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Abstract

We establish a recent conjecture regarding the Gaussian signaling region for the Z-interference channel. This helps
us isolate a large class of parameters for which multiplexing, or noisebergs, are not needed for the computation of the
optimal Gaussian signaling region.

I. INTRODUCTION

In this paper, we study the (scalar) one-sided interference channel (or Z-interference) given by Y ′
1 = X ′

1 + Z ′
1 and

Y ′
2 = X ′

2 + aX ′
1 + Z ′

2, as depicted in Figure 1. Here, X ′
1 and X ′

2 are transmitted signals constrained to have average
powers P ′

1 and P ′
2, respectively, a ∈ (0, 1) is an interference gain, Z ′

1 and Z ′
2 are standard Gaussians, and Y ′

1 and Y ′
2

are the two received signals. Thus, this Z-interference channel model is specified using three parameters (a, P ′
1, P

′
2).
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Fig. 1. Gaussian Z-Interference Channel.

An (n,R1, R2) code C, for this model, consists of
• two message sets [1 : 2nR1 ] := {1, 2, ..., ⌊2nR1⌋} and [1 : 2nR2 ] := {1, 2, ..., ⌊2nR2⌋},
• two encoder functions [1 : 2nRi ] → Xn

i , i ∈ {1, 2} mapping each message mi to a codeword xni , where

1

⌊2nRi⌋
∑
mi

∥xni (mi)∥22 ≤ nP ′
i , i ∈ {1, 2},

• two decoder functions Yn
i → [1 : 2nRi ], i ∈ {1, 2} mapping a codeword yni to a message estimate, m̂i.

Assume that the messages (M1,M2) are uniformly distributed over [1 : ⌊2nR1⌋]× [1 : ⌊2nR2⌋]. The average probability
error is defined to be

P (n)
e = Pr((M̂1, M̂2) ̸= (M1,M2)).

A rate pair (R1, R2) is achievable if there is a sequence of (n,R1, R2) codes such that P (n)
e → 0 as n → ∞. Then

the capacity region C is defined as the closure of the set of all achievable rate pairs.
Scalar interference channels have been studied since the early 70s [?], [1]–[31]. One of the key open questions in

this area is whether Han–Kobayashi inner bound with Gaussian signaling achieves the capacity region. As we will
discuss below, it is hoped that the results in this paper can bring us closer to resolving the above problem.

In the case of strong interference, when a ≥ 1, the capacity region was established in [6], [7]. In this case, the
unintended receiver can fully decode the interfering message. Also, when a = 0, the problem decouples and has a



trivial solution. As shown in [8], the Gaussian Z-interference channel with interference parameter a in the range (0, 1)
can be regarded as a degraded Gaussian interference channel, a model shown in Figure 2.
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Fig. 2. Degraded Gaussian Interference Channel.

Like the Gaussian Z-interference channel, the degraded Gaussian interference channel is characterized by three
parameters: the two transmitter powers P1 and P2, and the power of the additional independent noise in the second
receiver, power N2. These parameters are related to the parameters of the original Z-interference channel by P1 = P ′

1,
P2 = P ′

2/a
2 and N2 = (1− a2)/a2. Moreover, since 0 < a < 1, the additional noise power N2 is always positive. We

choose to use the more common notation, without the primes, to denote the equivalent degraded setting.

A. Han-Kobayashi Region with Gaussian Signaling

It is known that the Han-Kobayashi inner bound reduces to the following three inequalities for a Gaussian Z-
interference channel.

Proposition 1 (Han-Kobayashi inner bound for Gaussian Z-interference). Given a Gaussian Z-interference channel
p(y1|x1)p(y2|x1, x2) with parameters (P1, P2, N2), a rate pair (R1, R2) is achievable if

R1 < I(X1;Y1|Q), (1a)
R2 < I(X2;Y2|U1, Q), (1b)

R1 +R2 < I(U1, X2;Y2|Q) + I(X1;Y1|U1, Q), (1c)

for some p(q)p(u1, x1|q)p(x2|q) satisfying

E∥Xn
1 ∥2 ≤ nP1, (1d)

E∥Xn
2 ∥2 ≤ nP2. (1e)

Definition 1 (Gaussian Signaling). The Han-Kobayashi achievable region with Gaussian signaling and power control
for Gaussian Z-interference channels is the set of all rate pairs (R1, R2) ∈ R2

≥0 such that 1 holds with X1 = U1+V1 for
any p(q)p(u1|q)p(v1|q)p(x2|q) where (U1|Q = q), (V1|Q = q), (X2|Q = q) are zero-mean Gaussian random variables
for each q.

Remark 1. Instead of considering this as a region in R2
≥0, it can be effectively described by its supporting hyperplanes

since it is convex. Therefore, we will describe the region alternately in terms of the maximum value of R1 + βR2, for
β ≥ 1. For β ≤ 1, the value has been established in [7], [8] (also see the next section).

It was conjectured in [16] and proved in [27] that the Han-Kobayashi achievable region with Gaussian signaling,
RHK-GS reduces to the following.

Theorem 1. Consider a Gaussian Z-interference channel with parameters (P1, P2, N2). Let β ≥ 1. Then for all
P1, P2 ≥ 0,

sup
(R1,R2)∈RHK-GS

R1 + βR2 = max
α,P̃

(
αfβ

(
P̃ ,

P2

α

)
+ (1− α)fβ

(
P1 − αP̃

1− α
, 0

))
.



subject to P2

P1+P2
≤ α ≤ 1 and 0 ≤ P̃ ≤ P1 + P2 − P2

α , where

fβ(P1, P2) =

1

2


log(P1 + P2 + 1 +N2) + (β − 1) log(P2 + 1 +N2)− β log(1 +N2), (P1, P2) ∈ R1,

β log(P1 + P2 + 1 +N2) + log(P1 + 1)− β log(P1 + 1 +N2), (P1, P2) ∈ R2,

log(P1 + P2 + 1 +N2) + β log(P2 +N2)− log(P2)− (β − 1) log(N2)

+(β − 1) log(β − 1)− β log(β), (P1, P2) ∈ R3,

with

R1 =

{
(P1, P2) : β ≥ P2 +N2

P2
(1 +N2)

}
, (2a)

R2 =

{
(P1, P2) : β ≤ P2 +N2

P2

(
1 +

N2

P1 + 1

)}
, (2b)

R3 =

{
(P1, P2) :

P2 +N2

P2

(
1 +

N2

P1 + 1

)
< β <

P2 +N2

P2
(1 +N2)

}
. (2c)

A recent survey of this region can be found in [32]. This paper establishes a conjecture about this region stated in
[32].

B. Outer Bounds to the capacity region of the Gaussian Z-interference channel

One extreme point of the capacity region occurs when X1 sends information at its maximum possible rate. Here, the
rate pair (R1, R2) is given by R1 = 1

2 log(1 + P1) and R2 = 1
2 log(1 +

P2

1+P1+N2
). There is a slope discontinuity for

the capacity region at this extreme point, which follows from the capacity region of an associated degraded broadcast
channel [5], [8]. From this, it immediately follows that this point also maximizes βR1 + R2, for β ≤ 1. This corner
point will be referred to as the Costa-Sato corner point.

Another extreme point in the achievable region occurs when X2 sends information at its maximum possible rate.
Here, we have R1 = 1

2 log(1 +
P1

1+N2+P2
) and R2 = 1

2 log(1 +
P2

1+N2
). This was established in [21], fixing a gap in

[33]. This corner point is referred to as the Costa-Polyanskiy-Wu corner point. There is also a slope discontinuity for
the capacity region at this extreme point, which follows from a recent outer bound developed in [26]. This bound is
improved in [29].
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C. Gaussian Optimality, and Multiplexing

As surveyed in [32], the optimal transmission strategy (or the solution to the problem in Theorem 1), seems to
lie in seven phases potentially. However, the current techniques that establish the optimality of Gaussian distributions
for information functionals work only when there is no multiplexing. Therefore, deducing the set of parameters for



which one does not need multiplexing in the optimal transmission strategy is imperative. Towards this, the following
conjecture was posed in [32].

Conjecture 1. Consider a degraded Gaussian Z-interference channel with parameters (P1, P2, N2). The noiseberg
region consists only of a pure superposition coding strategy (i.e. no time-sharing is required for any β-sum-rate)
whenever

(N2 + P2)(1 +N2 + P1)

P2(1 + P1)
≤ β∗,

where β∗ is the unique positive solution of ψ(β) = 0, where

ψ(β) := β

(
log

(
1 +

P2

1 +N2 + P1

)
− N2P2

(1 +N2 + P1)(1 +N2 + P1 + P2)

)
+ log

(
1− P2(1 + P1)

(1 +N2 + P1)(1 +N2 + P1 + P2)
β

)
. (3)

This conjecture proposes a set of parameters (P1, P2, N2) for which no multiplexing is needed for the computation
of any β ≥ 1, in RHK-GS. Figure 4 illustrates this set of parameters.

To see the origin of the function ψ(β), we recall the following result.

Theorem 2 ( [23]). Let βsato = max
{
β ≥ 1 : sup{R1 + βR2 : (R1, R2) ∈ RHK−GS} = 1

2 log(1 + P1) + β 1
2 log(1 +

P2

1+P1+N2
)
}

be the largest value that the hyperplane induced by R1 + βR2 passes the Costa-Sato corner point. Then

βsato = min

{
(P2 +N2)(1 +N2 + P1)

P2(1 + P1)
, β∗
}
,

where β∗ is defined as in Conjecture 1.

Using this result, Conjecture 1 can be interpreted as stating that if the capacity region departs from the Costa-
Sato corner point (as one increases β) along the pure superposition phase rather than the multiplexing phase, then
multiplexing is never needed for the computation of RHK-GS. The main result of this paper is a proof of Conjecture 1.

We have the following equivalent condition to the assumption in Conjecture 1, which is easier to verify.

Lemma 1. The following two are equivalent:

(N2 + P2)(1 +N2 + P1)

P2(1 + P1)
≤ β∗ ⇐⇒ ψ

(
(N2 + P2)(1 +N2 + P1)

P2(1 + P1)

)
≥ 0,

where ψ(β) is defined in Equation (3).

Proof. This lemma is an immediate corollary of Lemma 2.

The main theorem of this paper is the following:

Theorem 3. Conjecture 1 is valid, or equivalently when (P1, P2, N2) satisfy ψ
(

(N2+P2)(1+N2+P1)
P2(1+P1)

)
≥ 0, that is,

(N2 + P2)(1 +N2 + P1)

P2(1 + P1)
log

(
1 +

P2

1 +N2 + P1

)
− (N2 + P2)N2

(1 + P1)(1 +N2 + P1 + P2)
+ log

(
1− N2 + P2

1 +N2 + P1 + P2

)
≥ 0,

then
sup

(R1,R2)∈RHK-GS

R1 + βR2 = fβ(P1, P2),

where fβ(P1, P2) is defined in Theorem 1.

We will prove this result in the next section.
Remark 2. While the proof of the theorem is essentially a (non-trivial) exercise in calculus and optimization, it is
hoped that the proof should lead to insights that should be of use beyond the theorem. For instance, it may help curate
genies or other tools to establish tight converses. Similar results have been obtained previously in the literature. In
the very weak interference regime, we know the sum-capacity when a(1 + b2P ′

2) + b(1 + a2P ′
1) ≤ 1, using a genie

approach.
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The following result had been obtained concerning the slope of RHK-GS at the Costa-Polyanskiy-Wu corner point.

Theorem 4 ( [22]). Consider the Gaussian Z-interference channel. The smallest β such that the supporting hyperplane
R1 + βR2 of Han-Kobayashi inner bound with Gaussian inputs passes through the corner point is given by

βcosta = 1 +max

 log(N2 + 1)− N2

1+N2+P1+P2

log
(
1 + P2

1+N2

)
− P2

1+N2+P2

,
N2(1 +N2 + P2)

P2

 .

If the first term above is larger, a multiplexing strategy beats a pure superposition coding scheme for β = βcosta− ϵ,
for a sufficiently small and positive ϵ. Therefore, under the assumptions of the conjecture we must have the second
term to be larger. This is established in Lemma 3 and shows that, under the assumption of Conjecture 1, we have

βcosta = 1 +
N2(1 +N2 + P2)

P2
.

II. PROOF OF THEOREM 3

Lemma 2. Let ψ : [0, βmax) → R be defined by Equation (3). Here βmax = (1+N2+P1)(1+N2+P1+P2)
P2(1+P1)

. Then, the
following hold: ∃ β∗ ∈ (0, βmax), such that ψ(β∗) = 0, and ψ(β) > 0 if and only if β ∈ [0, β∗).

Proof. The proof of this Lemma can be found in Section A of the Appendix.

Therefore, in the rest of the paper, we will assume that (P1, P2, N2) are strictly positive numbers that satisfy

ψ

(
(N2 + P2)(1 +N2 + P1)

P2(1 + P1)

)
≥ 0. (4)

Lemma 3. If (P1, P2, N2) satisfies (4), they also satisfy P1 + 1 ≤ P2, and

log(N2 + 1)− N2

1+N2+P1+P2

log
(
1 + P2

1+N2

)
− P2

1+N2+P2

≤ N2(1 +N2 + P2)

P2
.

Proof. The proof of this can be found in Section B of the Appendix. As stated earlier, the second statement above
shows that under the assumptions of the conjecture, the slope at the Costa-Polyanskiy-Wu corner point of the capacity
region is also governed by superposition coding and not by multiplexing.

The remaining part of the proof is to show that for any β : βsato < β < βcosta, as long as the parameters satisfy
(4), there is no multiplexing required. In other words, the maximizer of the optimization problem in Theorem 1 occurs
at α = 1.



A. No multiplexing for β : βsato < β < βcosta

Let the function fβ(Q1, Q2) be defined as in Theorem 1. Let aβ(Q1, Q2) be the upper concave envelope of
fβ(Q1, Q2). Let (P1, P2) satisfy (4). To show that no multiplexing is required for β : βsato < β < βcosta, is
equivalent to showing that aβ(P1, P2) = fβ(P1, P2), or in words, the value of upper concave envelope matches the
function value at (P1, P2) (thus, one does not need any time-sharing).

For β : βsato < β < βcosta and (P1, P2) satisfying (4), we have (P1, P2) ∈ R3, where R3 is as defined in Theorem
1. We consider the tangential plane of fβ(Q1, Q2), at the point (P1, P2). If this plane lies above the function, then this
implies that aβ(P1, P2) = fβ(P1, P2). This is because, in this case, the tangential plane would be a linear (concave)
function that lies above the function fβ(Q1, Q2) (and passes trough fβ(P1, P2)), and aβ(Q1, Q2) is the pointwise
infimum of all concave functions that lie above fβ(Q1, Q2).

The tangential plane to fβ(Q1, Q2) at (P1, P2) is given by

tβ(Q1, Q2) := fβ(P1, P2) +
1

2

(
1

P1 + P2 + 1 +N2

)
(Q1 − P1) +

1

2

(
1

P1 + P2 + 1 +N2
+

β

P2 +N2
− 1

P2

)
(Q2 − P2).

Therefore tβ(Q1, Q2) ≥ fβ(Q1, Q2) is equivalent to showing that

gβ(Q1,Q2) := fβ(Q1, Q2)−
1

2

(
1

P1 + P2 + 1 +N2

)
Q1 −

1

2

(
1

P1 + P2 + 1 +N2
+

β

P2 +N2
− 1

P2

)
Q2.

attains a maximum at (P1, P2).

Interior analysis

In this section we will show that (P1, P2) is the unique interior local maximizer of gβ(Q1, Q2).

Lemma 4. Let (P1, P2) satisfy (4) and β satisfy, βsato < β < βcosta. Then (P1, P2) is the unique local maximizer of
gβ(Q1, Q2) in R2

>0.

Proof. From Lemma 3, we know that P2 ≥ P1+1. Note that that the expression for fβ(Q1, Q2) (and hence gβ(Q1, Q2))
depends on the partition (R1,R2,R3) that (Q1, Q2) belongs to. It is easy to verify that gβ(Q1, Q2) is continuously
differentiable in R2

>0.
Since β is in (βsato, βcosta), it implies that (P1, P2) ∈ R3, or equivalently,

P2 +N2

P2

(
1 +

N2

P1 + 1

)
< β <

P2 +N2

P2
(1 +N2). (5)

1) Case 1, (Q1, Q2) ∈ R1.
Therefore, from the definition of (Q1, Q2) ∈ R1, we have

β ≥ Q2 +N2

Q2
(1 +N2), (6)

and

gβ(Q1, Q2) =
1

2
log(Q1 +Q2 + 1 +N2) +

(β − 1)

2
log(Q2 + 1 +N2)−

β

2
log(1 +N2)

− 1

2

(
1

P1 + P2 + 1 +N2

)
Q1 −

1

2

(
1

P1 + P2 + 1 +N2
+

β

P2 +N2
− 1

P2

)
Q2.

The first-order conditions for local optimality yields,

1

Q1 +Q2 + 1 +N2
=

1

P1 + P2 + 1 +N2
,

1

Q1 +Q2 + 1 +N2
+

β − 1

Q2 + 1 +N2
=

1

P1 + P2 + 1 +N2
+

β

P2 +N2
− 1

P2
.

Solving for β, and observing that Q2 > P2 from (6) and (5), we obtain

(Q2 − P2 + 1 +N2)(P2 +N2)

P2(Q2 − P2 + 1)
= β ≥ Q2 +N2

Q2
(1 +N2).



The above inequality can be rewritten as(
1 +

N2

Q2 − (P2 − 1)

)(
1 +

N2

1 + (P2 − 1)

)
≥
(
1 +

N2

Q2

)(
1 +

N2

1

)
. (7)

Define
θ(x) :=

(
1 +

N2

Q2 − x

)(
1 +

N2

1 + x

)
.

Simple calculation yields that θ(x) is strictly convex in (0, Q2 − 1), and also observe that θ(0) = θ(Q2 − 1). Since,
Q2 − 1 > P2 − 1 ≥ P1 > 0, necessitates (from convexity of θ) that θ(P2 − 1) ≤ θ(0) = θ(Q2 − 1), contradicting (7).
Therefore, there cannot be a local maximizer (Q1, Q2) ∈ R1.

2) Case 2, (Q1, Q2) ∈ R2.
Then

gβ(Q1, Q2) =
β

2
log(Q1 +Q2 + 1 +N2) +

1

2
log(Q1 + 1)− β

2
log(Q1 + 1 +N2)

− 1

2

(
1

P1 + P2 + 1 +N2

)
Q1 −

1

2

(
1

P1 + P2 + 1 +N2
+

β

P2 +N2
− 1

P2

)
Q2,

and

β ≤ Q2 +N2

Q2

(
1 +

N2

1 +Q1

)
.

Suppose (Q1, Q2) satisfies the first and second-order (we write the only non–trivial one here) conditions for optimality,
i.e.:

β

Q1 +Q2 + 1 +N2
+

1

Q1 + 1
− β

Q1 + 1 +N2
=

1

P1 + P2 + 1 +N2
,

β

Q1 +Q2 + 1 +N2
=

1

P1 + P2 + 1 +N2
+

β

P2 +N2
− 1

P2
,

− 1

(Q1 + 1)2
+

β

(Q1 + 1 +N2)2
≤ 0.

The first-order condition implies

β

(
P2 − (Q1 + 1)

(Q1 + 1 +N2)(P2 +N2)

)
=
P2 − (Q1 + 1)

(Q1 + 1)P2
.

Suppose P2 = Q1 + 1, plugging into the second order condition, we have

P2 +N2

P2

(
1 +

N2

1 + P1

)
< β ≤

(
Q1 + 1 +N2

Q1 + 1

)2

=

(
P2 +N2

N2

)2

=⇒ P1 + 1 > P2,

a contradiction.
Suppose P2 ̸= Q1 + 1. Note, as (Q1, Q2) ∈ R2 and (P1, P2) ∈ R3, we have

(P2 +N2)(Q1 + 1 +N2)

P2(Q1 + 1)
= β >

P2 +N2

P2

(
1 +

N2

1 + P1

)
=⇒ Q1 < P1,

(P2 +N2)(Q1 + 1 +N2)

P2(Q1 + 1)
= β ≤Q2 +N2

Q2

(
1 +

N2

1 +Q1

)
=⇒ Q2 ≤ P2,

thus Q1 +Q2 < P1 + P2. Plugging β into the second of first-order conditions above and simplifying yields,

1

P1 + P2 + 1 +N2
=

P2(Q1 + 1) +N2(P2 −Q2)

P2(Q1 + 1)(Q1 +Q2 + 1 +N2)
≥ 1

Q1 +Q2 + 1 +N2
,

using P2 ≥ Q2. However, this implies that Q1 +Q2 ≥ P1 + P2, contradicting Q1 +Q2 < P1 + P2, obtained above.
This, there is not (Q1, Q2) ∈ R2 that is a local maximizer.



3) Case 3, (Q1, Q2) ∈ R3.
Then

gβ(Q1, Q2) =
1

2
log(Q1 +Q2 + 1 +N2) +

β

2
log(Q2 +N2)−

1

2
log(Q2)−

(β − 1)

2
log(N2) +

(β − 1)

2
log(β − 1)

− β

2
log(β)− 1

2

(
1

P1 + P2 + 1 +N2

)
Q1 −

1

2

(
1

P1 + P2 + 1 +N2
+

β

P2 +N2
− 1

P2

)
Q2,

and β satisfies

Q2 +N2

Q2

(
1 +

N2

Q1 + 1

)
< β <

Q2 +N2

Q2
(1 +N2).

The first and second-order (again the non-trivial inequalities only) conditions give

1

Q1 +Q2 + 1 +N2
=

1

P1 + P2 + 1 +N2
,

1

Q1 +Q2 + 1 +N2
+

β

Q2 +N2
− 1

Q2
=

1

P1 + P2 + 1 +N2
+

β

P2 +N2
− 1

P2
,

− β

(Q2 +N2)2
+

1

Q2
2

≤ 0.

Note that P1 + P2 = Q1 +Q2, so if (Q1, Q2) ̸= (P1, P2), then Q1 ̸= P1 and Q2 ̸= P2. Then

(Q2 +N2)(P2 +N2)

Q2P2
= β ≥ (Q2 +N2)

2

Q2
2

=⇒ P2 ≤ Q2,

(Q2 +N2)(P2 +N2)

Q2P2
= β ≥ P2 +N2

P2

(
1 +

N2

1 + P1

)
=⇒ 1 + P1 ≥ Q2.

In the above, the first inequality follows from the second-order conditions, and the second inequality as (P1, P2) ∈ R3.
Therefore, it follows that

P2 < Q2 ≤ 1 + P1,

and this is a contradiction of the result we obtained in Lemma 3 on (P1, P2). Thus, (P1, P2) is the only local maximizer
in R3.
This completes the proof of the lemma.

To complete the proof of Conjecture 1, we have to show that the global maximizer is not on the boundary, i.e., on
the lines Q2 = 0, or Q1 = 0.

Boundary analysis

In this section, we show that gβ(Q1, Q2) has only one local maximum on the Q1-axis and Q2-axis, which is proved
to be smaller than the interior maximum.
1) Case 1: Q2 = 0.

The first-order conditions for optimality yield

1

1 +Q1
=

1

1 + P1 + P2 +N2
,

β

1 +Q1 +N2
≤ 1

P1 + P2 + 1 +N2
+

β

P2 +N2
− 1

P2
.

Lemma 5. If (P1, P2) satisfy the condition in (4) and βsato < β < βcosta, then

gβ(P1 + P2 +N2, 0) ≤ gβ(P1, P2).

The proof can be found in Appendix C.
2) Case 2: Q1 = 0.

Case 2.1: β ≥ Q2+N2

Q2
(1 +N2).



In this case (0, Q2) ∈ R1. The first derivative conditions for a local maximizer yields

β

Q2 + 1 +N2
=

1

P1 + P2 + 1 +N2
+

β

P2 +N2
− 1

P2
,

1

Q2 + 1 +N2
≤ 1

P1 + P2 + 1 +N2
.

This implies

β

(
P1 + 1

(P2 +N2)(P1 + P2 + 1 +N2)

)
≤ P1 + 1 +N2

P2(P1 + P2 + 1 +N2)
,

or equivalently

β ≤ P2 +N2

P2

(
1 +

N2

1 + P1

)
.

The right-hand-side is βsato for P1, P2 satisfying (1) and since we considering β : βsato < β < βcosta, we have a
contradiction.

Case 2.2: β < Q2+N2

Q2
(1 +N2).

The first derivative conditions for a local maximizer yields

β

Q2 + 1 +N2
=

1

P1 + P2 + 1 +N2
+

β

P2 +N2
− 1

P2
,

β

Q2 + 1 +N2
+ 1− β

1 +N2
≤ 1

P1 + P2 + 1 +N2
.

Therefore, we must have
β

P2 +N2
− 1

P2
+ 1− β

1 +N2
≤ 0.

Since P2 ≥ 1 + P1 > 1, the above condition reduces to β ≥ P2+N2

P2
(1 + N2) = βcosta. Since we considering

β : βsato < β < βcosta, we have a contradiction.

III. DISCUSSION AND CONCLUSION

Determining the capacity region of the Gaussian Z-interference channel is a fundamental open problem in network
information theory. It is even more frustrating when there is a candidate, the Han-Kobayashi region with Gaussian
signaling, for its capacity region. Such instances are rare, with only Marton’s inner bound for a two-receiver broadcast
channel as the closest analogy. The principal issue with the Han-Kobayashi region with Gaussian signaling is that,
for any weighted sum rate, the value is given by the evaluation of the upper concave envelope of an explicit two-
dimensional function, fβ(P1, P2). If we wish to show that this region is optimal, the current techniques for establishing
Gaussian optimality (there are several) work only when the optimizer is a single Gaussian distribution and not when
the optimizer involves time-sharing between two Gaussians. One can try to employ Fenchel duality, as proposed in
[34], to get around this issue. However, as established in [35], the Gaussian optimality can fail if one works with the
(tangential) hyperplanes induced by points that need time-sharing. All of the above makes it imperative that we identify
parameters for which one does not require time-sharing, which is one of this paper’s primary motivations.

Despite a mathematical proof of Conjecture 1 in this paper, the authors do not yet understand why the behavior at
Sato’s corner point determines the need (or lack of) for time-sharing. As one may notice by going through the full
version [36], the proofs of Lemma 3 and Lemma 5 are rather involved and do not seem to have direct analogies to
arguments involving information measures. Understanding this may greatly help in designing converses to the capacity
region.

Conclusion

In this paper we studied the Gaussian signaling region for the Han-Kobayashi achievable region for the Gaussian
Interference channel. We established a recently proposed conjecture showing that the above region does not involve
time-sharing for some specified parameters. It is hoped that by focusing on these parameters, one can either disprove
the optimality of the Gaussian signaling region or come up with proof of its optimality, as the absence of time-sharing
makes it amenable to standard arguments for showing Gaussian optimality.
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APPENDIX

A. Proof of Lemma 2

Proof. We first show that function ψ(β) = 0 has a unique (strictly) positive solution β∗. Note that ψ(0) = 0,

ψ′(β) = log

(
1 +

P2

1 +N2 + P1

)
− N2P2

(1 +N2 + P1)(1 +N2 + P1 + P2)
− 1

(1+P1+N2)(1+N2+P1+P2)
P2(1+P1)

− β

is decreasing in β, and

ψ′(0) = log

(
1 +

P2

1 +N2 + P1

)
− P2

1 +N2 + P1 + P2

= − log

(
1− P2

1 +N2 + P1 + P2

)
− P2

1 +N2 + P1 + P2

> 0.

Further, observe that as β ↑ βmax, ψ′(β) → −∞. From above considerations, ψ′(β) = 0, say β0, has exactly one root
in (0, βmax). Therefore ψ(β) increases in (0, β0) and decreases in (β0, βmax). Additionally, observe that as β ↑ βmax,
ψ(β) → −∞. From this, the lemma follows.

B. Proof of Lemma 3

Assuming (P1, P2, N2) satisfy (4), we know that βsato = (N2+P2)(1+N2+P1)
P2(1+P1)

, and that

gβsato(Q1, Q2) := fβ(Q1, Q2)−
1

2(1 + P1)
Q1 +

β

2(1 + P1 +N2)
Q1 −

β

2(1 + P1 + P2 +N2)
Q2,

has a global maximum at (P1, P2) (the largest such β is the characterization of βsato). Second derivative conditions
for local optimality yield

βsato ≤ (1 + P1 +N2)
2

(1 + P1)2
⇐⇒ P2 +N2

P2
≤ (1 + P1 +N2)

(1 + P1)
,

implying P2 ≥ P1 + 1 as desired.
The proof of the second condition is a bit more involved. We define the following function ϕ1 : (−1,∞) → R by:

ϕ1(x) =
(N2 + P2)(1 +N2 + x)

P2(1 + x)
log

(
1 +

P2

1 +N2 + x

)
− N2(N2 + P2)

(1 + x)(1 +N2 + x+ P2)
+ log

(
1− N2 + P2

1 +N2 + x+ P2

)
.

It’s immediate to verify that

ψ

(
(N2 + P2)(1 +N2 + P1)

P2(1 + P2)

)
= ϕ1(P1).

Lemma 6. If ϕ1(P1) ≥ 0, for P1 > 0, then ϕ1(0) > 0. Furthermore, there is a unique point y0 > 0 such ϕ1(y0) = 0
and ϕ1(x) < 0 ∀x > y0. Further, ϕ1(x) > 0 for 0 < x < y0.

Proof. As x→ ∞, observe that

ϕ1(x) =
(N2 + P2)

(1 + x)
− N2(N2 + P2)

(1 + x)(1 +N2 + x+ P2)
− N2 + P2

1 +N2 + x+ P2

− (N2 + P2)P2

2(1 +N2 + x)(1 + x)
− (N2 + P2)

2

2(1 +N2 + x+ P2)2
+O

(
1

x3

)
=

P2(N2 + P2)

(1 + x)(1 +N2 + x+ P2)
− (N2 + P2)P2

2(1 +N2 + x)(1 + x)
− (N2 + P2)

2

2(1 +N2 + x+ P2)2
+O

(
1

x3

)
=

1

x2

(
P2(P2 +N2)−

1

2
P2(P2 +N2)−

1

2
(P2 +N2)

2

)
+O

(
1

x3

)
= − 1

2x2
N2(N2 + P2) +O

(
1

x3

)
.



Therefore, eventually, ϕ1(x) is negative and tends to 0 from below as x → ∞. Note that for x ≥ 0, ϕ1(x) and
ϕ̂1(x) := (1 + x)ϕ1(x) have the same sign. Further, from the above estimate, we also have that ϕ̂1(x) is negative and
tends to 0 from below as x→ ∞.

Observe that, rearrangement of terms yields,

ϕ̂1(x) = r(1 + x)− N2 + P2

P2
r(1 +N2 + x) +

N2

P2
r(1 +N2 + P2 + x)− N2(N2 + P2)

1 + x+ P2 +N2
,

where r(x) := x log(x). Since r′′(x) = 1
x , we obtain that

ϕ̂′′1(x) = r′′(1 + x)− N2 + P2

P2
r′′(1 +N2 + x) +

N2

P2
r′′(1 +N2 + P2 + x)− 2N2(N2 + P2)

(1 + x+ P2 +N2)3

=
1

1 + x
− N2 + P2

P2(1 +N2 + x)
+

N2

P2(1 +N2 + P2 + x)
− 2N2(N2 + P2)

(1 + x+ P2 +N2)3

=
N2(N2 + P2)

(1 + x)(1 +N2 + x)(1 +N2 + P2 + x)
− 2N2(N2 + P2)

(1 + x+ P2 +N2)3

=
N2(N2 + P2)

(1 + x)(1 +N2 + x)(1 +N2 + P2 + x)3
(
(1 + x+ P2 +N2)

2 − 2(1 + x)(1 +N2 + x)
)

Observe that ϕ̂′′1(x) = 0 has exactly one root in the interval (−1,∞). Furthermore, ϕ̂1(x) is initially convex and
then concave. Therefore, combining with the earlier argument, eventually ϕ̂1(x) is concave, increasing, and tends to 0
from below as x→ ∞. Further, a simple calculation yields that, limx→−1+ ϕ̂

′′
1(−1) = −∞. Therefore, in the interval

(−1,∞), the function ϕ̂1(x) is initially convex and decreasing, reaches a local minimum (where the value is negative),
starts increasing, turns concave and asymptotes from zero from the negative side. Putting this together, if ϕ̂1(−1) < 0,
then the function always remains negative in the interval (−1,∞). On the other hand, if ϕ̂1(−1) ≥ 0, it first decreases
to a local minimum at x∗, where the function takes a negative value. Then, it remains negative for x > x∗. Clearly,
if ϕ1(P1) ≥ 0, for P1 > 0, then we must have ϕ̂1(−1) ≥ 0, and since it is decreasing initially, ϕ1(0) > 0. Further,
as argued, it has exactly one positive root y0 > 0 such ϕ1(y0) = 0 and ϕ1(x) < 0 ∀x ≥ y0. This establishes the
lemma.

Now we’re ready to state the proof of the desired lemma.

Proof. Define the following function:

ϕ2(x) =
N2(1 +N2 + P2)

P2
log(1 +N2 + P2)−

(P2 +N2)(1 +N2)

P2
log(1 +N2)−

N2(N2 + x+ P2)

1 +N2 + x+ P2
.

Then the desired inequality is equivalent to ϕ2(P1) ≥ 0. However, the following calculation shows that ϕ2(x) ≥ 0
whenever ϕ1(x) ≥ 0. Observe that

ϕ′1(x) = − (N2 + P2)N2

P2(1 + x)2
log

(
1 +

P2

1 +N2 + x

)
− N2 + P2

(1 + x)(1 +N2 + x+ P2)

+
N2(N2 + P2)

(1 + x)2(1 +N2 + x+ P2)
+

N2(N2 + P2)

(1 + x)(1 +N2 + x+ P2)2

+
N2 + P2

(x+ 1)(1 + x+ P2 +N2)

= − (N2 + P2)N2

P2(1 + x)2
log

(
1 +

P2

1 +N2 + x

)
+

N2(N2 + P2)

(1 + x)2(1 +N2 + x+ P2)
+

N2(N2 + P2)

(1 + x)(1 +N2 + x+ P2)2

ϕ′2(x) = − N2

(1 +N2 + x+ P2)2

then

(ϕ1 − ϕ2)
′(x)

= − (N2 + P2)N2

P2(1 + x)2
log

(
1 +

P2

1 +N2 + x

)
+

N2(N2 + P2)

(1 + x)2(1 +N2 + x+ P2)



+
N2(N2 + P2)

(1 + x)(1 +N2 + x+ P2)2
+

N2

(1 +N2 + x+ P2)2

= − (N2 + P2)N2

P2(1 + x)2
log

(
1 +

P2

1 +N2 + x

)
+

N2

(1 + x)2

=
N2

(1 + x)2

(
1− N2 + P2

P2
log

(
1 +

P2

1 +N2 + x

))
,

where the second step follows from

1

(1 +N2 + x+ P2)2
+

(N2 + P2)

(1 + x)2(1 +N2 + x+ P2)
+

(N2 + P2)

(1 + x)(1 +N2 + x+ P2)2

=
1 + x

(1 + x)(1 +N2 + x+ P2)2
+

(N2 + P2)

(1 + x)2(1 +N2 + x+ P2)
+

(N2 + P2)

(1 + x)(1 +N2 + x+ P2)2

=
1

(1 + x)(1 +N2 + x+ P2)
+

(N2 + P2)

(1 + x)2(1 +N2 + x+ P2)

=
1 + x

(1 + x)2(1 +N2 + x+ P2)
+

(N2 + P2)

(1 + x)2(1 +N2 + x+ P2)

=
1

(1 + x)2
.

Note that the sign of (ϕ1 − ϕ2)
′(x) depends on the strictly increasing function ξ : (−1,∞) → R defined by

ξ(x) := 1− N2 + P2

P2
log

(
1 +

P2

1 +N2 + x

)
.

Let

x1 :=
P2

e
P2

P2+N2 − 1
− 1−N2 = P2

(
1

1− e−
P2

P2+N2

− 1

)
− 1−N2

> P2

(
1
P2

P2+N2

− 1

)
− 1−N2

= −1,

then ξ(x1) = 0. We are done if we show that ϕ1(x1) < 0. This is because conditioned on ϕ1(0) > 0, combining with
the results of Lemma 6, we have 0 ≤ P1 ≤ y0 ≤ x1. It is easy to verify from their definition that ϕ1(0) = ϕ2(0).
Therefore, as

∫ x

0
(ϕ1 − ϕ2)

′(y)dy ≤ 0, for x ∈ [0, x1], we have ϕ2(x) ≥ ϕ1(x) for such x. Therefore, we have
ϕ2(P1) ≥ ϕ1(P1) ≥ 0. The following calculations show ϕ1(x1) < 0.

Let y = P2

P2+N2
∈ (0, 1). Note that

ϕ1(x1) =
(N2 + P2)(1 +N2 + x1)

P2(1 + x)
log

(
1 +

P2

1 +N2 + x1

)
− N2(N2 + P2)

(1 + x1)(1 +N2 + x1 + P2)

+ log

(
1− N2 + P2

1 +N2 + x1 + P2

)
=

1 +N2 + x1
1 + x1

− N2

1 + x1
+

N2

1 + x1 + P2 +N2

+ log

(
1− N2 + P2

1 +N2 + x1 + P2

)

= 1 +
N2

P2

1(
1 + 1+N2+x1

P2

) + log

1− N2 + P2

P2

1(
1 + 1+N2+x1

P2

)


= 1 +
(1− y)

y

1(
1 + 1

ey−1

) + log

1− 1

y

1(
1 + 1

ey−1

)




= 1 +
(1− y)(ey − 1)

yey
+ log

(
1− ey − 1

yey

)
.

Therefore, we are done if we show that, for y ∈ (0, 1), we have

λ(y) := 1 +
(1− y)(ey − 1)

yey
+ log

(
1− ey − 1

yey

)
< 0.

Note that

λ′(y) =
(1− e−y)

(ey(y − 1) + 1)y2

(
(ey − 1)− (y3 − y2 + y)− y3

ey − 1

)
.

Since

(ey − 1)− (y3 − y2 + y)− y3

ey − 1
≥ y +

y2

2
+
y3

6
− (y3 − y2 + y)− y3

y + y2

2

= − y2

12 + 6y
(5y + 6) (y − 1)

≥ 0.

We know λ(y) increases in (0, 1), and note that λ(1) = 0; hence the result follows.

C. Proof of Lemma 5
Proof. Note that

gβ(P1 + P2 +N2, 0) =
1

2

(
log(P1 + P2 +N2 + 1)− P1 + P2 +N2

P1 + P2 +N2 + 1

)
and

gβ(P1, P2) =
1

2

(
log(P1 + P2 + 1 +N2) + β log(P2 +N2)− log(P2)− (β − 1) log(N2) + (β − 1) log(β − 1)− β log(β)

)
− 1

2

(
P1 + P2

P1 + P2 + 1 +N2
+

βP2

P2 +N2
− 1

)
.

Let β be such that (P1, P2) ∈ R3. Define

ϕ3(x) = (β − 1) log

(
P2(β − 1)

N2

)
− β log

(
βP2

P2 +N2

)
+

N2

x+ P2 + 1 +N2
− βP2

P2 +N2
+ 1,

then gβ(P1 + P2 + N2, 0) ≤ gβ(P1, P2) is equivalent to ϕ3(P1) ≥ 0. Note that when β = βsato = P2+N2

P2
(1 + N2),

we have ϕ2(P1) = ϕ3(P1); when β = βcosta = P2+N2

P2

(
1 + N2

1+P1

)
, ϕ1(P1) = ϕ3(P1). Recall the result obtained

in Lemma 3, since ϕ1(P1) ≥ 0 (assumption in the conjecture), then ϕ2(P1) ≥ ϕ1(P1) ≥ 0, thus if β 7→ ϕ3(P1) is
monotone in

(
P2+N2

P2

(
1 + N2

1+P1

)
, P2+N2

P2
(1 +N2)

)
, then we’re done. Let P1 ≥ 0 be such that ϕ1(P1) ≥ 0. Note that

∂

∂β
ϕ3(P1) = log

(
β − 1

β

)
+ log

(
P2 +N2

N2

)
− P2

P2 +N2
,

∂2

∂β2
ϕ3(P1) =

1

β − 1
− 1

β
> 0,

we know that β 7→ ϕ3(P1) is convex in(
P2 +N2

P2

(
1 +

N2

1 + P1

)
,
P2 +N2

P2
(1 +N2)

)
.

Note that if we can show that the mapping is increasing in β in the above interval, then we’re done. By convexity, it
suffices to show

∂

∂β
ϕ3(P1)

∣∣∣∣∣
β=

P2+N2
P2

(
1+

N2
1+P1

) = log

(
1 +

P2

1 + P1 +N2

)
− P2

P2 +N2
≥ 0.



Recall in the proof of Lemma 3, we showed that 0 ≤ P1 ≤ y0 ≤ x1, where x1 is the solution of

1− N2 + P2

P2
log

(
1 +

P2

1 +N2 + x

)
= 0,

hence the result follows.
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