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Abstract—We obtain the strong data processing constant
for sums of real-valued i.i.d. random variables by means of
a very simple proof. As a by-result, we recover a classical
result concerning the maximal correlation between sums of
a sequence of real-valued i.i.d. random variables.

I. INTRODUCTION

Data processing inequalities are fundamental tools that
are often used in information theoretic arguments. The
classical data processing inequality for mutual informa-
tion states that if three random variables U − X − Y
form a Markov chain, then

I(U ;Y ) ≤ I(U ;X).

A finer question that one may ask is to determine the
best constant s∗(X;Y ) that depends on the joint law of
(X,Y ), such that the inequality

I(U ;Y ) ≤ s∗(X;Y )I(U ;X),

holds for every U such that U − X − Y is Markov.
We define s∗(X;Y ) to be the strong data processing
constant associated with the pair (X,Y ). Note that
s∗(X;Y ) is not in general symmetric in X and Y .
The readers may refer to [1] for some relevant back-
ground related to s∗(X;Y ). In particular, computation
of s∗(X;Y ) is not an easy task, and an explicit formula
for s∗(X;Y ) is known only for some special classes
of joint distributions, see [2] and references therein. The
strong data processing constant has important operational
meanings in the efficiency of investment information [3],
and in the efficiency of common randomness generation
[4]. It has also been used to provide outer bounds on
multiterminal source coding problems [5].

In this paper, we use information theoretic ideas and
tools to obtain the strong data processing constant for
sums of real-valued independent and identically dis-
tributed (i.i.d.) random variables by means of a very
simple proof. As a consequence of this result, we recover
two classical results in statistics: the maximal correlation
of sums of real-valued i.i.d. random variables [6] and

the maximal correlation of jointly Gaussian random
variables [7], [8].

All the random variables considered in this paper are
real valued and Borel measurable.

II. MAXIMAL CORRELATION AND STRONG DATA
PROCESSING CONSTANT

Given random variables (X,Y ), the following two
notions of correlation between them are considered in
this paper.

The Hirschfeld-Gebelein-Rényi maximal correlation
[7], [9], [10] between X and Y is defined as:

ρm(X;Y ) = supEf(X)g(Y ), (1)

where the supremum is taken over the set of measurable
functions f : X → R, g : Y → R satisfying Ef(X) =
Eg(Y ) = 0,Ef(X)2 ≤ 1,Eg(Y )2 ≤ 1.

The strong data processing constant corresponding to
X and Y is defined as [3], [11]:

s∗(X;Y ) = sup
U :U−X−Y

0<I(U ;X)<∞

I(U ;Y )

I(U ;X)
. (2)

Note that ρm(X;Y ) is symmetric in its arguments
whereas s∗(X;Y ) is in general not symmetric. There
are several equivalent characterizations of s∗(X;Y ) pre-
sented in [1].

The following relation was established in [11] be-
tween one of the equivalent definitions of s∗(X;Y ) and
ρ2
m(X;Y ).

Theorem 1. [11] For any pair of random variables
(X,Y ), we have

s∗(X;Y ) ≥ ρ2
m(X;Y ). (3)
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III. MAIN RESULT

Let X1, X2, . . . , be i.i.d. copies of a non-constant
random variable X. Let Sj := X1 + X2 + . . . + Xj .
If EX2 <∞, we get

ρ2
m(Sn;Sm) ≥ m

n
, for 1 ≤ m ≤ n, (4)

by considering the standard Pearson correlation between
Sn and Sm. Indeed, by a clever characteristic function
argument, [12] showed that (4) holds even when EX2 =
∞.

The following theorem is the main result of this paper.

Theorem 2. For 1 ≤ m ≤ n, and for any U such that
U − Sn − Sm is Markov,

I(U ;Sm) ≤ m

n
I(U ;Sn). (5)

Proof. Let U be any random variable satisfying
the Markov chain U − Sn − Sm with
I(U ;Sn) < ∞. Further let pU,Sn,Sm(u, sn, sm) =
pU |Sn

(u|sn)qSm|Sn
(sm|sn)qSn

(sn). Observe that
the distributions qSn

and qSm|Sn
are fixed by the

distribution of Xi and the independence of (X1, ..., Xn).
Now consider (U ′, X ′1, ..., X

′
n) distributed according

to pU |Sn
(u′|s′n)qX1,..,Xn|Sn

(x′1, ..., x
′
n|s′n)qSn

(s′n).
As before, the distribution qX1,..,Xn|Sn

is fixed by the
distribution of Xi and the independence of (X1, ..., Xn).
Thus we induce a Markov chain U ′−S′n−(X ′1, ..., X

′
n),

while noting that (U, Sn, Sm) has the same distribution
as (U ′, S′n, S

′
m). Since we are interested only in

I(U ;Sn) and I(U ;Sm) we may as well replace them
by I(U ′;S′n) and I(U ′;S′m).

Remark: In the rest of the paper, we will drop the
primes on the random variables, and assume that we
have U − Sn − (X1, ...., Xn) to be Markov.

For any subset A ⊆ {1, 2, . . . , n}, let XA de-
note {Xi : i ∈ A} and SA :=

∑
i∈AXi. Since

X1, X2, . . . , Xn is an i.i.d. sequence and the Markov
chain U − Sn − (X1, ..., Xn) holds, the distribution of
(U,XA) depends only on the size of the set A. So, we
may define

Φ(i) := I(U ;XA), for |A| = i.

Note that for any set A, we have

I(U ;Sn)
(a)
= I(U ;Sn, SA, SAc , XA)

= I(U ;SA, SAc , Sn) + I(U ;XA|SA, SAc , Sn)

(b)

≥ I(U ;Sn) + I(U ;XA|SA, SAc).

Here (a) follows from the Markov chain U − Sn −
(X1, ..., Xn), (b) follows since Sn = SA + SAc .

The last inequality gives

0 ≥ I(U ;XA|SA, SAc)

(c)
= I(U, SAc ;XA|SA)

≥ I(U ;XA|SA) ≥ 0,

where (c) uses the independence of (SA, XA) and SAc .
Thus, we have that U − SA − XA is Markov and so,
Φ(i) = I(U ;Si).

Proving I(U ;Sm) ≤ m
n I(U ;Sn) for any 1 ≤ m ≤ n

is equivalent to showing that Φ(m) ≤ m
n Φ(n), or that

Φ(i)
i is non-decreasing over 1 ≤ i ≤ n. We will be done

if we show that for 1 ≤ i ≤ n− 1, we have

Φ(i+ 1)− Φ(i) ≥ Φ(i)− Φ(i− 1). (6)

To see why (6) suffices, note the condition is same as
convexity in discrete time. Or alternatively, by induction
if Φ(i)

i ≥
Φ(i−1)
i−1 then

Φ(i+ 1)− Φ(i) ≥ Φ(i)− Φ(i− 1)

≥ Φ(i)− i− 1

i
Φ(i) =

1

i
Φ(i).

Thus Φ(i+1)
i+1 ≥ Φ(i)

i . The base case Φ(2)
2 ≥ Φ(1) is

immediate from (6) and Φ(0) = 0.
To establish (6) observe that

Φ(i+ 1)− 2Φ(i) + Φ(i− 1)

(d)
= I(U ;X1, . . . , Xi+1)− I(U ;X1, . . . , Xi−1, Xi+1)

− I(U ;X1, . . . , Xi) + I(U ;X1, . . . , Xi−1)

= I(U ;Xi|X1, . . . , Xi−1, Xi+1)

− I(U ;Xi|X1, . . . , Xi−1)

(e)
= I(U,X1, . . . , Xi−1, Xi+1;Xi)

− I(U,X1, . . . , Xi−1;Xi)

= I(Xi+1;Xi|U,X1, . . . , Xi−1)

≥ 0,

where (d) follows from the observation that (U,XA)
has the same distribution for all sets A of the same
size, and (e) follows from independence of the sequence
X1, X2, . . . , Xn. This completes the proof.

Corollary 1. For 1 ≤ m ≤ n, we have

s∗(Sn;Sm) =
m

n
.

Proof. The corollary is an immediate consequence of
Theorem 2, Theorem 1, and the lower bound on maximal
correlation established in (4).

Remark 1. We noted earlier that s∗ is not in general
symmetric in its arguments. It can be shown in contrast
to Corollary 1 that s∗(Sm;Sn) > m

n in general by
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choosing, for example, X ∼ Ber(ε), ε 6= 0, 1
2 , 1, and

m = 1, n = 2.

As another corollary of our main result, along with
Theorem 1 and the lower bound (4), we obtain the
following classical result that characterizes the maximal
correlation of sums of i.i.d random variables. The proof
of Thm. 3 in [6] uses the Efron-Stein decomposition [13]
of symmetric functions.

Theorem 3. (Dembo-Kagan-Shepp Theorem [6])
For 1 ≤ m ≤ n,

ρ2
m(Sn;Sm) =

m

n
. (7)

Another corollary of our main result is the well known
fact [7], [8] that if (W,Z) are joint Gaussian with α as
the usual correlation coefficient, then

s∗(W ;Z) = ρ2
m(W ;Z) = α2.

This can be shown as follows. First, the Pearson correla-
tion lower bound on maximal correlation and Theorem 1
give

s∗(W ;Z) ≥ ρ2
m(W ;Z) ≥ α2.

From our main result with choosing X to be Gaussian
with zero mean and variance 1, so that

s∗
(
Sn√
n

;
Sm√
m

)
= s∗(Sn;Sm) =

m

n
,

which proves the desired result for all positive α such
that α2 is rational. The simple observation that whenever
A−B − C −D is Markov, we have

s∗(A;D) ≤ s∗(B;C),

which implies that s∗(W ;Z) as a function of α2 is
monotonically increasing. This extends the proof to
all real α ∈ [−1, 1] (by a sandwich argument), since
rationals form a dense set in the reals.

Remark 2. The proof of Theorem 2 goes through even
if some of the assumptions are suitably relaxed: for
instance, X1, X2, . . . , Xn may take values in a finite
Abelian group. Note however that in this case, the lower
bound (4) may not hold, so Theorem 2 does not help
provide a complete characterization of s∗(Sn;Sm).

CONCLUSION

We compute the strong data processing constant for
sums of real-valued i.i.d. random variables using elemen-
tary information theoretic tools. On the other hand, this
result implies, as a corollary, a non-trivial classical result
the computes the maximal correlation between sums of
real-valued i.i.d. random variables.
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