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Abstract. Some results on the signs of the derivative of entropy along Markov semi-groups is presented.

In part, the results are motivated by McKean’s conjecture about Gaussian optimality of the derivatives

and consequent alternating signs of them along the heat semi-group. We establish log-convexity of Fisher
information along the heat semi-group. We consider a particular (and natural) family of discrete semi-groups

and show that the signs of the derivative of entropy do alternate for the first nine-derivatives but fail to do

so for the tenth derivative. These results are obtained as a consequence of different collaborations by the
author.

1. Introduction

1.1. Background. Let X be a random variable with a finite variance. Let µXt denote the density function
of Xt := X +

√
tZ, where Z ∼ N (0, 1) is the standard Gaussian and is assumed to be independent of X.

One can view this operation as a family of Markov operators on densities defined by

Wt(µ) = νt ∗ µ,

where νt denote the density function of
√
tZ. Then this family of operators satisfy a semi-group property,

i.e.

Wt2(Wt1(µ)) = Wt2+t1(µ).

This is called the heat semi-group in literature since it arises as the solution to the heat equation.

Let g
(k)
X (t) := dk

dtk
h(µXt

), where

h(µXt
) = −

∫
R
µXt

lnµXt
dx,

refers to the differential entropy of Xt. Let G be a Gaussian random variable with the same variance as X. In

Section 12 of [5], McKean observed that g
(0)
G (t) ≥ g

(0)
X (t) ≥ 0, g

(1)
G (t) ≤ g

(1)
X (t) ≤ 0, and g

(2)
G (t) ≥ g

(2)
X (t) ≥ 0.

Conjecture 1.1 (McKean [5]). The following inequality

(−1)kg
(k)
G (t) ≥ (−1)kg

(k)
X (t) ≥ 0

holds for every k ≥ 3.

Definition 1.2. A function f : R → R continuous on [0,∞) and infinitely differentiable on (0,∞) is said to

be completely monotone if (−1)k dk

dtk
f(t) ≥ 0 for any t > 0 and k ∈ Z+.

Thus a weaker version of McKean’s conjecture is that Fisher Information, IX(t) = 1
2

d
dth(µXt), is completely

monotone along the heat semi-group.

Theorem 1.3 (Theorem A in [3]). Let f be a completely monotone function on [0,∞). Then for each
t ∈ (0,∞) and 0 < k < n,

(−1)nk|f (k)(t)|n ≤ (−1)nk|f (n)(t)|k|f(t)|n−k.
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In particular, taking k = 1 and n = 2 we obtain that f is log-convex with respect to t. In [1] the authors

showed that g
(3)
X (t) ≥ 0, g

(4)
X (t) ≤ 0 using techniques in [7], which was in turn motivated by the calculations

of Bakry. However, their proof techniques did not extend to higher derivatives. They also made a weaker
conjecture (Conjecture 2 in [1]) that Fisher information, I(µX

t ), is log-convex in t. We extend the ideas
developed in [1] and [9], and in Theorem 3.3 show that Fisher-information is log-convex with respect to t. In
Section 3 we study a similar problem along a discrete semi-group and establish that signs of the derivatives
of entropy do alternate for the first nine derivatives but fail to do so for the tenth derivative (in general).

1.1.1. Alterate Motivation. The author’s primary motivation for this series of work comes from the study of
optimization problems of the following type, that occur often times in evaluation of achievable rate regions
or outer bounds to the capacity regions in network information theory settings. Let TY |X denote a channel
that maps input distributions µX into output distributions µY = TµX . If X and Y takes values in a finite
alphabet space, then consider the problem1 of computing the maximum, over µX , of

Fλ(µX) := λH(µX)−H(TµX),

where H(µX) = −
∑

x∈X µX(x) logµX(x) denotes the Shannon entropy of X; and λ ≥ 0 is a fixed constant.
When λ ≥ 1, it is immediate from the data-processing inequality that the functional Fλ(µX) is concave
in µX . However for λ ∈ [0, 1), this is not necessarily true. In particular for λ = 0, F0(µX) is convex in
µX . Therefore, from a optimization perspective, computing the optimizers of Fλ(µX) becomes a non-convex
optimization problem at least for some values of λ in the range [0, 1).

When the channel TY |X is the binary-symmetric-channel (BSC), say with crossover probability p, consider

the following reparameterization of µX , defined by µX(0) = H−1
2 (u), where H−1

2 : [0, 1] 7→ [0, 1
2 ] denotes the

inverse binary entropy function. Under this reparameterization, for BSC(p), observe that

Fλ(µX) = λu−H2(p ∗H−1
2 (u)).

It was shown in [8] that H2(p ∗H−1
2 (u)) is convex in u and hence λu−H2(p ∗H−1

2 (u)) is a concave function
in u for any λ. Therefore this non-linear parameterization converted the non-convex optimization problem
to a convex-optimization problem. It is also worth remarking that the convexity of H2(p ∗ H−1

2 (u)) was
developed by Wyner and Ziv in the context of evaluating the superposition-coding region for a degraded
binary symmetric broadcast channel.

Additive White Gaussian Noise channels are in many ways the continuous analogue of Binary Symmetric
Channels. Therefore it is natural to see if there is an analogous result in the additive Gaussian noise
setting, where under a suitable parameterization of µX , h(µX) - the differential entropy - becomes linear
in the parameter and h(TGµX) becomes convex in the parameter, where TG refers to the Markov operator
corresponding to the channel with additive Gaussian noise W .

For distributions on binary alphabets, there is only one degree of freedom and hence the parameterization
of µX(0) = H−1

2 (u) is forced on us, if we wish to make H2(µX) linear. In the continuous world we assume

that µX evolves along the heat flow, i.e. Xt := X +
√
tZ, t > 0, where Z is the standard Gaussian and

independent of X. Therefore we seek a parameterization t = ϕ(u) such that h(X +
√
ϕ(u)Z) is linear in

u and investigate whether, the output entropy, h(µY ) = h(X +
√

ϕ(u)Z + W ) is convex in u, where W

is some Gaussian independent of X and Z. Let µX
t denote the distribution of Xt = X +

√
tZ. A bit of

algebra immediately shows that this question is equivalent to asking whether the Fisher information I(µX
t )

is log-convex in t, for all random variables X (see Remark 2.2).

1.2. Preliminaries. Given a random variable X on some probability space (Ω,A,P) with values in R, let
the cumulative distribution function of X be F̃ (x) := Pr(X ≤ x), x ∈ R. For Z some independent standard
Gaussian random variable with mean zero and variance one, consider Xt := X+

√
tZ, t > 0, with probability

density function ft(x) with respect to the Lebesgue measure on R. The density ft(x), x ∈ R, can be written
as

ft(x) =

∫
R

−z√
2πt

e−
z2

2t F̃ (x− z)dz.

1This particular problem does arise in the context of computing certain strong data-processing constants as well as in the
Ahlswede-Korner source coding setting.
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It is well-known in literature that the probability density function ft(x) of Xt is always upper bounded by
1 + t, strictly positive and infinitely differentiable with respect to x ∈ (−∞,∞) and t ∈ (0,∞), and satisfy
that

lim
|x|→∞

∂nft(x)

∂xn
= 0,∀n ∈ Z+.

Besides, ft(x) also satisfies the heat equation, see, e.g., [6].

∂

∂t
ft(x) =

1

2

∂2

∂x2
ft(x). (1)

The differential entropy of Xt, h(Xt), t > 0, is defined as

h(Xt) = −
∫
R
ft(x) ln ft(x)dx.

When X has a finite variance P , h(Xt) exists and is maximized by X following a Gaussian distribution with
variance P . The Fisher information of Xt is defined as

I(µX
t ) :=

∫
R

(
∂

∂x
ln ft(x)

)2

ft(x)dx.

One can verify that the Fisher information I(µX
t ), t > 0, always exists and is infinitively differentiable with

respect to t ∈ (0,∞), see, e.g., [1]. The Fisher information I(µX
t ) is closely related to the differential entropy

of Xt via the de Bruijin’s identity when X has a finite variance, see, e.g., [2]

∂

∂t
h(Xt) =

1

2
I(µX

t ). (2)

Notation: For convenience of writing, we will suppress the dependence on t and write v(x) := ln ft(x), t > 0,

and vk(x) :=
∂k ln ft(x)

∂xk , k ∈ Z+, i.e., vk(x) is the k-th derivative of v as a function of x ∈ R. Well-definedness
of vk(x) for any k ∈ Z+ follows from the known properties of ft(x).

Proposition 1.4 (Proposition 2 in [1]). For any r,mi, ki ∈ Z+,∫
R

∣∣∣∣∣
r∏

i=1

vmi

ki
(x)

∣∣∣∣∣ ft(x)dx < ∞,

and

lim
|x|→∞

∣∣∣∣∣
r∏

i=1

vmi

ki
(x)

∣∣∣∣∣ ft(x) = 0.

We define ⟨φ⟩ :=
∫
R φft(x)dx to denote the integration with respect to the probability measure ft(x).

Under this notation

I(µX
t ) = ⟨v21⟩. (3)

The following, integration by part lemma, turns out to be useful in our proof.

Lemma 1.5 (Lemma 3 in [9]). For k ≥ 2, let φ(x) be some function continuously differentiable with respect
to x satisfying that lim|x|→∞ φvk−1ft = 0, then

⟨φvk + φv1vk−1 +
∂φ

∂x
vk−1⟩ = 0.

One can see that this lemma follows from the basic integration by parts property.
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Proof.

⟨φvk + φv1vk−1 +
∂φ

∂x
vk−1⟩

=

∫
R

(
φvkft + φvk−1

∂ft
∂x

+
∂φ

∂x
vk−1ft

)
dx

(a)
=

∫
R

(
∂

∂x
φvk−1ft

)
dx

=φvk−1ft|∞−∞
(b)
=0.

Equality (a) follows from the integration by parts property, and equality (b) follows from the condition that
lim|x|→∞ φvk−1ft = 0. □

Notice that by Proposition 1.4 we could choose φ in Lemma 1.5 to be in the form of
∏r

i=1 v
mi

ki
(x), where

r,mi, ki ∈ Z+.

Lemma 1.6 ( [1], [9]). Let φ(x) be some function continuously differentiable with respect to x satisfying that
lim|x|→∞ φv1ft = 0. For k ≥ 0, the following hold:

∂

∂t
vk =

1

2

(
vk+2 +

k∑
i=0

(
k

i

)
vi+1vk−i+1

)
,

∂

∂t
⟨φ⟩ = ⟨ ∂

∂t
φ− 1

2

∂φ

∂x
v1⟩.

Proof. The proof idea is to interchange integral and derivatives by Proposition 1.4 and the Dominated
Convergence Theorem, and the calculations follow from the following observations (for details, see Appendix
A in [9]). We again present the outline here.

2
∂

∂t
vk = 2

∂

∂t

(
∂k

∂xk
ln ft(x)

)
= 2

∂k

∂xk

(
∂

∂t
ln ft(x)

)
(a)
=

∂k

∂xk

(
∂2

∂x2 ft(x)

ft(x)

)

=
∂k

∂xk

(
v2 + v21

)
(b)
= vk+2 +

k∑
i=0

(
k

i

)
vi+1vk−i+1.

Equality (a) is due to the heat equation (1) and (b) can be established by mathematical induction.
For the second part, observe that

∂

∂t
⟨φ⟩ = ⟨ ∂

∂t
φ⟩+

∫
R
φ
∂ft
∂t

dx

(a)
= ⟨ ∂

∂t
φ⟩+ 1

2

∫
R
φ
∂2ft
∂x2

dx

(b)
= ⟨ ∂

∂t
φ⟩ − 1

2

∫
R

∂φ

∂x

∂ft
∂x

dx

= ⟨ ∂
∂t

φ⟩ − 1

2
⟨∂φ
∂x

v1⟩.

Equality (a) is again due to the heat equation (1) and (b) follows from integration by parts and the assumption
that lim|x|→∞ φv1ft = 0. □
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One can compute the derivatives of the Fisher information I(µX
t ) with respect to t as following: see [4]

and [9].

Lemma 1.7 ( [1], [9]). For t > 0, Fisher information I(µX
t ) and its derivatives up to second order can be

expressed as:

d

dt
I(µX

t ) = −⟨v22⟩,

d2

dt2
I(µX

t ) = ⟨v23 + 2v21v
2
2 + 4v1v2v3⟩.

Proof. We outline the proof via applications of Lemmas 1.6 and 1.5. Observe that

d

dt
I(µX

t ) =
d

dt
⟨v21⟩

(a)
= ⟨2v1

∂v1
∂t

− v2v
2
1⟩

(b)
= ⟨v1(v3 + 2v1v2)− v2v

2
1⟩

(c)
= −⟨v22⟩.

Here (a), (b) follow from Lemma 1.6, and (c) follows from Lemma 1.5 by setting φ = v1 and k = 3. Similarly,
note that

d2

dt2
I(µX

t ) = − d

dt
⟨v22⟩

(a)
= ⟨−2v2

∂v2
∂t

+ v2v3v1⟩

(b)
= ⟨−v2(v4 + 2v1v3 + 2v22) + v2v3v1⟩
(c)
= ⟨v23 − 2v32⟩
(c)
= ⟨v23 + 2v21v

2
2 + 4v1v2v3⟩.

Here (a), (b) follow from Lemma 1.6, (c) follows from Lemma 1.5 by setting φ = v2 and k = 4, and (c) follows
from Lemma 1.5 by setting φ = v22 and k = 2. □

Remark 1.8. There are several equivalent ways of expressing d2

dt2 I(µ
X
t ) using Lemma 1.6. For instance, [9]

expressed it as ⟨v23 − 2v32⟩. We choose this particular representation, ⟨v23 + 2v21v
2
2 + 4v1v2v3⟩, as it turns out

to be useful to prove the log-convexity of Fisher information.

2. Main

2.1. Log-convexity of Fisher Information.

Theorem 2.1. [with Michel Ledoux and Yannan Dustin Wang] Let X be a random variable on some probabil-
ity space (Ω,A,P) with values in R, and Z some independent standard Gaussian random variable. Consider
Xt := X+

√
tZ, t > 0, with probability density function ft(x) with respect to the Lebesgue measure on R. The

Fisher information of Xt is log-convex in t, i.e.

ln I(µX
t ) = ln

∫
R

(
∂

∂t
ln ft(x)

)2

ft(x)dx

is convex in t.

Proof. Log-convexity of Fisher information is equivalent to showing(
d

dt
I(µX

t )

)2

≤ I(µX
t )

d2

dt2
I(µX

t ).

Using Lemma 1.7, this is equivalent to showing

⟨v22⟩2 ≤ ⟨v21⟩⟨v23 + 2v21v
2
2 + 4v1v2v3⟩. (4)
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In Lemma 1.5, the choices that k = 2, φ = v2 and that k = 2, φ = v21 will lead to the following two
equalities respectively

⟨v22 + v21v2 + v1v3⟩ = 0 (5)

⟨v41 + 3v21v2⟩ = 0. (6)

Consequently, for any α ∈ R we have

⟨v22⟩ = −⟨v1(v3 + αv1v2 −
1− α

3
v31)⟩.

The Cauchy-Schwarz inequality yields,

⟨v22⟩2 ≤ ⟨v21⟩⟨(v3 + αv1v2 −
1− α

3
v31)

2⟩.

Thus to show inequality (4), it suffices to show that

⟨(v3 + αv1v2 −
1− α

3
v31)

2⟩ ≤ ⟨v23 + 2v21v
2
2 + 4v1v2v3⟩ (7)

holds for some α ∈ R. Expanding, (7) is equivalent to

⟨(2− α2)v21v
2
2 + (4− 2α)v1v2v3 −

1

9
(1− α)2v61

+
2

3
(1− α)v31v3 +

2

3
α(1− α)v41v2⟩ ≥ 0.

In Lemma 1.5, the choices that k = 3, φ = v31 and that k = 2, φ = v41 will lead to the following two equalities
respectively.

⟨v31v3 + v2v
4
1 + 3v21v

2
2⟩ = 0

⟨v61 + 5v41v2⟩ = 0.

Thus proving inequality (7) for some α ∈ R is equivalent to proving the following inequality

⟨(2− α2)v21v
2
2 + (4− 2α)v1v2v3 −

1

9
(1− α)2v61

+
2

3
(1− α)v31v3 +

2

3
α(1− α)v41v2⟩

+β⟨v31v3 + v2v
4
1 + 3v21v

2
2⟩+ γ⟨v61 + 5v41v2⟩ ≥ 0

(8)

for some α, β, γ ∈ R.
We successively choose the values α, β, γ to eliminate the terms whose signs are not clear: first set α = 2 to

get rid of ⟨v1v2v3⟩, then β = 2
3 to eliminate ⟨v31v3⟩, and finally γ = 2

15 to handle ⟨v41v2⟩. With these choices,

the above inequality (8) reduces to 1
45 ⟨v

6
1⟩ ≥ 0, which holds trivially. □

Remark 2.2. Let ϕ(u), with ϕ(0) = 0 and ϕ(1) = 1, be the uniquely defined increasing function of u such

that h(X +
√

ϕ(u)Z) is linear in u. Then we have

0 =
d2

du2
h(X +

√
ϕ(u)Z)

=
1

2

(
d2ϕ(u)

du2
I(µX

ϕ(u)) +

(
dϕ(u)

du

)2
d

dϕ(u)
I(µX

ϕ(u))

)
.

Now, showing that d2

du2h(X +
√
ϕ(u)Z +W ) ≥ 0, for W ∼ N (0, σ2) independent of (X,Z), is equivalent to

showing that

0 ≤ 1

2

(
d2ϕ(u)

du2
I(µX+W

ϕ(u) ) +

(
dϕ(u)

du

)2
d

dϕ(u)
I(µX+W

ϕ(u) )

)
.

This can be rewritten using the equality above as requiring

d
dϕ(u)I(µ

X+W
ϕ(u) )

I(µX+W
ϕ(u) )

≥
d

dϕ(u)I(µ
X
ϕ(u))

I(µX
ϕ(u))

.
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Since I(µX+W
ϕ(u) ) = I(µX

ϕ(u1)
) for some u1 ≥ u, the above inequality is equivalent to showing that

d
dtI(µ

X
t )

I(µX
t )

is increasing in t or equivalently, that log I(µX
t ) is convex in t. Thus, the result we showed can be considered

as a continuous analogue of the convexity result for BSC established by Wyner and Ziv.

2.1.1. A conditional version of log-convexity. Given two jointly distributed random variables (X,W ), such
that the conditional distributions (and densities) are well defined, one can define

Iw(µ
X|W
t ) :=

∫
R

(
∂

∂x
ln ft(x|w)

)2

ft(x|w)dx.

Further, conditional Fisher information, is traditionally defined as

I(µ
X|W
t ) := E(IW (µ

X|W
t )) =

∫
R2

(
∂

∂x
ln ft(x|w)

)2

ft(x|w)fW (w)dxdw.

Note that Theorem 3.3 implies that(
d

dt
Iw(µ

X|W
t )

)2

≤
(

d2

dt2
Iw(µ

X|W
t )

)(
Iw(µ

X|W
t )

)
.

Since d
dtIw(µ

X|W
t ) ≤ 0, we obtain

− d

dt
Iw(µ

X|W
t ) ≤

√(
d2

dt2
Iw(µ

X|W
t )

)√(
Iw(µ

X|W
t )

)
.

Taking expectation with respect to W , we obtain

− d

dt
I(µ

X|W
t ) = −E

(
d

dt
Iw(µ

X|W
t ))

)
≤ E

(√(
d2

dt2
Iw(µ

X|W
t )

)√(
Iw(µ

X|W
t )

))
Cau−Sch

≤

√
E

(
d2

dt2
Iw(µ

X|W
t )

)
E
(
Iw(µ

X|W
t )

)
=

√(
d2

dt2
I(µ

X|W
t )

)(
I(µ

X|W
t )

)
.

Here monotone convergence theorem can be used to justify the exchange of differentiation and expectation.
We state this in the following Corollary.

Corollary 2.3. The conditional Fisher information of Xt with respect to W is log-convex in t, i.e.

ln I(µ
X|W
t ) = ln

∫
R2

(
∂

∂x
ln ft(x|w)

)2

ft(x|w)fW (w)dxdw

is convex in t.

From Lemma 1.7 we see that d
dtI(µ

X|W
t ) ≤ 0. This allows us to show the following Corollary.

Corollary 2.4 (with Yunrui Guan). For any t0, τ > 0 we have(
h(Xt0+3τ |W )− h(Xt0+2τ |W )

)(
h(Xt0+τ |W )− h(Xt0 |W )

)
≥
(
h(Xt0+2τ |W )− h(Xt0+τ |W )

)2
.

Proof. Observe that(∫ τ

0

I(µ
X|W
t0+2τ+x)dx

)(∫ τ

0

I(µ
X|W
t0+x)dx

)
(a)

≥
∫ τ

0

I(µ
X|W
t0+2τ+x)I(µ

X|W
t0+x)dx

(b)

≥
∫ τ

0

(
I(µ

X|W
t0+τ+x)

)2
dx

Cau−Sch
≥

(∫ τ

0

I(µ
X|W
t0+τ+x)dx

)2

.

Here (a) follows from the FKG inequality since d
dtI(µ

X|W
t ) ≤ 0 from Lemma 1.7. Inequality (b) follows

from the log-convexity of I(µ
X|W
t ), and the last inequality is an immediate consequence of Cauchy-Schwarz
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inequality. The statement in the Corollary follows immediately using DeBruijn’s identity which implies that

I(µ
X|W
t ) = 2 d

dth(Xt|W ). □

Remark 2.5. One clear question that is definitely worth addressing is to determine whether the log-convexity
of Fisher information along the heat flow also holds for random vectors. In particular we ask, whether(

d3h(X+
√
tZ)

dt3

)(
dh(X+

√
tZ)

dt

)
≥
(
d2h(X+

√
tZ)

dt2

)2

where X and Z(∼ N (0, Id)) are independent random vectors taking values in Rd. The proofs do not extend
naturally to the random vectors instance. However Corollary 2.3 implies that it does extend to random vectors
to independent components in a trivial manner. While the techniques applied in the scalar case do have natural
extensions to the vector case, preliminary investigations by the authors indicate that these extensions seem
insufficient to establish the log-convexity for vector valued random variables.

Another way to extend the log-convexity to random vectors is to show (by some tensorization/single-
letterization argument) that(

h(Xt0+3τ )− h(Xt0+2τ )
)(
h(Xt0+τ )− h(Xt0)

)
≥
(
h(Xt0+2τ )− h(Xt0+τ )

)2
,

holds for all t0, τ > 0, and it is this approach which motivated Corollary 2.4.

3. Discrete Markov Semigroups

To get a feeling of the veracity of Conjecture 1.1 or the weaker form of complete monotonicity, we consider
families of Markov operators Wn,t in finite dimensional probability spaces with dimension n that share
similar the semi-group structures as Gaussian random variable, i.e. Wn,t2(Wn,t1(pXn

)) = Wn,t1+t2(pXn
).

To carry over the symmetry structure of the continuous world, we restrict ourselves to circulant (to capture

Xt = X+
√
tZ), symmetric (to capture Z

d
= −Z) Markov operators. Further one also imposes that as t → ∞,

Wt would tend to a completely noisy channel, which for an input-size n would correspond to W∞ = 1
n⊮n

where ⊮n is the n × n all-ones matrix. We identify a particular class of channels that satisfies the above
assumptions.

Lemma 3.1. Let n ∈ N+ denote the channel input size. Let Wn,t be a collection of circulant symmetric
stochastic matrices (parameterized by t) whose row and column entries are indexed from 0 to n− 1 with the
first row characterized by

w0,0 =
1 + (n− 1)e−t

n
,w0,i =

1− e−t

n
∀i = 1, ..., n− 1.

Then Wn,t satisfies the semi-group property, i.e. Wn,t1+t2 = Wn,t1Wn,t2 and Wn,∞ = 1
n1n, where 1n denotes

the n× n matrix whose entries are all unity.

Proof. Let n ∈ N+ and Wn,t first row entries as defined in assumption. Since Wn,t is a circulant matrix, we
have

wi,j =

{
1+(n−1)e−t

n , i = j
1−e−t

n , i ̸= j

where i, j = 0, ..., n − 1. It is immediate to verify have Wn,t1+t2 = Wn,t1Wn,t2 . Further note that wi,j → 1
n

as t → ∞. It follows that Wn,∞ = 1
n1n □

With this characterization, we will see it is convenient to parameterize probability distribution pXn
to

be the form of pXn
(i) =

1+xn,i

n where
∑n−1

i=0 xn,i = 0 and xn,i ∈ [−1, n − 1]. By matrix multiplication, i.e.

pXn,t = Wn,tpXn , we have pXn,t(i) =
1+xn,ie

−t

n .
Similar to before, let pXn,t

= Wn,tpXn
denote a flow of probability distributions induced by the semi-group

Wn,t on (n− 1)-dimensional probability simplex. Here Wn,t denotes the specific Markov family described in

Lemma 3.1. Let In,Xn
(t) := d

dtH(pXn,t
), where H(pX) = −

∑
x pX(x) ln pX(x) denotes the Shannon-entropy

of pX .
The main goal of this section is check whether In,Xn(t) is completely monotone for any n ∈ N+ and

probability distribution pXn
.
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3.1. Statement of Results. Our first result is an affirmative result of the complete monotnicity for the
binary alphabet.

Proposition 3.2 (with Daoyuan Max Chen, Chin Wa Ken Lau). I2,X2
(t) is completely monotone for any

probability distribution pX2
.

Our second result is that that the signs of the first 9 derivatives alternate, but this alternating sign breaks
down at the 10th derivative for large n and certain initial distributions.

Theorem 3.3 (with Daoyuan Max Chen, Chin Wa Ken Lau). The following holds:

(i) For any n ∈ N+ and probability distribution pXn
, we have

(−1)kI
(k)
n,Xn

(t) ≥ 0,∀t > 0

when k = 0, ..., 9.

(ii) There exists n and pXn such that (−1)10I
(10)
n,Xn

(t) < 0 for some t > 0.

Remark 3.4. As our theorem shows, while the first 9 derivatives alternate in sign for any n ∈ N+, the
function In,Xn

(t) is not completely monotone in general.

3.2. Proofs of Results.

3.2.1. Proof of Proposition 3.2.

Proof. When n = 2, by Lemma 3.1, the circulant symmetric matrix is

W2,t =

[
1+e−t

2
1−e−t

2
1−e−t

2
1+e−t

2

]
.

Suppose pX2 = [ 1+x
2 , 1−x

2 ]T where x ∈ [−1, 1]. Since pX2,t = W2,tpX2 , then pX2,t = [ 1+xe−t

2 , 1−xe−t

2 ]T . We
have

H(pX2,t
) = −1− xe−t

2
ln

1− xe−t

2
− 1 + xe−t

2
ln

1 + xe−t

2

(a)
= ln 2− (

1− xe−t

2

∑
k≥1

−xke−kt

k
+

1 + xe−t

2

∑
k≥1

(−1)k+1xke−kt

k
)

= ln 2−
∑
k≥1

x2ke−2kt

2k(2k − 1)

where (a) uses the Taylor expansion of ln(1+xe−t), ln(1−xe−t), which is valid as xe−t ∈ (−1, 1) when t > 0.
Then we have

I2,X2
(t) =

∑
k≥1

x2ke−2kt

2k − 1
.

Note that I2,X2
(t) is a summation of completely monotone functions, i.e. x2k

2k−1e
−2kt. Hence I2,X2

(t) is
completely monotone. □

3.2.2. Proof of Theorem 3.3. We will use the following lemma to establish Theorem 3.3.

Lemma 3.5. Let ϕx(t) = xe−t ln(1+xe−t) where x ∈ [−1,∞). For any non-negative integer k, the following
holds:

(i) (−1)kϕ
(k)
x (t) is non-negative on t > 0 for any x ∈ [−1,∞) if and only if (−1)kI

(k)
n,Xn

(t) is non-negative

on t > 0 for any n ∈ N+ and probability distribution pXn .
(ii) ϕx(t) is completely monotone for any x ∈ [−1,∞) if and only if In,Xn(t) is completely monotone for

any n ∈ N+ and probability distribution pXn
.
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Proof. We will prove part (i) of Lemma 3.5. Note that part (ii) follows as an immediate corollary. Note

that for any n ∈ N+, we have P (pXn,t
= i) =

1+xn,ie
−t

n for any i = 0, ..., n − 1 where
∑n−1

i=0 xn,i = 0 and
xn,i ∈ [−1, n− 1]. Then we have

H(pXn,t) = lnn− 1

n

n−1∑
i=0

(1 + xn,ie
−t) ln(1 + xn,ie

−t).

It follows that

In,Xn(t) =
1

n

n−1∑
i=0

xn,ie
−t ln(1 + xn,ie

−t) =
1

n

n−1∑
i=0

ϕxn,i(t).

Let k ∈ N. Suppose (−1)kϕ
(k)
x (t) is non-negative on t > 0 for any x ∈ [−1,∞). Then for any n ∈ N+ and

probability distribution pXn
, we have (−1)kϕ

(k)
xn,i(t) is non-negative on t > 0 for any i = 0, ..., n − 1. Note

that

(−1)kI
(k)
n,Xn

(t) =
1

n

n−1∑
i=0

(−1)kϕ(k)
xn,i

(t).

Hence (−1)kI
(k)
n,Xn

(t) is non-negative on t > 0.

Conversely, suppose there exists x ∈ [−1,∞), and t0 > 0 such that (−1)kϕ
(k)
x (t0) < 0. Take a probability

distribution pXn with xn,0 = x and xn,j = − x
n−1 for j = 1, ..., n− 1. This is a valid distribution for any n as

long as n ≥ |x|+ 1. It follows that

(−1)knI
(k)
n,Xn

(t0) = (−1)k
n−1∑
i=0

ϕ(k)
xn,i

(t0)

= (−1)kϕ(k)
x (t0) + (−1)k

n−1∑
j=1

ϕ(k)
xn,j

(t0)

(a)
= (−1)kϕ(k)

x (t0) +

n−1∑
j=1

(z − 1) ln(z) +

n−1∑
j=1

(z − 1)2

zk
Qk−1(z)

where (a) uses the reparameterization z = 1 + xje
−t0 = 1 + (− x

n−1 )e
−t0 and the expansion of ϕ

(k)
x (t) in

Section 3.2.4, (in particular see Equation (11)). Note that Qk(z) is a polynomial in degree-k polynomial in

z. Consider
∑n−1

j=1 (z − 1) ln(z) and
∑n−1

j=1
(z−1)2

zk Qk−1(z) separately. Note that

n−1∑
j=1

(z − 1) ln(z) = −xe−t0 ln(z) → 0

n−1∑
j=1

(z − 1)2

zk
Qk−1(z) =

1

n− 1
x2e−2t0

Qk−1(z)

zk
→ 0

when n → ∞. It follows that (−1)knI
(k)
n,Xn

(t0) → (−1)kϕ
(k)
x (t0) when n → ∞. Then there exists n ∈ N+ such

that (−1)kI
(k)
n,Xn

(t0) < 0. Hence (−1)kI
(k)
n,Xn

(t) is not non-negative on t > 0 for any n ∈ N+ and probability
distribution pXn . □

3.2.3. Proof of Theorem 3.3.

Proof. In Section 3.2.4, we perform that the computation of the derivatives ϕx(t) and the k-th derivative can
be expressed (see Equation (11)) as

ϕ(k)
x (t) = (−1)k(z − 1) ln(z) + (−1)k

(z − 1)2

zk
Qk−1(z).

Here z = 1+xe−t and Qk−1(z) is a polynomial of degree (k−1). By Lemma 3.5(i), in order to check whether

(−1)kI
(k)
n,Xn

(t) is non-negative on t > 0 for any n ∈ N+ and probability distribution pXn
, it is equivalent to

check whether (−1)kϕ
(k)
x (t) is non-negative on t > 0 for any x ∈ [−1,∞). Note that z > 0 when x ∈ [−1,∞)

and t > 0. It follows that (z − 1) ln z ≥ 0. Then Qk−1(z) ≥ 0 for any z > 0 is a sufficient (not necessary)
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condition for (−1)kϕ
(k)
x (t) ≥ 0 for any t > 0 and x ∈ [−1,∞). In Lemma 3.7 of the Appendix, we show that

Q0(z), Q1(z), ..., Q8(z) is non-negative when z > 0. Therefore Theorem 3.3(i) is established using Lemma
3.5(i).

We will see that Q9(z) (see (12)) is negative for some z > 0. In particular, take z = 1.15, we have
Q9(z) ∈ (−88,−87), then

−(z − 1) ln(z) +
(z − 1)2

z10
Q9(z) = 0.15 ln

20

3
+

0.0225

1.1510
Q9(1.15)

≤ 0.15× 1.9 +
0.0225

4.05
(−87)

= −119

600
< 0

It follows that (−1)kϕ
(10)
x (t) < 0 for some x ∈ [−1,∞), t > 0. Therefore Theorem 3.3(ii) is established. □

3.2.4. Derivatives of ϕx(t). Define f(t) := x log(1 + xe−t) and y = xe−t. Note that ϕx(t) = f(t)e−t. By
chain rule and induction, we obtain that

ϕ(n)
x (t) + (−1)n+1f(t)e−t =

n∑
k=1

(−1)n−k

(
n

k

)
f (k)(t)e−t. (9)

Lemma 3.6. The kth derivative of f , for k ≥ 2, satisfies

f (k)(t)e−t =
(−1)ky2Pk−2(y)

(1 + y)k

where Pk−2(y) is a polynomial of degree (k − 2).

Proof. The proof proceeds by induction. Note that, explicit calculation yields, the first few derivatives to
satisfy.

f (1)(t)e−t =
−x2e−2t

1 + xe−t
=

−y2

1 + y

f (2)(t)e−t =
x2e−2t

(1 + xe−t)2
=

y2

(1 + y)2

f (3)(t)e−t =
−x2e−2t(1− xe−t)

(1 + xe−t)3
=

−y2(1− y)

(1 + y)3

f (4)(t)e−t =
x2e−2t(1− 4xe−t + x2e−2t)

(1 + xe−t)4
=

y2(1− 4y + y2)

(1 + y)4
.

Thus, let the lemma hold until the ℓth derivative, i.e.

f (ℓ)(t)e−t =
(−1)ℓy2Pℓ−2(y)

(1 + y)ℓ
,

where Pℓ−2(y) is a polynomial of degree ℓ− 2. Then by chain rule we have

f (ℓ+1)(t)e−t =
d

dt
(f (ℓ)(t)e−t) + f (ℓ)(t)e−t

=
d

dy

(−1)ℓy2Pℓ−2(y)

(1 + y)ℓ
dy

dt
+

(−1)ℓy2Pℓ−2(y)

(1 + y)ℓ

= (−1)ℓ+1y

(
[2yPℓ−2(y) + y2P ′

ℓ−2(y)](1 + y)ℓ − ℓy2Pℓ−2(y)(1 + y)ℓ−1

(1 + y)2ℓ

)
+

(−1)ℓy2Pℓ−2(y)

(1 + y)ℓ

=
(−1)ℓ+1y2[(1− (ℓ− 1)y)Pℓ−2(y) + y(1 + y)P ′

ℓ−2(y)]

(1 + y)ℓ+1

=
(−1)ℓ+1y2Pℓ−1(y)

(1 + y)ℓ+1
,
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where

Pℓ−1(y) = (1− (ℓ− 1)y)Pℓ−2(y) + y(1 + y)P ′
ℓ−2(y). (10)

It is immediate that Pℓ−1(y) is a polynomial of degree ℓ− 1. □

For notational consistency, let us denote P−1(y) = P0(y) = 1. Using (9) and Lemma 3.6 we see that

ϕ(n)
x (t) + (−1)n+1f(t)e−t =

(−1)ny2

(1 + y)n

n∑
k=1

(
n

k

)
(1 + y)n−kPk−2(y).

Define a degree n− 1 polynomial Q̂n−1(y) according to

Q̂n−1(y) =

n∑
k=1

(
n

k

)
(1 + y)n−kPk−2(y).

Let z = 1 + y and Qn−1(z) = Q̂n−1(z − 1). Then, we have

ϕ(n)
x (t) = (−1)n(z − 1) ln z + (−1)n

(z − 1)2Qn−1(z)

zn
. (11)

Lemma 3.7. The polynomials Qk(z) are non-negative when z > 0, when 0 ≤ k ≤ 8.

Proof. We re-express the corresponding polynomials as a sum of non-negative terms below. By explicit
calculation, we obtain

Q0(z) = 1

Q1(z) = 1 + 2z

Q2(z) = 2 + 2z + 3z2

Q3(z) = 6 + 2z + 3z2 + 4z3

Q4(z) = 24− 6z + 4z2 + 4z3 + 5z4

= 15 + (3− z)2 + 3z2 + 4z3 + 5z4

Q5(z) = 120− 96z + 24z2 + 4z3 + 5z4 + 6z5

= 24 + 24(2− z)2 + 4z3 + 5z4 + 6z5

Q6(z) = 720− 960z + 384z2 − 36z3 + 6z4 + 6z5 + 7z6

= 320(z − 3

2
)2 + 10z2 + 6z2(z − 3)2 + 6z5 + 7z6

Q7(z) = 5040− 9360z + 5760z2 − 1296z3 + 90z4 + 6z5 + 7z6 + 8z7

= 8z7 + 7(z3 +
3

7
z2 − 3

4
z − 2)2 +

1389

14
(z2 − 17689

2778
z +

13

2
)2 + (

4673

229
z − 229

8
)2 +

319634849689

8158141488
z2 +

361

448

Q8(z) = 40320− 95760z + 81360z2 − 29520z3 + 4248z4 − 162z5 + 8z6 + 8z7 + 9z8

= z8 + 8(z4 +
1

2
z3 − z2 − z − 2

5
)2 + 22(z3 − 69

22
z2 − z + 4)2 +

449019

110
(z2 − 1641574

449019
z +

147

50
)2

+ (
98101

17109
z − 17109

250
)2 +

13807378294210133547

40160966452670250
z2 +

188763

1375000

Thus Qn(z) is non-negative for n = 0, ..., 8 when z > 0. □

Remark 3.8. Note that similarly one can obtain

Q9(z) = 362880− 1048320z+1144080z2 − 583920z3 +139320z4 − 13392z5 +348z6 +8z7 +9z8 +10z9. (12)
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