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Abstract— Recent work by Ordentlich and Weissman put forth
a new approach for bounding the entropy rate of a hidden
Markov process via the construction of a related Markov process.
We use this approach to study the behavior of the filtering error
probability and the entropy rate of a hidden Markov process in
the rare transitions regime. In this paper, we restrict our attention
to the case of a two state Markov chain that is corrupted by a
binary symmetric channel. Using this approach we recover the
results on the optimal filtering error probability of Khasminskii
and Zeitouni. In addition, this approach sheds light on the terms
that appear in the expression for the optimal filtering error
probability. We then use this approach to obtain tight estimates
of the entropy rate of the process in the rare transitions regime.
This leads to tight estimates on the capacity of the Gilbert-Elliot
channel in the rare transitions regime.

I. INTRODUCTION

Consider a stationary, finite-alphabet, Markov chain, {X}},
and let {Z;} denote a noisy version when corrupted by a
discrete memoryless channel. Let K denote the transition
kernel of the Markov chain and C denote the channel transition
matrix. The process {Z;} is known as a hidden Markov
process, with the { X} corresponding to the state process.

Hidden Markov processes occur naturally in the modeling
of information sources [EMO2]. They also arise as noise
processes in additive noise channels, like the Gilbert-Elliot
channel. It has been shown in [MBD89] that the characteri-
zation of the channel capacity for the Gilbert-Elliot channel
boils down to finding the entropy rate of the noise.

Early work on the estimation of the underlying state (source)
symbols from a hidden Markov process involved analysis of
optimal filters [W65]. Later, sub-optimal filters were used
to derive upper bounds [KL92], [KZ96] and information-
theoretic arguments were used to obtain lower bounds [KZ96].
The lower and upper bounds in [KZ96] matched in the region
of rare transitions and the optimal filtering error probability
was obtained.

Our approach here is quite different; we use an alternative
Markov process proposed in [OWO04] to study the behavior
of the optimal filter and use this to get tight estimates of the
filtering error probability in the rare transitions regime. The
analysis of the alternative Markov process also lays bare the
terms that arise in the filtering error probability as obtained in
[K796].
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Work on the entropy rate of hidden Markov models used
bounds [CT91], Monte Carlo simulations [HGGO3], Lyapunov
exponents [HGGO3], [JSS04], Statistical Mechanics [ZKD04],
and more [EBTBHO4].

The analysis of the alternative Markov process proposed in
[OWO04], simultaneously provides us with the optimal filtering
error probability as well as the entropy rate under the rare
transitions regime. We perform the analysis for the simplest
case of a symmetric 2-state Markov chain corrupted by a
Binary Symmetric Channel (BSC). The extension to general
finite alphabet Markov processes can be attempted along very
similar lines, however the technical details of the arguments
become more involved. The analysis of this toy model, how-
ever, sheds light on the behavior of the finite alphabet process.

The paper is organized as follows. In Section 2 we present
the source and channel model and the alternative Markov
process defined in [OWO04]. Section 3 presents the main results
of this paper and Section 4 illustrates the analysis of the
alternative Markov process that yields the claims. We conclude
in Section 5

1. THE BSC-CORRUPTED BINARY MARKOV CHAIN

Consider a source, X, that behaves according to a binary
valued symmetric Markov chain with probability of transition
m. Assume that the source symbols pass through a memoryless
channel that flips the value of X} with probability d to give
a corrupted sequence Zj.
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Fig. 2.1. Source and Channel model

For this model the Markov transition kernel and the channel
transition matrix are, respectively,
)
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and we assume without loss of generality that 6 < 1/2.
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Define the conditional probability of the source symbol
conditioned on the entire set of output symbols by

Br(l) =P(Xp = 12" )

2.2
B(0) = P(Xy, = 012%__). (22)

The log-likelihood ratio of the source given the present and

past channel outputs is defined as

lkzlnﬁk(l) =In .

B(0) 1 —Bk(1)

Let us consider the distribution of the log-likelihood ratio

random variable conditioned on the event that X, = 1.

We now recall some relevant results that were established in

[OWO04].

Consider the following auto-regressively defined first order

Markov process,

Br(1)

2.3)

Yk =Tk In

+ Skh(Yk_l). (2.4)

Here, {ry} and {s;} are independent i.i.d. sequences with

-1 wp.d -1 wp.7
= b k= b 2.5)
+1 wp.1-9 +1 wp.l—m
and the function h(z) is given by
(] —
h(z) =In =M+ 2.6)

etr+1—7 '

It was shown in [OWO04] that the unique stationary distrib-
ution of this 1st-order Markov process is given by P(I;| X =
1). Let Y denote a random variable distributed according to
the stationary distribution of the Markov process in (2.4).

Observe that the optimal filter estimates the source symbol
to be 1 if the log-likelihood is positive and O if it is negative.
Therefore, the probability of error for the optimal filtering
estimator is given by

Emin =Pk, <0/ X =1) =P(Y <0). (2.7)

Consider the binary entropy function A () (in nats) defined

according to
hp(z) = —zlnz — (1 — 2)In(1 — z). (2.8)

Let pxq = p(1—q)+q(1—p) denote the binary convolution.
It was shown in [OWO04] that the entropy rate of the hidden
Markov process, {Z}, is given by

eY

H(Z) = Ehy({—

kT % 0). (2.9)

Thus it is clear from equations (2.7) and (2.9) that the
filtering error probability and the entropy rate of the hidden
Markov process are intimately connected to the stationary
distribution of the Alternative Markov Process defined in

equation (2.4).
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Fig. 2.2.  Gilbert-Elliot Channel model

1) Gilbert-Elliot Channel:: The Gilbert-Elliot channel
model is described by the transition diagram on Figure 2.2.

The channel exists in a good state or bad state, as deter-
mined by the 2-state Markov chain. If the channel is in the
good state, the channel transition matrix, C, behaves like a
BSC with parameter P, and if it is in the bad state, C behaves
like a BSC with parameter P,.

To make an equivalence between the capacity of the Gilbert-
Elliot channel and the Source and Channel model in 2.1, we
make the following identification. X}, is said to be zero if
the channel is in the good state and X is said to be one if
the channel is in the bad state. The Markov transition kernel
and the channel transition matrix for the equivalent source and
channel model is given by
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X
g 1l—g
(2.10)

Let the output of this equivalent source and channel model
be Zj. It was shown in [MBD89] that the capacity of the
Gilbert-Elliot channel is given by

1-P, P,
1-P, B )

Cop =1—-H(Z). (2.11)

Now consider a Gilbert-Elliot Channel with parameters
g=b=m,
Py,=1-PF, =6

Observe that this reduces to the transition kernel and the
channel matrix in (2.1).
In the next section we state the main results of this paper.

(2.12)

1. MAIN RESULTS

We obtain the following main results of the paper in the
rare transitions regime by analyzing the alternative Markov
process.

Theorem 3.1: As m — 0, the minimum probability of error
is given by

—mlnmw
D@61 —9)
Note, D(6||1 — §) represents the binary Kullback-Liebler
distance given by

(1+ o(1)). 3.1)

gmin =

-0

—i—(l—é)lnl(S
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Theorem 3.2: In the asymptotic regime m — 0, the entropy
rate of the hidden Markov process, H(Z), is bounded by
1—26)2 1 _ 1
U= wl ez <m@)+rmt 32
s

hy(6
o(0) + 1-9 i

For the Gilbert-Elliot channel with parameters as defined
in (2.12), we obtain the following result as an immediate
consequence of Theorem 3.2 and equation (2.11).

Corollary 3.3: For m — 0, we have
(1—25)2 1

1
1—hb(5)—7r1n—SCGEgl—hb((S)— mln —.
T 1-9 0
The upper bound is quite straightforward and arises from
the following observation

H(Z) < hy(6) + hy(m)

In the next section, we establish Theorems 3.1 and 3.2 by
analyzing the behavior of the alternative Markov process in
the rare transitions regime, i.e. 7 — 0.

IV. ANALYSIS OF THE ALTERNATIVE MARKOV CHAIN

Consider the auto-regressively defined first-order Markov
chain described by (2.4). In this section we will characterize
the behavior of a typical sample path of this process. From
this characterization we will use ergodicity to compute the
various probabilities and expectations. For the convenience of
the reader we reproduce (2.4) below and state some important
observations,

+ skh(Yi-1), 4.1)

Yk =Tk In

with 7, s; and h(x) defined by (2.5) and (2.6), respectively.
Let Y represent the stationary distribution of this Markov
process. It was shown in [OWO04] that the support of Y is
given by [— A, A] where

(a—1)(1—7) ++/4ar? + (o — 1)2(1 — )2
2m

A=1In

4.2)
and o = %. In the rare transitions regime 7 = 0, A becomes
2
(a =11 -m)2+ 25 + O(r?)]
27

a—1

4.3)

2
2o ' +O(7T3)]

[1+(a—1)ﬂ'+m

=In 1 +In(a — 1) + (o — D) + O(7?),
T

where o« = % > 1.
Remark 4.1: This can be readily seen by observing the
dynamics in (4.1) and observing that A should satisfy
1-6
A=h(A)+1n 5
The next lemma states some properties of h(x) that will be
used for analyzing the typical sample path.

Lemma 4.2: The function h(z) = In e;(i;% satisfies:

(i) h(xz) and x — h(z) are monotonically increasing func-
tions

(i) h(z) > 0(< 0) when z > 0(< 0) and h(0) =0

(iil) h(z) = —h(—2x)

(iv) |h(z)] < |z| for all x € R

() If [z <Ini —/InL then |z — h(z)| < &5—

Proof: The proofs of items (i) — (iv) are straightforward
algebraic manipulations and is left to the reader. For part (v)
of the LLemma, note the following observations: From parts
(i) — (iv), we know that 2 — h(x) is an odd function and is
monotonically increasing. Therefore it suffices to show that

—Inm

e—\/—lnﬂ'
xo — h(zg) < 1=
wherexozln%—,/ln%.
Observe that z — h(z) = InZSFH=T and e® =
%e‘v —In7 This implies
l—m4e V-lnm
xg — h(zg) =1n
0 (o) 1—m 4 n2eV—Inm
—+v—=1Inm
e
<In(l+ 22— 4.4)
< In(l+ 1—m )
e—\/—ll’lﬂ'
< [
1—m

The last inequality follows from the fact that In(1 4+ z) < z
when z > 0. H

2) Outline of a typical sample path evolution: Consider a
typical sample path of the Markov process in (4.1). When 7
is small, s will almost always equal +1, with flips occurring
roughly % instances apart. During a long sequence when sy
is +1, equation (4.1) becomes

4]

We know that the support of Y lies in [—A, A] and from
(4.3)that A ~ —1In % Whenever Y}, lies in [—x, 2], part (v)
of Lemma 4.2 helps us conclude that we can approximate the
evolution in equation (4.5) by

Y, =7 In + h(Yk_l). 4.5)

Y, =rin 5 +Yi_ 1. (4.6)
This represents a random walk with a postive drift given by
1-9
E(rg) In = D(d||1 = 9).

Therefore, via usual martingale arguments, one can see that
in % steps the walk reaches xy from —xg. Because of
a strong positive drift, the Markov process in (4.5) tends to
remain in the vicinity of xy and not drift downwards. Note
that the time period of transition is O(—Inw) and is much
smaller than the inter flip period of s, (whose expected value
is %). Therefore at the occurence of the next flip Y, ~ —Inn
and Y11 ~ Inm.

Again during this inter flip interval, Y; performs the above
mentioned random walk from around In 7 to — In 7 with a drift



given by D(d]|1—0). The number of steps required before this
walk becomes positive is given by %. Since the flips
of s;, occur at rate %, we obtain that the total fraction of time
a typical sample path remains negative is given by

—mlnw
—(1 1)).
I _5)( +0(1))
By ergodicity, this implies that
—mlnw
Emin = P(Y <0) = s (14 0(1)

which is the statement of Theorem 3.1.

Remark 4.3: The above argument leaves out a lot of details
that are required to complete the various claims in the expla-
nation. Due to space constraints, as well as the fact that the
details cloud the intuition, we omit them from this version of
the paper.

To establish Theorem 3.2 we observe that in our previous
analysis we showed that for a fraction of time ~ 1 — %
the sequence Y} remains around — In7 and in the remaining
fraction of time, it performs a random walk given by equation
(4.6) between [In7, — In 7).

This helps us break down the computation of [Ehb(li% *
m*0) — hp(9) into two parts. We know, using ergodicity, that
for typical sample paths

Y
e

1 eYe

(hb(% kT *0) — hb(5)>

.1 e¥r
Y&
klnm~S—Inm
4.7
We need to estimate the contributions of both the terms.
Let Yy =~ —Inw denote the initial state of the Markov
process in the second phase (i.e. the first time the random
walk crosses xg. ) Since the jumps are in fixed amounts of
In 1%‘5, and the fact that z( is approximately the upper fixed
point of the actual walk defined by (4.5) helps us approximate
the walk in this region by a birth-death Markov chain.

The states of this Markov chain are defined by

~ 1-9§
Sp=Yy—kln 5 k>0
and the birth-death process is linked to the actual random walk
as follows: Whenever r; = —1 the Markov chain jumps from

current state Sy, to state Sk41 and when r; = 1 it jumps down
from current state Sj to state Sp_;. If at current time the
Markov chain is at state Sy and r; = —1 then however the
chain continues to remain at state Sy.

We wish to study the birth-death process for a time equal to
the inter-flip duration of the coin with bias 7, the variable sy,

in (2.4). The birth death process described above starts from
Sp at time 0 and evolves as described previously.

The expected hitting time for a state j of a birth-death
process conditioned on the event that the process starts at
origin is given by [PT96]

1 1—of Jo

EoT; = — -
T Wi 11— )2 S(1—a)

Here, a = %. Thus the hitting time is proportional to
(%)j. Since the interflip duration is governed by a coin of

bias 7, the Markov chain will not hit any states S}, for % >

1
(1n 1%6)71 as ™ — 0.

Consider the states Sy, for lnﬁk_— < (ln %)
Observe that the expected hitting time is of a smaller order
than the interflip duration. Hence the fraction of time (during
an interflip interval) that the birth death chain occupies such
a state would have converged to its stationary probability
measure.

—1
as ™ — 0.

Using these observations, we can lower bound the first term,
H,, by restriction the summation to the appropriate states
of the birth-death approximation and substituting fraction of
times in states by their stationary probabilities.

eVl

1 (
N k:Ypy~—Inm I+ e*‘Yk|

ln%(ln 1%;6)71

)Dwu—mu+dm
2

> (5
2 (75) ave)
(1 - 26)?

1
=y " In ;(1 +o(1))

Hy >

= D(4|[1 - 9))

(4.8)

The second term, H,, comes from the random walk be-
tween [In7, — In 7], initiated by s, taking the value —1. We
now show that the contribution from this term is negligible
compared to the first term.

Remark 4.4: We proceed to bound the second term
in the following fashion. We express the summation

pinr s In hb(% ek 5) — hb(6)> as .the exp.ected
contribution to the sum coming from one particular flip of
s, multiplied by the total number of flips in time N. The
contribution coming from one particular flip of s is termed
H> and since the rate of flips is  we get that Hy = W[E(I:Ig).
Note: Though per flip of si, the term H, is a random variable,
since we average over a large number of flips we can replace
the average of these terms by its expected value.

Returning to bounding the second part, consider the random
walk with Yy = y ~ Inx, and

-0
+ Yi_1.

Yk =Tk In



Further let T = inf;, Y > . Define the random variable
HY as
2 as

=3

k=0

k% 8) — hy(6). (4.9)

1—i—e

We can bound the expected value of the expression in
equation (4.9) as follows. First observe that the contribution
from Yj and —Yj is the same, i.e.

eYk e Yk
hy(———=— * %) = hy(—————= * T *J). (4.10)
1+ e¥s 1+e Ve
Consider a new random walk Y}, with Yy = 0 and
. 5 .
Y. =ri1ln +Yi_q.
We claim that
E(HY) < 2E( ———xmx0) — hy(o
(113 2; TE RN
s —| Vi 5 5 @10
—h .
23 (g 7+ ) = In(9))

k=0

The factor 2 takes care of the contribution of the walk Yy
from y to 0, as it can be considered in reverse time as a walk
starting from O and an identical negative drift. Now observe
that

> — |Vl 5 5
xmTxd)—h
gj S w0) = ()
— Vil
(Y Iyl v 0) — hufo)
“ k=0 1+;‘ (4.12)
a 6_ k
< E(2 ———%x0—0)D(d||1 -0
<E@2Y e (1 - 26)D(5]1 - 4)),
k=0
where (a) follows from the concavity of hy(z).
We make the following claim:
Lemma 4.5:
Z FeWhy<_— 1 (4.13)
1-26(1-9)

Proof: The proof is omitted due to space constraints.
Using equations (4.11), (4.12), and (4.5), we obtain that

1

Hgﬁé2ﬂ—2®D®m—5%———aTj5-

1-2
Since this contribution occurs at rate 7 corresponding to a
flip in s, we obtain that

()1 — 6)——&

Hy <72(1—-26)D —_——
2=l = 20) 51-0)

(14 0(1)).

(4.14)
Hence the second term is negligible compared to the first
one and combining (4.8) and (4.14) we obtain as m — 0,

1-2

(1—25)2
1-9§
which is the statement of Theorem 3.2.

Remark 4.6: As in the proof of Theorem 3.1, we omit the
details of the justification for the various approximations. The
main idea behind this justification is, however, contained in
part (v) of Lemma 4.2, where we see that the approximation
of h(x) by x is negligible in the region of interest.

cinl < H(Z) - hy(6) <xlnL (@415
™ s

V. CONCLUSION

This paper presents an alternative approach for determining
the optimal filtering error rate in the rare transitions regime.
This approach involves the analysis of an alternative Markov
process. The method also yields bounds on the entropy rate
of the hidden Markov process in the rare transitions regime as
well. The resulting bounds translate directly into a statement
regarding the capacity of the Gilbert-Elliot channel. Though
the analysis performed here has been on a simple model:
a binary chain with symmetric transition probabilities, it is
quite easy to carry over the intuition obtained to finite state
Markov chains as well. The expressions for general finite state
Markov chains can be understood via a similar analysis, and
the filtering error rate can be obtained, again, essentially as
the time a random walk with a drift takes to cross a certain
threshhold.
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