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Abstract

We present a genie based outer bound for the sum rate of memoryless interference channels. When applied to the
scalar Gaussian interference channel, this bound recovers all known capacity results.

1 Introduction and Background

Interference channel models the communication of two(or more) sender/receiver pairs with a shared medium
for transmission. The interference channel shown below models the communication of two transmitter/receiver
pairs and is the primary model we use for this study.

M1

M2

Encoder 1

Encoder 2

Xn
1

Xn
2

q(y1, y2|x1, x2)

Y n
1

Y n
2

Decoder 1

Decoder 2

M̂1

M̂2

Fig. 1: Discrete memoryless interference channel

The capacity region is the closure of the set of achievable rate-pairs (R1, R2). For more background
information on this problem and various definitions, please refer to Chapter 6 in [2].

The best known achievable region is described by Han-Kobayashi inner bound [4, 1]. It subsumes all
other known (single-letter) inner bounds.

Theorem 1 (Han-Kobayashi (HK) inner bound). A rate-pair (R1, R2) is achievable for the channel described
in Figure 1 if

R1 < I(X1;Y1|U2, Q),

R2 < I(X2;Y2|U1, Q),

R1 +R2 < I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q),

R1 +R2 < I(X2, U1;Y2|Q) + I(X1;Y1|U1, U2, Q),

R1 +R2 < I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q),
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2R1 +R2 < I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q),

R1 + 2R2 < I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q)

for some distribution p(q, u1, u2, x1, x2, y1, y2) = p(q)p(u1, x1|q)p(u2, x2|q)q(y1, y2|x1, x2) with |U1| ≤ |X1|+4,
|U2| ≤ |X2|+ 4, and |Q| ≤ 7.

It was not known until recently1 whether HK inner bound is optimal. The two auxiliary random variables
U1, U2 makes the evaluation of the bound impractical under most circumstances.

We restrict ourselves to the analysis of the sum-rate capacity S = maxR1,R2∈C(R1 +R2), where C denotes
the capacity of the interference channel in Figure 1. A notion of very weak interference, which reduces HK
inner bound on sum-rate to treating interference as noise, was defined in [5]. A genie based sum-rate outer
bound was also derived in [5] and it was used to compute certain sum-capacity results. In this paper we
extend this genie based outer bound to create an outer bound that recovers all known sum-capacity results
in the Gaussian interference setting.

2 Previous results

In [5], the following results and definitions were obtained.

Definition 1 (Very weak interference). An interference channel q(y1, y2|x1, x2) is said to have very weak
interference if

I(U1;Y1) ≥ I(U1;Y2|X2),

I(U2;Y2) ≥ I(U2;Y1|X1).
(1)

for all auxiliaries (U1, U2) such that the joint probability distribution satisfies p(u1, u2, x1, x2, y1, y2) =
p1(u1, x1)p2(u2, x2)q(y1, y2|x1, x2).

Proposition 1. The maximum achievable sum-rate of Han-Kobayashi inner bound, denoted as SHK(q),
reduces to

SHK(q) = max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;Y2)

under very weak interference as defined in (1).

2.1 Binary Skewed Z Interference Channel (BSZIC)

We introduced a class of discrete memoryless interference channels with binary input/output. It was shown
that this class of channels have very weak interference for a certain range of parameters.

Figure 2 depicts the transition probabilities q(y1|x1, x2), q(y2|x1, x2) of an interference channel. p, q ∈
[0, 1] are constants. We call such a channel a Binary Skewed-Z Interference Channel (BSZIC), or in this
case, BSZIC(p, q).

Proposition 2. A binary skewed-Z interference channel as shown in Figure 2 has very weak interference if
and only if 0 ≤ p+ q ≤ 1.

2.2 Genie-based Sum-rate Outer Bound

Theorem 2. Let T1, T2 be any pair of random variables such that: p(y1, t1|x1, x2) = p(t1|x1)p(y1|t1, x1, x2),
p(y2, t2|x1, x2) = p(t2|x2)p(y2|t2, x1, x2), and the marginals are consistent with the given channel transition
probabilities, i.e. p(y1|x1, x2) = q(y1|x1, x2) and p(y2|x1, x2) = q(y2|x1, x2). The achievable sum-rate of the
discrete memoryless interference channel characterized by q(y1, y2|x1, x2) can be upper bounded as following:

R1 +R2 ≤ max
p1(x1)p2(x2)

I(X1;T1Y1) + I(X2;T2Y2)

+ C[I(X2;T2|X1T1)− I(X2;Y1|T1X1)]− I(X2;T2|X1T1) + I(X2;Y1|T1X1) (2)

1 Recently it was shown by a subset of the authors, along with Babak Yazdanpanah, that the Han-Kobayashi inner bound is
suboptimal. That study was a continuation of our efforts that started with this problem.
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Fig. 2: Binary skewed-Z interference channel (BSZIC)

+ C[I(X1;T1|X2T2)− I(X1;Y2|T2X2)]− I(X1;T1|X2T2) + I(X1;Y2|T2X2),

where C[I(X2;T2|X1T1)−I(X2;Y1|T1X1)] denotes the upper concave envelope of the function2 I(X2;T2|X1T1)−
I(X2;Y1|T1X1) evaluated with respect to the space of product distributions p1(x1)p2(x2). Similarly, C[I(X1;T1|X2T2)−
I(X1;Y2|T2X2)] denotes the upper concave envelope of the function I(X1;T1|X2T2)− I(X1;Y2|T2X2) evalu-
ated with respect to the same space of product distributions p1(x1)p2(x2).

By showing that the genie-based outer bound coincided with the inner bound the following result was
established in [5].

Theorem 3 ([5]). Treating interference as noise is sum-rate optimal for BSZIC when channel parameters
(p, q) satisfy

p+ q + 3pq ≤ 1.

The regime (as a subset of the very weak interference regime) is shown in Figure 3.
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Fig. 3: Regime of parameters where sum-rate capacity is established for very weak BSZIC(p,q)

Proposition 3 ([5]). For the binary skewed-Z interference channel when p = q = 1
2 , the genie based outer

bound is strictly greater than treating interference as noise inner bound.

Numerical simulations indicate that there the two-letter treating interference as noise sum-rate coincides
with the one letter sum-rate even when p = q = 1

2 . This indicates a probable optimality of the Han-Kobayashi

2 The upper concave envelope of a function f(x) over domain D is defined as

C[f ](x) := inf{g(x) : g(y) is concave in D, g(y) ≥ f(y) ∀y ∈ D.}.
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sum-capacity for the entire regime of parameters of very weak interference. Thus we would like to improve
the genie based outer bound.
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Fig. 4: Graph of g1(x) for different values of p.1

3 Enhanced Genie-based Sum-rate Outer Bound

Like all outer bounds, the genie-based outer bound is just a mathematical gadget for getting a single-letter
expression that over estimates the rates of an encoding strategy. In contrast to usual outer bounds which
involves maximization over auxiliary random variables (or equivalently, concave envelopes), the genie-based
outer bound involves an additional minimization over the choice of genies. Such a gadget has been proven
useful in obtaining the sum-rate capacity of certain discrete interference channels where said rate was not
previously known. It also recovered the sum-rate result for a subset of the Gaussian weak interference regime.
Since it involves minimizing over different genies along the process, the larger the space of genies, the better
the outer bound could potentially be. We first state and prove an enhanced version of the genie-based
sum-rate outer bound, which enlarges the space of genies to choose from as desired, for discrete memoryless
interference channels, and then adapt the proof to obtain an outer bound for Gaussian channels where the
codebooks have to satisfy a power constraint.

Theorem 4. Let T1, S1, T2, S2 be any random variables satisfying:

• p(y1, t1, s2|x1, x2) = p(t1|x1)p(s2|x2)p(y1|t1, s2, x1, x2),
p(y2, t2, s1|x1, x2) = p(t2|x2)p(s1|x1)p(y2|t2, s1, x1, x2).

• The marginals are consistent with the given channel transition probabilities, that is,
p(y1|x1, x2) = q(y1|x1, x2) and p(y2|x1, x2) = q(y2|x1, x2).

• For each k = 1, 2, Tk, Sk has degraded order, i.e. either Xk → Tk → Sk or Xk → Sk → Tk must form
a Markov chain.

The achievable sum-rate, SR = R1 + R2, of the discrete memoryless interference channel characterized by
q(y1, y2|x1, x2) can be upper bounded as following:

SR ≤ max
p1(x1)p2(x2)

min
T1,S1,T2,S2

{
I(X1;T1, Y1|S2) + G[I(X1;T1|X2, T2, S1)− I(X1;Y2|X2, T2, S1)]

+ I(X2;T2, Y2|S1) + G[I(X2;T2|X1, T1, S2)− I(X2;Y1|X1, T1, S2)]
}
,

(3)

where G[·] denotes the gap (difference) between the maximal convex combination of the function value over
independent distributions, provided the same convex combination over the underlying independent distribu-
tions yields the independent distribution at which the value is being evaluated, and the function value. The
minimum is taken over all genie variables (channels) that satisfy the conditions stated above.
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Proof. The proof basically follows from Csiszar sum lemma and manipulations (using chain rule and data-
processing inequality) of mutual information terms to reduce an n-letter expression to a 1-letter expression.
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Equality (a) follows since (Tn
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2 ) is independent of (Tn

1 , S
n
1 ), while equality (b) is a consequence of Csiszar-

sum identity.
Thus, we have

nSR− nε

≤
∑
i

H(T1i|T i−1
1 Y n

2,i+1T
n
2 S

n
1X

n
2 )−H(Y2i|T i−1

1 Y n
2,i+1T

n
2 S

n
1X

n
2 )−H(T1i|X1i) +H(Y1i|T1iS2i)

+H(T2i|T i−1
2 Y n

1,i+1T
n
1 S

n
2X

n
1 )−H(Y1i|T i−1

2 Y n
1,i+1T

n
1 S

n
2X

n
1 )−H(T2i|X2i) +H(Y2i|T2iS1i)

+ I(Tn
1 ;Sn

1 ) + I(Tn
2 ;Sn

2 )

Using substitutions U1i = T i−1
1 S

n\i
1 , V1i = X

n\i
2 T

n\i
2 Y n

2,i+1, U2i = T i−1
2 S

n\i
2 , V2i = X

n\i
1 T

n\i
1 Y n

1,i+1, we
have

nSR− nε

≤
∑
i

H(T1i|U1iV1iT2iS1iX2i)−H(Y2i|U1iV1iT2iS1iX2i)−H(T1i|X1iS1i)− I(T1i;S1i|X1i) +H(Y1i|T1iS2i)

+H(T2i|U2iV2iT1iS2iX1i)−H(Y1i|U2iV2iT1iS2iX1i)−H(T2i|X2iS2i)− I(T2i;S2i|X2i) +H(Y2i|T2iS1i)

+ I(Tn
1 ;Sn

1 ) + I(Tn
2 ;Sn

2 )

(a)
=
∑
i

H(T1i|U1iV1iT2iS1iX2i)−H(Y2i|U1iV1iT2iS1iX2i)−H(T1i|X1iU1iV1iT2iS1iX2i) +H(Y1i|T1iS2i)
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Equality (a) follows from the Markov chains

(U1iV1iT2iX2i)→ X1i → (T1i, S1i), (U2iV2iT1iX1i)→ X2i → (T2i, S2i).

Memoryless properties of the channels yield U1i, V1i → X2i, X1i → T2i, S1i, Y2i and U2i, V2i → X1i, X2i →
T1i, S2i, Y1i; hence

nSR− nε
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+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)−H(Y1i|T1iS2iX1iX2i) +H(Y2i|X2iT2iS1i)

+ I(X1i;Y1i|T1iS2i) + I(X2i;Y2i|T2iS1i)− I(T1i;S1i|X1i)− I(T2i;S2i|X2i) + I(Tn
1 ;Sn

1 ) + I(Tn
2 ;Sn

2 )

=
∑
i

I(X1i;T1i|U1iV1iT2iS1iX2i)− I(X1i;Y2i|U1iV1iT2iS1iX2i) + I(X2i;Y1i|X1iT1iS2i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i) + I(X1i;Y2i|X2iT2iS1i)

+ I(X1i;Y1i|T1iS2i) + I(X2i;Y2i|T2iS1i)− I(T1i;S1i|X1i)− I(T2i;S2i|X2i) + I(Tn
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Thus, as long as the degradation order is consistent for every i, we have
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+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)− I(X2i;T2i|T1iS2iX1i) + I(X2i;Y1i|X1iT1iS2i)

+ I(X1i;T1i|S1i) + I(X2i;T2i|S2i) + I(X1i;Y1i|T1iS2i) + I(X2i;Y2i|T2iS1i)

− I(T1i;S1i|X1i)− I(T2i;S2i|X2i) + I(T1i;S1i) + I(T2i;S2i)

=
∑
i

I(X1i;T1i|U1iV1iT2iS1iX2i)− I(X1i;Y2i|U1iV1iT2iS1iX2i)− I(X1i;T1i|T2iS1iX2i) + I(X1i;Y2i|X2iT2iS1i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)− I(X2i;T2i|T1iS2iX1i) + I(X2i;Y1i|X1iT1iS2i)
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(a)
=
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i

I(X1i;T1i|U1iV1iT2iS1iX2i)− I(X1i;Y2i|U1iV1iT2iS1iX2i)− I(X1i;T1i|T2iS1iX2i) + I(X1i;Y2i|X2iT2iS1i)

+ I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)− I(X2i;T2i|T1iS2iX1i) + I(X2i;Y1i|X1iT1iS2i)

+ I(X1i;Y1iT1i|S2i) + I(X2i;Y2iT2i|S1i)

The equality (a) is due to (X1i, T1i) being independent of S2i, and (X2i, T2i) being independent of S2i.
Further, it is an easy exercise to verify (say using d-separation principle) that

X2i → (U1i, V1i)→ X1i, X2i → (U2i, V2i)→ X1i

are Markov chains. Hence

I(X1i;T1i|U1iV1iT2iS1iX2i)− I(X1i;Y2i|U1iV1iT2iS1iX2i)− I(X1i;T1i|T2iS1iX2i) + I(X1i;Y2i|X2iT2iS1i)

≤ G[I(X1i;T1i|T2iS1iX2i)− I(X1i;Y2i|X2iT2iS1i)],

I(X2i;T2i|U2iV2iT1iS2iX1i)− I(X2i;Y1i|U2iV2iT1iS2iX1i)− I(X2i;T2i|T1iS2iX1i) + I(X2i;Y1i|X1iT1iS2i)

≤ G[I(X1i;T1i|T2iS1iX2i)− I(X1i;Y2i|X2iT2iS1i)].
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Since the above manipulations hold for every choice of valid genie channels (which could also depend on
time-index i), we obtain

nSR− nε ≤
n∑

i=1

min
T1i,S1i,T2i,S2i

{
I(X1i;Y1iT1i|S2i) + G[I(X1i;T1i|T2iS1iX2i)− I(X1i;Y2i|X2iT2iS1i)]

+ I(X2i;Y2iT2i|S1i) + G[I(X1i;T1i|T2iS1iX2i)− I(X1i;Y2i|X2iT2iS1i)]
}

≤ n max
p1(x1)p2(x2)

min
T1,S1,T2,S2

{
I(X1;T1, Y1|S2) + G[I(X1;T1|X2, T2, S1)− I(X1;Y2|X2, T2, S1)])

+ I(X2;T2, Y2|S1) + G[I(X2;T2|X1, T1, S2)− I(X2;Y1|X1, T1, S2)]
}
.

Taking n→∞ and ε→ 0 yield the desired outer bound.

Note that when S1 = S2 = ∅, enhanced genie-based sum-rate outer bound implies the bound in (2).
The additional genies provide more freedom in searching for good genies but computation becomes more
complicated. A caveat is that the two genies originating from each sender need to form a consistent degraded
order.

3.1 Gaussian Interference Channel and Enhanced Genie-based Sum-rate Outer
Bound

Consider a Gaussian interference channel,

Y1 = X1 + bX2 + Z1,

Y2 = X2 + aX2 + Z2,

where X1, X2 are independent continues random variables with E[X2
1 ] ≤ P1 and E[X2

2 ] ≤ P2. Z1, Z2 are
independent Gaussian noise N (0, 1). a, b ≥ 0 are constants.

X1

X2

Z1

Y1

Z2

Y2

a

b

Fig. 5: Gaussian interference channel

Valid codebooks for a Gaussian interference channel need to satisfy individual power constraints. This
allows one to write a slightly different outer bound than the one for discrete memoryless channels (with the
same proof and assumptions on the genies). A similar outer bound can also be written for the discrete case,
if one were to introduce type constraints on the codebooks. The proof of the following bound follows from
the proof in the discrete case presented earlier and will not be repeated.

Theorem 5. Let Q be any random variable taking finitely many values. For each choice Q = q, let
T1q, S1q, T2q, S2q be any random variables satisfying:

• pq(y1, t1, s2|x1, x2) = pq(t1|x1)pq(s2|x2)pq(y1|t1, s2, x1, x2),
pq(y2, t2, s1|x1, x2) = pq(t2|x2)pq(s1|x1)pq(y2|t2, s1, x1, x2).
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• The marginals are consistent with the given channel transition probabilities, that is,
pq(y1|x1, x2) = q(y1|x1, x2) and pq(y2|x1, x2) = q(y2|x1, x2).

• For each k = 1, 2, Tkq, Skq has a consistent degraded order, i.e. either Xk → Tkq → Skq,∀q or
Xk → Skq → Tkq ∀q holds.

The achievable sum-rate, SR = R1 +R2, of the Gaussian memoryless interference channel characterized by
q(y1, y2|x1, x2) can be upper bounded by the following:

max
Q,X1,X2

E(X2
1 )≤P1,E(X2

2 )≤P2

min
T1q,S1q,T2q,S2q

{
I(X1;T1, Y1|S2, Q) + EQ G[I(X1;T1|X2, T2, S1, q)− I(X1;Y2|X2, T2, S1, q)])

+ I(X2;T2, Y2|S1, Q) + EQ G[I(X2;T2|X1, T1, S2, q)− I(X2;Y1|X1, T1, S2, q)]
}
,

(4)
where G[·] denotes the gap (difference) between the maximal convex combination of the function value over
independent distributions, provided the same convex combination over the underlying independent distribu-
tions yields the independent distribution at which the value is being evaluated, and the function value. The
minimum is taken over all genie variables (channels) that satisfy the conditions stated above.

The outer bound is not evaluable as is since there are no cardinality constraints on continuous input
alphabets. However, since any valid choice of genies yields a valid outer bound, albeit loose might it be, we
could still obtain computable outer bounds, just without guaranteed optimality. Even then, such optimality
could be established if the outer bound value hits any known achievable rate value, which, with smart choices
of genies, does happen for all cases where capacity was previously known. We shall proceed to show this.

In the sections below we use the standard notation that C(x) = 1
2 log(1+x). Further, we will just focus on

establishing the outer bounds; the achievability of the sum-rates presented are already known in literature.

3.2 Optimality for Gaussian Interference Channel with Strong Interference

If a, b ≥ 1, the Gaussian interference channel has strong interference. The sum-rate capacity is known to be

S = min{C(P1 + b2P2), C(P2 + a2P1)}.

Since a ≥ 1, consider independent Ż1, Z̈1 ∼ N (0, 1) such that Z1 = 1
a Ż1 +

√
a2−1
a Z̈1. Set Y1 = X1 +

bX2 + 1
a Ż1 +

√
a2−1
a Z̈1, T1 = X1 + 1

a Ż1, S1 = ∅, T2 = ∅ and S2 = X2.
Then note that for independent X1, X2 we have

I(X1;T1|X2, T2, S1) = I(X1;Y2|X2, T2, S1) =⇒ G[I(X1;T1|X2, T2, S1, q)− I(X1;Y2|X2, T2, S1, q)]) = 0.

Similarly

0 = I(X2;T2|X1, T1, S2) = I(X2;Y1|X1, T1, S2) =⇒ G[I(X2;T2|X1, T1, S2, q)−I(X2;Y1|X1, T1, S2, q)] = 0.

Thus, the genie-based sum-rate outer bound reduces to

SR ≤ max
Q,X1,X2

E(X2
1 )≤P1,E(X2

2 )≤P2

{
I(X1;T1, Y1|S2, Q) + +I(X2;T2, Y2|S1, Q)

}
(a)
= max

Q,X1,X2

E(X2
1 )≤P1,E(X2

2 )≤P2

{
I(X1;T1|X2, Q) + I(X2;Y2|Q)

}
(b)
= max

Q,X1,X2

E(X2
1 )≤P1,E(X2

2 )≤P2

{
I(X1;Y2|X2, Q) + I(X2;Y2|Q)

}
= max

Q,X1,X2

E(X2
1 )≤P1,E(X2

2 )≤P2

I(X1, X2;Y2|Q) = C(P2 + a2P1).
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In the above (a) follows from our various choices of genies and since X1 → T1 → Y1 is Markov (by construc-
tion), and (b) follows by our choice of T1. By symmetry, choosing another appropriate set of genies, we can
get

SR ≤ C(P1 + b2P2).

Hence enhanced genie-based outer bound is tight for Gaussian interference channels with strong interference.

3.3 Optimality for Gaussian Interference Channel with Mixed Interference

If a > 1 and b < 1 (or a < 1 and b > 1), the Gaussian interference channel has mixed interference. For a > 1
and b < 1, the sum-rate capacity is known to be

SR = min
{
C

(
P1

b2P2 + 1

)
+ C (P2) , C(P2 + a2P1)

}
.

The bound SR ≤ C(P2 + a2P1) can be obtained by an identical selection of genies as in the previous
section.

Since b ≤ 1, consider independent Z2, Ż1 ∼ N (0, 1) such that Z1 = bZ2 +
√

1− b2Ż1. Set T1 = ∅,
S1 = X1, T2 = X2 + 1

bZ1 = X2 + Z2 + 1−b2
b Ż1, S2 = ∅ and observe that for independent X1, X2 we have

0 = I(X1;T1|X2, T2, S1) = I(X1;Y2|X2, T2, S1) =⇒ G[I(X1;T1|X2, T2, S1, q)−I(X1;Y2|X2, T2, S1, q)]) = 0,

I(X2;T2|X1, T1, S2) = I(X2;Y1|X1, T1, S2) =⇒ G[I(X2;T2|X1, T1, S2, q)− I(X2;Y1|X1, T1, S2, q)] = 0.

Thus, the genie-based sum-rate outer bound reduces to

SR ≤ max
Q,X1,X2

E(X2
1 )≤P1,E(X2

2 )≤P2

{
I(X1;T1, Y1|S2, Q) + I(X2;T2, Y2|S1, Q)

}
= max

Q,X1,X2

E(X2
1 )≤P1,E(X2

2 )≤P2

{
I(X1;Y1|Q) + I(X2;T2, Y2|X1, Q)

}
(a)
= max

Q,X1,X2

E(X2
1 )≤P1,E(X2

2 )≤P2

{
h(Y1|Q)− h(bX2 + Z1|Q) + I(X2;Y2|X1, Q)

}
= max

Q,X1,X2

E(X2
1 )≤P1,E(X2

2 )≤P2

{
h(X1 + bX2 + Z1|Q)− h(bX2 + Z1|Q) + h(X2 + Z2|Q)− h(Z2|Q)

}
(b)

≤ C

(
P1

b2P2 + 1

)
+ C (P2) .

Here (a) holds since I(X2;T2|Y2, X1, Q) = 0, and (c) follows from a standard application of EPI. Hence
enhanced genie-based sum-rate outer bound is tight for Gaussian interference channels with mixed interfer-
ence.

3.4 Optimality for Gaussian Interference Channel in subset of Weak Interference
regime

If a, b < 1, the sum-capacity of Gaussian interference channel is generally unknown. The sum-capacity is
known when a, b < 1 and a(b2P2 + 1) + b(a2P1 + 1) ≤ 1. The sum-rate capacity in this case is

SR = C

(
P1

b2P2 + 1

)
+ C

(
P2

a2P1 + 1

)
.

Enhanced genie-based sum-rate outer bound turns out to be tight in this regime, too. Here we are really
mimicking the argument in [2], albeit in single-letter.

Consider independent Ż1, Z̈1 ∼ N (0, 1) and let Z1 = ρ1Ż1 +
√

1− ρ21Z̈1. Similarly consider independent

Ż2, Z̈2 ∼ N (0, 1) and let Z2 = ρ2Ż2 +
√

1− ρ22Z̈2, where |ρ1|, |ρ2| ≤ 1. Set S1 = S2 = ∅ and let T1 =

X1 + η1Ż1, T2 = X2 + η2Z2. Further let the parameters satisfy the following conditions:
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• ρ1η1 = b2P2 + 1, ρ2η2 = a2P1 + 1

• a2η21 ≤ 1− ρ22, b2η22 ≤ 1− ρ22.

An easy exercise verifies that parameters satisfying these assumptions exist precisely when a(b2P2 + 1) +
b(a2P1 + 1) ≤ 1.

When X1, X2 are independent we have

I(X1;T1|X2, T2, S1)− I(X1;Y2|X2, T2, S1)

= I(X1;X1 + η1Ż1)− I(X1; aX1 +
√

1− ρ22Z̈2)

which is concave in p1(x1) when a2η21 ≤ 1− ρ22 (by stochastic degradation of the virtual receivers). Thus if
a2η21 ≤ 1− ρ22 we have that

G[I(X1;T1|X2, T2, S1, q)− I(X1;Y2|X2, T2, S1, q)] = 0.

A similar statement holds when b2η22 ≤ 1− ρ21.
Hence the outer bound reduces to

SR ≤ max
Q,X1,X2

E(X2
1 )≤P1,E(X2

2 )≤P2

{
I(X1;T1, Y1|Q) + I(X2;T2, Y2|Q)

}
.

It is a rather routine exercise (using EPI by expanding into differential entropies and consider suitable
differences) to verify that under this choice of parameters the optimal choice of inputs for X1 and X2 are
Gaussians and under this distribution Xk → Yk → Tk forms a Markov chain for k = 1, 2 Hence

SR ≤ C
(

P1

b2P2 + 1

)
+ C

(
P2

a2P1 + 1

)
.

4 Conclusion

This paper defines an enhanced version of the genie-based sum-rate outer bound. We prove that for continues
channels with independent Gaussian noises, the enhanced genie-based sum-rate outer bound is tight for all
cases where sum-rate capacity is previously known. Additional advantages of genie-based outer bounds
will be explored in the future. An immediate question is whether this reduces the 1-bit gap to capacity
established in [3].
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