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respect to temporally-correlated Gaussian inputs
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Abstract—We establish that the multi-letter extension of the
Han–Kobayashi achievable region with temporally correlated
vector Gaussian inputs matches the Han–Kobayashi achievable
region with scalar Gaussian inputs for the Gaussian interference
channel.

I. INTRODUCTION

Determining a computable characterization of the capacity
region of the Gaussian interference channel is a central open
question in network information theory. In particular, it is not
known whether the Han–Kobayashi region [1] with Gaussian
inputs yields the capacity region or not. Recently, it was shown
[2] that multi-letter extensions of the Han-Kobayashi region
for some discrete memoryless interference channels strictly
improves on the Han–Kobayashi achievable region. Motivated
by this result, it is natural to ask the same question for the
Gaussian interference channel: do the multi-letter extensions
of the Han–Kobayashi region with temporally correlated Gaus-
sian inputs improve on the Han–Kobayashi achievable region
with Gaussian inputs. In this note, we answer this question in
the negative.

A. Preliminaries

A Gaussian interference channel is defined by

Y1 = X1 + bX2 + Z1

Y2 = X2 + aX1 + Z2

where a, b ∈ R and Z1, Z2 ∼ N (0, 1) are independent unit-
power Gaussians. We assume the inputs X1 and X2 satisfy
power constraints P1 and P2, respectively. This channel setting
has been actively studied in the literature since mid 70s, so a
complete literature survey is beyond the scope of this paper.
An interested reader can refer to [3, Chapter 6.4] for a detailed
introduction to Gaussian interference channels and the relevant
literature. In the next paragraph we summarize some known
results.

The capacity region has been established for the case
|a|, |b| ≥ 1 [4]. The capacity region has two noted Pareto-
optimal points, called “corner” points, of the form: (C1, R

∗
2)

and (R∗
1, C2) where C1 = 1

2 log(1 + P1) and C2 = 1
2 log(1 +

P2) denote the interference-free point-to-point capacities to the
two receivers. The above corner points have been determined
for all ranges of parameters, see [4]–[6]. Additionally, the
Pareto-optimal point that maximizes the rate sum R1 + R2
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under the condition: |a|(1 + b2P2) + |b|(1 + a2P1) ≤ 1
has been established independently in [7]–[9]. The result
in [10] establishes that the Hausdorff distance (under L1-
norm) between the capacity region and the Han–Kobayashi
achievable region with Gaussian inputs is at most 1, for all
ranges of parameters.

Theorem 1 (Han–Kobayashi achievable region). A non-
negative rate pair (R1, R2) is achievable for a memoryless
interference channel if it satisfies

R1 ≤ I(X1;Y1|U2Q)

R1 ≤ I(X2;Y2|U1Q)

R1 +R2 ≤ I(U2X1;Y1|Q) + I(X2;Y2|U2U1Q)

R1 +R2 ≤ I(U1X2;Y2|Q) + I(X1;Y1|U2U1Q)

R1 +R2 ≤ I(U2X1;Y1|U1Q) + I(U1X2;Y2|U2Q)

2R1 +R2 ≤ I(U2X1;Y1|Q) + I(X1;Y1|U1U2Q)

+ I(U1X2;Y2|U2Q)

R1 + 2R2 ≤ I(U1X2;Y2|Q) + I(X2;Y2|U1U2Q)

+ I(U2X1;Y1|U1Q)

for some p(q)p(u1, x1|q)p(u2, x2|q).

Remark 1. The region presented above, Theorem 6.4 in [3], is
an equivalent characterization of the Han–Kobayashi achiev-
able region obtained in [11]. For the Gaussian interference
channel with power constraints the input distributions are
required to satisfy E(X2

1 ) ≤ P1 and E(X2
2 ) ≤ P2.

Definition 1. The Han–Kobayashi achievable region with
Gaussian inputs refers to the evaluation of the region in
Theorem 1, where for each Q = q, X1q = Uq

1 + V q
1

and X2q = Uq
2 + V q

2 , where Uq
1 , V

q
1 , U

q
2 , V

q
2 are mutually

independent Gaussian random variables, and the constraints
EQ(X

2
1Q) ≤ P1 and EQ(X

2
2Q) ≤ P2 hold. We denote this

region as RGS , where GS represents Gaussian signaling.

Definition 2. A k-letter extension of the Han–Kobayashi
achievable region refers to the (normalized) region in Theorem
1 evaluated for the interference channel obtained by taking k
independent copies of the original interference channel.

Remark 2. By grouping channel uses into blocks of k time-
slots one observes that the k-letter extension of the Han–
Kobayashi achievable region also yields an achievable region
for the original interference channel. Further, it is known (via
Fano’s inequality) that the (set-theoretic) limit of the k-letter
extension of the Han–Kobayashi achievable region goes to
the true capacity region. The k-letter extension of the Han–



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. ??, NO. ??, MONTH YEAR 2

Kobayashi achievable region with (vector) Gaussian inputs is
defined in a similar manner as for the scalar case.

There have been attempts to study the local optimality
of Gaussian distributions for the Han–Kobayashi rate region
with perturbations using Hermite polynomials [12], as well as
using temporally correlated coding schemes. While the former
approach yielded interesting insights, so far the approach has
not exhibited any rate pair that lay outside the Han–Kobayashi
achievable region with Gaussian inputs.

There have been some instances in network information
theory, including work by the authors, where multi-letter
Gaussian schemes have been shown to match the single-letter
scheme, such as [13]–[15]. This work is a natural extension of
such results and this result subsumes other results and deals
with the Han–Kobayashi region in its entirety.

B. The k-letter extension of the Han–Kobayashi achievable
region with (vector) Gaussian inputs

From its definition, we see that the k-letter extension of
the Han–Kobayashi achievable region with (vector) Gaussian
inputs reduces to the set of rate pairs (R1, R2) ∈ R2

+ that
satisfy

R1 ≤ EQ

 1

2k
log

∣∣∣I +KQ
U1

+KQ
V1

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
 (1a)

R2 ≤ EQ

 1

2k
log

∣∣∣I +KQ
U2

+KQ
V2

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
 (1b)

R1 +R2 ≤ EQ

 1

2k
log

∣∣∣I +KQ
U1

+KQ
V1

+ b2KQ
U2

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
+

1

2k
log

∣∣∣I +KQ
V2

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
 (1c)

R1 +R2 ≤ EQ

 1

2k
log

∣∣∣I +KQ
U2

+KQ
V2

+ a2KQ
U1

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
+

1

2k
log

∣∣∣I +KQ
V1

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
 (1d)

R1 +R2 ≤ EQ

 1

2k
log

∣∣∣I +KQ
V1

+ b2KQ
U2

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
+

1

2k
log

∣∣∣I +KQ
V2

+ a2KQ
U1

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
 (1e)

2R1 +R2 ≤ EQ

 1

2k
log

∣∣∣I +KQ
U1

+KQ
V1

+ b2KQ
U2

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
+

1

2k
log

∣∣∣I +KQ
V1

+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
+

1

2k
log

∣∣∣I +KQ
V2

+ a2KQ
U1

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
 (1f)

R1 + 2R2 ≤ EQ

 1

2k
log

∣∣∣I +KQ
U2

+KQ
V2

+ a2KQ
U1

+ a2KQ
V1

∣∣∣∣∣∣I + a2KQ
V1

∣∣∣
+

1

2k
log
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+ a2KQ
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+
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log
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+ b2KQ
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+ b2KQ
V2

∣∣∣∣∣∣I + b2KQ
V2

∣∣∣
 , (1g)

for some Q and symmetric positive semi-
definite matrices Kq

U1
,Kq

V1
,Kq

U2
,Kq

V2
∈ Rk×k

such that EQ

(
tr
(
KQ

U1
+KQ

V1

))
≤ kP1 and

EQ

(
tr
(
KQ

U2
+KQ

V2

))
≤ kP2. By a standard application

of cardinality-bounding techniques, it suffices to consider
|Q| ≤ 9 (not needed in this note). Let RGS

k denote the above
region.

The main result of this note is the following:

Theorem 2. RGS
k = RGS

1 for all k ≥ 1.

We will prove this theorem in the next section.

II. PROOF OF THEOREM 2

For a k × k Hermitian matrix A, let λ1(A) ≤ · · · ≤ λk(A)
denote its eigenvalues. The proof uses a couple of standard
technical results that we state at the outset.

Theorem 3 (Fiedler [16]). Let A,B be k × k Hermitian
matrices. Suppose λ1(A) + λ1(B) ≥ 0. Then

k∏
i=1

(λi(A) + λi(B)) ≤ |A+B| ≤
k∏

i=1

(λi(A) + λk+1−i(B))

Lemma 1. Let A,B be k×k Hermitian matrices with B � 0.
Then λi(A+B) ≥ λi(A) for i = 1, · · · , k.

Proof. The Courant-Fischer-Weyl min-max principle and B �
0 imply that

λi(A+B) = min
V⊆Ck

dimV =i

max
x∈V
‖x‖=1

x∗(A+B)x

≥ min
V⊆Ck

dimV =i

max
x∈V
‖x‖=1

x∗Ax

= λi(A).

Given any collection of symmetric positive semi-definite
matrices Kq

U1
,Kq

V1
,Kq

U2
,Kq

V2
∈ Rk×k, define

K̂q
V1

:= diag
(
{λi(K

q
V1
)}
)
,

K̂q
U1

:= diag
(
{λi(K

q
U1

+Kq
V1
)− λi(K

q
V1
)}
)
� 0,

K̂q
V2

:= diag
(
{λk+1−i(K

q
V2
)}
)
,

K̂q
U2

:= diag
(
{λk+1−i(K

q
U2

+Kq
V2
)− λk+1−i(K

q
V2
)}
)
� 0,

where diag({ai}) indicates a diagonal matrix with diag-
onal entries a1, · · · , ak. The positive semi-definiteness of
K̂U1

, K̂U2
follows from Lemma 1. Note that these are trace

preserving operations, i.e. tr(K̂q
U1

+ K̂q
V1
) = tr(Kq

U1
+Kq

V1
)

and tr(K̂q
U2

+ K̂q
V2
) = tr(Kq

U2
+Kq

V2
).



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. ??, NO. ??, MONTH YEAR 3

Further note that∣∣I + a2Kq
V1

∣∣ = ∣∣∣I + a2K̂q
V1

∣∣∣ = k∏
i=1

(
1 + a2λi(K

q
V1
)
)
, (2a)

∣∣I + b2Kq
V2

∣∣ = ∣∣∣I + b2K̂q
V2

∣∣∣ = k∏
i=1

(
1 + b2λi(K

q
V2
)
)
. (2b)

Corollary 1. For any c1, c2 ≥ 0, let (A1, Â1) =
(Kq

V1
, K̂q

V1
) or (Kq

U1
+Kq

V1
, K̂q

U1
+ K̂q

V1
), and let (A2, Â2) =

(Kq
V2
, K̂q

V2
) or (Kq

U2
+Kq

V2
, K̂q

U2
+ K̂q

V2
). Then

|I + c1A1 + c2A2| ≤
∣∣∣I + c1Â1 + c2Â2

∣∣∣ .
Proof.

|I + c1A1 + c2A2| ≤
k∏

i=1

(1 + c1λi(A1) + c2λk+1−i(A2))

=
∣∣∣I + c1Â1 + c2Â2

∣∣∣
where the inequality follows from Theorem 3.

Corollary 1 and Equation 2 imply that replacing
(Kq

U1
,Kq

V1
,Kq

U2
,Kq

V2
) by (K̂q

U1
, K̂q

V1
, K̂q

U2
, K̂q

V2
) cannot de-

crease any of the right-hand-sides of (1). This shows that RGS
k

can be attained by diagonal covariance matrices.
When the matrices Kq

U2
,Kq

V2
,Kq

U1
,Kq

V1
are diagonal with

entries Kq
U2
(i),Kq

V2
(i),Kq

U1
(i),Kq

V1
(i), i = 1, . . . , k, observe

that, for instance, we can express

EQ

(
1

2k
log
∣∣∣I +KQ

U2
+KQ

V2
+ a2KQ

U1
+ a2KQ

V1

∣∣∣)
=
∑
q

P(Q = q)

(
1

2k

k∑
i=1

log
(
1 +Kq

U2
(i) +Kq

V2
(i)

+a2Kq
U1

(i) + a2Kq
V1
(i)
))

=
∑
q,i

P(Q̃ = (q, i))

(
1

2
log
(
1 +Kq,i

U2
+Kq,i

V2

+a2Kq,i
U1

+ a2Kq,i
V1

))

= EQ̃

(
1

2
log
(
1 +KQ̃

U2
+KQ̃

V2
+ a2KQ̃

U1
+ a2KQ̃

V1

))
.

In the above we defined a new time-sharing variable Q̃
and set P(Q̃ = (q, i)) = 1

k P(Q = q), and defined scalar
variables Kq,i

U1
= Kq

U1
(i) (and others similarly). Note that

the last expression is an expectation over scalar variables and
corresponds to the expression in RGS

1 . All other terms in RGS
k

also can be expressed similarly (with the consistent choice
P(Q̃ = (q, i)) = 1

k P(Q = q) and Kq,i
U1

= Kq
U1
(i)). Now

the inclusion RGS
k ⊆ RGS

1 is immediate, thus establishing
Theorem 2.
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