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Abstract—In this paper we establish that a maximizer of
a non-convex problem in positive semidefinite matrices has a
certain property using information-theoretic methods. Further,
we propose a Gaussian extremality conjecture, which if true,
would imply that Gaussian signaling achieves the capacity region
of the Gaussian Z-interference channel. The non-convex problem
mentioned above arose naturally in the reduction from the
conjecture to the optimality of Gaussian signaling.

I. INTRODUCTION

From the celebrated entropy power inequality due to

Shannon [1] (say pictured in Lieb’s equivalent formulation [2])

to Brascamp–Lieb [3] inequalities, Gaussian distributions have

often turned up as extremizers of non-convex functionals over

spaces of probability distributions. The proofs of Gaussian

optimality have traditionally been obtained by showing mono-

tonicity along a path [4], or more recently using transport maps

[5], and most recently using subadditivity of an associated

functional [6] and invoking the technique developed in [7] that

employs the Skitovič-Darmois characterization of Gaussians

[8], [9].

Clearly the "monotonicity along a path" argument [4] shows

that any local maximizer of the functional is also a global

maximizer. In this paper we employ an observation that the

Gaussian optimality technique developed in [7] can be applied

to derive properties of the maximizers of concave envelopes of

functionals. While these properties were implicitly observable

in previous instances where the technique was employed, here

the subadditivity technique is used primarily to obtain the

desired property. We then present a conjecture that Gaussians

are extremizers of a certain functional and show that the

capacity region of the Gaussian Z-interference channel can

be deduced as a corollary if the conjecture is true. A key

element of this reduction involves the use of the property of the

maximizer derived using the Gaussian optimality technique.

Recently there was a result [10] making use of geodesic

convexity saying that a functional on the space of Gaussian

distributions related to the Brascamp–Lieb constant has the

property that the local maximizers of which are also global

maximizers. Motivated by this and certain other non-convex

optimization problems in network information theory, we con-

sider a particular functional and show that it has such property

on the space of distributions through information-theoretic

methods. We believe such observations can help develop

gradient descent based algorithms to efficiently compute the

optimizers of these non-convex functionals.

A. Preliminaries

The upper concave envelope Cx[f(x)] of a functional f

defined on a convex subset of some Hilbert space can be

defined by one of the many equivalent ways (cf. [11]):

(i) Cx[f(x)] := infg g(x), where the infimum runs over all

concave functional g that upper bounds f ,

(ii) Cx[f(x)] := supµ
∫

fdµ, where the supremum runs over

all Borel probability measures µ with mean x,

(iii) Cx[f(x)] := infα[supx̂[f(x̂) − 〈α, x̂〉] + 〈α, x〉], which

is the dual characterization of upper concave envelope

using Fenchel duality.

Remark 1. The dual characterization plays an important role

in the formulation of Conjecture 1.

II. MAIN RESULT

Theorem 1. Let β ≥ 1 and N2 ≥ 0. Define

ψG(K1,K2) :=
1

2

[

(β − 1) log |K2 +K1 + I +N2I|

+ log |K1 + I| − β log |K1 + I +N2I|
]

(1)

for k × k (k ≥ 1) matrices K1,K2 � 0. Then it holds that

CK1

[

ψG(K1,K2)
]

= max
K̂1�0

K̂1�K1

ψG(K̂1,K2)

for any K1,K2 � 0.

Remark 2. For the scalar case this result can be shown directly

without much effort by showing the following properties of the

function ψG(Q1, Q2) for scalar Q1, Q2 ≥ 0.

(i) Q1 7→ ψG(Q1, Q2) either is increasing on [0,+∞), is

decreasing on [0,+∞), or is increasing on [0, Q∗
1) and

decreasing on [Q∗
1,+∞) for some Q∗

1 > 0,

(ii) ∂
∂Q1

ψG(Q1, Q2) ≥ 0 implies ∂2

∂Q2
1
ψG(Q1, Q2) ≤ 0,

(iii) limQ1→+∞ ψG(Q1, Q2) = 0.

However for high-dimensional spaces it does not seem to

admit a simple extension of the above argument especially

since K1,K2 may not be simultaneously diagonalizable. This



necessitated us to come up with the different argument pre-

sented below. This technique adds to the list of linear algebra

inequalities that have information-theoretic proofs [12].

Proof of Theorem 1. We first show the "≤" side. For indepen-

dent random variables X1,X2 in R
k we denote

ψ(X1,X2) := (β − 1)h(X2 +X1 + Z1 + Z2)

+ h(X1 + Z1)− βh(X1 + Z1 + Z2) (2)

where Z1 ∼ N (0, I) and Z2 ∼ N (0, N2I) are independent

with (X1,X2). Notice that when Xi ∼ (0,Ki) for i = 1, 2
one has ψ(X1,X2) = ψG(K1,K2). Now fix K2 � 0 and

X2 ∼ N (0,K2), and we have

CK1

[

ψG(K1,K2)
]

(a)

≤ max
p(x1)p(u1|x1)

E[X1X
T

1 ]�K1

EU1 [ψ(X1|U1 ,X2)]

(b)
= max

K̂1�0

K̂1�K1

ψG(K̂1,K2)

for any K1 � 0, where (a) holds since the right hand side is

concave in K1 and upper bounds ψG(K1,K2) (by taking U1

to be constant and X1 ∼ N (0,K1)), and (b) follows from

Proposition 1.

Now we show the "≥" side. Using the dual characterization

of upper concave envelope we get

CK1

[

ψG(K1,K2)
]

= inf
Σ1

Σ1=ΣT

1

[

sup
K̂1�0

[

ψG(K̂1,K2)− tr(Σ1K̂1)
]

+ tr(Σ1K1)
]

(a)
= inf

Σ1�0

[

sup
K̂1�0

[

ψG(K̂1,K2)− tr(Σ1K̂1)
]

+ tr(Σ1K1)
]

≥ sup
K̂1�0

inf
Σ1�0

[

ψG(K̂1,K2)− tr(Σ1K̂1) + tr(Σ1K1)
]

≥ max
K̂1�0

K̂1�K1

ψG(K̂1,K2)

for K1,K2 � 0, where (a) follows from the fact that

sup
K̂1�0

[

ψG(K̂1,K2)− tr(Σ1K̂1)
]

= +∞

for any symmetric Σ1 with Σ1 6� 0.

Proposition 1. Let β ≥ 1, K1 � 0 and let X2,Z1,Z2

be independent Gaussian random variables in R
k. Then the

maximum

max
p(x1)p(u1|x1)

E[X1X
T

1 ]�K1

[

(β − 1)h(X2 +X1 + Z1 + Z2|U1)

+ h(X1 + Z1|U1)− βh(X1 + Z1 + Z2|U1)
]

is attained by some zero-mean Gaussian X1 and constant

random variable U1.

We need a few lemmas for establishing Proposition 1.

Lemma 1 is a well-known property called double Markovity

(cf. Problem 16.25 of [13]). Lemma 2 relies on the fact

that the characteristic function of a Gaussian random variable

vanishes nowhere. Lemma 3 follows from a characterization

of Gaussian random variables given by Ghurye and Olkin

[14], which was shown by solving a functional equation,

generalizing an earlier functional equation of Skitovič [8],

satisfied by the characteristic functions.

Lemma 1. Let Q be a random variable and let (X,Y,Z) be

random variables on R
k such that for any q the conditional

distribution p(x,y, z|q) has everywhere non-zero density. Sup-

pose

X → (Y,Q) → Z and Y → (X,Q) → Z

form Markov chains. Then

(X,Y) → Q → Z

forms a Markov chain.

Proof. For any q,x,y, z the Markov chains give

p(z|q,x) = p(z|q,x,y) = p(z|q,y)
and hence

p(z|q) = EX[p(z|q,X)|Q = q]

= EX[p(z|q,y)|Q = q]

= p(z|q,y)
= p(z|q,x,y)

as required.

Lemma 2. Let X1,X2 be random variables in R
k and

Z1,Z2 be k-dimensional Gaussian random variables such that

(X1,X2), Z1 and Z2 are independent. Then X1 + Z1 ⊥
X2 + Z2 implies X1 ⊥ X2.

Proof. See Proposition 2 of [7].

Lemma 3. Let X1,X2 be random variables in R
k such that

X1 ⊥ X2 and (X1 + X2) ⊥ (X1 − X2). Then X1,X2 are

Gaussians having the same covariance matrix.

Proof. See Corollary 3 of [7].

Proof of Proposition 1. By the translation-invariance of en-

tropy we can without loss of generality assume X2,Z1,Z2

are zero-mean Gaussians. For any distribution p(x1) on R
k

denote

φ(p(x1)) := (β − 1)h(X2 +X1 + Z1 + Z2)

+ h(X1 + Z1)− βh(X1 + Z1 + Z2)

where X1 ∼ p(x1). Let p∗(x1,u1) be a maximizer (existence

of which can be justified by Prokhorov theorem through

techniques in Appendix II of [7]) for

v := max
p(x1)p(u1|x1)

E[X1X
T

1 ]�K1

EU1 [φ(p(x1|U1))].

Assume without loss of generality that p∗(x1|u1) has mean

zero, or otherwise replace X1 by X1 − E[X1|U1], which

indeed satisfies the constraint. To prove our proposition it



suffices to show that p∗(x1|u1) is a Gaussian distribution with

covariance matrix independent of choice of u1. We shall show

this by a subadditivity argument.

Define the random variables

(X∗
11,U

∗
11,X

∗
12,U

∗
12) ∼ p∗(x∗

11,u
∗
11)p

∗(x∗
12,u

∗
12).

as well as

X11 :=
X∗

11 +X∗
12√

2
, X12 :=

X∗
11 −X∗

12√
2

and U1 := (U∗
11,U

∗
12). For i = 1, 2 we write

Y1i := X1i + Z1i

Y2i := X1i + Z1i + Z2i

Y3i := X1i + Z1i + Z2i +X2i

where (X2i,Z1i,Z2i) are identically distributed with

(X2,Z1,Z2). We have

2v = EU∗

11
[φ(p(x∗

11|U∗
11))] + EU∗

12
[φ(p(x∗

12|U∗
12))]

= EU1 [φ(p(x
∗
11|U1)) + φ(p(x∗

12|U1))]
(a)
= (β − 1)h(Y31,Y32|U1)

+ h(Y11,Y12|U1)− βh(Y21,Y22|U1)

= (β − 1)[h(Y31|Y32,U1) + h(Y32|Y11,U1)

+ I(Y11;Y32|U1)]

+ [h(Y11|Y32,U1) + h(Y12|Y11,U1)

+ I(Y11;Y32|U1)]

− β[h(Y21|Y32,U1) + h(Y22|Y11,U1)

+ I(Y21;Y32|U1) + I(Y11;Y22|U1)

− I(Y21;Y22|U1)]

= E[φ(p(x11|Y32,U1))] + E[φ(p(x22|Y11,U2))]

+ β[I(Y11;Y32|U1)− I(Y21;Y32|U1)

− I(Y11;Y22|U1) + I(Y21;Y22|U1)]
(b)

≤ 2v − βI(Y11;Y22|Y21,Y32,U1)

where (a) can be shown by the rotation-invariance of entropy,

and (b) follows from

I(Y11;Y32|U1)− I(Y21;Y32|U1)

− I(Y11;Y22|U1) + I(Y21;Y22|U1)
(c)
= I(Y11;Y32|U1)− I(Y21;Y32|U1)

− I(Y11;Y22,Y32|U1) + I(Y21;Y22,Y32|U1)

= −I(Y11;Y22|Y32,U1) + I(Y21;Y22|Y32,U1)
(d)
= −I(Y11,Y21;Y22|Y32,U1) + I(Y21;Y22|Y32,U1)

= −I(Y11;Y22|Y21,Y32,U1)

where (c) holds since Y32 → (Y22,U1) → Y11 and Y32 →
(Y22,U1) → Y21 form Markov chains, and (d) holds since

Y21 → (Y11,Y32,U1) → Y22 forms a Markov chain. Hence

we have I(Y11;Y22|Y21,Y32,U1) = 0 and so

Y11 → (Y21,Y32,U1) → Y22

forms a Markov chain. Since we also have the Markov chain

Y21 → (Y11,Y32,U1) → Y22

by Lemma 1 we obtain a Markov chain

(Y11,Y21) → (Y32,U1) → Y22.

Again we also have the Markov chain

(Y11,Y21) → (Y22,U1) → Y32

and hence by Lemma 1 we obtain a Markov chain

(Y11,Y21) → U1 → (Y22,Y32).

Now Lemma 2 implies that

X11 → U1 → X12

forms a Markov chain, which means that for any u∗
11,u

∗
12 we

have

(X∗
11|U∗

11=u∗

11
+X∗

12|U∗

12=u∗

12
) ⊥ (X∗

11|U∗

11=u∗

11
−X∗

12|U∗

12=u∗

12
)

which, by Lemma 3, implies that p(x∗
11|u∗

11) and p(x∗
12|u∗

12)
are Gaussian distributions having the same covariance ma-

trix. Thus we can conclude that the maximizing distribution

(X1,U1) ∼ p∗(x1,u1) must satisfy

X1|U1=u1 ∼ N (µu1 , K̂1)

for some µu1 ∈ R
k and K̂1 � 0. Finally µu1 = 0 since

p∗(x1|u1) is zero-mean.

III. RELATION TO GAUSSIAN Z-INTERFERENCE CHANNEL

The Gaussian Z-Interference Channel (GZIC) is a two-user

one-sided interference channel defined by

Y1 = X1 + Z1

Y2 = X2 + aX1 + Z2

where a > 0, Z1, Z2 ∼ N (0, 1) and Xi, Yi, Zi (i = 1, 2) are

real random variables. Under power constraints on the inputs

X1, X2, the capacity of this channel in the case of strong

interference (i.e. a ≥ 1) is known [15], while that for 0 < a <

1 remains open. In this paper we shall consider an equivalent

formulation of the channel

Y1 = X1 + Z1

Y2 = X2 +X1 + Z1 + Z2

where 0 < a < 1, Z1 ∼ N (0, I), Z2 ∼ N (0, N2I) (where

N2 := 1
a2 − 1) and Xi,Yi,Zi (i = 1, 2) are random variables

in R
k (k ≥ 1), under the power constraints

E[‖X1‖2] ≤ kP1 and E[‖X2‖2] ≤ kP2

where P1, P2 ≥ 0.

Determining the capacity region of the GZIC has been a

fundamental yet open problem in network information theory.

In this section we propose the following conjecture concerning

Gaussian optimality of a functional, which, if true, would

imply the capacity region of the GZIC:



Conjecture 1. For β ≥ 1, N2 ≥ 0 and Σ1, A2 � 0, the

maximum

max
p(x1)p(x2)

E[X2X
T

2 ]�A2

[

(β − 1)h(X2 +X1 + Z1 + Z2) + h(X1 + Z1)

− βh(X1 + Z1 + Z2)− tr(Σ1 E[X1X
T
1 ])

]

where Z1 ∼ N (0, I), Z2 ∼ N (0, N2I) and Xi,Zi (i = 1, 2)

are random variables in R
k (k ≥ 1), is attained by Gaussian

X1 and X2.

For a general two-user interference channel the Han–

Kobayashi (HK) region [16] is the best achievable region

known, which, however, has been shown [17] to be sub-

optimal for some discrete channels. In particular the HK region

is strictly improved by multi-letter extensions. Yet some of

the authors have recently shown [18] that for the Gaussian

interference channel, and in particular the GZIC, the multi-

letter extension of the HK scheme with inputs restricted to

be Gaussian does not improve on the scalar one. This result

motivates a natural question: whether the k-letter HK region is

the same as the k-letter HK region with Gaussian inputs, i.e.

whether R(k)
HK(P1, P2) = R(k)

HK-GS(P1, P2). A positive answer

to this question would imply that the single-letter HK region

with Gaussian inputs R(1)
HK-GS(P1, P2) is the capacity.

The set of inequalities characterizing the HK region of

GZIC simplifies (cf. [19]) to

kR1 ≤ h(X1 + Z1|Q)− h(Z1) (3)

kR2 ≤ h(X2 +X1 + Z1 + Z2|U1,Q)

− h(X1 + Z1 + Z2|U1,Q) (4)

k(R1 +R2) ≤ h(X2 +X1 + Z1 + Z2|Q)

− h(X1 + Z1 + Z2|U1,Q)

+ h(X1 + Z1|U1,Q)− h(Z1) (5)

where Z1 ∼ N (0, I) and Z2 ∼ N (0, N2I). Now we

define the k-letter HK region R(k)
HK(P1, P2) as well as that

with Gaussian inputs R(k)
HK-GS(P1, P2), where GS stands for

Gaussian signaling, with power control, as follows.

Definition 1. Let R(k)
HK (P1, P2) be the set of (R1, R2) ∈

R
2
≥0 satisfying the inequalities (3), (4), (5) for some

p(q)p(u1,x1|q)p(x2|q) with E[‖Xi‖2] ≤ kPi (i = 1, 2).

Definition 2. Let R(k)
HK-GS(P1, P2) be the set of (R1, R2) ∈

R
2
≥0 satisfying the inequalities (3), (4), (5) for some

p(q)p(u1,x1|q)p(x2|q) with E[‖Xi‖2] ≤ kPi (i = 1, 2) and

U1, X1 − U1, X2 being independent zero-mean Gaussians

conditioned on Q.

It is easy to see (with an argument similar to [20]) that for

β ≥ 1 and Q1, Q2 ≥ 0 we have

max
R

(k)
HK (Q1,Q2)

k(R1 + βR2) = CQ1,Q2

[

max
p(x1)p(x2)

E[‖X1‖
2]≤kQ1

E[‖X2‖
2]≤kQ2

fβ(X1,X2)
]

(6)

max
R

(k)
HK-GS

(Q1,Q2)

k(R1 + βR2) = CQ1,Q2

[

max
K1,K2�0

tr(K1)≤kQ1

tr(K2)≤kQ2

fβ,GS(K1,K2)
]

(7)

where

fβ(X1,X2) := h(X2 +X1 + Z1 + Z2)− h(Z1)

+ CX1

[

ψ(X1,X2)
]

(8)

fβ,GS(K1,K2) :=
1

2
log |K2 +K1 + I +N2I|
+ max

K̂1�0

K̂1�K1

ψG(K̂1,K2) (9)

with ψ, ψG defined by (2), (1) respectively.

Remark 3. One of the main difficulties in making a Gaussian

extremality conjecture directly for the expression in (8) is that

previous work has shown that Gaussian signaling with non-

trivial Q (or power control) can improve on Gaussian signaling

with a constant Q. Hence, the main conjecture (Conjecture 1)

in this paper is obtained by utilizing a carefully constructed

dual functional.

As the reader will see the main difficulty in proving

R(k)
HK(P1, P2) = R(k)

HK-GS(P1, P2) is to establish the upper

bound

CX1

[

ψ(X1,X2)
]

≤ max
K̂1�0

K̂1�K1

ψG(K̂1,K2)

with Ki = E[XiX
T
i ] (i = 1, 2). While Conjecture 1 implies

CX1

[

ψ(X1,X2)
]

≤ CK1

[

ψG(K1,K2)
]

as one can see in the proof of Proposition 3, there is still a

missing link as it is in general not true for all functionals φ

that CK1 [φ(K1)] = max0�K̂1�K1
φ(K̂1). However Theorem

1 says that K1 7→ ψG(K1,K2) has such property, constituting

the key step towards Proposition 3.

Proposition 2. Let k ≥ 1. The following are equivalent:

(i) For any P1, P2 ≥ 0 it holds that

R(k)
HK (P1, P2) = R(k)

HK-GS(P1, P2).

(ii) For any β ≥ 1 and α1, α2 ≥ 0 it holds that

sup
p(x1)p(x2)

[

fβ(X1,X2)− α1 E[‖X1‖2]− α2 E[‖X2‖2]
]

≤ sup
K1,K2�0

[

fβ,GS(K1,K2)− α1 tr(K1)− α2 tr(K2)
]

where X1,X2 are in R
k, K1,K2 are k × k matrices,

and fβ , fβ,GS are defined by (8), (9) respectively.



Proof. By (6) one has that for β ≥ 1 and P1, P2 ≥ 0,

max
R

(k)
HK (P1,P2)

k(R1 + βR2)

= inf
α1,α2∈R

[

sup
Q1,Q2≥0, p(x1)p(x2)

E[‖X1‖
2]≤kQ1

E[‖X2‖
2]≤kQ2

[

fβ(X1,X2)

− α1kQ1 − α2kQ2

]

+ α1kP1 + α2kP2

]

= inf
α1,α2≥0

[

sup
p(x1)p(x2)

[

fβ(X1,X2)

− α1 E[‖X1‖2]− α2 E[‖X2‖2]
]

+ α1kP1 + α2kP2

]

and similarly by (7),

max
R

(k)
HK-GS

(P1,P2)

k(R1 + βR2)

= inf
α1,α2≥0

[

sup
K1,K2�0

[

fβ,GS(K1,K2)

− α1 tr(K1)− α2 tr(K2)
]

+ α1kP1 + α2kP2

]

.

Note that this already gives that (ii) implies (i). Now assuming

(i) we have

sup
K1,K2�0

[

fβ,GS(K1,K2)− α1 tr(K1)− α2 tr(K2)
]

≥ max
R

(k)
HK-GS

(P1,P2)

k(R1 + βR2)− α1kP1 − α2kP2

≥ max
p(x1)p(x2)

E[‖X1‖
2]≤kP1

E[‖X2‖
2]≤kP2

fβ(X1,X2)− α1kP1 − α2kP2

for any β ≥ 1, P1, P2 ≥ 0 and α1, α2 ≥ 0. Finally, taking

supremum over P1, P2 ≥ 0 on the last step gives (ii).

Proposition 3. Conjecture 1 implies that

R(k)
HK (P1, P2) = R(k)

HK-GS(P1, P2).

for any k ≥ 1 and P1, P2 ≥ 0.

Proof. We shall prove the proposition by showing that Con-

jecture 1 implies (ii) of Proposition 2.

Conjecture 1 implies that for any Σ1, A2 � 0 we have

sup
p(x1)p(x2)

E[X2X
T

2 ]�A2

[

ψ(X1,X2)− tr(Σ1 E[X1X
T
1 ])

]

= sup
K1,K2�0, µ1,µ2∈R

k

K2+µ2µ
T

2 �A2

[

ψG(K1,K2)− tr(Σ1K1)− µT
1 Σ1µ1

]

= sup
K1,K2�0
K2�A2

[

ψG(K1,K2)− tr(Σ1K1)
]

= sup
K1�0

[

ψG(K1, A2)− tr(Σ1K1)
]

(10)

where the last equality is a consequence of the monotonicity

of ψG(K1,K2) in K2. Then for any p(x1)p(x2) it holds that

CX1

[

ψ(X1,X2)
]

(a)

≤ inf
Σ1�0

[

sup
p(x̂1)

[

ψ(X̂1,X2)− E[X̂T
1 Σ1X̂1]

]

+ E[XT
1 Σ1X1]

]

≤ inf
Σ1�0

[

sup
p(x̂1)p(x̂2)

E[X̂2X̂
T

2 ]�E[X2X
T

2 ]

[

ψ(X̂1, X̂2)− tr(Σ1 E[X̂1X̂
T
1 ])

]

+ tr(Σ1 E[X1X
T
1 ])

]

(b)
= inf

Σ1�0

[

sup
K1�0

[

ψG(K1,E[X2X
T
2 ])− tr(Σ1K1)

]

+ tr(Σ1 E[X1X
T
1 ])

]

(c)
= inf

Σ1

Σ1=ΣT

1

[

sup
K1�0

[

ψG(K1,E[X2X
T
2 ])− tr(Σ1K1)

]

+ tr(Σ1 E[X1X
T
1 ])

]

(d)
= CK1

[

ψG(K1,E[X2X
T
2 ])

]

∣

∣

∣

K1=E[X1X
T

1 ]

where (a) holds since the right hand side is a concave

functional in p(x) that upper bounds ψ(X1,X2), (b) follows

from (10), (c) holds since the inner supremum equals +∞
for any symmetric Σ1 with Σ1 6� 0, and (d) is the dual

characterization of upper concave envelope. Now note also

that for any p(x1)p(x2),

h(X2 +X1 + Z1 + Z2)− h(Z1)

≤ 1

2
log |E[X2X

T
2 ] + E[X1X

T
1 ] + I +N2I|

and hence for any β ≥ 1 and α1, α2 ≥ 0 we have

sup
p(x1)p(x2)

[

fβ(X1,X2)− α1 E[‖X1‖2]− α2 E[‖X2‖2]
]

≤ sup
K1,K2�0

[1

2
log |K2 +K1 + I +N2I|+ CK1

[

ψG(K1,K2)
]

− α1 tr(K1)− α2 tr(K2)
]

(e)
= sup

K1,K2�0

[

fβ,GS(K1,K2)− α1 tr(K1)− α2 tr(K2)
]

as required, where (e) follows from (9) and Theorem 1.

IV. CONCLUSION

In this paper we use information-theoretic arguments to

establish some properties of the optimizers of some matrix

functionals. We then propose a Gaussian extremality conjec-

ture using the dual formulation of the upper concave envelope

that, if proved, would establish the capacity region of the

Gaussian Z-interference channel. The properties established in

the first part were crucially used to complete the link between

the conjecture to the capacity region for the Gaussian Z-

interference channel.
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