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Abstract

The doubling-followed-by-rotation trick to prove the extremality of Gaussian distributions has been a valuable tool in
information theory. In particular, the above trick has been used to establish the Gaussian extremality of a family of inequalities
that unifies the Entropy Power Inequality and the Brascamp-Lieb inequalities. Here, we develop a technique (similar to the one in
the continuous case) to prove'| the extremality of Haar distributions for a similar family of inequalities in finite Abelian groups.

I. INTRODUCTION

A. Background

Entropy Power Inequality (EPI) is a powerful tool that has found widespread applications in network information theory.
It has been widely used to show the capacity region (for instance [Ber73[, [WSS06]) in several multiuser information theory
settings. Furthermore, various versions of this inequality have been formulated for discrete random variables. Shamai and Wyner,
[SWOO0], established a discrete analog of EPI for the binary random variables. Harremoés and Vignaet, [HVO3]], discovered a
discrete analog of EPI for a particular family of binomial random variables. Sharma, Das, and Muthukrishnan, [SDM11]] based
on the work of [HVO03], establish another version of the discrete EPI. On the other hand, there have been several attempts to

generalize Mrs. Gerber’s Lemma (Wyner and Ziv [WZ73]]); for example, Jog and Anantharam have shown a generalization of
Mrs. Gerber’s Lemma for random variables on the Abelian group with order 2™ [JA14].

Theorem 1 (Entropy Power Inequality [Sha48]], [StaS9|). Suppose X and Y are independent R™-valued random variables.
The entropy power of X is defined as

1 n
N(X) = %G%(X)/ ,

where h(X) is the differential entropy of X.
The Entropy Power Inequality states that

N(X)+N(Y) £ N(X + ),
where the equality holds if and only if X and Y are Gaussians with proportional covariance matrices.
An equivalent dimension-independent form of the Entropy Power Inequality was formulated by Lieb [Lie78|.

Theorem 2. Suppose X and Y are independent R™-valued random variables. For any X\ € [0, 1], we have
inf  A(VAX + V1 = XY) = M(X) — (1 = Nh(Y) >0,
X,V:X 1Y

where the equality holds if and only if X and Y are Gaussians with proportional covariance matrices.

In other words, the functional
Flux, py) - h(VAX + V1 =XY) = M(X) — (1 = MA(Y),

where X ~ pux and Y ~ py are independent random variables and are minimized by Gaussians with proportional covariance
matrices.

Similarly, the Brascamp-Lieb inequality (BLI) [BL76] is a family of functional inequalities at the intersection of information
and functional inequalities. Special cases of the BLI include Holder’s inequality, the Loomis-Whitney inequality, the Prékopa-
Leindler inequality, and sharp forms of Young’s convolution inequalities [BCCTO8|]. One of the central results here is that the

'A conference version of the results in the first half appeared in the International Symposium on Information Theory, 2024 [LN24].



optimal constants can be computed by restricting to Gaussian distributions. Recently, in [AJN22], the following theorem was
proved that unified the family of Brascamp-Lieb inequalities and the Entropy-Power inequality.

Theorem 3 (Unified EPI and BLI, [AIN22]]). Ler (A,c,r,d) be a BL-EPI datum. Define

k m
My = sup > dih(Z;) =Y c;h(A;Z).
Z€ePy(r) ;4 =1
Then for any X € P(r), the following inequality holds:
k m
> dih(X;) =Y ¢h(A;X) < M,
i=1 j=1

Remark 1. The readers are encouraged to look at [[AJN22]| for a precise definition of BL-EPI datum and P(r). The main point
is that P (r) restricts the distributions in P(r) to Gaussian distributions, and Z’s are Gaussian random variables. For this paper,
it suffices to note that {d;} and {c;} are positive constants, and X1, X», ..., X} are mutually independent random vectors.
It is also worth noting that the same proof (of Gaussian extremality) goes through if one imposes covariance constraints,
E[X;X]] < K;, on the independent random vectors.

The above inequality was proved using the doubling and rotation idea (as developed in [GN14]), a technique that differs
from the previous proof methods of the Entropy Power Inequality. Our main result (Theorem [6) is a discrete analog (in finite
Abelian groups) of Theorem (3| Further, we demonstrate that the proof technique in [[AIN22|] can be essentially mimicked
(modulo some differences in the technical arguments) in this setting. The proof technique in [AJN22] can be summarized
(pushing some technical conditions under the carpet) as follows: Gaussian optimality was deduced by using the sub-additivity
of an entropic functional and by using this to show that rotated forms of the optimizers are independent. This implied that the
optimizers must be Gaussian by applying the Darmois-Skitovich theorem.

Theorem 4 (Darmois-Skitovich theorem [Dar53||, [Ski53]). Let Xi,...,X, be independent random variables. Let
A1,y Qp, B, ..., B be non-zero constants for each coordinate. If the linear statistics L, = ZZ‘L:1 o; X; and Ly = 2?21 B X;
are independent, then all random variables X1, ..., X, are Gaussians.

A finite Abelian group analog of this was discovered by Feldman [Fel99].

Theorem 5 (Feldman [Fel99]). Let G be a finite Abelian group, and X1, Xo be independent random variables with values
in G. Let ay,as, 1, B2 be automorphisms of the group G. Then if the linear statistics L1 = a1(X1) + as(Xs) and Ly =
B1(X1) + B2(X2) are independent, then X1 and X are shifts of a Haar distribution of some subgroup H of G, or equivalently,
X, and X5 are uniform distributions on a coset of some subgroup H of the group G.

Remark 2. The uniform distribution on a coset of some subgroup H of a finite Abelian group G has very similar properties
to that of Gaussians in the respective from the above theorem. By shifting the mean, we see that Haar distributions (uniform
distributions) on subgroups play an analogous role to Gaussian distributions.

Therefore, it is natural to guess that Gaussians can be replaced by uniform distributions on a coset (corresponding to a shift
in the mean) of some subgroup (or shifts of Haar distributions) when working in finite Abelian groups. However, while this
intuition is correct, we show a way to overcome some technical hassles (different from the continuous case) in our proof.
Furthermore, just like the rotation trick in the continuous case, we believe this argument can find several other applications to
establish the optimality of Haar distributions.

Notation: We use (G, +) or G to denote a finite Abelian group. We use | A| to denote the cardinality of a finite set A and
support(px) to denote the support of px.

II. MAIN
Theorem 6. Let X, ..., X,, be independent random variables taking values in some subgroup Hy, ... H, of a finite Abelian
group G. Let ay,...,ap, and by, ..., by be positive constants, and c;lj), ey CEZ»"’ ) be integers. Then, the following optimization
problem
n 4 n n
1 .
max Y aH(X) — Y bH (S e)X; Y x|
ITio: px; i—1 i—1 i=1 i=1
J 7 i

has an optimizer (X, ..., X}) of the form, each X has an uniform distribution on a coset of a subgroup K; C H,.

Remark 3. The following points are worth noting:



1) One can relax the assumption on the sign of a;. Note that, if any a;, < 0, it is immediate that an optimal choice is to set the
corresponding X, to be a constant random variable. To see this one observes that H (Zz 1 Elj)X S S cl(-?j)Xi, ) >

H(Ezlzg 271 Zj X|Xk)

2) Unlike the contlnuous case, where Lieb’s formulation of EPI was known, the extremality of the uniform distribution of
a coset of some subgroup for a1 H(X;) + as H(X32) — H(X; + X2) was not known. There have been conjectures (and
some results), [JA14], of a similar flavor.

We establish the following lemma before providing proof of Theorem|[6] This is the analogous result of the Darmois-Skitovich
theorem we need in our proof.

Lemma 1. Let X 4 and X g be two independent random variables taking values in some finite Abelian group H. Let S denote the
support of the probability distribution of Xp. Let D denote the subgroup generated by the pairwise differences of the elements
of support(Xp). For X4 + Xp to be independent of Xp, it is necessary and sufficient that P(X4 = hy) = P(X4 = hs)
whenever hy, ho belong to the same coset of D (in other words, px , is uniformly distributed conditioned on it taking values
in a given coset of D). Consequently |support(X4)| = k|D| > k|support(Xg)| for some k € N satisfying 1 < k < ‘g“ and
k =1 only if X s is uniformly distributed on a coset of D.

Proof. First, assume that X 4 is uniform on the cosets of . Let T" be a set of coset representatives, i.e., a transversal of the
collection of cosets of ID. Therefore, any element h € H can be uniquely represented as h = ¢+ d, for some ¢t € T and d € D.
If X 4 is uniform on the cosets of D, then P(X4 = h) = P(X4 =t+d) = |TI»‘P(T = t) for some arbitrary distribution on the
transversal. If X4 and Xp are independent, note that P(X4 + Xp =h+b,Xp=0) =P(X4 = h)P(Xp=10) = IJ]lDIP(T =
t)P(Xp =1). X R X X

On the other hand P(X4 + Xp = h+0) = 333 s P(Xa = h+b—b)P(Xp =b). Since b—b € D, h+ b — b belongs
to the same coset as h. Therefore, for all b, we have P(X4 = h+b —b) = ‘D‘P(T t). Consequently, P(X4 + Xp =
h+b) = FP(T =) Y4 s P(Xp = b) = 5 P(T = t). Therefore P(Xa + Xp = h +b,Xp = b) = P(Xa = h)P(Xp =
b) = |]D)|P(T )P(XB =0) =P(X4+ Xp =h+b)P(Xp =>b). This implies that X 4 + X is also independent of Xp.

Conversely, let us assume that X4 and X are independent, and additionally, X 4 + X p is also independent of X g. Therefore
P(Xa+Xp=h+bP(Xp=0)=P(Xs+Xp=h+bXp=>)=P(X4 =h)P(Xp =b). This implies that for all
besS, wehave P(Xy =h) =P(Xa+ Xp=h+b) =3 ¢P(Xa=h+b—bP(Xp =b). Rewriting h as h — b,
we see that P(Xa4 = h —b) = >3 P(Xa = h — b)P(Xp = b). Since the right-hand-side does not depend on b, we
obtain that P(X4 = h — b)) = P(X4 = h — by), for all by,bs € S and h € H. Replacing h — by by h, we note that
P(Xa = h) = P(Xa = h+ by — ba). Since the pairwise differences b; — b; generate D, and from above px, is invariant
under a shift by a pairwise difference, it follows that px, is invariant under a shift by an element in ID. In other words, X 4
is uniform on the cosets of .

Finally note that |support(X4)| = |support(T")||D|, and |support(X4)| = |D| only if T is a constant random variable,
implying that X 4 is uniform on a coset of D). We also have that |D| > |support(Xg)|, since b — b — by is an injection from
support(Xpg) to D, where by is an arbitrary fixed element from support(Xg). O

Remark 4. The proof is similar to that in [Taol0, Section 5]. In [Taol0], X 4 and X are assumed to be identically distributed.

A. Proof of Theorem [f]

The first step in proving the optimality of the uniform distribution of a coset of some subgroup is to identify a sub-additive
functional. To this end, given an n-tuple of distributions (px,,...,px, ), such that X; has support on Hj, let us define:

F(X1,...,X,) = sup iaiH(X”U Zb H(Zc(l)X“...,i (mJ>X|U>
i=1

PU|X1q,..., Xn* =1

Pxq,....xnu=Ilim1 Px; U

Observe that the maximum value of F/(X;,...,X,,) is the same as the value of the optimization problem in Theorem @ as the

average is always less than the maximum (the other direction is immediate by taking X1, ..., X, to be mutually independent
and U to be a constant).

Remark 5. This is essentially the same function as the one employed in [AIN22].

Now consider an n-tuple of distributions (le %0 Px, f(n)’ such that (Xi,Xi) has support on H; x Hj;, let us define
(ignoring the abuse of notation): ’

F((X1,X1),. .., (Xn, X)) := sup Zal (Xi, Xi|U)
PUixy Ry (X X
P(xX1,%1),0 (X, X U =LII=1 Pox; %) 0



—ZbH(Zc(l)XZ,.. Zc“”“x Zcmxl,.. Z <m7)X|U>

Observe that

i=1 j=1 =1

—Zal (X;|U) — iij (i VX, ZJ’”“XAU)
=
—|—Zai (XU, X;) — éij (i DX, Zc‘mJ)XW Zcmxz,.. Z “””X)
P pt =
“”Zaz (X:|U) — f: <§n: Wx,, .. Zc(’”? Xi|U)
et P
+Za¢ (XU, X) — éij <i X, Zc(”” XU, ZcDXi,...,icE?j)Xi)
= =
¢ Zal (X;|U) — i:ij (Zn: VX, Z (mJ)Xi|U>
H

<zn: DX, zn: ) XU, X)

i=1 i=1

ZaHX“X\U) S bH icg}}xi,... Z (mJ)XZ,Z D Z&"”U(U)
=1

© X X
< F(X1,...,Xp)+ F(Xy,...,X,).

In the above X = (Xi,...,X,). Equality (a) follows, as conditioned on U, {(X;, X;)} are mutually indepen-
dent and equality (b) follows from data-processing inequality as (U,> ., cg}j-)Xi, N Sy 57;7 X)) = U,X) —
U3, Elj)X R D Z(TJ)X ) is Markov. Finally inequality (c) follows since conditioned on U, the random variables
{X;} are mutually independent, and conditioned on (U, X), the random variables {X;} are mutually independent.

Remark 6. The next step in the proof (in the continuous case) is to argue that rotated versions of two independent copies
of the maximizers are independent. In the continuous case, this involves showing the existence of the maximizers and then
(sometimes) considering a perturbed function to deduce the independence of the rotated versions. In the finite alphabet case,
the existence of the maximizers is immediate but one still needs to consider a perturbed function to deduce the independence.

In the next part of the proof, we will argue that certain linear forms of the maximizer are independent. To this end, consider

the two maximization problems listed below:

n

IS SUTLCARD SU] O SRR o |

i =1 i=1
max Z%‘H(Xi) —ijH ZCEIJ)X“ Zcm])X —ZEH(XZ
i rs, i j=1 =1 i=1
In the above two problems, the random variables X; and X; are assumed to take values in the subgroup Hj. Let (XF,..., X5
and (X7, ..., X, .) be maximizers of the two optimization problems respectively and V, V. be the maximum value attained by
the two optlmization problems. Further, let us assume that among all possible maximizers of the first problem, (X7, ..., X})

minimizes the function [T, (1 + |support(X;)]).
It is immediate that V. — V and ¢ — 0 (as the difference between the objective functions at any point is bounded by
e (31, log|H;|) . Furthermore, by the compactness of the probability simplex and continuity of the function, we know that

there is a sequence of maximizers (X Tems s )A(;;’Em) that converge to a maximizer of the first optimization problem.
Finally, we define

F(Xi. X = s > acH(X,D)
le,....XT,\Ul‘ l_Lnle U =t

n

- ijH (Z VX, Zc(m7)Xi|U> =S eH(Xi|U).
j=1 i=1

=1



We have F.(Xq,...,X,) <V.. R R
Observe that by taking independent copies of the maximizers (X7,..., X)) and (X7 ..., X ), we obtain

n v n
VVe=Y aH(X]) - ijH (ch};X;,” chnx >
i=1 ; N
3 o) Zb H(Zc“’xm.. Zc“"ﬂxl ) S eH(XTL)
i=1 .

n

@ i aiH (X, X)) = > eH (X))
3 =1
- Zb i (Z AVx: Zc% 23R chxl )
=1
© Z aH(X! + X0 X0 — S eH(XD)
) i=1

_ZbH<ZC(1) X +X16)""’ZC(ZLJ)(X +X ) ) Elj)f(ze»u-vicvg?j)f(ze>
i=1 i

4 n
=D bH (ZCE?(X + X7, Z e Xié))
+ Y GHXLX] + Xi) = Y eH(XEXT + X7 = D el (XiG X7 + X7)
i=1 =1

be H (Zc(l)Xz6,...,chsj)Xze|Zc ie),...,ici?j>(Xf+Xze)>

=1 =1

(¢)

<Za1 Z*—&-X:e)

—Zb H (Zc(l) (X; +X“),.‘.,ic§fjj)(xg‘ +X;E)>

=1
+ZaiH(X;E|X* +XI) =Y eH (X[ X+ X0) = Y el (X X7+ X
= =1 =1
4 n
- bH (Z X ZC“”J)XZ X+ x:)
j=1 i=1
9 * O % * O % % O %
S F(Xl +X1,ea---7Xn+Xn,e) +F€(Xf,e7'--a Z 1ea Xi,e)

EQR ST (6 RPN o)
i=1

Here X* 4+ X* stands for the vector (X} + X TerXp+ X,’;E). In the above, equality (a) follows from the independence

of X* and X* and equality (b) follows from H (X, X5) = H(X; 4+ X2, X3). Equality (¢) follows from data-processing and

the independence of the components of (X* + X:), and (d) follows from the definition of F' and F, as elaborated next. Note

that (X7 + X1 e X X;‘;’E) satisfies the support constraints and is a valid input for the function I’ (with U taken to be

a constant). Now take U = X* + X: and use independence of the components of (X* + X:) to justify that this choice is

a valid extensionpUer in the definition of F¢. Finally, we note that the maximum of F' and F, are V and V, to justify the
inequality (e). '

For € > 0, note that the above manipulations imply that [ (X iy

i€

s X+ X ) = 0 using the non-negativity of mutual
information, or in other words, that X + X ;. 1s independent of X _. Since X Was independent of X . by construction, note
that we can apply Lemma |I| to deduce that the distribution of X > is un1form on the cosets of D . Here D; . is the subgroup
of H; generated by the pairwise differences of the support of X . Further |support(X})| = kz,e|Dz,e| for some k; . € N

satisfying 1 < k; . < ‘[ID. “-




As argued earlier, we have a sequence of optimizers ij such that as €, | 0 and X:m converges to a maximizer, say X*,
of the problem with ¢ = 0. Now, we have for any € > 0,

n n

H(l +kieD ) = H(l + |support(X H (1 + |support(X;)|)

=1 =1

= lim JJ(1+ [support(X;, )) < lim H(1+|1D>i,sm|).

M —00 - m—00 -

The second assertion holds because we assumed that X* minimizes []]_; (1 + |[support(X;)|) among all the maximizers of
the optimization problem. This forces, for each 1 < i < n, the sequence k; ., — 1 as m — oo. Therefore for some large,
enough m, have k; ., = 1 for all ¢, where 1 < ¢ < m. Therefore, again invoking Lemma El, we see that X is uniformly
distributed on some coset of a subgroup D; ., C Hj;. This completes the proof of Theorem [6]

Remark 7. Note that the above argument also establishes some properties of the maximizers of the optimization problem.
Suppose X is another maximizer such that [}, (14 [support(X} ,)|) > [T\, (1 + [support(X;)|). Then, the above argument
implies that one cannot have a sequence of maximizers of the perturbed problem that converges to X .
III. A RELATED ARGUMENT FOR THE OPTIMALITY OF UNIFORM DISTRIBUTION
Optimality of uniform distribution in a discrete setting for an information functional has recently been established by Gowers,
Green, Manners, and Tao [GGMT?23].
A. Basic Definitions

Definition 1 (Independent Entropic Ruzsa distance, [GGMT23[]). Suppose X,Y are G-valued random variables. The
independent entropic Ruzsa distance between X and Y is defined as

dX,Y) = HX' +Y') - 2H(X) - %H(Y),

2
where X’ and Y’ are independent copies of X,Y.

Remark 8. This is sometimes defined as H(X'—Y')—1H(X)—1H(Y'). For groups with characteristic 2, these two definitions
are equivalent. There is also another "entropic Ruzsa distance" (defined in [KLN23|) where
1

1
X,Y) = H(X' —Y')— H(X)— ~H(Y
d(X,Y) A ( ) 5 (X) 5 (Y),

where II(p,, p,) denotes the set of couplings with fixed marginals. Note that none of the above definitions is a distance. When
Pz = Py, it does not hold that d(X,Y") = 0.

Lemma 2. The independent entropic Ruzsa distance satisfies the triangle inequality, i.e. d(X,Z) < d(X,Y) +d(Y, Z).
Proof. Let (X,Y,Z) be independent. What we need to show is equivalent to
HX+Z2)+HY)<HX+Y)+HY+2).

This can be rewritten as
IX; X+Y+2)<I(X;X+Y)+I(V;X+Y 4+ 2).

By data-processing inequality, as X — X +Y — X +Y + Z is Markov, I(X; X +Y 4+ Z) < I(X; X +Y) and the lemma
follows. O

Definition 2 (Conditionally-Independent Entropic Ruzsa distance). Suppose X,Y are G-valued random variables. The
conditionally-independent entropic Ruzsa distance between X and Y is defined as

dX,Y|U) = HX' +Y'|U) — %H(X\U) - %H(Y|U)

where (U, X') ~ (U, X), (U,Y') ~ (U,Y), and X' —» U — Y’ is Markov.

Definition 3 (Polynomial Freiman-Ruzsa Functional). [GGMT23, Equation 2.1] For any random variables X°, Y° with support
contained inside G, a finite Abelian group with characteristic 2, define the functional

1

7(X,Y; X%, Y% = (H(X +Y) - %H(X) - %H(Y)) +17 (H(X + X% - FH(X) - %H(XO))

7 (H(Y FYO) - %H(Y) - %H(Yo)) ,



where X, Y, X%, Y? are mutually independent. Here X, Y also take values in G.

It was shown in [GGMT23} Proposition 2.1] that all minimizers of 7(X,Y") must be uniform distributions on a coset of a
subgroup for all X° Y* with support in G, when 7 < §.

A natural question to ask is whether there is a related super-additive function and whether one can use the machinery
developed in the first part of the paper to deduce the optimality of the uniform distribution. The answer to the former part is
yes, while the latter part seems to be not as straightforward.

Let us consider a slight modification of the above functional.

Definition 4 (Conditional PFR Functional). Let X° and Y° be fixed G-valued random variables. Suppose U, X,Y are G-valued
random variables. We require the triple (U, X,Y), X°, Y° are independent. We define the conditional PFR functional as below

(X, Y X0, YOU) = d(X, Y|U) +nd(X, X°|U) +nd(Y,Y°|U)
1 1

A a x| - YY)

+nH(X + X|U) + nH(Y + Y°|U) — gH(XO) - gH(YO)

=HX +Y'|U) -

where (U, X') ~ (U, X), (U,Y') ~ (U,Y), and X’ — U — Y is Markov.
Define the two-letter form
T((Xa, Xs), (Ya, Y3 ); (X3, Vo), (X5, Y5))
= min H(Xq + Ya, X + Y|U) — %H(XG,XHU) - %H(YWYI,\U)

pU‘Xanbryava:
PXq.Xp,Ya Yy |lU=PXq, Xy |UPY, Yy |U

o (B X8 X0+ XEU) = FHOX X00) — S HOXE X))
o (O Y2+ 310) = JHOG YD) = JHO YD) )
where the tuple (U, (X,, Xp), (Ya, Y3)), XU, XP, Y2, and V)0 are mutually independent.
Lemma 3. For any n > 0, following super-additivity inequality holds:
T((Xaa Xb)v (Yaa Yb)? (Xc(z)v Yao)7 (Xi?’ Y;O)) > T(Xav Ya; Xz(z)a Yao) + T(va Yo; Xl?v Ybo)

Proof. Observe that the following holds:

H(Xa 4 Yo, Xy 4+ YilU) — 5 H(Xo, XalU) — L H(Ya, Y|U)

= H(Xo + YalU) ~ JH(XJU) ~ SH(Y|U) + H(X, + %|U, X, ~ Vo)
— SHXGU, Xo) = SHOGIU, Vo)

W H(Xy 4 YalU) ~ JHXJU) — SHYU) + H(Xy + %|U, X, + ¥a)
- %H(wa, X, Yo, X0 v0) — %H(wa, X, Y, X0 Y9

> H(Xo + YalU) — S H(XIU) ~ SHYIU) + H(X, + Y5[U, Xo. Yo, X0, ¥0)
— %H(wa, X, Y., X079 — %H(Yb|U7 X, Y., X2 Y9,

Here (a) follows from the independence and the Markov structure of the random variables.

In an identical fashion, we can also show that

1 1
H(Xa + ngXb + XZ?|U) - §H(Xa7Xb|U) - §H(X2aXl?|U)

1
> H(Xo + Xg|U) = SH(X|U) = H(XZ|U) + H(X, + X|U, Xa, Yo, X, V7))

1 1
= SHOGIU, Xa, Yo, X0, YY) = SH(XGU, Xo, Yo, X0, Y7),

2 a’r—a



and
H(Ya 4 Y0, Y~ YOIU) — S H(Ya YilU) — 5 HYD ¥2I0)
> H(Y, + Y |U) - %H(YQ|U) — HY2U) + HY, + Y2|U, X4, Yo, X2, V0)
— %H(Y},\U, X, Yo, X0 7V9) — %H(YbO\U, X, Y., X270,

Denote U, = U, and observe that px_ v, v, = Px,|v.Py,|v. and (Uq, Xa, Ya), X2, and YV are mutually independent. Denote
Up = (U, X4, Y,, X2, Y), and observe that px, v, v, = Px,|v,Py,|u, and (Up, X3,Y;), X7, and V) are mutually independent.

a’ a

Putting the above inequalities together, the requisite super-additivity follows. O

However, we cannot do the transformation (X, + X2, Xj, + X?) — (Xo + X2+ Xp + X, X;, + X?) as this would replace
X2 by X2+ X}). This is not permitted as X2 is a fixed distribution. Instead, one can place X,, X3, Y,, Y, at the minimizer
by alternate linear forms and use the minimality to force an independence of some linear forms.

IV. A RESULT ON UNIFORM DISTRIBUTIONS REVISITED

We believe that it will be illustrative to revisit the arguments in [GGMT23|] in light of super-additivity. For the purpose
of illustration of the ideas, we will try to keep our estimates rather elementary (the ideas are still borrowed, in many cases
verbatim, from [GGMT23]). We will establish the following (weaker) result.

Theorem 7. Let X°, Y be any pair of independent random variables with support contained inside G, a finite Abelian group
with characteristic 2. Let

7(X,Y) = <H(X +Y) - %H(X) — H(Y)> +7 <H(X + X% — %H(X) - ;H(X°)>

1
2
+n <H(Y +Y9) - %H(Y) — ;H(Yo)) ,

where X,Y, X" Y? are mutually independent. Here X,Y also take values in G. Then, all minimizers of 7(X,Y) must be
uniform distributions on a coset of a subgroup of G, when 1 < ng, where 1y = 7”422_36.

Proof of Theorem 7]

We will divide the proof into some components. Some of the required inequalities will be established in the Appendix.

A. Superadditivity and rotation
Suppose (X*,Y*) is a minimizer of 7(X,Y;X° Y?). Without loss of generality, we may assume X* and Y™ are
independent. Let (X 4,Y4) and (Xp,Ys) are independent copies of (X*,Y™*). The minimality of (X*,Y ™) implies that
T(Xa+Ua,Ya+Va; X4 Y Wa) +7(Xp +Up, Y + Vi; X%, Y| Wg)
> 7(Xa,Ya; X%, Y8) +7(Xp,Yp; X3,Y3) (1)
for any wvalid choice that X4 + Uy — Wy — Y4 + Vy and Xp + Up — Wp — Yp + Vg. Here,
(Ua,Va,Wa,Up,Vp,Wg, Xa,Ya, Xp,Yg) is assumed to be independent of (X9,Y5, X% Y}).
Set Us = Xp,Va =Yg, Wp = (Xa+ Xp,Ya+Yg),Ws =Up = Vg = . Then (I) reduces to
I(XA + Xp; XB +YB‘XA +Y4+ Xp +YB)
<nl(Xp; Xa+Xp+ X)) +0I(Yp;Ya+ Y +YY3)
—nI(Xa+ Xp; Xp+X%) —nI(Ya+Yp; Y +YP)
<nI(Xp;Xa+Xp+X2)+nI(Ye;Ya+Ys +Y3)
<nl(Xp; Xa+ Xp) +nl(Yp;Ya+ Yp). 2

The last inequality is due to (X9,YY) L (X4, Xp,Ya,Y5).
Similarly, by setting Uy = Yp,Va = Xp, Wp = (XA +Yp, Y4+ XB), Wa=Up =V = @, @ yields

I(Xa+Ye; Xp+ Y| Xa+Ya+Xp+Ye) <nl(Xp;Ya+Xp)+nl(Yp; Xa+Yp). 3)
Finally, by setting, Uy = X4,Va =Yg, Wp = (Xa+ Xp,Ya+Yg),Wa =Ug = Vg =10, (I) yields
I(XA +XB;XA+YB|XA +Y4s+ Xp +YB) < UI(XA;XA+XB) —l—T]I(YB;YA +YB) (@)



Remark 9. We have employed three different linear transformations on the superadditive function and obtained three constraints
(equations (Z),(3),[@)) that has to be satisfied by the minimizer. Following the approach in the earlier sections, we need to use
these inequalities to deduce some independence of linear forms, which would imply that minimizers need to be uniform. The
choice of the identifications (three inequalities) above is directly motivated from [ [GGMT23|, Equations 3.1-3.4]. It may be
possible that one could use other linear transformations and obtain additional constraints that implies the independence for a
lower 7 but this is left for future work.

Lemma 4 ( [GGMT23], Equation 5.9). Let S = (X4 + Xp) + (Y4 + Y5).
1 1

H(S) = ZH(X) = H(Y) < 2+ md(X.Y).

Proof. By optimality of (X,Y), we have 7(X4,Ya; X°, YO X4 + Y5, Ya+ Xp) > 7(X,Y; X°, Y?), which is equivalent to
d(Xa,YalXa+Yp,Ya+Xp) >dX,Y) —n(d(X° XalXa+Yp)—d(X°, Xa))
—n(d(Y°, Ya|Ya + Xp) — d(Y°, Ya)).
This implies
d(Xa+Yp,Ya+ Xp)
B od(X, V) — d(Xa, Ya|Xa + Y5, Ya + Xp) — I(Xa + Ya; Ya + Xp|Xa + Xp + Y4+ V5)
< A(X,Y) +0(d(X°, XalXa 4 Vp) = d(X, Xa)) +1(d(Y?, Va|Va + Xp) = d(Y",Ya))
—I(Xa+Ya; Yo+ Xp|Xa+Xp+Ya+Yp)
2 axy) 4 (;H(XA V) — (Vi) + S H(Ya + X) - ;H(XB))
—I(Xa+Ya;Ya+ Xp|Xa+ Xp+Ya+Yp)
=1+ndX,)Y)—I(Xa+Ya;Ya+Xp|Xa+Xp+Ya+7Yp),
where (a) follows from Family 3 of Lemma [9] Therefore,
d(Xa+Yp;Ya+Xp) < (1+n)d(X,Y).
This implies that

H(S) ~ SH(X) ~ L H(Y2)

1 1
(Xa+Yp;Ya+ Xp)+ §I(YB§XA +Yg)+ §I(XB;YA + XB)

(Xa+Yp;Ya+ Xp)+d(X,Y)
< (2+n)d(X,Y).

d
d

]
Lemma 5 (Inspired by [GGMT23||, Equation 7.2). Let S = (X4 + Xp)+ (Ya+Yp). Let Ty = Xa+ Xp, To = Xp + Y5,
T3 =X, +Y5R.
I(T1; T3|S) + 1(T2;13|S) + 1(T1; T51S)
<2 <d(X*,X*) FdY*, YY) + d(X*,Y*)) < 10nd(X*,Y™).
Proof. From the super-additivity estimation, i.e. (2),(3),{@), we have
<nl(Xp; Xa+Xp)+nI(Yg:Ya+Ys)+nI(Xp:Ya+ Xp)
—|—77](YB;XA+YB)+’I7[(XA;XA+XB)+T}I(YB;YA+YB)
= 77(2H(XA+XB) +2H(YA+YB)+H(XA+XB)+H(XB —|-YA) —3H(X*) —3H(Y*))
— 2p(d(X*, X7) + d(Y*,Y7) + d(X*, Y))
< 10nd(X*,Y™)

The last part of the inequality follows by the triangle inequality, Lemma [2] of the independent entropic Ruzsa distance, i.e.
d(X,X) <d(X,Y)+d(Y,X) =2d(X,Y). O



B. Combining the estimates
We have, if (X,Y") is the minimizer for 7(X,Y’; X, Y)), then

(X,Y; X%, Y
1
S 6 (T(T17T2;X07Y0|T3,S) + T(TQaT3;X0aY0|TlaS) + T(T3aT1;XOaYO|T27S)

+ T(T2;T1;X07YO|T37S) + T(T3aT2;XOaY0|T17S) + T(T]_,T3;XO7Y0|T2,S))

1

=3 (cl(Tl,T2|T37 S) 4+ d(Ty, T5|T1, S) + d(Ts, T1 | T, S’))

3
77
EZZ ( (X°,T|Ty, S) +d(Y°,TiTj,S)>

1 j#i

@ 3
< I(Ty; To|S) + I(Ty; T3|S) + I(T; T5S) +gz< d(X°, T3] S) + d(Y°, T|S))

=1

+ g <I(T1,T2|S) 4 I(Ty; T5|S) + I(T1; T5|S)
< (1+3) (r@ls) + 1 ls) + 17 7a1S))
+ n(d(X, X0 +d(Y,Y°) + H(S) — %H(X) — H(Y)),

where (a) follows by Corollary [I] and Lemma [7} (b) follows by Families 1 and 2 of Lemma [9]
By the definition of the PFR functional, we have

d(X*, V") < (1 + g) (I(Tl;T2|S> + I(Ty; T4|S) +I(T1;T35>>

s (H(5) - JH(X) - 3 1))
< (L4 3) 100d(X", V) £ (2 (X7 Y7,

where the last inequality is a consequence of Lemma @ and Lemma l Therefore, if 1 > (1 + ) 10n + n(2 + n), for some
n > 0, then d(X*,Y*) = 0. Note that ny = ‘/@ 36 is the positive root of 1 = (1 + ) 10n +n(2 + 77) Therefore, for
n <mno, d(X*,Y*) =0, or in other words, 0 = H(X*+Y*)— 1 H(X*) - H(Y*) = 1I(X* X +Y* )+ 1Y X +Y™).
This implies that X* is independent of X* + Y* and Y* is independent of X +Y*.

C. Completing the proof of Theorem [/]

From Lemma [I| and that X* is independent of X* 4+ Y™, we have [support(X™*)| > k|support(Y™*)| for some k € N, and
from Y* is independent of X* + Y™*, we have |support(Y™*)| > k|support(X*)|, k¥ € N. This implies that [support(X™)| =
|[support(Y™*)|. Further, from Lemma [l} we can also conclude that |D| = |support(Y™*)|, where D denote the subgroup
generated by pairwise differences of the elements of support(Y ™). This implies that Y* is supported on a coset of D. Further,
from Lemma [I} and |support(X*)| = |D|, we can also infer that X* is uniform on a coset of D. Reversing the roles of X*
and Y*, we can also infer the Y* is uniform over its support. Therefore, X* and Y* are uniformly distributed on cosets of
the same subgroup.

V. FUTURE AND RELATED WORK

There are extensions of the EPI that are known in the literature. One of the extensions is as follows,

Theorem 8. Suppose X1,...,X,, are independent continuous random variables with finite variables, and let (a1, ..., ay,) be
non-negative constants such that -, o; = 1. We have

nh \/OTiXi> > / (1—aj)h 1/
<§ ]—Zl i#£] o




This formulation is established by Artstein, Ball, Barthe, and Naor [ABBNO04]. Johnson and Yu proposed a discrete analog
of this result using the Rényi thinning of discrete random variables [JY10].

An extension to torsion-free groups is certainly interesting. Along these lines, Tao proposed a conjecture [TaolO] on the
discrete analog of EPI as below

Conjecture 1. Suppose Xi,...,X, 1 are identically distributed and independent random variables on some torsion-free
group T. Then, for any € > 0, as long as H(X) is sufficiently large (depending on n,e€), we have
1 n+1
HXi 4+ Xp41) > H(X1+--~+X,L)+§logT —e.

There is a recent proof of this conjecture, under the assumption that the distribution of X is log-concave, by Gavalakis
[Gav23].

In a problem related to the capacity region of a Gaussian noise channel with Z-interference, there is an information functional,
similar to the one studied in the second half. It is conjectured that Gaussian distributions are optimal (similar to uniforms)
under some parameter regimes (just like in this setting where uniforms are optimal only when 7 is small enough). Perhaps the
ideas employed here can be adapted to that setting, and thereby solving a long-standing open problem in multiuser information
theory.
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APPENDIX

Lemma 6 ( [KLN23]). Let (X;)", be a sequence of finite-valued random variables (defined on some common probability
space) and (f;, gi)?z_ll be a sequence of functions that take a finite set of values in some space S such that: f;(X;) =

9i(Xit1)(=: U;) and the following Markov chain holds,

Xi—->U1—-Xo—>Us— - = X,-1 > U1 — X,



Then,

n

H(Xy,...,X,)+ ni H(U;) =) H(X,).
i=1

i=1
Proof. Note that H(Xq,...,X,) = H(X1,...,Xn,Ur,...,U,—1) since U; is determined by X; (and also by X;;1). Now
observe that

n—1
H(X1,...,Xn)+ > H(U:)
=1

n—1
W HX o X Uy Unot) + S H(UY)
=1

© H(X1,U1) + H(Xa, Ua| X1, Us) + -+ + H(Xn1, U1 |X772,U72)

n—1
+H(X XU + Y H(U)
i=1

n—1

@ H(X1,U1)+ H(X2,U2|Ur) + -+ H(Xn—1,Un—1|Un—2) + H(Xn|Un_1) + Z H(U;)

=1

@ H(X,,U1)+ H(X2,Uz,U1) + -+ + H(Xpn-1,Un—1,Un—2) + H(Xn,Un—1)
OS5 HX).
i=1

In the above (a) and (e) follow using the assumption that U; is determined by any of X; or X;;1. The equalities (b) and (d)
are a consequence of the chain rule for entropy and the equality (c) is a consequence of the Markov chain assumption. [

A. Preliminary inequalities

In this section, we present some preliminary inequalities that were (essentially) established in [GGMT23|.
Lemma 7 (Adapted from [GGMT23|], Lemma 5.2). Suppose X is independent of Y, Z, we have
d(X,Y|Z) <d(X,Y)+ %I(Y;Z).
Proof. We have
A(X,Y|2) = H(X +¥|7) ~ LH(X) ~ JH(Y|2)
=d(X,Y)+ %I(Y; Z)-I1(X+Y;2).

O
Lemma 8 ( [GGMT23|], Lemma A.2). Let A, B, S be jointly distributed on G.
d(A,B|Z,S) <3I(A;B|S)+2H(A— B|S) — H(A|S) — H(B|S).
Proof. Let Z = A — B. Given S, construct two “copies” of (A, B), labeled as (A;, B1) and (Asg, Bs) such that Ay — By =
Z = As — By and their joint law satisfies DPSPZ|SPA,,B1|Z,SPAs,Bs| 2,5
We have (from sub-modularity)
H(Ay + B, Ay, B1|S) + H(A1 + B3|S) < H(A; + B, A1]S) + H(A; + Ba, B1]S)
= H(Ay, By|S) + H(A2 + By, B1]S)
= H(Ay, Bs|S) + H(As, By|S) 5)

Copy lemma, Lemma [6] yields
H(Ay, As, By, Bs|S) + H(A; — B1|S) = H(Aq, By1|S) + H(A2, B2|S)
However we also have that (A; + B, A1, B1) determines and is determined by A;, By, A, By. Therefore

H(A1, B1|S) + H(As, Ba|S) = H(Av, By, Ay, B|S) + H(Ay — By|S)
= H(Al + BQ,Al,Bl|S) + H(Al — Bl|S)



(8]
< H(Ay, Bo|S) + H(Ag, B1]S) — H(A1 + Ba|S) + H(A1 — B1|S)

Rearranging yields,

H(A1 + B2|S) < H(Al,BQ|S) + H(AQ,Bl‘S) — H(Al,Bl|S) - H(A27B2|S) + H(A1 - Bl‘S)

We also have H(A|A— B,S) = H(B|A— B,S) = H(A, B|S) — H(A — B|S). Therefore,
1 1
H(A;, + Bs|S) — §H(A1|A1 — By,8) — §H(BQ\A2 — B5,S)
1 1
= H(A1 + B2|S) - §H(A1,Bl|5) - §H(A2732|S) + H(A - B|S)
@
< 3I(A;B|S)+2H(A— B|S) — H(A|S) — H(B|S).
From definition

1 1

d(A’B|Z7 S) = H(Al + B?|Zv S) - iH(A1|Zv S) - iH(BQ‘Za S)
1 1
< H(Ay + BelS) — §H(A1\Z7 S) — §H(BQ|Zu S).

Equation (7) completes the proof.

3 3
< H(A1, B2|S) + H(Az, B1]S) — §H(A1,Bl|5) - QH(A2,B2\S) +2H (A - BIS)

(6)

(7

O

Corollary 1 (From the arguments in [[GGMT23|, Lemma 7.2). Let (S,T1,T,T3) be jointly distributed on a group of

characteristic two such that T + Ts + T3 = 0. Then, we have
d(12, 15|11, S) + d(T5, 11|13, S) + d(T1, 12| T3, S)
Proof. Under the characteristic two assumption, Lemma [§] yields
d(Tz, T[Ty, S) < 3I(T1; 12[S) + 2H(Ts — Ts|S) — H(12]S) — H(T5]S)
— 3I(Ty; To|S) + 2H(Ts + T|S) — H(T,|S) — H(T|S)
= 31(T1; T»|5) + 2H(T1|S) — H(T»|S) — H(T5]S).
The corollary follows by adding the cyclic shifts of this inequality.

O

Lemma 9 (Adapted from [GGMT23|, Lemma 7.1 and Section 7). Let X and Y be two independent random variables defined
on a field of characteristic two. Let (X 4,Ya) and (X, Yp) be independent copies of (X,Y). Let S = (Xa+Xp)+(Ya+Y5).

Let Ty = (Xa+ Xp), To = (X + YB), Ts = Xa + Yp. Let (X°,Y") be independent of the other random variables.

1) Family 1: The following inequalities hold

d(X° Ty|S) — d(X°, X)

IN

H(S) - S H(X),

d(XO?T?)'S) - d(XOaX)

IN

H(S) ~ SH(X),

IN

d(Y°, T5|8) —d(Y°,Y) H(S) - %H(Y),

d(Y°, T5|S) — d(Y°,Y)

IN
NN N~ —

1
H(S) - SH(Y),
2) Family 2: The following inequalities hold

1 1 1
H(S) + gH(XA'FXB) - §H(YA +Yp) — §H(X)
1

d(X°,Ty|8) — d(X°, X) <

d(Y°,Ty|S) —d(Y°,Y) <

N =N =

3) Family 3: The following inequalities hold

1 1
d(X° X 4| Xa+Yg) —d(X° X,4) < §H(XA +Yg) — 5H(YB),

1 1
d(YO,Ya|YA + Xp) —d(Y°,Yy) < 5H(YA +Xp)— 5H(XB).

H(S) + GH(Ya + Yi) — L H(Xa+ X5) — JH(Y).



4) The following equality holds:

d(XA +Yg,Ys -‘rXB) +d(XA,YA|XA +Yg,Ys +XB)
+I(Xa+Ya;Ya+ Xp|Xa+ Xp+Ya+Yp)
— 2d(X,Y). 8)
Proof. Family I: The proofs of the inequalities in the first family are similar. We provide the details of the first. It suffices to

show that 1 1 1 1
H(Xp+Yp+X°|9) - S H(Xp +Yp|S) - H(X + X% + SH(X) < SH(S) = SH(X).

This is equivalent to showing that
1
H(Xp+Yp+X°S) - 5H(XB +Yg,8) <I(X%X + XY).

Observe that
H(Xp+Yp,S)=H(Xa+Ya)+ HXp+Yp)=2H(Xp +Y5).

Therefore, it suffices to show that
H(Xp+Yp+X°|S) - H(Xp +Yp) <I(X%X + X°)
Note that

HXp+Yp+X°|S)—H(Xp+Ys) <H(Xp+Ys+Xo)— HXp+Ys)
=1(Xo; Xp+Yp+ Xo) < I(Xo; X + Xo).

The last inequality is a consequence of the data-processing inequality as Y is independent of (X, Xp). This establishes the
first inequality.
Family 2: The proofs of the inequalities in the second family are similar. We only prove the first one. We wish to show that

1 1
H(Ty + X°|9) - SH(T|S) = H(X + X9 4 S H(X)
1 1 1 1

< SH(S) + 5 H(Xa+ Xp) = SH(Ya +Yp) - SH(X),

2 2
or equivalently

1 1 1
H(Ty + X°19) < SH(TS) + SH(Xa + Xp) = H(Ya +Yp) + H(X + X% — H(X),

Since H(T1,S)+ H(S) = H(Xa+ Xp,Ya+Yp) = H(Xa+Xp)+ H(Y4+Yp) (the random variables are independent),we
wish to show that
H(Ty + X°8) < H(Xa + Xp) + H(X + X% — H(X).

Therefore, it suffices to prove the stronger inequality that
H(T1+ X°) < H(Xa+ Xp) + HX + X% — H(X),

or equivalently
I(X% X4+ Xp+X%) < I(X% X4 4+ X°) = I(X% X + X°).

This inequality is a consequence of the data-processing inequality as Xp is independent of (X, X 4). This establishes the
desired inequality.
Family 3: The proofs of the inequalities in the third family are similar. We only prove the first one. We wish to show that

1 1 1 1
H(X°+ X4|Xa+Y5)— 5H(XA|XA +Ys) - H(X®+ Xa) + 5H(XA) < §H(XA +Yg) — 5H(YB).
This is equivalent to showing that

1 1 1
H(X° +Xa|Xa4Yp)— HX°+Xa) < ZH(Xa|Xa+Ys)+ FH(Xa+Yp) = SH(Xa) - SH(Ys).

N | =

Note that H(X 4| Xa+Yp)+ H(Xa+Ys) = H(X4,Yp) = H(X )+ H(Yg). Therefore, the right-hand-side of the desired
inequality is zero. On the other hand, H(X°+ X 4| X4 +Yp) < H(X"+ X ,4) is immediate, establishing the desired inequality.
Final Equality: Observe that

d(XA—I—YB,YA-I-XB) +d(XA7YA|XA +Yg,Ya +XB)



+I(Xa+Ya;Ya+ Xp|Xa+ Xp+Ya+Yp)
1 1
=H(Xs+Yp+Ya+Xp)— iH(XA+YB) — iH(YA‘FXB)
1 1
+H(XA+Xp|Xa+Yp,Ya+ Xp) — iH(XA|XA +Ys) - iH(YA|YA +Xg)

+I(Xa+Ya;Ya+ Xp|Xa+Xp+Ya+Y5s)
=H(XA+Yp+Ya+Xp)+ H(XA+ Xp|Xa+Ys,Ya+ Xp)

1 1
- §H(XA7XA +Ys) - §H(YA7YA + XB)
+ HXA+ YAl Xa+Xp+Ya+Yp)— HXaA+Ys|Xa+Yp,Ya+ Xp)
1 1
= H(XA +YA,XB —|—YB) — §H(XA,YB) — §H(YA,XB) = Qd(X,Y)
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