ1 + λ2)y
.

Then

pỸ (ỹ) =
∑
y

pX1|X1+X2
(ỹ|y)pY (y)

=

N∑
y=ỹ

(
y

ỹ

)
λỹ1λ

y−ỹ
2

(λ1 + λ2)y

(
N

y

)
µy(1− µ)N−y

=

(
N

ỹ

)(
λ1

λ1 + λ2
µ

)ỹ N∑
y=ỹ

(
N − ỹ
y − ỹ

)(
λ2

λ1 + λ2
µ

)y−ỹ
(1− µ)

N−y

=

(
N

ỹ

)(
λ1

λ1 + λ2
µ

)ỹ (
1− µ+

λ2
λ1 + λ2

µ

)N−ỹ
=

(
N

ỹ

)(
λ1

λ1 + λ2
µ

)ỹ (
1− λ1

λ1 + λ2
µ

)N−ỹ
as required.

Corollary 5. Let N ≥ 0, λ̃, λ ≥ 0 and 0 ≤ µ ≤ 1. For k = 0, 1, . . . , n let

ϕk := DKL

(
Binomial

(
N,

λ̃+ λk

λ̃+ λn
µ

)∥∥∥∥∥Poisson
(
λ̃+ λk

))
.

Then

ϕk−1 + ϕk+1 ≥ 2ϕk

for all k = 1, . . . , n− 1, and

ϕk ≤
n− k
n

ϕ0 +
k

n
ϕn

for all k = 0, 1, . . . , n.

Proof. Let S∅ ∼ Poisson(λ̃) and X1, . . . , Xn ∼ Poisson(λ) be mutually independent random variables. Let
ST := S∅ +

∑
i∈T Xi for non-empty T ⊆ [1 : n]. Note that {ST }T forms a symmetric layered function

family on X1, . . . , Xn. Also note that ST ∼ Poisson(λ̃ + λ|T |) and S[1:n] − ST ∼ Poisson(λ(n − |T |)) are

independent. Let S̃T be defined as in Corollary 1 (ii) (with q(·) ∼ Binomial(N,µ)). Applying Lemma 11, we

have S̃T ∼ Binomial
(
N, λ̃+λ|T |

λ̃+λn
µ
)

. The result then follows from Corollary 1 (ii).
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Corollary 6. For all N ≥ 0 and λ ≥ 0, the function

t 7→ DKL (Binomial (N, t)‖Poisson (λt))

is convex on [0, 1].

Proof. This is immediate from Corollary 5 (with λ̃ = 0 and µ = 1) and continuity.

3 Conclusion and future work

One possible application of our main result is to discover possible connections between sumset inequalities
in combinatorics and entropic inequalities in information theory. Sumset inequalities have been playing an
important role in additive combinatorics, for instance [12, 28]. Several sumset inequalities have been shown to
have entropic equivalents, and for some of these equivalent formulations, one can establish the combinatorial
version from the entropic version and vice-versa.

Ruzsa has conjectured the sumset inequality (Conjecture 3.13 of [12]) that, if A1, A2, A3, A4 are finite subsets
of some (possibly non-Abelian) group then

max
a2∈A2, a3∈A3

|A1 ◦A2 ◦A3||A1 ◦ a2 ◦A3 ◦A4||A1 ◦A2 ◦ a3 ◦A4||A2 ◦A3 ◦A4| ≥ |A1 ◦A2 ◦A3 ◦A4|3.

From our main result, however, the entropic analogue of this sumset inequality can be shown. Via an application
of Theorem 1 (iii) (with U := X1 ◦X2 ◦X3 ◦X4 and ST := XT ), we have that if X1, X2, X3, X4 are mutually
independent random variables taking value in some (possibly non-Abelian) group then

H(X1 ◦X2 ◦X3) +H(X1 ◦X2 ◦X3 ◦X4|X2) +H(X1 ◦X2 ◦X3 ◦X4|X3) +H(X2 ◦X3 ◦X4)

≥ 3H(X1 ◦X2 ◦X3 ◦X4).

Note that as [12] dealt with dependent random variables, they were not able to establish an entropic inequality
that mimicked the previous conjecture (see the paragraph after Conjecture 3.13 in [12]).

In general, the sumset inequality that for subsets A1, . . . , An of some group,

n∏
i=1

max
ai∈Ai

|A1 ◦ · · · ◦Ai−1 ◦ ai ◦Ai+1 ◦ · · · ◦An| ≥ |A1 ◦ · · · ◦An|n−1,

is known to be true for Abelian groups (Theorem 9.3, Chapter 1 of [29]). For non-Abelian groups it is known
to be true for n ≤ 3 (Corollary 3.12 of [12]) while the other cases remain open (Problem 9.4, Chapter 1 of [29]).
On the other hand, the corresponding entropic inequality that for mutually independent random variables
X1, . . . , Xn,

n∑
i=1

H(X1 ◦ · · · ◦Xn|Xi) ≥ (n− 1)H(X1 ◦ · · · ◦Xn),

can be deduced from our main result for all n and (possibly non-Abelian) groups.
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