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Abstract—This paper is mostly a follow up on the work
of Etkin and Ordentlich that studied the capacity regions of
binary input deterministic interference channels. The only binary
input deterministic interference channel whose capacity region
is unknown (up to isomorphism) is when one receiver receives
the Boolean AND of the two transmitted symbols, and the other
receiver obtains the Boolean OR of the two transmitted symbols.
Etkin and Ordentlich stated in the paper that they believed that
time-division would be the capacity region for this interference
channel. In this paper we show that one can achieve rates outside
the time-division region.

That time-division yields the zero-error capacity region for this
setting is known as Simonyi’s sand-glass conjecture, a statement
that has received considerable attention in the combinatorics
community. Various upper-bounds on the sum-rate of the zero-
error capacity region had been proposed in the combinatorics
community. In this paper we evaluate an outer bound to
the (traditional notion of) capacity region due to Etkin and
Ordentlich and show that this yields, surprisingly, a tighter bound
that the best known bound for the sand-glass problem.

Finally, we establish the capacity region of the some special
classes of binary input interference channels by improving on
the outer-bound proposed by Etkin and Ordentlich.

A full version of this paper is accessible at:

https://2020.ieee-isit.org/

I. INTRODUCTION

A two-sender two-receiver memoryless interference chan-

nel models a commonly occurring scenario of two point-to-

point communications sharing a common medium and hence

resulting in (possibly) mutual interference, see Figure I. An

(n,R1, R2)-code for an interference channel consists of two

encoders that map [1 : ⌊2nR1⌋] → Xn
1 and [1 : ⌊2nR2⌋] → Xn

2 ,

respectively, and two decoders that map received sequences

Yn
1 → [1 : ⌊2nR1⌋] and Yn

2 → [1 : ⌊2nR2⌋]. The probability

of error of a code (see Figure I for notation) is defined as

Pe := P((M̂1, M̂2) 6= (M1,M2)) where (M1,M2) is assumed

to be uniformly distributed on [1 : ⌊2nR1⌋] × [1 : ⌊2nR2⌋].
A non-negative rate pair (R1, R2) is said to be achievable

if there exists a sequence of (n,R1, R2)-codes such that the

probability of error tends to zero as n tends to infinity. The

closure of the union of all achievable rate pairs is called the

capacity region. Determining a computable characterization

of the capacity region for this setting remains one of the

central open problems in multi-user information theory. An

inner bound proposed by Han and Kobayashi [1] has been

shown to be sub-optimal, even for channels with binary input

alphabets, in [2].
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Fig. 1. Memoryless Interference Channel

A special case of binary interference channels where the

channel outputs are deterministic functions of the input al-

phabets was studied by Etkin and Ordentlich in [3]. It is

clear, via a strong interference argument, that if any of the

receivers obtain an XOR of the two inputs then the sum-rate

is upper bounded by 1 and that yields the capacity region by

time-division. Therefore, upto isomorphism, there are only two

interesting classes that needed to be addressed: (i) Y1 = X1

and Y2 = X1∨X2 (the Boolean OR of the symbols), and (ii)
Y1 = X1 ∨X2 (Boolean AND) and Y2 = X1 ∧X2.

The authors developed the following upper bound to the

capacity region for any discrete memoryless interference chan-

nel.

Theorem 1 (Theorem 1 in [3]). Consider a discrete memory-

less interference channel characterized by Wa(y1|x1, x2) and

Wb(y2|x1, x2). The set of rate pairs (R1, R2) satisfying

R1 ≤ min{I(X1;Y1|X2, Q), I(U2, X1;Y1|Q), H(X1|U1, Q)}

R2 ≤ min{I(X2;Y2|X1, Q), I(U1, X2;Y2|Q), H(X2|U2, Q)}

for some pQpU1,X1|QpU2,X2|Q constitutes an outer bound to

the capacity region of the interference channel.

The authors showed that this outer bound was tight for the

setting Y1 = X1 and Y2 = X1 ∨X2 (see the last section for

a generalization as well as a short self-contained proof).

The remaining setting, Y1 = X1 ∧X2 and Y2 = X1 ∨ X2

will be called the AND-OR interference channel (it was called

IFC B in [3]) and this is the main focus of this article. It was

conjectured that R1 + R2 ≤ 1 is the capacity region for this

setting (see pages 2601 and 2602 of [3]). They used Theorem

https://2020.ieee-isit.org/


1 to deduce that any rate pair (R1, R2) that belongs to the

capacity region must satisfy R1 +R2 ≤ 1.189....
The two main contributions of this article with respect to

the AND-OR interference channel are the following:

• We exhibit pairs (R1, R2) with R1 + R2 > 1.01 that lie

inside the capacity region. This pair was computed by a

careful evaluation of the Han and Kobayashi achievable

region, which is a non-convex optimization problem.

• We improve the computation of the outer bound (another

non-convex optimization problem) on the sum-rate for the

AND-OR channel yielded by Theorem 1. We shows that

any (R1, R2) that belongs to the capacity region must

satisfy R1+R2 ≤ 1.18031 and further that there are rate

pairs with R1 + R2 ≥ 1.18026 that lie inside the bound

given by Theorem 1. This upper bound, surprisingly,

improves (albeit slightly) on even the upper bound for

the zero-error version of this problem.

The zero-error code version of the AND-OR channel has

received considerable attention in the combinatorics commu-

nity and in the next section, we will summarize the bounds

obtained there.

A. Zero-error capacity region and the sandglass conjecture

The following is a well-known conjecture (originally pre-

sented by Simonyi in an Oberwolfach conference in 1989) that

appeared in [4].

Conjecture 1 ( [4]). Let A and B be set systems on an n

element ground set. If for every A,A′ ∈ A and B,B′ ∈ B we

have that

A ∩B = A′ ∩B′ =⇒ A = A′

A ∪B = A′ ∪B′ =⇒ B = B′

then |A||B| ≤ 2n.

Any pair of A,B that satisfies the above two conditions are

called a recovering pair.

Clearly by the canonical identification of the elements of

A and B by sequences in {0, 1}n, we see that there is

a 1-1 mapping between zero-error codes for the AND-OR

interference channel and recovering pairs. Thus Conjecture

1 would imply that any rate pair (R1, R2) defined by a zero-

error code for the AND-OR channel must satisfy R1+R2 ≤ 1.

An early non-trivial upper bound for Conjecture 1 was

given by Holzman and Korner in [5]. They shows that if

A,B is a recovering pair then |A||B| ≤ (2.3264)n or that

R1 + R2 ≤ log2(2.3264) = 1.218. This was later improved1

by Soltész in [6] and it was show that any recovering pair must

satisfy |A||B| ≤ (2.2814)n or that R1+R2 ≤ log2(2.2814) =
1.1899. The work of Janzer in [7] improves the upper bound

to |A||B| ≤ (2.2682)n or that R1 + R2 ≤ log2(2.2682) =
1.1815. Note that this bound is better than the bound of 1.189

1The work of Etkin and Ordentlich, which establishes a better bound,
predates this work but since these were done in two ’essentially’ non-
interacting communities this was missed. One of the reasons for this article
is to present the background work in both communities.

using Theorem 1 computed by Etkin and Ordentlich. However

we show that a careful computation of Theorem 1 yields an

upper bound of 1.18031 which is an improvement even on the

bound for zero-error capacity region.

Notation: Throughout this paper, we employ the following

notation x+ = max{x, 0}.

Remark 1. In the class of binary deterministic interference

channels the zero-error capacity region is immediate, and

matches the asymptotically vanishing error situation, except

for the two settings: (i) Y1 = X1 and Y2 = X1 ∨ X2

and (ii) Y1 = X1 ∧ X2 and Y2 = X1 ∨ X2. While, the

capacity region of the latter is conjectured to be time-division;

to the best of the knowledge of the authors the zero-error

capacity region of the former remains an open problem. The

asymptotic capacity region of this setting, as obtained in [3], is

the intersection of R1 ≤ 1, and the collection of hyperplanes

R1 + λR2 ≤ max0≤p,q≤1 λH(pq) + (1 − λq)+H(p), for all

λ ≥ 1.

The main ideas in the paper are related to computing the op-

timizers for non-convex optimization problems in information

theory. Finally, we show a class of interference channels where

a tailored outer bound that strictly improves on the Etkin-

Ordentlich bound in Theorem 1 yields the capacity region.

II. THE AND-OR INTERFERENCE CHANNEL

The main results of this section are the following.

Proposition 1. For the AND-OR interference channel there ex-

ists achievable rate pairs (R1, R2) satisfying R1+R2 > 1.015,

demonstrating that time-division is not the capacity region.

The proof of this proposition is found in Section II-A.

Proposition 2. For the AND-OR interference channel there

any achievable rate pair (R1, R2) must satisfy R1 + R2 <

1.18031, improving the existing outer bound for this channel

as well as that for the sand-glass conjecture.

The proof of this proposition is found in Section II-B.

A. Achievable rate pairs

The main contribution of this section is to produce a rate-

pair (R1, R2) such that R1 + R2 > 1, thus disproving the

conjecture in (see pages 2601 and 2602 of [3]) and hence

establishing that if the sand-glass conjecture is correct, there

is a gap between the asymptotic capacity region and the zero-

error capacity region for this channel. On the other hand,

it may also be possible that the construction of this rate

pair might yield some insights into constructing potential

counterexamples for the sand-glass conjecture.

From the achievable region proposed by Han and Kobayashi

[1], it follows that any sum-rate R1 +R2 that satisfies

R1 +R2 ≤ I(X1;Y1|U2Q) + I(X2;Y2|U1Q)

R1 +R2 ≤ I(U1X2;Y2|Q) + I(X1;Y1|U1U2Q)

R1 +R2 ≤ I(U2X1;Y1|Q) + I(X2;Y2|U1U2Q)

R1 +R2 ≤ I(U2X1;Y1|U1Q) + I(U1X2;Y2|U2Q)



for some pQpU1,X1|QpU2,X2|Q is achievable. Note that this is

obtained by performing Fourier-Motzkin elimination on the

rate-region in Theorem 6.4 of [8].
In our channel setting we have Y1 = X1∧X2 and Y2 = X1∨

X2. We adopt the usual convention to denote x̄ = 1− x. Let
Q be a ternary random variable with P(Q = 0) = q̄,P(Q =
1) = P(Q = 2) = q

2 . Conditioned on

Q = 0 : U1 = X1, U2 = X2,P(X1 = 0) = P(X2 = 1) = a,

Q = 1 : U1 = 1 (a constant), U2 = X2,

P(X1 = 0) = b,P(X2 = 1) = c,

Q = 2 : U2 = 1 (a constant), U1 = X1,

P(X1 = 0) = c,P(X2 = 1) = b.

Set q = 0.9226, a = 0.3331, b = 0.4838, c = 0.9208. With

this choice, the four sum-rate constraints become

R1 +R2 ≤ 2q̄aH2(a) + q
(

cH2(b) +H2(bc̄)− c̄H2(b)
)

≈ 1.03958

R1 +R2 ≤ q̄H2(aā) +
q

2

(

cH2(b) +H2(bc̄)− c̄H2(b)
)

+
q

2
H2(cb̄) ≈ 1.01575

R1 +R2 ≤ q̄H2(aā) +
q

2

(

cH2(b) +H2(bc̄)− c̄H2(b)
)

+
q

2
H2(cb̄) ≈ 1.01575

R1 +R2 ≤ 2q̄āH2(a) + qH2(cb̄) ≈ 1.01575,

where H2(x) = −x log2(x) − x̄ log2(x̄), denotes the binary

entropy function. The values have been approximated to six

significant figures. This shows that one can achieve a sum-rate

pair R1 + R2 ≥ 1.015, which contradicts the conjecture that

time-division achieves the capacity under this setting.

Remark 2. Numerical search of Han-Kobayashi region is

rather infeasible even for binary input interference channels.

To obtain the above counterexample, we used a (lossless)

symmetrization argument and other ideas to reduce the search

space.

B. Outer bound to the capacity region

In this section we evaluate the outer bound for the sum-
rate using Theorem 1. In particular Theorem 1 yields that and
achievable rate pair must satisfy

R1 +R2

≤ min
µ∈[0,1]

max
pQpU1,X1|QpU2,X2|Q

µI(U2X1;Y1|Q) + (1− µ)H(X1|U1Q)

+ µI(U1X2;Y2|Q) + (1− µ)H(X2|U2Q)

(a)
= min

µ∈[0,1]
max

pU1,X1
pU2,X2

µI(U2X1;Y1) + (1− µ)H(X1|U1)

+ µI(U1X2;Y2) + (1− µ)H(X2|U2)

= min
µ∈[0,1]

max
pX1

pX2

µH(Y1) + µH(Y2)

+ max
pU1|X1

{(1− µ)H(X1|U1)− µH(Y2|U1X2)}

+ max
pU2|X2

{(1− µ)H(X2|U2)− µH(Y1|U2X1)}

(b)
= min

µ∈[0,1]
max

pX1
pX2

µH(Y1) + µH(Y2)

+ CpX1
[(1− µ)H(X1)− µH(Y2|X2)]

+ CpX2
[(1− µ)H(X2)− µH(Y1|X1)]

(c)
= min

µ∈[0,1]
max

0≤p,q≤1
µH2(pq̄) + (1− µ− µq)+H2(p)

+ µH2(p̄q) + (1− µ− µp)+H2(q).

In the above (a) follows since conditioning on Q is com-

puting an average over feasible distributions and hence while

computing the maximum value we remove the averaging.

The notation CpX
[f ] denotes the upper concave envelope of

the functional f(pX) with respect to distributions on X and

the equivalence follows from the link between maximization

over auxiliaries and concave envelopes as demonstrated in [9].

Finally the equality in c follows since, say for the first concave

envelope the inner function is either concave in pX1
or convex

in pX1
depending on the sign of 1− µ− µq.

Setting a particular choice of µ0 = 0.720344, we see that

any achievable sum-rate satisfies

R1 +R2 ≤ max
0≤p,q≤1

µ0H2(pq̄) + (1 − µ0 − µ0q)+H2(p)

+ µ0H2(p̄q) + (1− µ0 − µ0p)+H2(q)

Using an interval arithmetic implementation in Julia we

can obtain that the global maximum of this function over

(p, q) ∈ [0, 1] × [0, 1] lies in the interval [1.18026, 1.18031].
Note that interval arithmetic implementations keep track of

numerical errors and give a rigorous bound for the maximizer

of elementary functions. This yields that any achievable rate

pair (R1, R2) for the AND-OR interference channel must

satisfy:

R1 +R2 ≤ 1.18031.

As an immediate corollary, we obtain that if (A,B) is a

recovering pair then

|A||B| ≤ 21.18031n ≈ (2.26625)n.

This is an improvement over the best known bound for

Simonyi’s sand-glass conjecture.

A natural question to ask at this point is whether our

computation of the outer bound provided by Theorem 1 can

be improved to yield a significantly tighter bound. We now

show that this is infeasible.

Let Q be a ternary random variable with P(Q = 0) =
q

2 ,P(Q = 1) = q

2 , P(Q = 2) = 1− q. Conditioned on

Q = 0 : U1 = X1, U2 = 1 (a constant),

P(X1 = 1) = u,P(X2 = 0) = v,

Q = 1 : U2 = X2, U1 = 1 (a constant),

P(X1 = 1) = v,P(X2 = 0) = u,

Q = 2 : U1 = U2 = 1 (a constant),

P(X1 = 1) = P(X2 = 0) = a.



With this choice we obtain

H(Xi|Ui, Q) =
q

2
H2(v) + q̄H2(a), i = 1, 2

I(Uj , Xi;Yi|Q) =
q

2
(H2(uv̄)− uH2(v) +H2(vū)), i 6= j

+ q̄(H2(aā)− aH2(a))

I(Xi;Yi|Xj , Q) =
q

2
(v̄H2(u) + ūH2(v)) + q̄āH2(a), i 6= j.

Taking q = 0.76034, a = 0.29897, u = 0.2557, and

v = 0.4707 we can see that the pairs (R1, R2) =
(0.59013, 0.59013) lies inside the region given by Theorem

1. This shows that the true sum-rate bound, S, yielded by

Theorem 1 satisfies

1.18026 ≤ S ≤ 1.18031.

Remark 3. The computation was made possible using a

min-max theorem in [10], symmetrization argument, and the

identification of extremal auxiliaries with concave envelopes.

Numerically the outer bound evaluates to about 1.180268 but

to get this formal accuracy with interval arithmetic requires a

lot of time.

III. IMPROVED OUTER BOUND FOR A CLASS OF

MEMORYLESS INTERFERENCE CHANNELS

The outer bound presented in Theorem 1 matches the

capacity region for the interference channel described by:

Y1 = X1 and Y2 = X1 ∨X2. On the other hand, the presence

of the channel independent entropy term H(X1|U1, Q), which

is an active constraint for the sum-rate bound above, is a

strong indicator that the bound is not tight. The authors have

been unable to replace that term with a mutual information

term involving channel parameters for a generic interference

channel. However for a special class listed below, such a

replacement is possible and can be used to achieve the capacity

region for some settings.

Definition 1. A degraded Z-interference channel is a mem-

oryless interference channel such that Wa(y1|x1, x2) =
Wa(y1|x1), i.e. the received symbol Y1 is just a noisy version

of X1; and if there exists a channel Ŵ (y2|x2, y1) such that

Wb(Y2|x1, x2) =
∑

y1
Wa(y1|x1)Ŵ (y2|x2, y1).

Remark 4. This class of interference channels is interest-

ing despite its degraded and one-sided interference structure.

The sub-optimality of Han-Kobayashi achievable region [2]

was demonstrated for a channel in this class. Further the

scalar Gaussian Z-interference channel with weak interfer-

ence, whose capacity has been open for decades, belongs to

this class.

Theorem 2. Consider a memoryless degraded Z-interference

channel characterized by Wa(y1|x1) and Ŵ (y2|y1, x2). The

set of rate pairs (R1, R2) satisfying

R1 ≤ I(X1;Y1|U1, Q)

R2 ≤ min{I(X2;Y2|X1, Q), I(U1, X2;Y2|Q)}

for some pQpU1,X1|QpX2|Q constitutes an outer bound to the

capacity region of the interference channel.

Proof. From standard arguments we have that

nR1 ≤ I(Xn
1 ;Y

n
1 ) =

n
∑

i=1

I(X1i;Y1i|Y
i−1
1 )

nR2 ≤ I(Xn
2 ;Y

n
2 ) =

n
∑

i=1

I(Xn
2 ;Y2i|Y

i−1
2 ) ≤

n
∑

i=1

I(Y i−1
2 , X

n
2 ;Y2i)

(a)

≤

n
∑

i=1

I(Y i−1
1 , X2i;Y2i),

where (a) follows since Y i−1
2 , X

n\i
2 → (Y i−1

1 , X2i) → Y2i

forms a Markov chain for a degraded Z-interference channel.

Now identify U1i = Y i−1
1 and set Q to be uniform in [1 : n],

to complete the argument in the standard manner.

Note that the Han and Kobayashi achievable rate region for

the degraded Z-interference channel reduces to the set of rate

pairs (R1, R2) satisfying

R1 ≤ I(X1;Y1|Q)

R2 ≤ I(X2;Y2|U1Q) (1)

R1 +R2 ≤ I(U1X2;Y2|Q) + I(X1;Y1|U1Q)

for some pQpU1,X1|QpX2|Q.

Proposition 3. For a degraded Z-interference channel the

maximum achievable weighted sum-rate Cλ := λR1 +R2 for

λ ≥ 1 is given by

Cλ = max
pX1

pX2

λI(X1;Y1) + I(X2;Y2).

Proof. The outer bound in Theorem 2 yields that

Cλ ≤ max
pQpU1,X1|QpX2|Q

λI(X1;Y1|U1, Q) + I(U1, X2;Y2|Q)

= max
pU1,X1

pX2

λI(X1;Y1|U1) + I(U1, X2; Y2)

= max
pX1

pX2

I(X1, X2;Y2) + CpX1
[λI(X1;Y1)− I(X1;Y2|X2)]

(a)
= max

pX1
pX2

I(X1, X2;Y2) + λI(X1;Y1)− I(X1;Y2|X2)

= max
pX1

pX2

λI(X1; Y1) + I(X2;Y2).

In the above, the first equalities follow the same logic as the
one in the beginning of Section II-B. The equality (a) follows
as

λI(X1;Y1)−I(X1;Y2|X2) = (λ−1)I(X1;Y1)+I(X1;Y1|Y2, X2)

and hence is concave in pX1
when λ ≥ 1. The achievability

of this weighted sum-rate is immediate by treating using the

interference as noise decoding strategy.

Consider the the following two degraded Z-interference

channels. In both the channels the input alphabets are binary

and Wa(y1|x1) is a binary erasure channel with erasure

probability ǫ1.

• Interference Channel Class A: Here the receiver Y2

receives the symbol X1 ∨ X2 (the Boolean OR) passed



through a binary erasure channel with erasure probability

ǫ2, with ǫ2 ≥ ǫ1.

• Interference Channel Class B: Here the receiver Y2

receives the symbol X1 ⊕ X2 passed through a binary

erasure channel with erasure probability ǫ2, with ǫ2 ≥ ǫ1.

To establish the capacity of these channels, it suffices (due to

Proposition 3) to determine the maximum achievable weighted

sum-rate Cλ := λR1 +R2 for λ < 1.

Proposition 4. For the Interference Channel Class A the

maximum achievable weighted sum-rate Cλ := λR1 +R2 for

λ ≤ 1 is given by

Cλ = max
0≤p,q≤1

(1− ǫ2)H2(pq)+(λ(1− ǫ1)−q(1− ǫ2))+H(p).

Proof. We start with the outer bound in Theorem 2.

Cλ ≤ max
pQpU1,X1|QpX2|Q

λI(X1;Y1|U1, Q) + I(U1, X2;Y2|Q)

= max
pU1,X1

pX2

λI(X1;Y1|U1) + I(U1, X2;Y2)

= max
pX1

pX2

I(X1, X2;Y2) + CpX1
[λI(X1;Y1)− I(X1;Y2|X2)]

= max
pX1

pX2

I(X1, X2;Y2) + CpX1
[(λ(1− ǫ1)

− P(X2 = 0)(1− ǫ2))H(X1)]

(a)
= max

pX1
pX2

I(X1, X2;Y2) +
(

λ(1− ǫ1)

− P(X2 = 0)(1− ǫ2)
)

+
H(X1)

(b)
= max

0≤p,q≤1
(1− ǫ2)H2(pq) + (λ(1− ǫ1)− q(1− ǫ2))+H(p).

Where (a) follows by observing that cH(X) is concave in

p(X) when c ≥ 0 and convex if c ≤ 0. The equality (b)
follows by setting P(X1 = 0) = p,P(X2 = 0) = q.

For a given λ, let p∗, q∗ be a maximizer of

Vλ := max
0≤p,q≤1

H2(pq) + (λ(1 − ǫ1)− q(1− ǫ2))+H(p).

We know that Cλ ≤ Vλ from the previous argument.

Case 1: If λ(1 − ǫ1) − q∗(1 − ǫ2) ≥ 0, note that considering

the achievable rate pair (by treating interference as noise)

λI(X1;Y1) + I(X2;Y2) with P(X1 = 0) = p∗,P(X2 = 0) =
q∗ yields an achievable rate of

(1− ǫ2)H2(p
∗q∗) + (λ(1 − ǫ1)− q∗(1− ǫ2))H(p∗)

thus showing that Vλ ≤ Cλ.

Case 2: If λ(1 − ǫ1) − q∗(1 − ǫ2) < 0, then note that

Vλ ≤ H2(p
∗q∗) ≤ 1 and hence Vλ = Cλ = 1. In particular

the hyperplane passes through the point (R1, R2) = (0, 1).
Thus in both cases the outer bound Vλ matches the achievable

weighted sum-rate and we are done.

Remark 5. If we extend the Interference Channel Class A by

including the setting where ǫ2 < ǫ1, determining the capacity

region remains an open problem, though in this case the

channel is not a degraded Z-interference channel.

Proposition 5. For the Interference Channel Class B the

maximum achievable weighted sum-rate Cλ := λR1 +R2 for

λ ≤ 1 is given by the time-division strategy, i.e.

Cλ = max{λ(1− ǫ1), (1− ǫ2)}.

Proof. Mimicking the first steps of the proof from the previous
proposition we obtain

Cλ ≤ max
pX1

pX2

I(X1, X2;Y2) + CpX1
[λI(X1;Y1)− I(X1;Y2|X2)]

= max
pX1

pX2

I(X1, X2;Y2) + CpX1
[(λ(1− ǫ1)− (1− ǫ2))H(X1)]

(a)
= max

pX1
pX2

I(X1, X2; Y2) + (λ(1− ǫ1)− (1− ǫ2))+H(X1)

(b)
= max

0≤p,q≤1
(1− ǫ2)H2(pq) + (λ(1− ǫ1)− (1− ǫ2))+H(p).

As before, let Vλ := max0≤p,q≤1(1 − ǫ2)H2(pq) + (λ(1 −
ǫ1) − (1 − ǫ2))+H(p). If λ(1 − ǫ1) ≤ (1 − ǫ2), then it is

immediate that Vλ = (1− ǫ2). If λ(1 − ǫ1) > (1− ǫ2), then

Vλ ≤ max
0≤p,q≤1

(1− ǫ2)H2(pq) + (λ(1 − ǫ1)− (1− ǫ2))H(p)

≤ (1 − ǫ2) + (λ(1 − ǫ1)− (1− ǫ2)) = λ(1− ǫ1).

where the last inequality follows by upper bounding each

binary entropy term by one. This completes the proof.

Remark 6. If we extend the Interference Channel Class B

by including the setting where ǫ2 < ǫ1, determining the

capacity region is not hard. In this case, there is strong

interference at receiver Y2, i.e. I(X1;Y2|X2) > I(X1;Y1|X2)
and hence we obtain another outer bound that R1 + R2 ≤
I(X1, X2;Y2|Q). This combined with the usual constraints

R1 ≤ I(X1 : Y1|X2, Q) = I(X1;Y1|Q) (since it is a Z-

interference channel), and R2 ≤ I(X2;Y2|X1, Q) shows that

joint decoding at receiver Y2, yields the capacity region.

IV. SUMMARY

We used the idea of identifying extremal auxiliaries using

concave envelopes to improve the outer bound for the AND-

OR interference channel and the new bound also improves

on the best known bound for the sand-glass conjecture. We

also show that the conjectured time-division region for the

AND-OR interference channel is sub-optimal. Further, we

determined the capacity region for some classes of degraded

Z-interference channels by improving the outer bound in [3].
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