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Abstract. The Gaussian signaling strategy with power control for the Gaussian Z-interference channel with

weak interference is reviewed in this paper. In particular, we study the various communication strategies

that may arise at various points of the capacity region and identify the locations of the phase transitions
between the various strategies. The Gaussian Z-interference channel with weak interference is known to have

two critical points in its capacity region, where the slope of the region shows a sudden change. They occur

at the points of the unconditional maximum rate for one of the users and the maximum rate that can be
accommodated by the other user. In this paper, we discuss additional critical points (locations of phase

transitions) in the achievable region of this channel. These turn out to be second-order phase transitions,

i.e., we do not observe a discontinuous slope in the achievable rate region, but there is a discontinuity in the
second derivative of the rate contour of the achievable region. This review paper is mainly based on some of

our ITA (Information Theory and Applications Workshop, UCSD, San Diego, CA, USA) papers since 2011.

1. Introduction

Many authors have studied scalar Gaussian interference channels since 1974 [1–32]. One of the key ques-
tions in this area, for which we do not have a definitive answer as yet, is whether Han–Kobayashi inner bound
with Gaussian signaling achieves the capacity region.

The model under investigation in this paper is the one-sided interference channel given by Y ′
1 = X ′

1 + Z ′
1

and Y ′
2 = X ′

2 + aX ′
1 + Z ′

2, where X
′
1 and X ′

2 are transmitter signals constrained to have average powers Q1

and Q2, respectively, a is an interference gain in the interval (0, 1), Z ′
1 and Z ′

2 are Gaussian noises of unit
variance, and Y ′

1 and Y ′
2 are the two received signals. This model is depicted in Figure 1.
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Figure 1. Gaussian Z-Interference Channel.

The receivers are interested in messages sent by their respective, same-indexed, transmitters. Thus X ′
1

encodes a message addressed to receiver 1 and X ′
2 conveys a message to receiver 2. This model is a particular

case of the Gaussian interference channel, which exhibits interference in both directions. Like in the more
general model, the problem of finding the associated capacity region has been open for almost 50 years. In
the case of strong interference, when a ≥ 1, the capacity region is known [19,31]. In this case, the unintended
receiver can fully decode the interfering message. Therefore, the rate region coincides with the intersection
of the two underlying multiple access channel regions. Also, when a = 0, the problem has a trivial solution.
This paper uses the fact that the Gaussian Z-interference channel with interference parameter a in the range
(0, 1) can be regarded as a degraded Gaussian interference channel [6], a model shown in Figure 2.
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Figure 2. Degraded Gaussian Interference Channel.

Like the Gaussian Z-interference channel, the degraded Gaussian interference channel is characterized by
three parameters: the two powers P1 and P2, and the additional independent noise in the second receiver,
power N2. These parameters are related to the parameters of the original Z-interference channel by P1 = Q1,
P2 = Q2/a

2 and N2 = (1 − a2)/a2. Moreover, since 0 < a < 1, the additional noise power N2 is always
positive. For simplicity, we choose to use the more common notation, without the primes, in this channel,
which will constitute our working model.

In this review paper, we investigate the behavior of the noiseberg encoding scheme [7], which has recently
been shown [9] to coincide with the Han–Kobayashi region with Gaussian signaling. From a communication
engineer’s perspective, knowing the optimal Gaussian signaling strategy for a given set of parameters is
essential when maximizing R1+βR2. In particular, we investigate additional critical points in the achievable
region of the noiseberg scheme for the Gaussian Z-interference channel with weak interference. These critical
points are associated with transitions between different modes of operation. A third critical point happens
between the so-called multiplex and the overflow regions produced in the noiseberg encoding scheme [7].
A fourth critical point happens after the overflow mode is in effect, as the evolution of modes leads to a
transition to pure superposition or, otherwise, reaches an extreme boundary in the λ x h parameter space.

Another possible transition may happen when the noiseberg region takes up all the power available for P1

before the noiseberg height reaches the overflow level (N2). This will be characterized as a transition from
Phase 4 to Phase 7. Subsequently, the optimal path in this case will transition to Phase 6 and, finally, to
Phase 3.

2. Preliminaries

We focus on the degraded interference channel model depicted in Figure 2. Two extreme points in the
channel capacity region have been identified for this channel. One extreme point occurs when X1 sends
information at its maximum possible rate and X2 uses what is left of the channel, with X1’s interference
treated as noise. In this extreme point the achieved rate pair (R1, R2) is given by R1 = 1

2 log(1 + P1) and

R2 = 1
2 log(1+

P2

1+P1+N2
) (cf. Figure 3). There is a slope discontinuity for the capacity region at this extreme

point, which follows from the capacity region of an associated degraded broadcast channel [6,30], establishing
that this extreme point is a critical point. From this, it immediately follows that this point also maximizes
R1 +R2, the sum-rate, and therefore, this corner point will be referred to as the sum-rate corner point.

Another extreme point in the achievable region occurs when all the privilege of operating at maximum
rate is given to the second transmitter [6, 26]. In this case, the first transmitter must lower its rate to the
point where the second receiver is sure to decode and eliminate all the interference that its signaling might
impose. The first transmitter then uses the noisy channel that sees noise power 1 +N2 + P2. Therefore, we
have R1 = 1

2 log(1+
P1

1+N2+P2
) and R2 = 1

2 log(1+
P2

1+N2
). There is also a slope discontinuity for the capacity

region at this extreme point, which follows from a recent outer bound developed in [16]. This corner point is
referred to as the back-off corner point.



SHORT 3

R2

R1
1
2 log(1 + P1)1

2 log
(
1 + P1

1+N2+P2

)

1
2 log

(
1 + P2

1+N2

)

1
2 log

(
1 + P2

1+P1+N2

)

backoff corner point

sum-rate corner point
(also known as Sato’s
corner point)

Figure 3. Critical points of the capacity region.

2.1. Noisebergs – a Brief Review. A noiseberg transmission scheme is a particular Gaussian signaling
strategy with power control, with (only) seven potential phases, depicted in Figures 4, 5, 6, 7, 8, 9, and
10. In a nutshell, it is a scheme that combines superposition coding, non-näıve (i.e., power-controlled) time-
sharing, and water filling between the two spectral regions that get multiplexed. More specifically, it is
a time-sharing/bandwidth-sharing between two signaling strategies, with the first strategy (depicted on the
left) occupying (1−λ) fraction of the time (band) and the second strategy occupying the remaining λ fraction
of the time (band). In particular, the strategies in Figures 4, 5, and 6 can be considered as special instances
of those in Figure 7, 8, and 9 respectively by setting λ = 0. In the leftmost strategy, using band (1 − λ),
one allocates part of the power budget to combine transmissions to both decoders in a pure superposition
manner, exactly as is known to be optimal for Gaussian broadcast channels. In the second strategy, over
band λ, the communication is solely accomplished between the first transmitter and the first receiver. Yet,
this strategy can also be interpreted as a particular point of the capacity region of a Gaussian broadcast
channel, restricted to maximal R1 and null R2.

Consider the following seven communication strategies, using Gaussian signaling, for the Gaussian inter-
ference channel:

(1) Phase 1: Treating interference to be noise at the weaker receiver (Sato’s corner point)

In this phase, the weaker receiver, Y2, decodes its message by treating
X1 as noise. This is depicted pictorially in Figure 4. The decoding order
in the picture is assumed to go from top to bottom. Any receiver will
decode all the messages on top of its message (including its message)
in any band by treating those below it as noise. The rate pair achieved
in this phase is

R1 =
1

2
log (1 + P1) , R2 =

1

2
log

(
1 +

P2

1 + P1 +N2

)
. t

Power density

1

P1

N2

P2

Figure 4. Phase 1
(Sato’s corner
point).
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(2) Phase 2: Partial interference cancellation at the weaker receiver (or pure superposition coding)

In this phase, the weaker receiver, Y2, decodes a part of X1 first, sub-
tracts this from the received signal, and then decodes its own signal
X2. The rate pair achieved in this phase is

R1 =
1

2
log

(
1 +

P1C

1 +N2 + P2 + P1A

)
+

1

2
log (1 + P1A) ,

R2 =
1

2
log

(
1 +

P2

1 +N2 + P1A

)
.

Note that P1A + P1C = P1. This can be seen as a mix of Phase 1 and
Phase 3, to be seen next.

t

Power density

1
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P2

P1c

Figure 5. Phase
2 (Pure superposi-
tion strategy).

(3) Phase 3: Interference cancellation at the weaker receiver (the backoff corner point)

In this phase, the weaker receiver, Y2, decodes X1 first, subtracts this
from the received signal, and finally decodes its own signal X2. The
rate pair achieved in this phase is

R1 =
1

2
log

(
1 +

P1

1 +N2 + P2

)
, R2 =

1

2
log

(
1 +

P2

1 +N2

)
.

Note that the rate for message 1 is solely determined by the ability
of the weaker decoder to decode it. This encoding strategy is similar
to that in a degraded message sets Gaussian broadcast channel where
message 1 is meant to be communicated to both receivers.

t
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Figure 6. Phase 3
(Backoff corner
point).

(4) Phase 4: Time-sharing between the following two strategies: Treating interference to be noise at the
weaker receiver and transmitting solely to the stronger receiver (or multiplex strategy)
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In this phase, there is a time-sharing between two communication
schemes. The first scheme, employed for (1 − λ) fraction of the time,
employs the Phase 1 strategy, and the second scheme consists of trans-
mission only to the stronger receiver. The total average power in each
band is indicated in the figure. Therefore, one must divide the power
by the band duration to get the height. It is this phase that leads to the
noiseberg nomenclature. We denote by h, the height difference between
the N2 slab in the second band and the power level of P2 in the first
band. This height difference comes from part of the noise spectrum of
Z2 that floats above the signal level in the first band and characterizes
what we call a noise-iceberg, or noiseberg. The flotation of the noise
slab releases prime-rate space in the power × bandwidth plane, in a
fashion that Archimedes would be sure to appreciate. In this phase,
we get the following:

P1 = P1A + P1B

P1A + P2

1− λ
=
P1B

λ
− h.

(1)

The rate pairs achieved in this scheme are

R1 =
λ̄

2
log

(
1 +

λ̄P1 − λλ̄h− λP2

λ̄

)
+
λ

2
log

(
1 + P1 + P2 + λ̄h

)
,

R2 =
λ̄

2
log

(
1 +

P2

λ̄(1 +N2) + λ̄P1 − λλ̄h− λP2

)
,

(2)
where λ̄ denotes (1− λ).

t
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Figure
7. Phase 4
(The noiseberg
strategy).

(5) Phase 5: Time-sharing between the following two strategies: Partial interference cancellation at the
weaker receiver and transmitting solely to the stronger receiver (or overflow strategy)
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In this phase, as before, there is a time-sharing between two commu-
nication schemes. The first scheme, employed for (1 − λ) fraction of
the time, employs the Phase 2 strategy, and the second scheme consists
of transmission only to the stronger receiver. The total average power
in each band is indicated in the figure. We denote by h, the height
difference between the top of the N2 slab in the second band and the
power level of P2 in the first band. Again, as argued in [7,9], the total
heights of the two signal bands must agree via a water-filling argument.
The noise band of height N2 floats above the signal power band in
the rightmost strategy. The floating of the noise band frees up prime
frequency (or time) space in the spectrum for signal occupation.
In this phase, we get the following:

P1 = P1A + P1B + P1C

P1B

λ
= N2 +

P2 + P1A + P1C

λ̄
P1C

1− λ
= h−N2

(3)

R1 =
λ̄

2
log

(
1 +

λ̄P1 − λP2 − λ̄h+ λ̄2N2

λ̄

)
+
λ̄

2
log

(
1 +

λ̄(h−N2)

λ̄(1 +N2) + λ̄P1 − λP2 − λ̄h+ λ̄2N2 + P2

)
+
λ

2
log

(
1 + P1 + P2 + λ̄N2

)
,

R2 =
λ̄

2
log

(
1 +

P2

λ̄(1 +N2) + λ̄P1 − λP2 − λ̄h+ λ̄2N2

)
.

(4)

t
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Figure 8. Phase 5
(The overflow re-
gion).

(6) Phase 6: Time-sharing between the following two strategies: Interference cancellation at the weaker
receiver and transmitting solely to the stronger receiver (top boundary of the admissible parameter
region)

In this phase, there is also a time-sharing between two communication
schemes. The first scheme, employed for (1 − λ) fraction of the time,
employs the Phase 3 strategy, and the second scheme consists of trans-
mission only to the stronger receiver. The total average power in each
band is indicated in the figure. As in Phase 5, we denote by h, the
height difference between the top of the N2 slab in the second band
and the power level of P2 in the first band. As argued in [7, 9], the
total heights of the two bands must agree via a water-filling argument.
In this phase, we get the following:

P1 = P1C + P1B

P1B

λ
= N2 +

P2 + P1C

λ̄
P1C

1− λ
= h−N2

(5)

R1 =
λ̄

2
log

(
1 +

λ̄P1 − λλ̄N2 − λP2

λ̄(1 +N2) + P2

)
+
λ

2
log

(
1 + P1 + P2 + λ̄N2

)
,

R2 =
λ̄

2
log

(
1 +

P2

λ̄(1 +N2)

)
.

t

Power density

h

λ

P2

1−λ

1

P1C

N2

P2 P1B

N2

Figure
9. Phase 6
(The top bound-
ary of the
admissible (λ, h)
parameter re-
gion).
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(7) Phase 7: Time-division between transmitting solely to the two receivers

In this phase, for (1− λ) fraction of the time, we transmit solely
to the weaker receiver, and for λ fraction of the time, we transmit
solely to the stronger receiver. In this phase, we obtain

R1 =
λ

2
log

(
1 +

P1

λ

)
,

R2 =
λ̄

2
log

(
1 +

P2

λ̄(1 +N2)

)
.

t

Power density

h

λ

P2

1−λ

1

N2

P2

P1

N2

Noiseberg

Figure
10. Phase 7
(Essentially, a
portion of the so
called non-naive
time sharing).

Remark 1. A general Gaussian signaling strategy incorporating superposition coding and non-näıve (i.e.,
power-controlled) time-sharing will have many more phases than those described above. However, it was
proposed in [7] and established in [9] that the boundary of the Gaussian signaling region is obtained by
restricting to these seven strategies.

2.2. The Gaussian Signaling Region. One needs to optimize R1+βR2 for 1 ≤ β ≤ ∞, among the various
signaling strategies or phases to compute the Gaussian signaling region.

2.2.1. Slopes at the Corner Points. It is known [6, 31] that R1 + R2 (i.e. β = 1) is maximized (for the

capacity region) at the corner point R1 = 1
2 log(1 +P1) and R2 = 1

2 log
(
1 + P2

1+N2+P1

)
. Note that R1 + βR2

for 0 ≤ β ≤ 1 will also pass through the same corner point, as this corresponds to the maximum value of
R1. This corresponds to a Phase 1 communication strategy. In particular, it has been shown [13] that the
supporting hyperplane, R1 + βR2, will touch the Gaussian signaling region (or equivalently the noiseberg
region) at the same corner point if and only if β ≤ βSato (defined below). Thus, βSato marks the first critical
(or phase-transition) point of the noiseberg region.

Theorem 1 ( [13]). For a Gaussian Z-interference channel, let βSato be the largest value of β ≥ 1 such that

sup
(R1,R2)∈RHK-GS

(R1 + βR2) =
1

2
log(1 + P1) +

λ

2
log

(
1 +

P2

1 +N2 + P1

)
. (6)

Then

βSato = min

{
(N2 + P2)(1 +N2 + P1)

P2(1 + P1)
, β∗

}
,

where β∗ is the unique positive solution ψ(β) = 0, where

ψ(β) := β

(
log

(
1 +

P2

1 +N2 + P1

)
− N2P2

(1 +N2 + P1)(1 +N2 + P1 + P2)

)
+ log

(
1− P2(1 + P1)

(1 +N2 + P1)(1 +N2 + P1 + P2)
β

)
.

Remark 2. We do not yet have a matching converse (i.e. one that follows from an outer bound to the
capacity region) that establishes the slope at this corner point. An interested reader may refer to [16] and [18]
for recent developments along these lines.

On the other hand, it is known that for large enough β the supporting hyperplanes to the Gaussian
signaling region, [12], as well as the one to the capacity region [16] pass through the backoff corner point
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established in [26], namely R1 = 1
2 log

(
1 + P1

1+N2+P2

)
and R2 = 1

2 log (1 + P2). This corresponds to a Phase

3 communication strategy. (At this corner point, R2 takes its maximum value.)

Theorem 2 ( [12]). Consider a Gaussian Z-interference channel. The smallest β such that the supporting
hyperplane of the form R1+βR2 of the Han-Kobayashi signaling scheme with Gaussian inputs passes through
the backoff corner point is given by

βbackoff = 1 +max

N2(1 +N2 + P2)

P2
,
log(1 +N2)− N2

(1+N2+P1+P2)

log
(

1+P2+N2

1+N2

)
− P2

1+P2+N2

 .

Thus, for all β ≥ βbackoff , the supporting hyperplane to the Gaussian signaling region (or the noiseberg
region) passes through the above corner point.

Remark 3. As with the sum-rate point, we do not yet have a matching converse (i.e. one that follows from
an outer bound to the capacity region) that establishes the slope at this corner point. An interested reader
may refer to [9,16], where upper bounds on the slope have been established. The issue of corner points to the
capacity region of two-user Gaussian interference channels in various signal-to-noise ratio regimes has been
studied in [28].

2.2.2. The Intermediate Regime, β : βSato ≤ β ≤ βbackoff . The main objective of this paper would be to
review the known results for β in the regime β : βSato ≤ β ≤ βbackoff . Initially, consider the leftmost (pure
superposition coding) strategy, i.e., we only consider Phases 1,2 and 3. In Phase 2, we need to compute

max
0≤P1A≤P1

1

2
log

(
1 +

P1 − P1A

1 +N2 + P2 + P1A

)
+

1

2
log (1 + P1A) +

β

2
log

(
1 +

P2

1 +N2 + P1A

)
.

A little bit of calculus shows that optimizing

P1A =


P1 if β ≤ P2+N2

P2

1+P1+N2

1+P1
, (Phase 1)

0 if β ≥ P2+N2

P2
(1 +N2), (Phase 3)

(1+N2)(P2+N2)−βP2

βP2−(P2+N2)
otherwise. (Phase 2)

.

In the above optimization problem, we observe that there are two transition values for β, defined by β1 =
P2+N2

P2

1+P1+N2

1+P1
(marking the transition from Phase 1 to Phase 2) and β2 = P2+N2

P2
(1 + N2) (marking the

transition from Phase 2 to Phase 3). Note that β1 corresponds to the first of the two terms in the minimization
that defines βSato, and β2 corresponds to the first of the two terms in the maximization that defines βbackoff .

It turns out that the second of the two terms in the minimization that defines βSato corresponds to a phase
transition from Phase 1 to Phase 4. Similarly, the second of the two terms in the maximization that defines
βbackoff corresponds to a phase transition from Phase 6 to Phase 3.

Phases 1, 2, and 3 can be considered special instances of Phases 4, 5, and 6, respectively, by setting λ = 0.
Phase 1 (Sato’s corner point) is associated with the segment λ = 0 and 0 ≤ h ≤ N2. Phase 2 (the pure
superposition phase) is related to the middle segment formed by λ = 0 and N2 ≤ h ≤ N2+P1. Finally, Phase
3 (the backoff corner point) is mapped to the single point, λ = 0, and h = N2 + P1.

Further, the rate pairs (R1, R2) in Phases 4, 5, and 6 can also be expressed in terms of the parameters
λ and h as stated before. These parameters λ, h vary over a region, called the region of admissible points,
defined by the conditions that P1A, P1B , and P1C are non-negative and sum to P1. The region h ≤ N2

and λ > 0 corresponds to Phase 4. If h ≥ N2, then P1C > 0, and this is called the overflow region. This
encompasses Phases 5 and 6.

The admissible region in Phase 4, using (1), can be shown to be restricted by the expressions 0 ≤ h ≤ N2

and

0 < λ ≤
P1 + P2 + h−

√
(P1 + P2 + h)2 − 4P1h

2h
.

The admissible region in Phase 5, using (3), can be shown to be restricted by the expressions N2 < h ≤
N2 + P1 and

0 < λ <
P1 + P2 + 2N2 − h−

√
(P1 + P2 + 2N2 − h)2 − 4N2(P1 +N2 − h)

2N2
.
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Finally, the admissible region in Phase 6, using (5), can be shown to be restricted by the expressions
N2 < h ≤ N2 + P1 and

λ =
P1 + P2 + 2N2 − h−

√
(P1 + P2 + 2N2 − h)2 − 4N2(P1 +N2 − h)

2N2
.

Figure 11 shows the admissible region of λ and h for the parameters P1 = 1, P2 = 4, N2 = 3. Phases
1, 2, and 3 correspond to λ = 0 and collapse to Y-axis. Phase 6 corresponds to the upper boundary. The
dotted line at h = 3 marks the phase boundary between Phases 4 (noiseberg multiplex) and 5 (overflow).
Finally, Phase 7 is the rightmost boundary of the admissible region, that is reached in case the boundary is
met before overflow.

λ

h

0
0

0.05

1

0.1

2

0.15

3

0.2

4

Phases 1,2,3

Phase 4

Phase 5

Phase 6

Phase 7

Figure 11. Contour of admissible region for a Z-interference channel with Q1 = 1, Q2 = 1,
a = 0.5, i.e. a degraded channel with P1 = 1, P2 = 4, N2 = 3.

To determine the phase, we need to maximize R1(h, λ)+βR2(h, λ) (using (2) or (4) depending on h ≤ N2

or h ≥ N2, respectively) and this leads to a path of optimal extreme points in the admissible region.
Apart from the phase transitions characterized in Theorems 1 and 2, namely, Phase 1 → Phase 2, Phase 1

→ Phase 4, Phase 2 → Phase 3, and Phase 6 → Phase 3, the numerical experiments show that there are five
more types of phase transitions in the Gaussian signaling scheme. These other ones represent the transitions
from Phase 4 → Phase 5, Phase 4 → Phase 7, Phase 7 → Phase 6, Phase 5 → Phase 2, and Phase 5 → Phase
6, and let us define the corresponding β’s to be β4→5, β4→7, β5→6, β5→2, and β5→6 respectively. These phase
transitions can be implicitly characterized as follows:

• β4→5: This corresponds to the β at which R1(h, λ)+βR2(h, λ) is maximized when h = N2 and λ > 0.
This corresponds to the transition between the multiplex and overflow regions.

• β4→7: This corresponds to the β at which R1(h, λ) + βR2(h, λ) is maximized when h < N2 and

λ =
P1+P2+h−

√
(P1+P2+h)2−4P1h

2h , in other words P1A = 0. This corresponds to the transition from
the multiplex region to the non-naive time-division region.

• β7→6: This corresponds to the β at which R1(h, λ) + βR2(h, λ) is maximized when h = N2 and

λ =
P1+P2+h−

√
(P1+P2+h)2−4P1h

2h . This corresponds to the transition from the time-division phase to
the overflow region, with P1A = 0.

• β5→2: This corresponds to the β at which R1(h, λ)+βR2(h, λ) is maximized when h > N2 and λ = 0.
This corresponds to the transition from the overflow region to a pure superposition coding region.

• β5→6: This corresponds to the β at which R1(h, λ) + βR2(h, λ) is maximized when h > N2 and λ =
P1+P2+2N2−h−

√
(P1+P2+2N2−h)2−4N2(P1+N2−h)

2N2
. This corresponds to the transition from the interior

of the admissible (h, λ) region to the top boundary of this region.

2.2.3. Trajectories in the phase space. In this section, we plot the various trajectories of the optimizing
parameters in the phase space of (h, λ) as we vary β from βsato to βbackoff .
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(1) Path 1: For some set of parameters (for example, P1 = 1, P2 = 9, N2 = 8) numerical simulations
indicate that the optimal path is Phase 1 → Phase 2 → Phase 3. (This is the path of pure super-
position evolution) and the locations of the phase transitions occur at β1→2 = 9 4

9 and β2→3 = 17
respectively. This implies that the trajectory in the admissible region is only along the h-axis, i.e.,
with λ = 0.

(2) Path 2: For some set of parameters (for example, P1 = 1, P2 = 4, N2 = 1) the optimal path
seems to be Phase 1 → Phase 4 → Phase 5 → Phase 2 → Phase 3. The phase transitions occur at
(approximately) β1→4 = 1.8422, β4→5 = 1.9549, β5→2 = 2.0799 and β2→3 = 2.5 respectively. This
path is depicted in Figure 12.

Figure 12. Contour of the admissible region and optimized points (obtained numerically)

for a Z-interference channel with Q1 = 1, Q2 = 2, a =
√
2
2 , i.e. a degraded channel with

P1 = 1, P2 = 4, N2 = 1.

As the figure illustrates, it leaves Phase 1 (Sato point) and moves into Phase 4. Then, at h =
N2 = 1, it moves from Phase 4 to Phase 5. Then, at h ≈ 1.5, it moves from Phase 5 to Phase 2.
Finally, at h = 2, the trajectory reaches the other corner point.

(3) Path 3: For some set of parameters (for example P1 = 1, P2 = 2.5, N2 = 1) the optimal path
seems to be Phase 1 → Phase 4 → Phase 5 → Phase 6 → Phase 3. The phase transitions occur at
(approximately) β1→4 = 1.9238, β4→5 = 2.4153, β5→6 = 2.6987, and β6→3 = 3.0023 respectively.

This path is depicted in Figure 13.

Figure 13. Admissible region and optimized points (obtained numerically) for a Z-
interference channel with Q1 = 1, Q2 = 1.25, a = 1√

2
, i.e. a degraded channel with P1 = 1,

P2 = 2.5, N2 = 1.
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As the figure illustrates, it leaves Phase 1 (Sato point) and moves into Phase 4. Then, at h =
N2 = 1, it moves from Phase 4 to Phase 5. At a slightly larger β, it enters Phase 6 and remains there
until it reaches the new corner point at Phase 3.

(4) Path 4: For some set of parameters (for example P1 = 1, P2 = 1, N2 = 3) the optimal path seems
to be Phase 1 → Phase 4 → Phase 7 → Phase 6 → Phase 3. The phase transitions occur at
(approximately) β1→4 = 5.3182, β4→7 = 9.5662, β7→6 = 23.3434, and β6→3 = 39.2955 respectively.

This path is depicted in Figure 14.

Figure 14. Admissible region and optimized points (obtained numerically) for a Z-
interference channel with Q1 = 1, Q2 = 0.25, a = 1

2 , i.e. a degraded channel with P1 = 1,
P2 = 1, N2 = 3.

2.3. To Mux or Not to Mux. From the point of view of a converse to the capacity region, it may be
helpful to realize that one does not need multiplexing (time-sharing) for some parameters (Q1, Q2, a). Hence,
there is a potential for the existing techniques for proving the optimality of Gaussian distributions to work.

In Theorem 1, the authors computed the slope, βSato, of the capacity region at the sum-rate corner point.
Whenever the first term there is the critical one, it was observed that the optimal trajectory consists only of
the pure superposition phases, i.e., Phases 1, 2, and 3. This leads us to propose the following conjecture.

Conjecture 1. Consider a degraded Gaussian Z-interference channel with parameters (P1, P2, N2). The
noiseberg region consists only of a pure superposition coding strategy (i.e. no time-sharing is required for any
β-sum-rate) whenever

(N2 + P2)(1 +N2 + P1)

P2(1 + P1)
≤ β∗,

where β∗ is the unique positive solution of ψ(β) = 0, where

ψ(β) := β

(
log

(
1 +

P2

1 +N2 + P1

)
− N2P2

(1 +N2 + P1)(1 +N2 + P1 + P2)

)
+ log

(
1− P2(1 + P1)

(1 +N2 + P1)(1 +N2 + P1 + P2)
β

)
.

This conjecture allows us to identify the regions of parameters Q1, Q2, and a where we have optimal rate
evolution between the extreme points with pure superposition alone, i.e., without the use of noisebergs. The
results are shown in Figure 15.

Q1 Q2 Superposition Multiplex
1 1 a < 0.403 a > 0.404
1 > 4.35 a ∈ (0, 1) never
10 1 a < 0.1673 a > 0.1674
10 10 a < 0.637 a > 0.638

Figure 15. Boundaries between pure superposition and multiplex regions for different val-
ues of Q1 and Q2.
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2.4. The other critical points. Figure 16 depicts the achievable rate region for the parameters P1 =
1, P2 = 2.5, N2 = 1. Clearly, the rate region depicts a discontinuity in the slope at the sum-rate extreme
point as well as the back-off extreme point. Even the capacity region has been shown to exhibit this behavior.
However, in an earlier section (cf. Fig. 13), we claimed that this set of parameters also exhibits a phase
transition at (approximately) β4→5 = 2.415, where the rates are (approximately) R1 = 0.238, R2 = 0.353;
and at (approximately) β5→6 = 2.699, where the rates are (approximately) R1 = 0.149, R2 = 0.388. The
achievable rate region does not exhibit a discontinuity in slope at these parameters. However, these are
second-order phase transitions of the capacity region, i.e., the second derivative has a discontinuity. This
happens because there is a crossing of the curves of β that correspond to two schemes that are involved in
the transition. But β is the slope of the normal to the tangent of the achievable rate curve. Therefore the
first derivatives of the achievable rate curve will not show a discontinuity at these critical points, but their
second derivatives (the slope of the slope) will.

Figure 16. The noiseberg achievable region for P1 = 1 P2 = 2.5, and N2 = 1.

For the noiseberg region, the phase transitions β4→7, β4→5, β7→6, β5→6, β5→2 all appear to be second-order
phase transitions of the capacity region. This is also supported by some back-of-the-envelope calculations,
but a formal proof is still absent at this point.

It is rather interesting how the β’s arrange themselves to give an achievable rate region with no kinks other
than the two corner points. For a general scalar Gaussian interference channel, in a very weak-interference
regime, it is known that the capacity region exhibits a kink [3,24] at the maximum sum-rate point as well. In
the Z-interference channel case, the sum-rate point coincides with one of the corner points, perhaps indicating
that there are no additional kinks for a general scalar Gaussian interference channel.

3. Conclusion

In this paper, we review new critical points in the noiseberg achievable rate region of the Gaussian Z-
interference channel. This region (and the capacity region) has been known to have two critical points at
its two corner points. The noiseberg achievable region is observed to have additional points of second-order
phase transitions. One of these critical points (β4→5) marks the transition of the noiseberg multiplex region
into the overflow region. Another of these (β4→7) marks the transition of the noiseberg multiplex region into
the time-division region. A third critical point (β5→2) marks the transition of the overflow region back to
the superposition coding region. Finally, a fourth critical point (β5→6) marks the transition of the overflow
region into a phase where the weaker receiver decodes the interfering signal in its band (Phase 6).

It is hoped that the review of the noiseberg region will help the community resolve the following key
open-question: does the noiseberg region coincide with the capacity region of the Gaussian Z-interference
channel?
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