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Abstract—In this paper, we obtain the reverse hypercontractive
region for the pair of variables (X,Y ) where X is a uniformly
distributed binary random variable and Y (a ternary random
variable) is obtained by passing X through a symmetric binary
erasure channel (BEC), for a non-trivial range of parameters. The
technique used builds on two recent results: a) characterization
of reverse hypercontractivity using information measures, and
b) computation of the forward hypercontractive region for the
BEC.

I. INTRODUCTION

Reverse hypercontractive inequalities, like the (forward or
regular) hypercontractive inequalities, are a family of in-
equalities that are studied in functional analysis; and have
proven useful in mathematics [1], [2] and in computer science
[3]. The exploration of the link between single-letterization
(in information theory) and tensorization phenomenon has
recently led information-theorists [4]–[9] to revisit connections
between inequalities involving information measures and in-
equalities whose parameters tensorize such as hypercontractive
or Brascamp-Lieb type inequalities.

Exact computation of the parameters (hypercontractive,
reverse-hypercontractive, or Brascamp-Lieb) has been a chal-
lenging task with very few exact characterizations. Two well
known cases where exact computations have been feasible
are for jointly Gaussian random variables, and when X is a
uniform random variable and Y is obtained from X by passing
it through a binary symmetric channel. These results are
celebrated results with several different proofs provided over
the years and have found applications in many areas. Last year,
the authors computed the forward hypercontractive region for
the binary erasure channel starting from the characterization
using information measures; a computation prompted by the
authors of [10].

In all the results mentioned above, it turns out that the
hypercontractive or reverse-hypercontractive region matches
the correlation bound (though in general it is known that these
two are not the same regions). The computation in this paper
shows a non-trivial exact characterization where the region is
not given by the correlation bound.

In the discussion section towards the end of the paper, we
will outline why the arguments, such as the one used here, may
have a broader significance in a whole variety of problems,
including those in multi-user information theory.

A. Preliminaries

A pair of random variables (X,Y ) is said to be (λ1, λ2)-
reverse-hypercontractive, for λ1, λ2 ∈ (−∞, 1), if

E(f(X)g(Y )) ≥ ‖f(X)‖λ1‖g(Y )‖λ2 (1)

holds for all positive functions f(·), g(·). In the above

‖Z‖λ = E
(
|Z|λ

) 1
λ , λ 6= 0,

and ‖Z‖0 = eE(log |Z|). Reverse Hölder’s inequality says that
the above inequality holds when

1

λ1
+

1

λ2
= 1,

and the monotonicity of the ‖Z‖λ in λ yields a trivial region of
parameters where (1) always holds. This, for instance, includes
the region λ1, λ2 ∈ (−∞, 0]. Therefore the non-trivial region
of the reverse-hypercontractive region is when at least one of
the parameters λ1 or λ2 is strictly positive.

Our starting point is the following equivalent characteriza-
tion of the reverse hypercontractive region extracted from a
more general result last year by one of the authors.

Theorem 1 ( [8]). Depending on the regime of parameters of
λ1, λ2, the following yields an equivalent characterization of
(1) in terms of relative entropies.
(i) When λ1, λ2 ∈ (0, 1) equation (1) holds iff:

For any qX and qY there exists rXY with rX = qX and
rY = qY such that:

1

λ1
D(qX ||pX) +

1

λ2
D(qY ||pY ) ≥ D(rXY ||pXY )

(ii) When 0 < λ1 < 1 and λ2 < 0 equation (1) holds iff:
For any qX there exists rXY with rX = qX such that:

1

λ1
D(qX ||pX) +

1

λ2
D(rY ||pY ) ≥ D(rXY ||pXY )

(iii) When λ1 < 0 and 0 < λ2 < 1 equation (1) holds iff:
For any qY there exists rXY with rY = qY such that:

1

λ1
D(rX ||pX) +

1

λ2
D(qY ||pY ) ≥ D(rXY ||pXY )

A necessary condition for (X,Y ) to be (λ1, λ2)-reverse-
hypercontractive is presented in the following theorem.



Theorem 2 (Correlation bound). A pair of random variables
(X,Y ) ∼ p(x, y) is (λ1, λ2)-reverse-hypercontractive, for
λ1, λ2 ∈ (−∞, 1), only if

(λ1 − 1)(λ2 − 1) ≥ ρ2m,

where ρ2m is the maximal correlation of (X,Y ).

Remark 1. This should be a classical result and we present a
proof for completeness.

Proof. Let f(x) = 1 + δf̂(x), and g(y) = 1 + δĝ(y),
for some f̂ , ĝ satisfying E(f̂(X)) = E(ĝ(Y )) = 0, and
E(f̂2(X)) = σ2

X ,E(ĝ
2(Y )) = σ2

Y . Note that −|ρmσXσY | =
inf E(f̂(X)ĝ(Y )), where the infimum is taken over f̂ , ĝ satis-
fying the above conditions. Take δ small enough so that f, g
are positive functions. Routine calculations show that

E(f(X)g(Y )) = 1 + δ2 E(f̂(X)ĝ(Y ))

‖f(X)‖λ1
= 1 + δ2σ2

X

λ1 − 1

2
+O(δ3)

‖g(Y )‖λ2
= 1 + δ2σ2

Y

λ2 − 1

2
+O(δ3).

Therefore if condition (1) holds for all f(X), g(Y ), then by
taking δ → 0, we require

E(f̂(X)ĝ(Y )) ≥ λ1 − 1

2
σ2
X +

λ2 − 1

2
σ2
Y ∀f̂(X), ĝ(Y ).

This can be rewritten as
1

2

(√
1− λ1|σX | −

√
1− λ2|σY |

)2
+
√
(λ1 − 1)(λ2 − 1)|σXσY |+ E(f̂(X)ĝ(Y )) ≥ 0.

Hence by taking infimum over f̂ , ĝ we require that

1

2

(√
1− λ1|σX | −

√
1− λ2|σY |

)2
+
(√

(λ1 − 1)(λ2 − 1)− |ρm|
)
|σXσY | ≥ 0, ∀σX , σY .

This clearly requires (λ1 − 1)(λ2 − 1) ≥ ρ2m.

Before we state this result, we state a well-known lemma
(mentioned by Mossel to the authors) that already provides a
simple characterization for pairs of random variables whose
support is not the entire product space X × Y .

Lemma 1. Consider a pair of random variables (X,Y ) ∼
p(x, y). Suppose there exists (x0, y0) ∈ X × Y such that
p(x0, y0) = 0, then for no pair (λ1, λ2) ∈ (0, 1) × (0, 1)
will (X,Y ) be (λ1, λ2)-reverse-hypercontractive.

Proof. The simple argument is presented here for complete-
ness. Consider f(X) and g(Y ) defined by f(x0) = 1, f(x′) =
ε∀x′ 6= x0; g(y0) = 1, g(y′) = ε∀y′ 6= y0. Note that

E(f(X)g(Y )) = p(x0, y0) +O(ε) = O(ε).

On the other hand ‖f(X)‖λ1
≥ pX(x0)

1
λ1 , ‖g(Y )‖λ2

≥
pY (y0)

1
λ2 . Taking ε → 0, we see that (1) is violated by a

suitably small ε. Note that since x0, y0 belong to the support,
pX(x0), pY (y0) > 0.

II. BINARY ERASURE CHANNEL

Consider a uniform binary random variable X ∈ {0, 1}
passed through a binary erasure channel BEC(ε) (0 < ε <
1) producing the ternary output Y ∈ {0, E, 1} . Concretely
P (Y = 0|X = 0) = P(Y = 1|X = 1) = 1 − ε and P (Y =
E|X = 0) = P(Y = E|X = 1) = ε.

Let pBECXY denote the joint law. The correlation bound
for this setting says that (X,Y ) is (λ1, λ2) reverse-
hypercontractive for λ1, λ2 ∈ (−∞, 1) only if

(λ1 − 1)(λ2 − 1) ≥ 1− ε.

The following main new result of this paper concerns char-
acterizing the reverse-hypercontractive region for the binary
erasure channel for certain range of parameters. (This leaves
as undetermined only one of the three regimes (the third one)
in Theorem 1.)

Theorem 3. Let (X,Y ) be distributed according to pBECXY

and λ1, λ2 ∈ (−∞, 1)\{0}. When λ2 < 0, (X,Y ) is (λ1, λ2)
reverse-hypercontractive if and only if

λ1 ≤
ln 2

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]
.

Proof. When λ2 < 0 and λ1 ≤ λ′2(:=
λ2

λ2−1 ) will belong to
the reverse hypercontractive region trivially from the Reverse
Hölder’s inequality and the monotonicity of ‖Z‖λ in λ.

From Theorem 1 we are left with determining the range of
λ1 ∈ (λ′2, 1) satisfying the following: for any qX there exists
rXY with rX = qX such that

1

λ1
D(qX ||pBECX ) +

1

λ2
D(rY ||pBECY ) ≥ D(rXY ||pBECXY ).

(2)

We will show that the above condition holds if and only if

λ1 ≤
ln 2

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]
. (3)

(3) =⇒ (2): If rXY is not absolutely continuous with
respect to pBECXY , D(rXY ||pBECXY ) will become +∞, while
1
λ1
D(qX ||pBECX ) + 1

λ2
D(rY ||pBECY ) are finite; violating (2).

Thus, it is sufficient to search over rXY that are absolute
continuous with respect to pBECXY .

Denote qX(X = 0) = x, rXY (X = 0, Y = 0) = r,
rXY (X = 1, Y = 1) = s. Hence rXY (X = 0, Y =
E) = x − r, rXY (X = 1, Y = E) = 1 − x − s, since
rX(X = 0) = qX(X = 0) = x.

Define f(x, r, s) according to

f(x, r, s) :=
1

λ1
D(qX ||pBECX ) +

1

λ2
D(rY ||pBECY )

−D(rXY ||pBECXY )

We need to show that when λ2 < 0 and λ1 satifies (3) then

min
x∈[0,1]

max
0≤r≤x,

0≤s≤1−x

f(x, r, s) ≥ 0.



Define the function

g(x) := max
0≤r≤x,0≤s≤1−x

f(x, r, s).

Then suffices that g(x) ≥ 0 for x ∈ [0, 1]. A simple symmetry
argument shows that g(x) is symmetric about x = 1

2 .
The idea of the proof is as follows: we will show that g(x)

has 3 stationary points in the interval x ∈ (0, 1), with one of
them being at x = 1

2 . When (λ1 − 1)(λ2 − 1) ≥ 1 − ε, we
will show that g(x) is a local minimum at x = 1

2 , implying
that the other two symmetric stationary points correspond to
local maxima. Since g( 12 ) = 0, it suffices to verify that the
boundary condition, i.e. g(0) ≥ 0. It will turn out that this
boundary point is what yields (3), the critical condition in this
case.

For a fixed x ∈ (0, 1), since λ2 < 0, convexity of D(p||q)
in p immediately implies that f(x, r, s) is concave in r, s
(when viewed as a bivariate function). Further the derivatives
at the boundary tend to infinite, implying that the maximum of
f(x, r, s) (for a fixed x) is attained strictly in the interior. Thus,
from concavity, there is a unique pair of points r0(x) ∈ (0, x)
and s0(x) ∈ (0, 1− x) such that

g(x) = f(x, r0(x), s0(x)).

We will first analyze the interior stationary points of
g(x). If x∗ is a stationary point, then one can check that
f(x∗, r0(x

∗), s0(x
∗)) is a stationary point of f(x, r, s). This

is just a consequence of f(x, r, s) being sufficiently smooth
and the details are omitted here.

Setting gradients to be zero, we have

1

λ1
ln

x

1− x
− ln

x− r
1− x− s

= 0,

1

λ2
ln

2εr

(1− ε)(1− r − s)
− ln

εr

(1− ε)(x− r)
= 0,

1

λ2
ln

2εs

(1− ε)(1− r − s)
− ln

εs

(1− ε)(1− x− s)
= 0.

These equations are the same as those Lagrange conditions
in forward hypercontractivity [11]. So via the same manipu-
lations there (not repeated here), letting y = 2(x−r)

1−r−s , we have

1− ε
ε

yλ
′
2−λ1 + y1−λ1 =

1− ε
ε

(2− y)λ
′
2−λ1 + (2− y)1−λ1

(4)

where λ′2 is Hölder conjugate of λ2. Further every solution of
the gradients condition is in one-to-one correspondence, same
equations as in [11], with a root of (4).

According to Lemma 2, under the condition λ1 ≤
ln 2

ln 2−λ2−1
λ2

ln[(1−ε)2
1

λ2−1 +ε]
, equation (4) has only three roots

y = 1− γ, 1 + γ, 1 for some γ ∈ (0, 1).
Correspondingly, the number of interior stationary points

f(x, r, s) is three given by: x∗1 = 1
2 ; and two symmetric points

x∗2 = (1+γ)ε+(1+γ)λ
′
2 (1−ε)

2ε+(1−ε)[(1+γ)λ
′
2+(1−γ)λ

′
2 ]
> 1

2 , and x∗3 = 1 − x∗2 =

(1−γ)ε+(1−γ)λ
′
2 (1−ε)

2ε+(1−ε)[(1+γ)λ
′
2+(1−γ)λ

′
2 ]
< 1

2 .

Part (i) of Lemma 2 establishes that (λ1 − 1)(λ2 − 1) ≥
1 − ε; and under this case we will show that x∗ = 1

2 is a
local minimizer of g(x). Then x∗2 and x∗3 cannot be a local
minimizer of g(x) as g(x) is continuously differentiable on
(0, 1). Thus, x∗2 and x∗3 cannot be global minimizers of g(x).

To show x∗ = 1
2 is a local minimizer of g(x), notice that

g( 12 ) = f( 12 ,
1−ε
2 , 1−ε2 ) = 0. So suffices to show that for δ > 0

arbitrarily small, g( 12 + δ) > 0.
One can verify that

f(
1

2
+ δ, r0(

1

2
+ δ), s0(

1

2
+ δ))

= 2(
1

λ1
− 1− λ2
ε− λ2

)δ2 +O(δ3).

which is strictly positive for small δ precisely when

(λ1 − 1)(λ2 − 1) > 1− ε.

Thus the global minimizer of g(x) can only be one of the
three points {0, 12 , 1}. By symmetry g(0) = g(1). Now g(0) =
maxs∈[0,1] f(0, 0, s), where

f(0, 0, s) =
1

λ1
ln 2 +

1

λ2
[s ln

2s

1− ε
+ (1− s) ln 1− s

ε
]

−s ln 2s

1− ε
− (1− s) ln 2(1− s)

ε

Notice the above function is concave over s. By taking
derivative over s, we get that the maximum point s0(0) =

1−ε

1−ε+2
1

1−λ2 ε
.

Thus f(0, 0, s0(0)) ≥ 0 is equivalent (after re-arranging) to

λ1 ≤
ln 2

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]
.

This range, from first part of Lemma 2, also satisfies (λ1 −
1)(λ2 − 1) > 1 − ε, implying that when (3) holds, g(x) ≥ 0
for all x ∈ [0, 1] and hence (2) holds.

(2) ⇒ (3): Let qX(X = 0) = 0. If rXY is not ab-
solutely continuous with respect to pBECXY , D(rXY ||pBECXY )
will become +∞, while 1

λ1
D(qX ||pBECX ), 1

λ2
D(rY ||pBECY )

are finite, which contradicts the condition. Suffices to consider
the case when rXY is absolutely continuous with respect to
pBECXY .

As before denote r(X = 1, Y = 1) = s, (0 ≤ s ≤
1). The condition 1

λ1
D(qX ||pBECX ) + 1

λ2
D(rY ||pBECY ) ≥

D(rXY ||pBECXY ) for some rXY with rX = qX leads to
f(0, 0, s) ≥ 0 for some s ∈ [0, 1]. But as mentioned in the
previous section, this is equivalent to f(0, 0, s0(0)) ≥ 0, which
leads to

λ1 ≤
ln 2

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]
.

Lemma 2. Let λ′2 < λ1 < 1, λ2 < 0. When λ1 ≤
ln 2

ln 2−λ2−1
λ2

ln[(1−ε)2
1

λ2−1 +ε]
, the following hold:

(i) (λ1−1)(λ2−1) ≥ 1− ε. Further the inequality is strict
if ε ∈ (0, 1).



(ii) The equation

1− ε
ε

xλ
′
2−λ1 + x1−λ1 =

1− ε
ε

(2− x)λ
′
2−λ1 + (2− x)1−λ1

has three roots x = 1− γ, 1, 1 + γ for some γ ∈ (0, 1).

Proof. Note that

(λ1 − 1)(λ2 − 1) ≥
(λ2−1)2
λ2

ln[(1− ε)2
1

λ2−1 + ε]

ln 2− λ2−1
λ2

ln[(1− ε)2
1

λ2−1 + ε]
.

Therefore it suffices to show that the right-hand-side is larger
than 1 − ε when λ2 < 0. Setting r = 1

1−λ2
∈ (0, 1) and

substituting into the right-hand-side, it suffices to show that
1

r(r−1) ln[(1− ε)2
−r + ε]

ln 2 + 1
r−1 ln[(1− ε)2−r + ε]

≥ 1− ε.

This can be rearranged as

(1− ε) + ε2r ≤ 2
εr

1−r+εr .

It is a rather immediate exercise to verify that the right-hand-
side is strictly concave in ε, for ε ∈ (0, 1); and since equality
holds at ε = 0 and ε = 1, we have the desired result. This
establishes part (i) of the lemma.

Proof of (ii): Define the function h(x)

h(x) =
1− ε
ε

xλ
′
2−λ1 + x1−λ1

− 1− ε
ε

(2− x)λ
′
2−λ1 − (2− x)1−λ1 .

Note that h(1) = 0, limx↓0 h(x) = +∞. Further h(x) =
−h(2−x). Part (ii) follows by showing that there is only one
root for h(x) = 0 for x ∈ (0, 1).

Take the derivative with respect to x,

h
′
(x) =

(1− ε)(λ′2 − λ1)

ε
xλ
′
2−λ1−1 + (1− λ1)x

−λ1

+
(1− ε)(λ′2 − λ1)

ε
(2− x)λ

′
2−λ1−1 + (1− λ1)(2− x)−λ1 .

Note that

(1− ε)λ′2 + ε− λ1 > 0 ⇐⇒ (λ1 − 1)(λ2 − 1) > 1− ε.

Thus h′(1) = 2
(

(1−ε)λ′2+ε−λ1

ε

)
> 0 from part (i). Hence

h(x) = 0 will have at least one root in (0, 1).
The claim that h(x) = 0 has only one root in (0, 1) will

follow by showing that h(x) first decreases and then increases
on (0, 1); in other words h′(x) has only one root in (0, 1).
Since limx↓0 h

′(x) = −∞, h′(1) > 0, and h′(x) is continuous
on (0, 1], implies that there is at least one root at x = 1− y0
for y0 ∈ (0, 1) for h′(x).

Setting x = 1 − y and considering the Taylor Series
expansion of h′(x) w.r.t. y, about y = 0, we obtain

h′(1− y) = 2

∞∑
k=0

[
(1− ε)(λ′2 − λ1)

ε

(
λ′2 − λ1 − 1

2k

)
+(1− λ1)

(
−λ1
2k

)]
y2k.

Let ak = (1− λ1)
(−λ1

2k

)
and bk =

(1−ε)(λ1−λ′2)
ε

(
λ′2−λ1−1

2k

)
.

Note that ak, bk ≥ 0 and

h′(1− y) = 2
∑
k≥0

(ak − bk)y2k.

Note that a0 ≥ b0 (from part (i) or since this is h′(1)).
Suppose there exists k0 such that ak0 ≤ bk0 , then ak ≤

bk,∀k ≥ k0. This follows basically from an induction argu-
ment, since

ak+1 = ak
(λ1 + 2k)(λ1 + 2k + 1)

(2k + 1)(2k + 2)

bk+1 = bk
(λ1 + 1− λ′2 + 2k)(λ1 + 1− λ′2 + 2k + 1)

(2k + 1)(2k + 2)
.

1−λ′2 > 0 implies that once bk ≥ ak, the inequality continues
to hold for larger k. Since h′(1− y) = 0 has a root in (0, 1),
implies that ∃ m ≥ 0 such that ak ≥ bk,∀k ≤ m and bk ≥
ak,∀k > m.

Define ck = |ak − bk|. Then

h′(1− y) =
m∑
k=0

cky
2k −

∞∑
k≥m+1

cky
2k

where ck ≥ 0 (with at least one ck in each range, k ∈ [1 : m]
and k ≥ m + 1 being strictly positive). Let y0 ∈ (0, 1) be a
root of h′(1− y) = 0.

For y > y0 > 0, note that
m∑
k=0

cky
2k <

(
y

y0

)2m m∑
k=0

cky
2k
0

=

(
y

y0

)2m ∞∑
k=m+1

cky
2k
0

<

∞∑
k=m+1

cky
2k.

The equality above is a consequence of y0 being a root. Thus,
no y > y0 can be a root of h′(1−y) = 0. Similarly, reversing
inequalities above, for 0 < y < y0, y cannot be a root for
h′(1− y) = 0.

Thus h′(x) = 0 has only one root in the interval x ∈ (0, 1),
and as limx↓0 h

′(x) = −∞, h′(1) > 0, due to the continuity of
h′(x), we have h′(x) < 0 for x ∈ (0, 1−y0) and h′(x) > 0 for
x ∈ (1− y0, 1). Putting this together with limx↓0 h(x) = +∞
and h(1) = 0 implies that, h(x) = 0 has precisely one root,
say x = 1− γ, in the interval x ∈ (0, 1). Since h(1− y) is an
odd function; the roots are given by x = 1− γ, 1, 1 + γ. This
completes the proof of part (ii).

A. Binary Symmetric Channel

The same technique that we employed can be used for the
case of uniform binary input, X , passing through a binary
symmetric channel to produce Y . In this case, a result due to
Borrell [1] already shows that the correlation bound is tight
and the technqiue developed here just provides another proof.
Due to space limitations, we only provide an outline of this



argument. As you will see, this case is considerably simpler
than that of the erasure channel.

The information-measure characterization in Theorem 1
essentially reduces to checking that a certain min-max expres-
sion is non-negative. By analyzing each case (in Theorem 1)
separately we can show, in a similar fashion, that any interior
local minimum must be a stationary point.

Further by analyzing the first derivative conditions, we will
arrive that all stationary points are in one-to-one correspon-
dence with the set of y satisfying

y−t(
1−θ
1+θ )

2

=
(1 + θy)tθ + (θ + y)t

(θ + y)tθ + (1 + θy)t
, (5)

for some appropriately defined t ∈ (−∞, 0) and θ ∈ (0,∞).
This is identical to the forward analysis presented in [11] and
the details are omitted. As shown again in the forward case,
the above equation has a unique root y = 1 in (0,∞); when
θ ∈ (0,∞)\{1}. This shows that the unique interior stationary
point is rXY = pBSCXY . Contrary to the binary erasure channel,
it turns out that the boundary points do not influence the
reverse-hypercontractive region.

III. DISCUSSION

As shown in [12] hypercontractive region is same as the
Gray-Wyner source coding region. In recent past a variety
of computations of capacity regions (or achievable regions)
have been performed in network information theory, mostly
by the authors and/or their collaborators. All of them involve
optimizing non-convex functions over probability spaces. The
functions are linear combinations of information measures and
usually satisfy the tensorization (or sub-additivity) property.
The exact computations have been in small alphabet spaces,
but nevertheless in all the cases, the global maximizer could
be identified by a local analysis.

In many cases, for instance [13], there is only a single
interior local optimizer; and sometimes it is a competition
between the boundary and the interior point, [14]. However, in
each case, the proofs are quite complicated and require careful
analysis with very few re-use of specific results. There are
some other similar problems (conjectures), for example the one
in [15], where numerically, there do not exist any other local
optimizer other than the conjectured ones. However, a rigorous
mathematical proof is lacking for many of these settings.

It is possible that all the problems being considered belong
to a larger sub-class of non-convex problems where a certain
set of standard tools could be devised to isolate the global
maximizers. This could have far reaching consequences: for
instance a fast approximation algorithm for obtaining the
hypercontractivity parameters (which would then make certain
classes of problems, believed to be inapproximable better
than a certain ratio, have better approximation guarantees
using polynomial time algorithms), or even more massively,
some type of justification for why the Replica heuristic from
Statistical Physics gives accurate predictions. Therefore, these
calculations even for special cases may help someone piece
together a cohesive picture.

IV. CONCLUSION

In this paper we derive the reverse-hypercontractivity region
for a pair of variables distributed via the binary erasure channel
with uniform input probability. The technique employed is
essentially a local analysis (identifying local extremal points
and comparing the function values between them). The key
insight that enables us to do this effectively is that a certain
Taylor series expansion has exactly one sign change in its
coefficients, leading us to get a control on the number of
stationary points. The analysis techniques used here may
be of independent interest for a variety of problems where,
numerically, a local analysis seems to provide a solution; but
a proper analysis has not yet been completed.
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