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Abstract— We consider the multi-source network coding
problem in cyclic networks. This problem involves several
difficulties not found in acyclic networks, due to additional
causality requirements. This paper highlights the difficulty
of these causality conditions by analyzing two example
cyclic networks. The networks appear quite similar at
first glance, and indeed both have invalid rate-1 network
codes that violate causality. However, the two networks
are actually quite different: one also has a valid rate-1
network code obeying causality, whereas the other does not.
This unachievability result is proven by a new information
inequality for causal coding schemes in a simple cyclic
network.

1. INTRODUCTION

The multi-source network coding problem, where
multiple communicating sessions share a network of
lossless links with rate constraints, has proven to be a
challenging problem involving many subtle and coun-
terintuitive phenomena. These difficulties are present
in both acyclic and cyclic networks, although cyclic
networks are generally harder, due to the additional
causality issues. This paper studies two example cyclic
networks that illustrate an interesting “chicken and egg”
phenomenon.

To explain our work, we begin with some informal
definitions; more formal definitions are given in Sec-
tion 1-A. A natural way to specify a coding function
in a network is to associate a single symbol to be
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Fig. 1. G1, the first communication problem studied in this paper.

transmitted with each edge of the network; these symbols
are simply functions of the sources’ data. We say that
such a code meets thesingle-letter criterion for validity
if the information on edges leaving a vertex can be
computed from the information on edges entering a
vertex. For acyclic networks, a code satisfying the single-
letter criterion is indeed a valid solution. However, the
problem is more complicated when there are cycles.
For a cyclic network, a code is calledvalid only if
there is a sequence of messages corresponding to the
associated symbols, such that each message leaving a
vertex can computed frompreviousmessages entering
the vertex. Generally, the single-letter criterion does not
imply validity because there may be circular dependen-
cies among edge symbols which can not be resolved
into a valid sequence of transmissions; we describe such
invalid coding solutions as “chicken and egg” solutions.
The problem of determining when a single-letter-valid
code is valid can be quite subtle; this note presents an
example illustrating the subtlety.

Our example comprises the networksG1 and G2,
shown in Figure 1 and Figure 2. Figure 3 shows network
codes for these networks meeting the single-letter crite-
rion for validity. For G2, a valid rate-1 coding solution
is presented in Section 3. ForG1, it is shown via
information theoretic inequalities that any valid coding
solution has rate at most4/5. For the sake of comparison,
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Fig. 2. G2, the second communication problem studied in this paper.



a standard volume argument shows that the maximum
routing rate inG1 is at most2/3, whereas forG2 it is at
most3/4.

In proving our unachievability result forG1, a new
single-letter information inequality is proven for the
simplest cyclic network structure — two edges with
opposite directions. Similar toG1, this inequality appears
to have a counterexample, whose flaw is revealed only by
expanding the network as transmissions over a sequence
of time steps. The moral of this analysis is that analyzing
networks in time-dimension is crucial for establishing
tight converse theorems for multi-source network coding.

There is much prior work considering multi-source
network coding in cyclic networks, e.g., [7], [1], [4],
[5], [6], [3]. The treatment of causality in these prior
works focused on single-letter information inequalities
expressing the fact that sources can be completely re-
covered from the information contained in an edge set
when that edge set separates the source from the sink
in a suitably strong sense. One key innovation in the
present work is a new information inequality which can
be used to preclude chicken-and-egg solutions and yet
is derived by using a technique different from the prior
art.

A. Definitions and Notation

NetworksG1 and G2 have three information streams
(or commodities), which we denote byR, G and B.
Each information stream, sayR, is produced at its source
node, which is denotedsR. A source can be viewed as a
process which produces a random variable at each time
step. The objective is to transmit the information from
the sources to their respective sinks, which are denoted
tR, etc.

An edge in the network is denotedeij , where i is
the tail andj is the head of the edge. Suppose that
the information is transmitted through the network for
n consecutive time steps. Lete(k)

ij denote the random
variable corresponding to the symbol transmitted on edge
eij at time stepk. Let e

(1..k)
ij = {e

(1)
ij , . . . , e

(k)
ij }. For

convenience, we useeij as shorthand fore(1..n)
ij . We

assume that each edge has unit capacity, meaning that
H(e

(k)
ij ) ≤ 1.

We restrict our attention to deterministic coding. That
is, for an arbitrary edgee whose tail has sources
S1, . . . , Sn and has incoming edgese1, . . . , em, we
require the output at timek on edgee to be a function
of those sources and the past symbols on the incoming
edges. As an equation, we have

e(k) = g
(

S1, . . . , Sn, e
(1..k−1)
1 , . . . , e(1..k−1)

m

)

. (1.1)

This requirement also applies whene is entering a sink.

It can be argued that a randomized coding scheme,
wheree(k) in Eq. (1.1) can be a function of other source
of randomness, does not enlarge the rate regions of the
problem. An example argument can be found in the
Appendix of Ahlswede et al. [2]. The probability of error
of a randomized scheme is the average probability of
error over the difference realizations of the additional
independent sources of randomness. As a result, there
must exist a deterministic scheme that drives the error
probability to zero. Thus we will henceforth assume that
the only sources of randomness areR, G, andB.

That being said, for simplicity, this paper considers
only zero-error solutions, i.e., the sinks must exactly
recover the sources.∗ A coding solution achieves rate
r if it transmits the sources to the sinks with zero error
for n time steps andH(sR) = H(sG) = H(sB) = rn.

2. ANALYSIS OF G1

In this section, we will show that any valid rate-r
network code inG1 hasr ≤ 4/5. To this end, suppose
we have such a network code withr ≥ 1 − λ. We now
derive two inequalities on the information transmitted
through the network.

Lemma 2.1:The following inequalities hold:

I(e35;GB|R) ≤ λn I(e58e28;B|RG) ≤ 2λn

Proof. Fano’s inequality (along with zero error criterion)
implies thatI(R; e35) = n(1−λ) andI(RG; e58e28) =
2n(1 − λ). Now

I(RGB; e35)
︸ ︷︷ ︸

≤H(e35) = n

= I(R; e35)
︸ ︷︷ ︸

=n(1−λ)

+I(GB; e35|R)

=⇒ I(GB; e35|R) ≤ λn.

I(RGB; e58e28)
︸ ︷︷ ︸

≤H(e58e28) = 2n

= I(RG; e58e28)
︸ ︷︷ ︸

=2n(1−λ)

+I(B; e58e28|RG)

=⇒ I(B; e58e28|RG) ≤ 2λn. �

Next, from the graph structure, without loss of gen-
erality, we can assume thate58 and e52 are delayed
versions ofe35, i.e., e

(k)
58 = e

(k)
52 = e

(k−1)
35 . This is

becausee35 is the only input fore58 ande52 and their
capacity are the same. Any operations ate58 can be
deferred to a later point. Hence any solution can be
transformed into a solution wheree(k)

58 = e
(k)
52 = e

(k−1)
35 .

This observation and Lemma 2.1 together imply that
I(e52;GB|R) ≤ λn andI(e52e28;B|RG) ≤ 2λn.

∗Using Fano’s inequality it is quite straightforward to convert these
results to the more conventional asymptotically zero error coding
schemes.

2



sR tBtG

tR

tB
sG

tR

sB
tG

tR

tG tB

tR tG

tB
tR

tB
tG

R + B

R + B

R+GR+G

G +
B

G +
B

R

BG

R

B

B

G

G

R

2

1

3 8

79

5

46

(a) G1

sG

tR

tG tB

sR

sB
2

1

3

5

46

G

G

R R

B

B

R+G

G+B R+B

(b) G2

Fig. 3. An invalid “coding solution” for the two instancesG1 andG2. The solution appears to have rate 1 but, due to causality issues, it cannot
be implemented over a sequence of time steps.

A. Reduction to a Smaller Instance

In this section we modify the graphG1 by simplifying
it to a smaller instanceG∗

1 . (See Figure 4.) We iden-
tify the nodes in each of the following sets:{1, 6, 9},
{2, 4, 7}, {3, 5, 8}. (Effectively, the edges induced by
those vertex sets have been given infinite capacity and
zero delay.) The resulting “supernodes” will henceforth
be denoted1, 2, and3.

Any network coding solution of rater in G1 can obvi-
ously be viewed as a solution of rater in G∗

1 , since the
connectivity has improved whereas the communication
requirements have not changed. Furthermore, when we
map a solution fromG1 to G∗

1 , Lemma 2.1 implies (via
symmetry) that the following inequalities hold:

I(e32;GB|R) ≤ λn I(e23e32;B|RG) ≤ 2λn

I(e13;RB|G) ≤ λn I(e31e13;R|BG) ≤ 2λn

I(e21;RG|B) ≤ λn I(e12e21;G|RB) ≤ 2λn
(2.1)

B. Analysis

The argument proceeds as follows. Lemma 2.6 is an
important result whose statement and proof is deferred to
the end of the analysis to retain the flow. In Lemma 2.2,
we apply this general inequality to the particular exam-
ple. In the subsequent lemmas, we obtain lower bounds
and upper bounds of relevant terms as a function ofλ.
This culminates in a lower bound onλ in Lemma 2.5.

Lemma 2.2:

I(e23e32;Be13|G) ≥ I(e23e32;Be13|Ge12).

Proof. Apply Lemma 2.6 witha = e23, b = e32, x =
e12, x′ = G, y = Be13, y′ = 0. �

Lemma 2.3:I(e23e32;Be13|G) ≤ 3λn.

Proof. Using the inequalityI(X;Y ) ≤ I(Y ;Z) +
I(X;Y |Z), we have

I(e23e32;Be13|G)

≤ I(R;Be13|G) + I(e23e32;Be13|RG).
(2.2)

The first term in Eq. (2.2) is upper bounded as follows.

I(R;Be13|G) = I(R;B)
︸ ︷︷ ︸

=0

+ I(R; e13|GB)

≤ I(RB; e13|G) ≤ λn,

where the first inequality follows from the inequality
I(W ;XY ) ≥ I(W ;X|Y ) and the second is due to 2.1.

To upper bound the second term in Eq. (2.2), we write
it as

I(e23e32;Be13|RG)

= I(e23e32;B|RG) + I(e23e32; e13|RGB).

Clearly I(e23e32; e13|RGB) = 0, since no entropy
remains after conditioning on all sources. Now by 2.1,
I(e23e32;B|RG) ≤ 2λn. Thus the second term in
Eq. (2.2) is at most3λn. �

Lemma 2.4:

I(e23, e32; e13B|e12G) ≥ n − 2λn.

Proof. Since decoding error is zero, we have
H(RB|e12, e32, G) = 0; and we know that
H(e12, e32|G) ≥ 2n(1 − λ). Now
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Fig. 5. The graph structure for Lemma 2.6.

2n(1 − λ)

≤ H(e12|G) + H(e32|e12, G)

≤ n + H(e32, e23|e12, G)

= n + I(e23, e32; e13, B|e12, G)

+ H(e23, e32|e13, B, e12, G)

= n + I(e23, e32; e13, B|e12, G) + 0. �

Lemma 2.5:λ ≥ 1/5.
Proof. From Lemma 2.2, Lemma 2.3, and Lemma 2.4,
we have3λn ≥ n − 2λn. Thusλ ≥ 1/5. �

C. An Useful Lemma

Lemma 2.6:Suppose thata, b, x, y, x′, y′ are random
variables corresponding to the graph structure in Fig-
ure 5. Then for any deterministic coding scheme, we
have

I(a, b;x, y|x′, y′) ≤ I(a, b;x|x′, y′) + I(a, b; y|x′, y′).

Note that equivalent forms of this inequality include:

I(a, b;x|x′, y′) ≥ I(a, b;x|x′, y′, y),

I(a, b; y|x′, y′) ≥ I(a, b; y|x′, y′, x).

Discussion: Before proving Lemma 2.6, let us first examine
a well-known example, shown in Figure 6, illustrating that the

x y

x⊕y

x⊕y

Fig. 6. An invalid counter example to Lemma 2.6.

lemma is not trivial. Here supposex and y are independent
binary strings, andx′

= 0, y
′
= 0. This network code appears

to be locally consistent if we neglect the causality requirement:
each node appears to be able to generatex⊕y from its inputs.
The proof of Lemma 2.6 resolves the causality problem of this
example by explicitly considering the time dimension.

Proof (of Lemma 2.6). Expand the random variables in
I(xy; ab|x′y′) into their components at each time step.

I(xy; ab|x′y′) =

n∑

k=1

I(xy; a(k)b(k)|a(1..k−1)b(1..k−1)x′y′).

This can be divided into the following two sums:

n∑

k=1

I(xy; a(k)|a(1..k−1)b(1..k−1)x′y′)

+

n∑

k=1

I(xy; b(k)|a(1..k)b(1..k−1)x′y′).

(2.3)

We now analyze the first sum.

n∑

k=1

I(xy; a(k)|a(1..k−1)b(1..k−1)x′y′) (2.4)

≥

n∑

k=1

I(x; a(k)|a(1..k−1)b(1..k−1)yx′y′) (2.5)

4



≥

n∑

k=1

I(x; a(k)|a(1..k−1)yx′y′) (2.6)

= I(x; a|yx′y′) (2.7)

= I(x; ab|yx′y′) (2.8)

where Eq. (2.5)≥Eq. (2.6) holds becauseb(1..k−1) is a
function of a(1..k−1), y and y′, and Eq. (2.7)=Eq. (2.8)
holds becauseb is a function ofa, y andy′. This gives
a lower bound on the first sum in Eq. (2.3). A similar
argument applies to the second sum (note thata(1..k) is
a function ofb(1..k−1), x andx′) , so we obtain

I(xy; ab|x′y′) ≥ I(x; ab|yx′y′) + I(y; ab|xx′y′).

Since I(xy; ab|x′y′) = I(x; ab|x′y′) + I(y; ab|xx′y′),
we have shown thatI(x; ab|x′y′) ≥ I(x; ab|yx′y′), as
required. �

3. ANALYSIS OF G2

To illustrate the subtle issues at play in the “chicken
and egg” phenomenon, we now demonstrate that rate1 is
asymptotically achievable in the communication problem
G2, despite its superficial similarity withG1 and the fact
that the invalid “coding solutions” for both problems
in Figure 3 are virtually identical. Our solution which
asymptotically achieves rate1 in G2 reveals a key differ-
ence between the two communication problems. There
is a second“chicken-and-egg” solution inG2, in which
each of the edgese12, e23, e31 transmits the message
R⊕G⊕B. Unlike the invalid coding solution presented
in Figure 3(b), this invalid solution can be “unraveled”
into a valid coding solution. (Note that the comparable
modification of the coding solution in Figure 3(a) —
i.e., transmittingR ⊕ G ⊕ B on each of the edges
e17, e72, e28, e83, e39, e91 — produces a solution which
does not even meet the single-letter criterion for validity,
e.g. node8 does not receive sufficient information to
output messageG to sink tG.)

Let n be any positive integer. Suppose that sources
R,G,B generate independent uniformly-distributedn-
bit messagesr(1..n), g(1..n), b(1..n). We first describe a
solution which transmitsR,G,B over a series of9n+2
rounds; in each round exactly one of the edges of the
network transmits a single bit and the other edges are
idle. Let us adopt the convention thatr(0) = b(0) =
g(0) = 0.

Rounds1, . . . , 3n: For 0 ≤ i < n,

e
(3i+1)
12 = r(i+1) ⊕ g(i) ⊕ b(i)

e
(3i+2)
23 = r(i+1) ⊕ g(i+1) ⊕ b(i)

e
(3i+3)
31 = r(i+1) ⊕ g(i+1) ⊕ b(i+1)

Rounds3n + 1, 3n + 2:

e
(3n+1)
35 = e

(3n+2)
52 = b(n)

Rounds3n + 3, . . . , 9n + 2: For 0 ≤ i < n, let j =
6i + 3n + 3.

e
(j)
24 = e

(j+1)
41 = b(n−i)

e
(j+2)
16 = e

(j+3)
63 = g(n−i)

e
(j+4)
35 = e

(j+5)
52 = r(n−i)

It is easy to check that this satisfies the definition of a
coding solution, i.e. every message transmitted along an
edgee = (u, v) is a function of the messages received
earlier at u together with the sources originating at
u. Over the course of9n + 2 rounds, edgese35, e52

each transmitn + 1 bits and the remaining edges each
transmitn bits. Using a standard interleaving trick, we
can eliminate the idle periods on edges and achieve a
rate approaching1 asn tends to infinity. More precisely,
for any positive integerm we can construct a network
code in which each source generates(9n + 2)nm bits
and these are transmitted to the sinks over the course
of (9n + 2)(n + 1)(m + 1) time steps, with each edge
sending at most one bit per time step.† Thus there is
a coding solution achieving rate

(
n

n+1

) (
m

m+1

)

, which
approaches1 asn,m simultaneously tend to infinity.
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