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Abstract—We derive an equivalent characterization, using
information measures, for a class of reverse Brascamp-Lieb type
inequalities. These inequalities contain, in particular, the family
of reverse hypercontractive inequalities.

I. INTRODUCTION

A. Background

Hypercontractive inequalities have played an important role
in many areas such as analysis, probability theory, theoretical
computer science, and information theory. The relationship
between hypercontractive inequalities, images of a set, and
information measures were first explored by Ahlswede and
Gacs [1]. Several equivalent characterizations of hypercontrac-
tive inequalities using information measures were developed
in [2], [3], thus extending the work of Ahlswede and Gacs.
A more general class of inequalities called Brascamp-Lieb
type inequalities were considered independently by Carlen and
Cordero-Erausquin in [4] and one of the equivalent characteri-
zations of hypercontractive inequalities using Kullback-Liebler
divergences in [3] can be inferred from the above paper.

Reverse hypercontractive inequalities form another related
family of inequalities which have been well studied in anal-
ysis, theoretical computer science, and probabilty theory. A
straightforward application of the ideas in [3], as well as some
personal communication, enabled Kamath [5] to derive an
equivalent characterization of a restricted parameter range of
reverse hypercontractive inequalities using information mea-
sures. In this paper we derive an equivalent characterization
of reverse Brascamp-Lieb type inequalities using Kullback-
Liebler divergences, thus completing the reverse counterpart
of the results in [4]. Our results include, as a special case,
all parameters of the reverse hypercontractive inequalities. We
establish the equivalent characterizations in finite alphabet
spaces omitting their rather straightforward extensions via
standard techniques of real analysis to more general spaces.

B. Forward hypercontractive and Brascamp-Lieb-type in-
equalities

One viewpoint of hypercontractive inequalities is to con-
sider them as strengthening of Hölder’s inequality. For a
random variable X , positive function f and any r 6= 0 we
denote

‖f(X)‖r = E[f(X)r]1/r.

For any pair of random variables (X,Y ), Hölder’s inequality
states that, for all functions f(X), g(Y ),

E[f(X)g(Y )] ≤ ‖f(X)‖λ1
‖g(Y )‖λ2

,

for any λ1, λ2 ∈ (1,∞) such that 1
λ1

+ 1
λ2

= 1.
A hypercontractive inequality is a stronger form of Hölder’s

inequality, which states that a pair of random variables (X,Y )
is (λ1, λ2)-hypercontractive, for λ1, λ2 ∈ (1,∞) with 1

λ1
+

1
λ2
≥ 1, if

E[f(X)g(Y )] ≤ ‖f(X)‖λ1‖g(Y )‖λ2 ,

for all functions f(X), g(Y ). By monotonicity of ‖f(X)‖r
in r, Hölder’s inequality allows one to conclude that every
(X,Y ) is (λ1, λ2)-hypercontractive if 1

λ1
+ 1

λ2
≤ 1. Thus

hypercontractive inequalities are stronger than Hölder’s in-
equalities.

Carlen and Cordero-Erausquin considered a further gener-
alization along the lines of Brascamp-Lieb [6] inequalities.

Definition 1. Finite valued random variables X1, . . . , Xm

jointly distributed according to some probability mass function
µ(·) are said to satisfy the Brascamp-Lieb type inequality with
parameters (λ1, ..., λm), λi ≥ 0, 1 ≤ i ≤ m and C, if for all
positive functions f1, . . . , fm we have

E[f1(X1)f2(X2) · · · fm(Xm)] ≥ 2C
m∏
i=1

‖fi(Xi)‖λi .

Carlen and Cordero-Erausquin consider random variables
with densities and in this paper we consider random variables
with finite alphabets just as in [1] and [3]. In the following
theorem we restate the main result of [4] in terms of finite
alphabets. Logarithms are considered to base 2 in this paper.

Theorem 1 (Theorem 2.1 in [4]). Let X1, ..., Xm be finite
valued random variables and let µ denote the joint probability
mass function of these variables. Let µi, 1 ≤ i ≤ m, denote
the marginal distribution of Xi. Let λ1, ..., λm be non-negative
numbers. Then for any C ∈ R the following two assertions
are equivalent:
(i) For any non-negative functions f1, .., fm we have

E

[
m∏
i=1

fi(Xi)

]
≤ 2C

m∏
i=1

‖fi(Xi)‖λi .



(ii) For every probability mass function ν of X1, ..., Xm with
marginals νi, 1 ≤ i ≤ m, we have

m∑
i=1

1

λi
D(νi‖µi) ≤ C +D(ν‖µ).

C. Reverse hypercontractive and Brascamp-Lieb type inequal-
ities

Reverse hypercontractive inequalities arise as stronger forms
of reverse Hölder’s inequality. For any pair of random vari-
ables (X,Y ), reverse Hölder’s inequality states that, for all
strictly positive functions f(X), g(Y ),

E[f(X)g(Y )] ≥ ‖f(X)‖λ1
‖g(Y )‖λ2

,

for any λ1, λ2 ∈ (−∞, 1) \ {0} such that 1
λ1

+ 1
λ2

= 1.

Definition 2. Finite valued random variables X1, . . . , Xm

jointly distributed according to some probability mass function
µ(·) are said to satisfy the reverse-Brascamp-Lieb type in-
equality with parameters (λ1, ..., λm) and C, if for all positive
functions f1, . . . , fm we have

E[f1(X1)f2(X2) · · · fm(Xm)] ≥ 2C
m∏
i=1

‖fi(Xi)‖λi .

Setting m = 2, C = 0 in the above definition yields the
reverse hypercontractive inequalities.

II. MAIN RESULT

We start this section by proving that the reverse-Brascamp-
Lieb type inequalities defined earlier satisfies tensorization.

Lemma 1 (Tensorization). Let (X11, . . . , Xm1) and
(X12, ..., Xm2) be independent and identically distributed
tuples of random variables. Then, (X11, . . . , Xm1), and
then (X12, ..., Xm2), satisfy the reverse-Brascamp-Lieb
type inequality with parameters (λ1, ..., λm) and C, if and
only if the tuple

(
(X11, X12), . . . , (Xm1, Xm2)

)
satisfies

the reverse-Brascamp-Lieb type inequality with parameters
(λ1, ..., λm) and 2C.

Proof. (⇒) Denote the probability mass function of
(X1j , . . . , Xmj), j = 1, 2, by µj . Let fi(Xi1, Xi2), 1 ≤ i ≤
m, be arbitrary positive functions. Observe that

E

[
m∏
i=1

fi(Xi1, Xi2)

]

=
∑
x1

µ1(x1) Eµ2

[
m∏
i=1

fi(xi1, Xi2)

]

≥ 2C Eµ1

[
m∏
i=1

∥∥E[fi(Xi1, Xi2)|Xi1]
∥∥
λi

]

≥ 22C
m∏
i=1

‖E(fi(Xi1, Xi2))‖λi ,

where the summation is over x1 = (x11, ..., xm1), and the in-
equalities follow from our assumption that µ1 and µ2 satisfies

the reverse-Brascamp-Lieb type inequality with parameters
(λ1, ..., λm) and C.
(⇐) Let g1(X11), . . . , gm(Xm1) be positive functions

which violate the reverse-Brascamp-Lieb type inequality
with parameters (λ1, ..., λm) and C. Then the functions
fi(Xi1, Xi2) = gi(Xi1)gi(Xi2), 1 ≤ i ≤ m, violate
the reverse-Brascamp-Lieb type inequality with parameters
(λ1, ..., λm) and 2C.

The main result of this paper is Theorem 2 which yields a
similar characterization as in Theorem 1, albeit in the reverse
direction. The proof mainly uses standard notions in informa-
tion theory such as typicality, types (empirical distributions)
and concentration of measure. As such we will be skimpy on
standard parts of the arguments. A reader may consult [7] for a
text-book treatment of these standard type-counting arguments.

Theorem 2. Let X1, ..., Xm be finite valued random variables
and let µ denote their joint probability mass function with
marginals µi, 1 ≤ i ≤ m. Let λ1, ..., λm be non-zero numbers.
Let S+ = {i : λi > 0} be the set containing the indices of
the positive λi’s. Then for any C ∈ R the followings are
equivalent:
(i) For all positive functions f1, .., fm we have

E

[
m∏
i=1

fi(Xi)

]
≥ 2C

m∏
i=1

‖fi(Xi)‖λi . (1)

(ii) For all probability mass functions νi for i ∈ S+, there
exists a probability mass function ν, consistent with the
given marginals νi, i ∈ S+ such that

m∑
i=1

1

λi
D(νi‖µi) ≥ C +D(ν‖µ).

For i /∈ S+, νi is the marginal induced by the p.m.f. ν.

Proof. (i) ⇒ (ii) We use the tensorization property of the
reverse-Brascamp-Lieb type inequality stated in Lemma 1.

Consider n independent and identically distributed copies of
(X1, . . . , Xm), i.e., consider random variables (Xn

1 , . . . , X
n
m)

with the probability mass function

µ̃(Xn
1 , . . . , X

n
m) =

n∏
j=1

µ(X1j , ..., Xmj).

Given probability mass functions νi, i ∈ S+, define the
functions

fi(xi1, ..., xin) =

{
1 (xi1, ..., xin) ∈ T (n)

εn (νi)

0 otherwise.

Here T (n)
εn (νi) denotes the set of εn-typical sequences with

respect to the distribution νi, where {εn}∞n=1 is a sequence of
positive numbers with εn → 0 and εn

√
n→∞ as n tends to

infinity.
Standard calculations (Sanov’s theorem [8]) show that

‖fi(Xn
i )‖λi = 2

−n 1
λi
D(νi‖µi)+o(n). (2)



Given a tuple xni , let πi(xni ) denote the type (empirical
distribution induced by the sequence xni ). Given a type πi,
denote by

µ̃i(πi) =
∑

xni :πi(x
n
i )=πi

µ̃i(x
n
i ) = 2−nD(πi‖µi)+o(n)

the total (marginal) probability of all sequences that have type
πi. Then, for every i /∈ S+ define

fi(xi1, ..., xin) = µ̃i(πi(x
n
i ))
− 1
λi .

This function assigns the same value to all sequences belong-
ing to a particular type class. Now, elementary calculations
along with the fact that there are only a polynomial number
of types yield for every i /∈ S+,

‖fi(Xn
i )‖λi =

(∑
πi

∑
xni :πi(x

n
i )=πi

µ̃(xni )µ̃i(πi)
−1

) 1
λi

= 2o(n), (3)

where the sum over all sequences is first partitioned into types
πi.

For a tuple x = (xn1 , . . . , x
n
m) denote by π(x) its type

(which is an empirical probability mass function on the
alphabet space of (X1, .., Xm)), and as before, denote by
πi(x

n
i ) the type on the i-th marginal. Then from the above

equations it is easy to verify that

f1(x
n
1 ) · · · fm(xnm) =

∏
i/∈S+

2
n 1
λi
D(πi‖µi)+o(n),

if the types πi(x
n
i ), for i ∈ S+, are εn-close to νi, and

f1(x
n
1 ) · · · fm(xnm) = 0 otherwise. Therefore, we have

E
[
f1(X

n
1 ) · · · fm(Xn

m)
]

=
∑
π

∑
x:π(x)=π

µ̃(x)
∏
i/∈S+

2
n 1
λi
D(πi‖µi)+o(n),

=
∑
π

2
−n
(
D(π‖µ)−

∑
i/∈S+

1
λi
D(πi‖µi)

)
+o(n)

where the outer sum is over types π for which πi, for i ∈ S+ is
εn-close to νi. Since the number of types grows polynomially
in n, we can further say that there exists a type πn, with πni ,
for i ∈ S+ being εn-close to νi, such that

E[f1(X
n
1 ) · · · fm(xnm)]

= 2
−n
(
D(πn‖µ)−

∑
i/∈S+

1
λi
D(πni ‖µi)

)
+o(n)

.

Substituting this in the given inequality in (1) for the above
choice of functions, using equations (2) and (3), and letting
n → ∞ we conclude that there exists a distribution ν,
consistent with the given marginals νi, i ∈ S+, such that

m∑
i=1

1

λi
D(νi‖µi) ≥ C +D(ν‖µ).

(ii) ⇒ (i) Let g1(X1), . . . , gm(Xm) be positive functions
which violate the reverse-Brascamp-Lieb type inequality with

parameters (λ1, ..., λm) and C. Thus there exists δ > 0 such
that

E
[
g1(X1) · · · gm(Xm)

]
< 2C−δ

m∏
i=1

‖gi(Xi)‖λi .

We normalize the functions so that ‖gi(Xn
i )‖λi = 1. We then

have
E
[
g1(X1) · · · gm(Xm)

]
< 2C−δ.

Letting fi(X
n
i ) = gi(Xi1) · · · gi(Xin), 1 ≤ i ≤ m we then

find that

E
[
f1(X

n
1 )f2(X

n
2 ) · · · fm(Xn

m)
]
< 2n(C−δ). (4)

For every 1 ≤ i ≤ m define

νi(xi) = µi(xi)gi(xi)
λi ,

and

ν̃i(x
n
i ) = µ̃i(x

n
i )fi(x

n
i )
λi =

n∏
j=1

νi(xij).

Observe that, by the normalization ‖gi(Xn
i )‖λi = 1, both νi

and ν̃i are probability mass functions. Now by (4) we have∑
x

µ̃(x)

m∏
i=1

(
ν̃i(x

n
i )

µ̃i(xni )

) 1
λi

< 2n(C−δ),

where the summation runs over all tuples x = (xn1 , .., x
n
m).

Again dividing into types we get∑
π

∑
x:π(x)=π

µ̃(x)

m∏
i=1

(
ν̃i(x

n
i )

µ̃i(xni )

) 1
λi

=
∑
π

2
−n
(
D(π‖µ)−

∑m
i=1

1
λi

(D(πi‖µi)−D(π‖νi))
)
+o(n)

< 2n(C−δ).

Therefore for every type π we have that

D(π‖µ) + C − δ >
m∑
i=1

1

λi
(D(πi‖µi)−D(πi‖νi)) .

Now consider a π such that its marginals πi satisfy∑
i∈S+

D(πi‖νi) = o(1). (Such empirical distributions clearly
exist). We then have for every such π the inequality

D(π‖µ)+
∑
i/∈S+

1

λi
D(πi‖νi)+C−δ >

m∑
i=1

1

λi
D(πi‖µi)+o(1),

and then

D(π‖µ) + C − δ >
m∑
i=1

1

λi
D(πi‖µi) + o(1),

since λi is negative for i /∈ S+. Letting n→∞ we find that
for every distribution ν̂ consistent with marginals νi, i ∈ S+,

D(ν̂‖µ) +
∑
i/∈S+

1

λi
D(ν̂i‖νi) + C − δ >

k∑
i=1

1

λi
D(πi‖µi),

which is a clear violation of our assumption in (ii).



A. Remarks to Theorem 2

(a) C ≤ 0 is a necessary condition; to see this, take the
constant functions.

(b) Let C = 0, λ1 ∈ (0, 1) and λi < 0, for 2 ≤ i ≤ m
such that

∑n
i=1

1
λi

= 1. For these parameters, the fact
that reverse Brascamp-Lieb type inequalities hold with
parameters (λ1, ..., λm) and C = 0 is a consequence of
reverse-Hölder’s inequality. This fact combined with the
monotonicity of norms yield a trivial range of parameters
for which reverse Brascamp-Lieb type inequalities hold.
It is an easy exercise to see how this can be inferred from
the equivalent characterization using divergences. (Hint:
think of X1 as the input and the rest of Xi’s, 2 ≤ i ≤ m,
as the output of a fixed channel. For the given ν1 consider
the induced output distributions and use data-processing
inequality for divergences).

(c) Exact computation of the set of parameters
(C, λ1, . . . , λm) for which the reverse Brascamp-
Lieb type inequality holds, is a hard problem in
general. The equivalent characterizations for the forward
hypercontractivity regime has helped to obtain new
results [9], [10] in this direction, and to recover some
old results. In the same vein, it is hoped that these new
characterizations will help in the evaluation of this set
of parameters. Towards this computation the following
observation may be relevant.
The equivalent chracterization in Theorem 2 states that
X1, . . . , Xm jointly distributed according to some proba-
bility mass function µ satisfies a reverse-Brascamp-Lieb
type inequality with parameters (λ1, ..., λm) and C if

min
νi,∈S+

max
ν

m∑
i=1

1

λi
D(νi‖µi)−D(ν‖µ)− C ≥ 0

where the outer minimization is over the marginal dis-
tributions νi, i ∈ S+ and the inner maximization is over
distributions ν that are consistent with the marginals νi.
It is easy to verify that if one fixes νi, i ∈ S+, then

m∑
i=1

1

λi
D(νi‖µi)−D(ν‖µ)− C

is concave in ν, (recall that when i /∈ S+, λi < 0). Thus
at least the inner maximizers can be computed efficiently
using standard convex optimization techniques.

(d) There are two novel aspects to the proof of Theorem 2
as compared to the proof of the equivalent setting in
the forward regime, or of its straightforward extension
by Kamath to a regime of the reverse hypercontractivity.
The idea of using indicator functions of typical sets as a
way to relate norms to divergences can be found in [3];
however indicator functions behave poorly when λi < 0.
The choice of functions for negative λi used in the proof is
a key new element of this proof. The second key element
is that both directions of implications use tensorization
as well as standard concentration ideas. Previously, ten-
sorization was only used in one direction, and the other

direction followed by a multiway equivalence that also
involved auxiliary random variables and a perturbation
argument. The new argument is markedly concise.

We have the following immediate corollary to Theorem 2.
Traditional proofs of such convexity results use non-trivial
interpolation techniques. (see Riesz-Thorin Theorem).

Corollary 1. The set of tuples (C, 1
λ1
, .., 1

λm
) such that

(X1, .., Xm) satisfies the reverse Brascamp-Lieb type inequal-
ities, with non-negative parameters (λ1, ..., λm), is convex.

Proof. Supppose (X1, ..., Xm) satisfies reverse Brascamp-
Lieb type inequalities with parameters (C, 1

λ1
, .., 1

λm
) and

(Ĉ, 1
λ̂1
, .., 1

λ̂m
), where (λ1, ..., λm) and (λ̂1, ..., λ̂m) are non-

negative. Since S+ = {1, ..,m} we know that for any set
of marginals ν1, ..., νm, there exists distributions ν and ν̂
consistent with the marginals such that

m∑
i=1

1

λi
D(νi‖µi) ≥ C +D(ν‖µ)

m∑
i=1

1

λ̂i
D(νi‖µi) ≥ Ĉ +D(ν̂‖µ).

Hence, we have for any α ∈ [0, 1]

m∑
i=1

(
α
1

λi
+ (1− α) 1

λ̂i

)
D(νi‖µi)

≥ αC + (1− a)Ĉ + αD(ν‖µ) + (1− α)D(ν̂‖µ)
≥ αC + (1− a)Ĉ +D ((αν + (1− α)ν̂)‖µ) .

The last inequality follows from the convexity of relative
entropy D(ν‖µ) with respevct to ν.

III. CONCLUSION

We present an equivalent characterization of reverse
Brascamp-Lieb type inequalities using divergence measures.
The ideas used in this proof are elementary concentration ideas
concerning typical sets and types.
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