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Abstract— We consider the multi-source network coding  transmitted with each edge of the network; these symbols
problem in cyclic networks. This problem involves several are simply functions of the sources’ data. We say that

difficulties not found in acyclic networks, due to additional  g;ch 5 code meets thsingle-letter criterion for validity
causality requirements. This paper highlights the difficulty it the information on edaes leaving a vertex can be
of these causality conditions by analyzing two example g 9

cyclic networks. The networks appear quite similar at Computed from the information on edges entering a
first glance, and indeed both have invalid rate-1 network vertex. For acyclic networks, a code satisfying the single-

codes that violate causality. However, the two networks |etter criterion is indeed a valid solution. However, the

are actually quite different: one also has a valid rate-1 problem is more complicated when there are cycles.
network code obeying causality, whereas the other does not. = I twork de | lledalid v if
This unachievability result is proven by a new information ' OF @ CYCliC network, a code IS ca id only 1

inequality for causal coding schemes in a simple cyclic there is a sequence of messages corresponding to the
network. associated symbols, such that each message leaving a

vertex can computed frorpreviousmessages entering
1. INTRODUCTION the vertex. Generally, the single-letter criterion doet no

The multi-source network coding problem, Wherémply validity because there may be circular dependen-

multiple communicating sessions share a network G{€S @mong edge symbols which can not be resolved
lossless links with rate constraints, has proven to bel§0 @ valid sequence of transmissions; we describe such
challenging problem involving many subtle and couninvalid coding solutions _agc‘hlcken and (_eggsolunons. .
terintuitive phenomena. These difficulties are preseh'® Problem of determining when a single-letter-valid
in both acyclic and cyclic networks, although cyclic,COde is v_al|d can be quite subtle; this note presents an
networks are generally harder, due to the addition§k@mPple illustrating the subtlety.

causality issues. This paper studies two example cyclicOur _exa_mple comprises the Ijetworl§§ and G,
networks that illustrate an interesting “chicken and egg#hown in Figure 1 and Figure 2. Figure 3 shows network
phenomenon. codes for these networks meeting the single-letter crite-
definitions; more formal definitions are given in SeciS presented in Section 3. Fd;, it is shown via
tion 1-A. A natural way to specify a coding functioninformation theoretic inequalities that any valid coding

in a network is to associate a single symbol to beolution has rate at mosf5. For the sake of comparison,

Fig. 1. Gy, the first communication problem studied in this paper.Fig. 2. Ga, the second communication problem studied in this paper.



a standard volume argument shows that the maximumlt can be argued that a randomized coding scheme,
routing rate inG, is at most2/3, whereas foiG, it is at wheree(®) in Eq. (1.1) can be a function of other source
most3/4. of randomness, does not enlarge the rate regions of the
In proving our unachievability result fo§;, a new problem. An example argument can be found in the
single-letter information inequality is proven for theAppendix of Ahlswede et al. [2]. The probability of error
simplest cyclic network structure — two edges witlof a randomized scheme is the average probability of
opposite directions. Similar tG,, this inequality appears error over the difference realizations of the additional
to have a counterexample, whose flaw is revealed only ldependent sources of randomness. As a result, there
expanding the network as transmissions over a sequemeast exist a deterministic scheme that drives the error
of time steps. The moral of this analysis is that analyzingrobability to zero. Thus we will henceforth assume that
networks in time-dimension is crucial for establishinghe only sources of randomness d&eG, and B.
tight converse theorems for multi-source network coding. That being said, for simplicity, this paper considers
There is much prior work considering multi-sourcenly zero-error solutions, i.e., the sinks must exactly
network coding in cyclic networks, e.g., [7], [1], [4],recover the sources. A coding solution achieves rate
[5], [6], [3]. The treatment of causality in these prior- if it transmits the sources to the sinks with zero error
works focused on single-letter information inequalitiefor n time steps andi(sr) = H(sg) = H(sp) = .
expressing the fac_t that sources can be_ completely re- 2. ANALYSIS OF Gy
covered from the information contained in an edge set ) ) . .
when that edge set separates the source from the sinkn this section, we will show that any valid rate-
in a suitably strong sense. One key innovation in tHaetwork code inG, hasr < 4/5. To this end, suppose
present work is a new information inequality which caM/@ have such a network code with> 1 — A. We now
be used to preclude chicken-and-egg solutions and yd@tnve two inequalities on the information transmitted

is derived by using a technique different from the priothrough the network. N
art. Lemma 2.1:The following inequalities hold:

A. Definitions and Notation I(ess; GBIR) < An I(essess; BIRG) < 2An

Networks G, and G, have three information streamsFrOQf- Fano’s inequality (along with zero error criterion)
(or commodities), which we denote by, G and B. ImMplies that/(R; es;) = n(1—A) andI(RG; esseas) =
Each information stream, sa, is produced at its source 2n(1 — A). Now

node, which is denoteslr. A source can be viewed as a I(RGB;ess) = I(R;ess)+I(GB;ess|R)
process which produces a random variable at each time
step. The objective is to transmit the information from <H(ess)=n =n(1-2)
the sources to their respective sinks, which are denoted= [(GB;ess|R) < An.
tr, etc.
An edge in the network is denoted;, wherei is I(RGB;esseas)
—_— ————

the tail andj is the head of the edge. Suppose that < H (oosons) — 2n
the information is transmitted through the network for B _ _

n consecutive time steps. Leﬁf) denote the random - WJJ(B,%E;@QRG)
variable corresponding to the symbol transmitted on edge =2n(1-X)

e;; at time stepk. Let eg;-*) = {ez(.;),...,eff)}. For = I(B;esse5|RG) < 2\n. |
convenience, we use;; as shorthand f‘?’egyl'”n)' We = Next, from the graph structure, without loss of gen-
ass%rc'r;e that each edge has unit capacity, meaning t@f"a{lity, we can assume thats and es, are delayed
H(ey;') < L. _ o _ versions ofess, i.e., elt) = elf) = ¢~V This is

. We restrict our attention to determlnl_stlc coding. Th%ecauseegs is the only input foress andess and their
is, for an arbitrary edgee whose tail has SOUrCeS canacity are the same. Any operationsegt can be

S1,...,5, and has incoming edges;,....cm, We qeferred to a later point. Hence any solution can be
require the output at timé on edgee to be a function F) _ k1)

. transformed into a solution wherd”) = %) =
of those sources and the past symbols on the incomifig, ™ Jpco w04 cmma Sél toggt2her i?r?ply that

edges. As an equation, we have I(es2; GB|R) < An and I (esze2s; B|RG) < 2An.
(k) _ (1..k—1) (1..k—1)
e =9 (Sl’ <oy S €1 e Cm - (1.1) *Using Fano’s inequality it is quite straightforward to cerivthese
) ) ) ) . . results to the more conventional asymptotically zero errodirgp
This requirement also applies wherns entering a sink. schemes.



(b) G2

Fig. 3. An invalid “coding solution” for the two instanc€s andG. The solution appears to have rate 1 but, due to causaliftgssst cannot
be implemented over a sequence of time steps.

A. Reduction to a Smaller Instance

In this section we modify the graphy by simplifying
it to a smaller instanc&/;. (See Figure 4.) We iden-
tify the nodes in each of the following set$i, 6,9},
{2,4,7}, {3,5,8}. (Effectively, the edges induced by
those vertex sets have been given infinite capacity and
zero delay.) The resulting “supernodes” will henceforth i _ .
be denoted., 2, and3. The first term in Eq. (2.2) is upper bounded as follows.
Any network coding solution of ratein G; can obvi-
ously be viewed as a solution of raten G;, since the
connectivity has improved whereas the communication
requirements have not changed. Furthermore, when we
map a solution fronG; to Gf, Lemma 2.1 implies (via
symmetry) that the following inequalities hold:

Proof. Using the inequalityl(X;Y) < I(Y;Z) +
I(X,;Y|Z), we have

I(ease32; Beis|G)

2.2
S I(R,Be13|G) + 1(623632;3613‘RG). ( )

I(R; Beis|G) = I(I;B) + I(R;e13|GB)
——
=0

< I(RBje|G) < An,

_ _ where the first inequality follows from the inequality
I(e32; GBIR) < An I(easess; BIRG) < 2An I(W;XY) > I(W;X|Y) and the second is due to 2.1.
I(e3; RB|G) < An I(esiers; RIBG) < 2n To upper bound the second term in Eq. (2.2), we write
[(621; RGlB) S ATL 1(612621; G|RB) S 2)\71 |t as

(2.1)

B. Analysis I(eqzesq; Beqs|RG)

The argument proceeds as follows. Lemma 2.6 is an = I(ezses; BIRG) + I(ezsesr;ei3|RGB).
important result whose statement and proof is deferred to
the end of the analysis to retain the flow. In Lemma 2.%

. g X . learly I(essesq;ei3|RGB) = 0, since no entro
we apply this general inequality to the particular exan; Y I(exses;ers| ) Py

; mains after conditioning on all sources. Now by 2.1,
ple. In the subsequent lemmas, we obtain lower boun;e%e%,B‘RG) < 92\n. Thus the second term in

and upper bounds of relevant terms as a function.of Eq. (2.2)

: . X . is at mosBAn. [ |
This culminates in a lower bound onin Lemma 2.5. "

Lemma 2.2:

I(egsesn; Bei3|G) > I(eszess; Beys|Gera).

Proof. Apply Lemma 2.6 witha = es3, b = e3q2, x =

ez, ¥’ =G, y = Beys, y' = 0.

Lemma 2.3:](623632; Be13|G) < 3An.

Lemma 2.4:

I(ea3,€e32;e13Ble12G) > n — 2An.

Proof. Since decoding error is zero, we have
H(RBlejs,e32,G) = 0; and we know that
H(812,632|G) > 2n(1 — /\) Now



(b) G7

Fig. 4. (a) Identifying vertices igj1. (b) The resulting instance? .

. Fig. 6. An invalid counter example to Lemma 2.6.
Fig. 5. The graph structure for Lemma 2.6. 9 P

lemma is not trivial. Here suppose and y are independent
binary strings, and’ = 0, ¥’ = 0. This network code appears

2n(1 - ) to be locally consistent if we neglect the causality requirement:
< H(ei2|G) + H(eszleis, Q) each node appears to be able to genetatey from its inputs.
< n+ H(ess, e3lers, G) The proof of Lemma 2.6 resolves the causality problem of this

example by explicitly considering the time dimension.

n+ I(ess, e32; €13, Bleis, G)

+ H(eas, es2]e13, B, €12, G) Proof (of Lemma 2.6). Expand the random variables in
n + I(eas, e32; €13, Blei2, G) + 0. B [(zy;ablz’y’) into their components at each time step.

Lemma 2.5:\ > 1/5. n
Proof From Lemma 2.2, Lemma 2.3, and Lemma 2.4,(zy; ablz'y’) = Zl(xy;a(’“)b(’“)\a(l"k’l)b(l”’“*)x’y’).
we have3An > n —2An. Thus > 1/5. | k=1
This can be divided into the following two sums:
C. An Useful Lemma

n

Lemma 2.6:Suppose that, b, z,y,z’,y’ are random ) (L k—1) (1 k—1) 1. 7
variables corresponding to the graph structure in Fig- > H(zy;a®la b 'y')
ure 5. Then for any deterministic coding scheme, we ’“jl (2.3)
have T Zl(w; b(k)‘a(l..k)b(l..kfl)x/y/).
I(a,byz,yl',y") < I(a,byz|2’,y') + I(a, byyla',y"). k=1
Note that equivalent forms of this inequality include: We now analyze the first sum.
Ia,b;z|2’,y') > I(a,b; 2]z, Y, y) n
) ) = ’ ) I (k) (L k=) (1 k—1) .0, 1 2.4
I(a,b;yla’,y") > I(a,byyle’,y, x). ; (wy:a™la ’ =v) @4
n
Discussion: Before proving Lemma 2.6, let us first examine > Z I(z; a(k')|a(1..k—1)b(l..k-—l)yx/y/) (2.5)
a well-known example, shown in Figure 6, illustrating that the b1

4



n

Rounds3n + 1,3n + 2:

> > I(x;a® |tV yaly) (2.6)
k=1 ei(,fr)"ﬂ) = eégn“) =
— . !
= I(z;alyz 3,/)/ 27 Rounds3n + 3,....9n+ 2 For0<i<n,letj=
= I(z;ablyz’y’) (2.8) 6i+3n+3.
j j+1 —i
where Eq. (2.5YEq. (2.6) holds becausk!*~1) is a es) = et = D
function of a*-*=1Y  andy/, and Eq. (2.7-Eq. (2.8) Ut = (U = gnd)
holds becausé is a function ofa, y andy’. This gives el(}{;—zl) _ eéj;r;,) )

a lower bound on the first sum in Eq. (2.3). A similar
argument applies to the second sum (note that*) is
a function ofb(-*=1) z andz’) , so we obtain

It is easy to check that this satisfies the definition of a
coding solution, i.e. every message transmitted along an
edgee = (u,v) is a function of the messages received
earlier atwu together with the sources originating at
u. Over the course ofn + 2 rounds, edge®ss,ess
each transmit + 1 bits and the remaining edges each
transmitn bits. Using a standard interleaving trick, we
can eliminate the idle periods on edges and achieve a
rate approaching asn tends to infinity. More precisely,
for any positive integefn we can construct a network
code in which each source generatés + 2)nm bits

To illustrate the subtle issues at play in the “chickeand these are transmitted to the sinks over the course
and egg” phenomenon, we now demonstrate thatirege of (9n + 2)(n + 1)(m + 1) time steps, with each edge
asymptotically achievable in the communication problemending at most one bit per time stefThus there is
G, despite its superficial similarity with; and the fact a coding solution achieving ra 2 mLH) which

that the invalid “coding solutions” for both problemsynyroached asn, m simultaneously tend to’infinity.
in Figure 3 are virtually identical. Our solution which
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R, G, B generate independent uniformly-distributee
bit messages (1) ¢(1-m) p(1-1) \We first describe a
solution which transmit$?, G, B over a series ofin +2

rounds; in each round exactly one of the edges of t

network transmits a single bit and the other edges
idle. Let us adopt the convention that?) = p(© =
0 =

g .

Roundsl, ..., 3n: For0 <i < n,

e(1?51‘+1) P+ g g(i) @ b®
e(2::3;‘+2) = D) g g(z‘+1) Q)
e:(ﬁHg) T(i-{-l) @ g(i+1) ® b(i-i—l)

[7] R. Yeung.A First Course in Information TheorySpringer, 2006.

tTreat the ordered triple of9n + 2)nm-bit source messages as
9n+2 separate triples aim-bit messages, numberéd2, . .., 9n+2.

fg@ch of these triples ofim-bit messages can be transmitted over a

sequence of9n + 2)m rounds, using the coding solution specified

&fove repeatedn times sequentially. We divide time into phases

numberedl1,2,...,(9n + 2)(m + 1). In phasep, for eachs =
1,2,...,9n+ 2, each edge participates in roupd- s of the protocol

for sending thes™" triple of messages; this does not require transmitting
any bits ifp—s < 0 or if the edge is idle in roung — s of the protocol

for sending thes™ triple of messages. In a given phase, each edge
transmits at most + 1 bits and these bits depend only on information
which is received in prior phases or which originates at #iedf the
edge. Thus al{9n+2)(m+1) phases can be scheduled in a sequence
of (9n+2)(n+1)(m+1) time steps, without violating any causality
or edge capacity constraints.



