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ent work by Ordentli
h and Weissman put fortha new approa
h for bounding the entropy rate of a hiddenMarkov pro
ess via the 
onstru
tion of a related Markov pro
ess.We use this approa
h to study the behavior of the �ltering errorprobability and the entropy rate of a hidden Markov pro
ess inthe rare transitions regime. In this paper, we restri
t our attentionto the 
ase of a two state Markov 
hain that is 
orrupted by abinary symmetri
 
hannel. Using this approa
h we re
over theresults on the optimal �ltering error probability of Khasminskiiand Zeitouni. In addition, this approa
h sheds light on the termsthat appear in the expression for the optimal �ltering errorprobability. We then use this approa
h to obtain tight estimatesof the entropy rate of the pro
ess in the rare transitions regime.This leads to tight estimates on the 
apa
ity of the Gilbert-Elliot
hannel in the rare transitions regime.I. INTRODUCTIONConsider a stationary, �nite-alphabet, Markov 
hain, {Xk},and let {Zk} denote a noisy version when 
orrupted by adis
rete memoryless 
hannel. Let K denote the transitionkernel of the Markov 
hain and C denote the 
hannel transitionmatrix. The pro
ess {Zk} is known as a hidden Markovpro
ess, with the {Xk} 
orresponding to the state pro
ess.Hidden Markov pro
esses o

ur naturally in the modelingof information sour
es [EM02℄. They also arise as noisepro
esses in additive noise 
hannels, like the Gilbert-Elliot
hannel. It has been shown in [MBD89℄ that the 
hara
teri-zation of the 
hannel 
apa
ity for the Gilbert-Elliot 
hannelboils down to �nding the entropy rate of the noise.Early work on the estimation of the underlying state (sour
e)symbols from a hidden Markov pro
ess involved analysis ofoptimal �lters [W65℄. Later, sub-optimal �lters were usedto derive upper bounds [KL92℄, [KZ96℄ and information-theoreti
 arguments were used to obtain lower bounds [KZ96℄.The lower and upper bounds in [KZ96℄ mat
hed in the regionof rare transitions and the optimal �ltering error probabilitywas obtained.Our approa
h here is quite different; we use an alternativeMarkov pro
ess proposed in [OW04℄ to study the behaviorof the optimal �lter and use this to get tight estimates of the�ltering error probability in the rare transitions regime. Theanalysis of the alternative Markov pro
ess also lays bare theterms that arise in the �ltering error probability as obtained in[KZ96℄.

Work on the entropy rate of hidden Markov models usedbounds [CT91℄, Monte Carlo simulations [HGG03℄, Lyapunovexponents [HGG03℄, [JSS04℄, Statisti
al Me
hani
s [ZKD04℄,and more [EBTBH04℄.The analysis of the alternative Markov pro
ess proposed in[OW04℄, simultaneously provides us with the optimal �lteringerror probability as well as the entropy rate under the raretransitions regime. We perform the analysis for the simplest
ase of a symmetri
 2-state Markov 
hain 
orrupted by aBinary Symmetri
 Channel (BSC). The extension to general�nite alphabet Markov pro
esses 
an be attempted along verysimilar lines, however the te
hni
al details of the argumentsbe
ome more involved. The analysis of this toy model, how-ever, sheds light on the behavior of the �nite alphabet pro
ess.The paper is organized as follows. In Se
tion 2 we presentthe sour
e and 
hannel model and the alternative Markovpro
ess de�ned in [OW04℄. Se
tion 3 presents the main resultsof this paper and Se
tion 4 illustrates the analysis of thealternative Markov pro
ess that yields the 
laims. We 
on
ludein Se
tion 5II. THE BSC-CORRUPTED BINARY MARKOV CHAINConsider a sour
e, Xk, that behaves a

ording to a binaryvalued symmetri
 Markov 
hain with probability of transition
π. Assume that the sour
e symbols pass through a memoryless
hannel that �ips the value of Xk with probability δ to givea 
orrupted sequen
e Zk.
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e and Channel modelFor this model the Markov transition kernel and the 
hanneltransition matrix are, respe
tively,

K =

(

1 − π π
π 1 − π

)

, C =

(

1 − δ δ
δ 1 − δ

)

, (2.1)and we assume without loss of generality that δ ≤ 1/2.



De�ne the 
onditional probability of the sour
e symbol
onditioned on the entire set of output symbols by
βk(1) = P(Xk = 1|Zk

−∞)

βk(0) = P(Xk = 0|Zk
−∞).

(2.2)The log-likelihood ratio of the sour
e given the present andpast 
hannel outputs is de�ned as
lk = ln

βk(1)

βk(0)
= ln

βk(1)

1 − βk(1)
. (2.3)Let us 
onsider the distribution of the log-likelihood ratiorandom variable 
onditioned on the event that Xk = 1.We now re
all some relevant results that were established in[OW04℄.Consider the following auto-regressively de�ned �rst orderMarkov pro
ess,

Yk = rk ln
1 − δ

δ
+ skh(Yk−1). (2.4)Here, {rk} and {sk} are independent i.i.d. sequen
es with

rk =

{

−1 w.p. δ

+1 w.p. 1 − δ
sk =

{

−1 w.p. π

+1 w.p. 1 − π
(2.5)and the fun
tion h(x) is given by

h(x) = ln
ex(1 − π) + π

exπ + 1 − π
. (2.6)It was shown in [OW04℄ that the unique stationary distrib-ution of this 1st-order Markov pro
ess is given by P(lk|Xk =

1). Let Y denote a random variable distributed a

ording tothe stationary distribution of the Markov pro
ess in (2.4).Observe that the optimal �lter estimates the sour
e symbolto be 1 if the log-likelihood is positive and 0 if it is negative.Therefore, the probability of error for the optimal �lteringestimator is given by
Emin = P(lk < 0|Xk = 1) = P(Y < 0). (2.7)Consider the binary entropy fun
tion hb(x) (in nats) de�neda

ording to
hb(x) = −x lnx − (1 − x) ln(1 − x). (2.8)Let p∗q = p(1−q)+q(1−p) denote the binary 
onvolution.It was shown in [OW04℄ that the entropy rate of the hiddenMarkov pro
ess, {Zk}, is given by

H̄(Z) = Ehb(
eY

1 + eY
∗ π ∗ δ). (2.9)Thus it is 
lear from equations (2.7) and (2.9) that the�ltering error probability and the entropy rate of the hiddenMarkov pro
ess are intimately 
onne
ted to the stationarydistribution of the Alternative Markov Pro
ess de�ned inequation (2.4).
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11Fig. 2.2. Gilbert-Elliot Channel model1) Gilbert-Elliot Channel:: The Gilbert-Elliot 
hannelmodel is des
ribed by the transition diagram on Figure 2.2.The 
hannel exists in a good state or bad state, as deter-mined by the 2-state Markov 
hain. If the 
hannel is in thegood state, the 
hannel transition matrix, C, behaves like aBSC with parameter Pg and if it is in the bad state, C behaveslike a BSC with parameter Pb.To make an equivalen
e between the 
apa
ity of the Gilbert-Elliot 
hannel and the Sour
e and Channel model in 2.1, wemake the following identi�
ation. Xk is said to be zero ifthe 
hannel is in the good state and Xk is said to be one ifthe 
hannel is in the bad state. The Markov transition kerneland the 
hannel transition matrix for the equivalent sour
e and
hannel model is given by
K =

(

1 − b b
g 1 − g

)

, CGE =

(

1 − Pg Pg

1 − Pb Pb

)

.(2.10)Let the output of this equivalent sour
e and 
hannel modelbe Z̃k. It was shown in [MBD89℄ that the 
apa
ity of theGilbert-Elliot 
hannel is given by
CGE = 1 − H̄(Z̃). (2.11)Now 
onsider a Gilbert-Elliot Channel with parameters
g = b = π,

Pg = 1 − Pb = δ.
(2.12)Observe that this redu
es to the transition kernel and the
hannel matrix in (2.1).In the next se
tion we state the main results of this paper.III. MAIN RESULTSWe obtain the following main results of the paper in therare transitions regime by analyzing the alternative Markovpro
ess.Theorem 3.1: As π → 0, the minimum probability of erroris given by

Emin =
−π lnπ

D(δ‖1 − δ)
(1 + o(1)). (3.1)Note, D(δ‖1 − δ) represents the binary Kullba
k-Lieblerdistan
e given by

D(δ‖1 − δ) = δ ln
δ

1 − δ
+ (1 − δ) ln

1 − δ

δ
.



Theorem 3.2: In the asymptoti
 regime π → 0, the entropyrate of the hidden Markov pro
ess, H̄(Z), is bounded by
hb(δ) +

(1 − 2δ)2

1 − δ
π ln

1

π
≤ H̄(Z) ≤ hb(δ) + π ln

1

π
(3.2)For the Gilbert-Elliot 
hannel with parameters as de�nedin (2.12), we obtain the following result as an immediate
onsequen
e of Theorem 3.2 and equation (2.11).Corollary 3.3: For π → 0, we have

1 − hb(δ) − π ln
1

π
≤ CGE ≤ 1 − hb(δ) −

(1 − 2δ)2

1 − δ
π ln

1

π
.The upper bound is quite straightforward and arises fromthe following observation

H̄(Z) ≤ hb(δ) + hb(π)In the next se
tion, we establish Theorems 3.1 and 3.2 byanalyzing the behavior of the alternative Markov pro
ess inthe rare transitions regime, i.e. π → 0.IV. ANALYSIS OF THE ALTERNATIVE MARKOV CHAINConsider the auto-regressively de�ned �rst-order Markov
hain des
ribed by (2.4). In this se
tion we will 
hara
terizethe behavior of a typi
al sample path of this pro
ess. Fromthis 
hara
terization we will use ergodi
ity to 
ompute thevarious probabilities and expe
tations. For the 
onvenien
e ofthe reader we reprodu
e (2.4) below and state some importantobservations,
Yk = rk ln

1 − δ

δ
+ skh(Yk−1), (4.1)with rk, sk and h(x) de�ned by (2.5) and (2.6), respe
tively.Let Y represent the stationary distribution of this Markovpro
ess. It was shown in [OW04℄ that the support of Y isgiven by [−A, A] where

A = ln
(α − 1)(1 − π) +

√

4απ2 + (α − 1)2(1 − π)2

2π (4.2)and α = 1−δ
δ
. In the rare transitions regime π ≈ 0, A be
omes

A = ln
(α − 1)(1 − π)[2 + 2απ2

α−1 + O(π3)]

2π

= ln
α − 1

π
[1 + (α − 1)π +

2απ2

(α − 1)2
+ O(π3)]

= ln
1

π
+ ln(α − 1) + (α − 1)π + O(π2),

(4.3)where α = 1−δ
δ

≥ 1.Remark 4.1: This 
an be readily seen by observing thedynami
s in (4.1) and observing that A should satisfy
A = h(A) + ln

1 − δ

δ
.The next lemma states some properties of h(x) that will beused for analyzing the typi
al sample path.Lemma 4.2: The fun
tion h(x) = ln ex(1−π)+π

exπ+1−π
satis�es:

(i) h(x) and x − h(x) are monotoni
ally in
reasing fun
-tions(ii) h(x) > 0(< 0) when x > 0(< 0) and h(0) = 0(iii) h(x) = −h(−x)(iv) |h(x)| < |x| for all x ∈ R(v) If |x| < ln 1
π
−
√

ln 1
π
, then |x − h(x)| < e−

√

− ln π

1−π
.Proof: The proofs of items (i) − (iv) are straightforwardalgebrai
 manipulations and is left to the reader. For part (v)of the Lemma, note the following observations: From parts

(i) − (iv), we know that x − h(x) is an odd fun
tion and ismonotoni
ally in
reasing. Therefore it suf�
es to show that
x0 − h(x0) <

e−
√
− lnπ

1 − π
,where x0 = ln 1

π
−
√

ln 1
π
.Observe that x − h(x) = ln πex+1−π

1−π+πe−x and ex0 =
1
π
e−

√
− ln π. This implies

x0 − h(x0) = ln
1 − π + e−

√
− ln π

1 − π + π2e
√
− lnπ

≤ ln(1 +
e−

√
− ln π

1 − π
)

<
e−

√
− ln π

1 − π
.

(4.4)The last inequality follows from the fa
t that ln(1 + x) < xwhen x > 0.2) Outline of a typi
al sample path evolution: Consider atypi
al sample path of the Markov pro
ess in (4.1). When πis small, sk will almost always equal +1, with �ips o

urringroughly 1
π
instan
es apart. During a long sequen
e when skis +1, equation (4.1) be
omes

Yk = rk ln
1 − δ

δ
+ h(Yk−1). (4.5)We know that the support of Y lies in [−A, A] and from(4.3) that A ≈ − ln 1

π
. Whenever Yk lies in [−x0, x0], part (v)of Lemma 4.2 helps us 
on
lude that we 
an approximate theevolution in equation (4.5) by

Yk = rk ln
1 − δ

δ
+ Yk−1. (4.6)This represents a random walk with a postive drift given byE(rk) ln

1 − δ

δ
= D(δ‖1 − δ).Therefore, via usual martingale arguments, one 
an see thatin 2x0

D(δ‖1−δ) steps the walk rea
hes x0 from −x0. Be
ause ofa strong positive drift, the Markov pro
ess in (4.5) tends toremain in the vi
inity of x0 and not drift downwards. Notethat the time period of transition is O(− ln π) and is mu
hsmaller than the inter �ip period of sk, (whose expe
ted valueis 1
π
). Therefore at the o

uren
e of the next �ip Yk ≈ − lnπand Yk+1 ≈ lnπ.Again during this inter �ip interval, Yk performs the abovementioned random walk from around lnπ to− lnπ with a drift



given by D(δ‖1−δ). The number of steps required before thiswalk be
omes positive is given by − ln π
D(δ‖1−δ) . Sin
e the �ipsof sk o

ur at rate 1

π
, we obtain that the total fra
tion of timea typi
al sample path remains negative is given by
−π lnπ

D(δ‖1 − δ)
(1 + o(1)).By ergodi
ity, this implies that

Emin = P(Y < 0) =
−π lnπ

D(δ‖1 − δ)
(1 + o(1)),whi
h is the statement of Theorem 3.1.Remark 4.3: The above argument leaves out a lot of detailsthat are required to 
omplete the various 
laims in the expla-nation. Due to spa
e 
onstraints, as well as the fa
t that thedetails 
loud the intuition, we omit them from this version ofthe paper.To establish Theorem 3.2 we observe that in our previousanalysis we showed that for a fra
tion of time ≈ 1− 2π ln π

D(δ‖1−δ)the sequen
e Yk remains around − lnπ and in the remainingfra
tion of time, it performs a random walk given by equation(4.6) between [lnπ,− lnπ].This helps us break down the 
omputation of Ehb(
eY

1+eY ∗
π ∗ δ)− hb(δ) into two parts. We know, using ergodi
ity, thatfor typi
al sample pathsEhb(

eY

1 + eY
∗ π ∗ δ) − hb(δ)

= lim
N

1

N

∑

k

hb(
eYk

1 + eYk

∗ π ∗ δ) − hb(δ)

= lim
N

1

N

∑

k:Yk≈− ln π

(

hb(
eYk

1 + eYk

∗ π ∗ δ) − hb(δ)

)

+ lim
N

1

N

∑

k:ln π
Yk
 − ln π

(

hb(
eYk

1 + eYk

∗ π ∗ δ) − hb(δ)

)

.(4.7)We need to estimate the 
ontributions of both the terms.Let Ỹ0 ≈ − lnπ denote the initial state of the Markovpro
ess in the se
ond phase (i.e. the �rst time the randomwalk 
rosses x0. ) Sin
e the jumps are in �xed amounts of
ln 1−δ

δ
, and the fa
t that x0 is approximately the upper �xedpoint of the a
tual walk de�ned by (4.5) helps us approximatethe walk in this region by a birth-death Markov 
hain.The states of this Markov 
hain are de�ned by

Sk = Ỹ0 − k ln
1 − δ

δ
, k ≥ 0and the birth-death pro
ess is linked to the a
tual random walkas follows: Whenever ri = −1 the Markov 
hain jumps from
urrent state Sk to state Sk+1 and when ri = 1 it jumps downfrom 
urrent state Sk to state Sk−1. If at 
urrent time theMarkov 
hain is at state S0 and ri = −1 then however the
hain 
ontinues to remain at state S0.We wish to study the birth-death pro
ess for a time equal tothe inter-�ip duration of the 
oin with bias π, the variable sk,

in (2.4). The birth death pro
ess des
ribed above starts from
S0 at time 0 and evolves as des
ribed previously.The expe
ted hitting time for a state j of a birth-deathpro
ess 
onditioned on the event that the pro
ess starts atorigin is given by [PT96℄E0Tj =

1

αj−1

1 − αj

δ(1 − α)2
−

jα

δ(1 − α)Here, α = 1−δ
δ
. Thus the hitting time is proportional to

(1−δ
δ

)j . Sin
e the inter�ip duration is governed by a 
oin ofbias π, the Markov 
hain will not hit any states Sk for k
ln 1

π

>
(

ln 1−δ
δ

)−1 as π → 0.Consider the states Sk for k
ln 1

π

<
(

ln 1−δ
δ

)−1 as π → 0.Observe that the expe
ted hitting time is of a smaller orderthan the inter�ip duration. Hen
e the fra
tion of time (duringan inter�ip interval) that the birth death 
hain o

upies su
ha state would have 
onverged to its stationary probabilitymeasure.Using these observations, we 
an lower bound the �rst term,
H1, by restri
tion the summation to the appropriate statesof the birth-death approximation and substituting fra
tion oftimes in states by their stationary probabilities.
H1 ≥

1

N

∑

k:Yk≈− lnπ

(

e−|Ŷk|

1 + e−|Ŷk |

)

D(δ‖1 − δ))(1 + o(1))

= D(δ‖1 − δ))

ln 1

π (ln 1−δ

δ )
−1

∑

i=0

π

(

1 − δ

δ

)i

1 − 2δ

1 − δ

(

δ

1 − δ

)i

(1 + o(1))

=
(1 − 2δ)2

1 − δ
π ln

1

π
(1 + o(1)) (4.8)The se
ond term, H2, 
omes from the random walk be-tween [lnπ,− lnπ], initiated by sk taking the value −1. Wenow show that the 
ontribution from this term is negligible
ompared to the �rst term.Remark 4.4: We pro
eed to bound the se
ond termin the following fashion. We express the summation

∑

k:ln π
Yk
 − ln π

(

hb(
eYk

1+eYk
∗ π ∗ δ) − hb(δ)

) as the expe
ted
ontribution to the sum 
oming from one parti
ular �ip of
sk multiplied by the total number of �ips in time N . The
ontribution 
oming from one parti
ular �ip of sk is termed
H̃2 and sin
e the rate of �ips is π we get that H2 ≈ πE(H̃2).Note: Though per �ip of sk, the term H̃2 is a random variable,sin
e we average over a large number of �ips we 
an repla
ethe average of these terms by its expe
ted value.Returning to bounding the se
ond part, 
onsider the randomwalk with Ỹ0 = y ≈ lnπ, and

Ỹk = rk ln
1 − δ

δ
+ Ỹk−1.



Further let T = infk Ỹk > x0. De�ne the random variable
H̃y

2 as
H̃y

2 =

T
∑

k=0

hb(
eỸk

1 + eỸk

∗ π ∗ δ) − hb(δ). (4.9)We 
an bound the expe
ted value of the expression inequation (4.9) as follows. First observe that the 
ontributionfrom Ỹk and −Ỹk is the same, i.e.
hb(

eỸk

1 + eỸk

∗ π ∗ δ) = hb(
e−Ỹk

1 + e−Ỹk

∗ π ∗ δ). (4.10)Consider a new random walk Ŷk with Ŷ0 = 0 and
Ŷk = rk ln

1 − δ

δ
+ Ŷk−1.We 
laim thatE(H̃y

2 ) ≤ 2E(

∞
∑

k=0

hb(
eŶk

1 + eŶk

∗ π ∗ δ) − hb(δ))

= 2E(

∞
∑

k=0

hb(
e−|Ŷk|

1 + e−|Ŷk|
∗ π ∗ δ) − hb(δ)).

(4.11)The fa
tor 2 takes 
are of the 
ontribution of the walk Ykfrom y to 0, as it 
an be 
onsidered in reverse time as a walkstarting from 0 and an identi
al negative drift. Now observethat
2E(

∞
∑

k=0

hb(
e−|Ŷk|

1 + e−|Ŷk|
∗ π ∗ δ) − hb(δ))

≤ 2E(

∞
∑

k=0

hb(
e−|Ŷk|

1 + e−|Ŷk|
∗ δ) − hb(δ))

(a)

≤ E(2
∞
∑

k=0

(
e−|Ŷk|

1 + e−|Ŷk |
∗ δ − δ)D(δ‖1 − δ))

≤ E(2

∞
∑

k=0

e−|Ŷk|(1 − 2δ)D(δ‖1 − δ)),

(4.12)
where (a) follows from the 
on
avity of hb(x).We make the following 
laim:Lemma 4.5:

∞
∑

k=0

E(e−|Ŷk|) ≤
1

1 − 2
√

δ(1 − δ)
. (4.13)Proof: The proof is omitted due to spa
e 
onstraints.Using equations (4.11), (4.12), and (4.5), we obtain thatE(H̃y

2 ) ≤ 2(1 − 2δ)D(δ‖1 − δ)
1

1 − 2
√

δ(1 − δ)
.Sin
e this 
ontribution o

urs at rate π 
orresponding to a�ip in sk, we obtain that

H2 ≤ π2(1 − 2δ)D(δ‖1 − δ)
1

1 − 2
√

δ(1 − δ)
(1 + o(1)).(4.14)Hen
e the se
ond term is negligible 
ompared to the �rstone and 
ombining (4.8) and (4.14) we obtain as π → 0,

(1 − 2δ)2

1 − δ
π ln

1

π
≤ H̄(Z) − hb(δ) ≤ π ln

1

π
(4.15)whi
h is the statement of Theorem 3.2.Remark 4.6: As in the proof of Theorem 3.1, we omit thedetails of the justi�
ation for the various approximations. Themain idea behind this justi�
ation is, however, 
ontained inpart (v) of Lemma 4.2, where we see that the approximationof h(x) by x is negligible in the region of interest.V. CONCLUSIONThis paper presents an alternative approa
h for determiningthe optimal �ltering error rate in the rare transitions regime.This approa
h involves the analysis of an alternative Markovpro
ess. The method also yields bounds on the entropy rateof the hidden Markov pro
ess in the rare transitions regime aswell. The resulting bounds translate dire
tly into a statementregarding the 
apa
ity of the Gilbert-Elliot 
hannel. Thoughthe analysis performed here has been on a simple model:a binary 
hain with symmetri
 transition probabilities, it isquite easy to 
arry over the intuition obtained to �nite stateMarkov 
hains as well. The expressions for general �nite stateMarkov 
hains 
an be understood via a similar analysis, andthe �ltering error rate 
an be obtained, again, essentially asthe time a random walk with a drift takes to 
ross a 
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