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tLoad balan
ing is a 
lassi
al and important problem arising in a number ofappli
ation s
enarios. Consider the following 
anoni
al abstra
tion: Jobs arrivea

ording to an arrival pro
ess at a bank of N identi
al servers ea
h having a sepa-rate queue. The arriving jobs need to be assigned to the servers so that load on theservers is well balan
ed. The poli
y \join the server with shortest remaining work"is known to be an optimal poli
y (Winston, 1977). When N is large, the 
omplexityof implementing this optimal s
heme be
omes very high. Therefore, many simplerandomized approximations have been proposed in the re
ent literature. Thesevarious algorithms trade-o� performan
e for implementation simpli
ity. In this pa-per, we wish to understand this trade-o� by using the entropy rate of the indu
edqueue-size pro
ess as a metri
; i.e., the lower the entropy rate of the queue-sizepro
ess, the better the load-balan
ing.1 Introdu
tionLoad balan
ing has re
eived 
onsiderable attention in the 
lassi
al literature [4, 5℄. We
onsider the following 
anoni
al model, some times 
alled the \supermarket model". Jobsarrive a

ording to a rate N� (where � < 1) Poisson pro
ess at a bank of N independentrate 1 exponential server queues. The arriving jobs are to be assigned to the servers so asto balan
e the load; or, more spe
i�
ally, to minimize the expe
ted delay or the expe
tedqueue size. It is well-known that the assignment poli
y \join the shortest queue" isoptimal [12℄. But, when N is large it be
omes expensive to determine the shortest queuefor ea
h arriving job.This has re
ently motivated several randomized algorithms, all aimed at simplifyingthe implementation of the assignment pro
ess. Azar et. al. [1℄ 
onsidered the followingstati
 version of the load balan
ing problem: Drop N balls into N bins so as to minimize�This resear
h is supported by a Stanford Graduate Fellowship, and by grants from a Alfred P. SloanFellowship and a Terman Fellowship



the maximum loading. The poli
y \join the least loaded bin" results in an optimalloading of one ball per bin. In 
ontrast, 
onsider the 
lass of randomized algorithms: jointhe shortest of d � 1 randomly 
hosen bins. Azar et. al. [1℄ show that for d � 2 themaximum load is ln lnnln d + O(1) with a high probability, as 
ompared to lnnln lnn(1 + o(1))for d = 1.The dynami
 supermarket model mentioned above has been studied by Mitzenma
her[6℄ and Vvedenskaya et.al. [11℄. For d = 1 the supermarket model redu
es to N indepen-dent M/M/1 queues with arrival rate � and servi
e rate 1, and the queue-size distributionis geometri
; that is, P (Q � i) = �i. For d � 2, the following rather remarkable fa
tis established in [6℄ and [11℄. The tail of the queue-size distributions is super-geometri
;that is, P (Q � i) = � di�1d�1 as N !1.More re
ently, Shah and Prabhakar [9℄ 
onsider randomized load balan
ing algorithmswhi
h use memory. Spe
i�
ally, they 
onsider the stati
 problem of dropping N balls intoN bins by de�ning the following \(d,1) system". At the beginning of the kth iteration the(d; 1) system has stored in its memory the identity of the least loaded bins at the end ofthe (k�1)th iteration. During the kth iteration it sele
ts d new bins uniformly at randomand assigns the kth ball to the least loaded of these d bins and the one bin retained inmemory. It 
on
ludes the kth iteration by writing the identity of the least loaded of thed + 1 bins into memory. In this language [1℄ studies the (d; 0) system. It is shown in[9℄ that the maximum load in the (d; 1) system is bounded above ln lnnln(2d�1) + O(1) with ahigh probability. Thus, the (d; 1) system performs no worse than the (2d� 1; 0) systemso far as minimizing the maximum load is 
on
erned.Clearly, one 
an de�ne the (d; 1) version of the supermarket model in a similar way.For the remainder of the paper we will be 
on
erned ex
lusively with the dynami
 super-market model. Due to Poisson arrivals and independent exponential servi
es, the jointqueue-size pro
ess at time t, Q(t) = (q1(t); :::; qN(t)), 
orresponding to ea
h of the poli-
ies introdu
ed above is an irredu
ible, aperiodi
 and ergodi
 
ontinuous-time Markov
hain. A major thrust of this paper is to 
ompute the entropy rate of these Markov
hains. Our interest for doing this rests on the following large 
on
lusion obtained in thepaper: As d in
reases the entropy rate of the (d; 0) de
reases, and is the smallest for thejoin the shortest queue system (whi
h 
orresponds to the (N; 0) system when sampling isdone without repla
ement). Sin
e systems are also better load-balan
ed as d in
reases,we hope to 
onne
t the goodness of the load-balan
ing of an assignment poli
y with thesmallness of the entropy rate of the queue-size pro
ess it indu
es.Now, the entropy rate of a dis
rete-time Markov 
hain living on a 
ountable statespa
e is given by �Pij �ipij log pij, where �i is the invariant distribution and fpijg isthe transition matrix (see Chapter 4 of [2℄, for example). Unfortunately, ex
ept for the(1; 0) system, the invariant distribution of all the systems mentioned above is diÆ
ult,if not impossible, to 
ompute expli
itly. Further, if the arrival and servi
e pro
esses areallowed to be arbitrarily distributed, then expli
it formulas for the entropy rate of thequeue-size pro
ess are not known.Nevertheless, we shall be interested in 
omputing the entropy rate of su
h arbitraryload-balan
ing systems. We do this by using the method employed in Prabhakar andGallager [8℄. The method of [8℄ requires a dis
rete-time formulation whi
h we shall adoptin Se
tion 1.1 and the main theorems 
on
erning entropy rate of the (d; 0) systems areestablished in Se
tion 2. The 
omputation of entropy rates for the (d; 1) system, whi
huses memory, seems more 
ompli
ated. In parti
ular, this makes it diÆ
ult to 
omparethe performan
e of systems using memory with that of systems whi
h use no memory



with entropy as the metri
. As mentioned above, [9℄ shows that the (d; 1) system is atleast as good as the (2d � 1; 0) system in the metri
 of minimizing the maximum load.In Se
tion 3.1 we use simulations to further 
ompare systems whi
h use memory withsystems that do not by introdu
ing another metri
, motivated by the entropy approa
h.Finally, in Se
tion 4 we 
on
lude the paper by dis
ussing the lessons learnt about therelevan
e of entropy as a metri
 for load balan
ing.1.1 The Model and NotationConsider a system of N �rst-
ome-�rst-served (FCFS) queues arranged in parallel ea
hwith an independent rate 1 server providing i.i.d. servi
e times. The arrival pro
ess tothe system of queues, A, is assumed to be stationary and ergodi
. We assume thattime is slotted and that there is at most one arrival per time slot. The arrivals o

urat the beginning of the time slots and departures o

ur just before the end of the timeslots. The servi
e time distribution, S, is arbitrary and, for 
onvenien
e, we assume thatP (S = 0) = 0. This ensures that at most one departure 
an o

ur at ea
h queue in ea
htime slot.Let Q(k+) = (q1(k+); :::; qN(k+)) be the queue size ve
tor at time k+, where k+ isthe time just after the o

urren
e of possible arrivals in time slot k. Similarly, de�neQ(k�) = (q1(k�); :::; qN(k�)), where k� is the time just after departures in time slotk � 1. Write Q(k) = (Q(k�); Q(k+)).Let �(k) be the permutation of numbers 1; : : : ; N whi
h arranges the queues a

ordingto their size at time k�; i.e. q�1(k)(k�) � : : : � q�N (k)(k�). To disambiguate betweenseveral possible permutations when there are ties in queue sizes, assume that ties arebroken in a deterministi
 manner; for example, a

ording to port numbers.Let p = (p1; : : : ; pN) be a probability ve
tor representing the probabilities of theout
ome of the toss of a 
oin with N sides, and let p1 � p2 � � � � � pN . With a givenve
tor p, we may identify an assignment poli
y as follows. If a pa
ket arrives in time slotk, we toss an N -sided 
oin distributed a

ording to p. If the out
ome of the 
oin toss isC, 1 � C � N , then the pa
ket joins the queue �C(k). Let T be the 
lass of algorithmsdes
ribable by su
h a 
oin toss model.We are now ready to identify the systems (d; 0) as algorithms in the above 
lass. Theextreme 
ase (1; 0) is identi�ed with the loading probability ve
tor ( 1N ; :::; 1N ). The otherextreme 
ase (N; 0) (join the shortest queue) 
orresponds to the loading probability ve
tor(1; :::; 0). Observe that ties are broken in a deterministi
 fashion in the (N; 0) system.The set of algorithms 
orresponding to the (d; 0), 1 < d < N , also belong to 
lass T with
orresponding loading probability ve
torspdi = �N�i+1d �� �N�id ��Nd� : (1)2 Entropy RateThe development in this se
tion 
losely parallels the arguments in [8℄. We borrow thearguments used in [8℄ for the single queue system and apply them to the N -queue systemwith the small 
hanges that the in
rease in queues warrants. Let : : : ; a�2; a�1; a0; a1; a2; : : :be the doubly-in�nite ordered sequen
e of time slots in whi
h arrivals o

ur. We adoptthe 
onvention, a0 < 0 � a1. Let si be the servi
e time obtained by the pa
ket whi
h



arrived in the slot ai. Let Ai = ai+1 � ai be the sequen
e of inter-arrival times. Let Cidenote the out
ome of the toss of the N-sided 
oin when the ith pa
ket arrives. We alsoassume that the arrivals, servi
es and the 
oin tosses are independent of ea
h other.De�nition 1 The bank of N parallel �/GI/FCFS queues is said to satisfy the Q-
onditionif the number of pa
kets in ea
h of the queues in equilibrium has a �nite �rst moment;i.e. E(qi(0�)) <1; for all i = 1; :::; N .Conditions: First of all, we observe that even for a single queue system it is ne
essaryfor the servi
e distribution to have �nite se
ond moment, i.e E(s21) < 1. Further, itis suÆ
ient for the arrival pro
ess to be strongly mixing [8℄. Now, we wish to �ndsuÆ
ient 
onditions whi
h guarantee that the Q-
ondition holds for our system of Nservers. Consider a parti
ular algorithm: join a queue 
hosen uniformly at random. Forthis 
ase it is easy to see that if the arrival pro
ess to the entire bank of queues is stronglymixing, then the property is preserved for ea
h of the arrival pro
esses to the N queues.In fa
t, if the overall arrival pro
ess is geometri
, so are the individual arrival pro
esses.Let T be any algorithm in T and let p be its asso
iated 
oin toss ve
tor. We have, byde�nition of T , p1 � � � � ; pN . Let ~q(j) be the total number of pa
kets present in the leastloaded j queues. Let q̂(N � j) be the total queue size in the most loaded N � j queues.Observe that, for every j, we have, Pji=1 pi � Pji=1 1N . This implies that, in algorithmT it is more likely for any pa
ket to go into ~q(j), than in algorithm (1; 0). From, this itnot diÆ
ult to see that T is better load balan
ed than (1; 0). Spe
i�
ally, it is easy tosee that the total amount of servi
e rendered by all the queues in T upto to any timet, will sto
hasti
ally dominate the same in the (1; 0) algorithm. Given this fa
t, it isnot diÆ
ult to 
on
lude that if the (1; 0) system satis�es the Q-
ondition, so does allother algorithms in T . Therefore, it is suÆ
ient that: (a) arrivals are strongly mixing orrenewal, and (b) servi
e times have �nite se
ond moment.Lemma 1 Let fQk; k 2 ZZg be the equilibrium queue-size pro
ess of the parallel bank ofN �/GI/1-FCFS queue satisfying the Q-
ondition. Then, H(Qk) < 1 or equivalentlyH(qi(k)) <1 for all i = 1; :::; N .Proof The random variables qi(k�) and qi(k+) are non-negative, integer-valued andhave �nite means. Therefore, their entropies are lesser than geometri
 random variableswith means equal to E(qi(k�)) and E(qi(k+)), respe
tively. It follows that H(qi(k�)) +H(qi(k+)) <1.Residual servi
es: Let vi(k+) denote the ordered ve
tor of pa
kets in queue qi(k+)along with the amount of servi
e ea
h has yet to re
eive.De�nition 2 The bank of N parallel �/GI/FCFS queues is said to satisfy the V-
onditionif the entropy of the residual servi
es are �nite; i.e. H(vi(k+)) <1 for all i = 1; :::; N .It is demonstrated in [8℄ that if the Q-
ondition is satis�ed then the V-
ondition will besatis�ed if the servi
es have bounded support.The 
ondition on servi
es having bounded support is not ne
essary. For example,if the servi
es are i.i.d geometri
, the residual servi
es, by the memory-less property,will also be geometri
. In this 
ase, it is easy to see that as long as the Q-
ondition issatis�ed, H(V (k+)) � H(s)E(PNi=1 qi(k+)) +PNi=1H(qi(k+)) <1. Here, H(s), denotesthe entropy of the servi
e distribution.



Theorem 1 Suppose the arrival pro
ess to the N-queue system is stationary, ergodi
 andrenewal. Furthermore, let the servi
e distribution be independent of the arrival pro
essand i.i.d. Let both the Q-
onditions and the V-
onditions be satis�ed. Then the entropyrate of the queue-size pro
ess of any algorithm whi
h belongs to T is equal to �(HER(A)+H(S) +H(C)).Proof For K > 0 
onsider the queue-size pro
ess restri
ted to [0; K℄: fQ0; : : : ; QKg.Let N(K) = maxfn : an � Kg be the number of arrivals in [0; K℄. Given the ve
torof residual servi
es in ea
h queue at time zero, all the arrival instan
es in [0; K℄, theout
omes of the 
oin tosses and the servi
es times of the pa
kets, one 
an run the queuein forwards time to get the queue-size at all times [0; K℄. One 
ould also obtain theve
tor of residual servi
es in ea
h queue at time K+.Now given the queue-size at all times [0; K℄ and the ve
tor of residual servi
es in ea
hqueue at time K+, one 
an �nd the arrival instan
es in [0; K℄ by looking for an upwardjump in any of the queues. One 
an also determine the out
ome of the 
oin tosses duringthis interval by looking at the parti
ular queue in whi
h an upward jump o

urs. Fromthe downward jumps of the queue, one 
an 
ompute the departure instan
es and so usingthese arrivals and departures one 
an 
ompute the servi
es of the pa
kets whi
h departed(residual servi
es for all the pa
kets that were already present in the queue at time zero)during this period in all of the FCFS queues. With the help of the residual servi
es inea
h queue at time K+, we 
ould also 
ompute the servi
es of the pa
kets in the systemat time K. Thus, we have the following bije
tion:(Q0; : : : ; QK ;VK+)$ (Q0; V0+; a1; AN(K)�1; SN(K); pN(K)): (2)By Lemma 1 it follows that H(Q0) <1. This and the ergodi
ity of the pro
ess fQk; k 2ZZg imply that it has a �nite entropy rate. We have also seen that both H(V0+) andH(VK+) are �nite.Now taking entropies1 at (2), dividing both sides by K and letting K go to in�nitywe getHER(Q) 4= limK!1 H(fQk; 0 � k � Kg)K = limK!1 H(AN(K)�1; SN(K); CN(K))K :a= �(HER(A) +H(S) +H(C)):The paper by Prabhakar and Gallager [8℄, gives a detailed argument establishing (a).3 Loading probability ve
tor: Majorization, LoadBalan
ing and Entropy RateThis se
tion deals with the relationship of the loading probability ve
tors to load bal-an
ing and entropy rate. All the loading probability ve
tors we 
onsider satis�es p1 �� � � � pN . Let T1, T2 be two algorithms whi
h belong to T and let pT1 and pT2 be theirloading probability ve
tors. We ask the question: Is it possibble to look at pT1 , pT2 anddetermine whi
h system balan
es the load better?1This is pre
isely where the dis
rete time setting is required, sin
e in 
ontinuous time, entropies arenot always preserved by bije
tions.



A ve
tor pT1 is said to majorize pT2 , (pT1 � pT2), with the elements of the ve
torsarranged in de
reasing order, ifkXi=1 pT1i � kXi=1 pT2i ; for k = 1; : : : ; N:Here, sin
e both pT1 and pT2 are probability ve
tors, we have equality holding for k = N .So, for su
h systems, it is quite 
lear that the algorithm T2, whi
h is represented bypT2 , is a better load balan
er than the algorithm T1 represented by pT1 . Let the loadingprobability ve
tor for the (k; 0) system be denoted by pk.Lemma 2 pd � pd+1.Proof From the de�nition of pd in equation (1), we havekXi=1 pdi = kXi=1 �N�i+1d �� �N�id ��Nd� = �Nd�� �N�id ��Nd� :Therefore, it is suÆ
ient to show that,�Nd�� �N�id ��Nd� � � Nd+1�� �N�id+1�� Nd+1� for i = 1; : : : ; N:This redu
es to showing(N � i)!(N � d� 1)!N !(N � i� d� 1)! � (N � i)!(N � d)!N !(N � i� d)! , N � i� d � N � d:Sin
e this is true for all i � 1 and hen
e the proof is 
omplete.Let two systems, T1 and T2 be su
h that pT1 � pT2 . From Theorem 1, it is possible to
ompute the entropy rates of the two systems, T1 and T2. It is interesting that wheneverpT1 � pT2 , then we have from the following lemma that the entropy rate of queue-sizepro
ess of T1 is greater than that of T2.Lemma 3 If pT1 � pT2, then H(pT1) � H(pT2).Proof: We know from Theorem 4.3.33, page 197 of [3℄, that if pT1 � pT2, then thereexists a doubly sto
hasti
 matrix, �, su
h that pT1 = �pT2 . Given this and the 
on
avityof the entropy, the result readily follows from Jensen's inequality.3.1 Systems with memoryConsider the (d,1) system. Let us look at the bije
tion in equation (2). Given all thearrivals, 
oin toss out
omes, servi
es and the initial 
onditions at time zero, we 
an
ompute the queue-size pro
ess until time K by running the queues in forwards time.But given the queue-size ve
tor, we 
annot 
ompute the out
ome of the 
oin tosses atpre
isely those instan
es when the memory bin was loaded. Thus, it is quite easy to seethat the entropy rate of the queue-size pro
ess for the (d; 1) system is lesser than that ofthe (d; 0) system.
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Figure 1: Loading probability ve
tors for di�erent systemsIt is diÆ
ult, if not impossible, to 
al
ulate the loading probability ve
tor for the(d; 1) system analyti
ally. Therefore, we use simulations to emperi
ally determine theloading probability ve
tor for systems with memory. Theoreti
ally, even if we 
al
ulatethe loading probability ve
tors, one would still not be able to 
al
ulate the entropy rateof the (d; 1) system by the Theorem 1. This is due to the fa
t that the loads of the bins
hosen at any time k are dependent on the load of the bin in memory at time k, and thelatter is not independent from time to time. Therefore the entropy rate of systems withmemory is diÆ
ult to 
ompute using the method of bije
tions. However, we note thatit is possible to obtain upper bounds on the entropy rate of systems with memory by
onsidering systems in whi
h have the memory e�e
ts last only over a bounded durationof time. We do not pursue this further here, but instead use simulations to study the(d; 1) systems.Simulation setup: We 
onsider a bank of 100 parallel �/M/1-FCFS queues.The arrivalrate to the system is 0.99*100 pa
kets per se
ond, and ea
h of the hundred queues is servedby a unit rate exponential server. Every arriving pa
ket is loaded to the least loaded ofthe d randomly sampled queues and the queue in memory. Ties in queue sizes are brokenuniformly at random. The simulations are run for 10 million pa
ket arrivals. This numberof iterations was observed to be suÆ
ient for the emperi
al loading probability ve
torsof the (d; 0) systems (for d = 4; 5) to 
onverge to their theoreti
al values determinedat equation (1). Further, it is noted in [1℄ that the mixing time of Markov 
hains withvariations of the stati
 (d; 0) systems is of the order of N3 (equal to 1003 here).Using this setup for simulation, we obtain the loading probability ve
tors for the (2,1)system and the (3,1) system. The simulations were done in MATLAB and the randomnumber generator used is that of MATLAB version 6.0.Figure 1 plots the loading probability ve
tors of the (2,1) and the (3,1) systems alongwith those of the (4,0) and the (5,0) systems. From the �gure we observe that the loadingprobability ve
tors of the (d; 1) systems are not ne
essarily monotoni
ally de
reasing.
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Hen
e, they do not belong to the 
lass of algorithms T in general. Note that if welook at the least loaded 20 bins, the systems with memory load these bins with greaterprobability than the (4,0) and the (5,0) systems. This is better illustrated in Figure 2,whi
h plots the 
umulative loading ve
tors of the various systems. The 
umulative loadingve
tor is the 
umulative distribution obtained from the loading probability distribution.From Figure 2, one 
an expe
t that the (2,1) and the (3,1) systems load lesser loadedqueues more frequently than the (4,0) and (5,0) systems. Thus, it is possible that the(d; 1) system with memory might perform mu
h better than the (2d� 1; 0) lower boundproved in [9℄. To get an upper bound on the performan
e of the (3,1) system, we simulatedvarious (k; 0) systems and found that the (9,0) system is the smallest value for k thatmajorizes the (3,1) system as shown in Figure 3.4 Con
lusionsThe paper 
onsidered di�erent load balan
ing algorithms and the queue-size pro
essesgenerated by these algorithms. The entropy rate of the queue-size pro
esses was 
om-puted using the method of bije
tions introdu
ed in [8℄ for a 
lass of su
h algortihms,whi
h in
ludes the (d,0) systems. We de�ned the notion of a loading probability ve
torasso
iated with every algorithm in this 
lass, and found that if the loading probabilityve
tors of two algorithms T1 and T2 are su
h that pT1 majorizes pT2 , then T1 has a worseload balan
ing performan
e than T2. Moreover, the entropy rate of the queue-size pro
essunder T1 is shown to be higher than that under T2.The re
ent work of V�o
king [10℄ obtains a rather puzzling result. He 
onsiders loadingN balls into N bins in the following fashion: Divide the N bins into d groups and takeone sample at random from ea
h group. Load the ball into the least loaded bin, breakingties in of two ways (i) always to the left, and (ii) uniformly at random. The surprising
on
lusion is that breaking ties to the left leads to better load balan
ing. Mitzenma
herand V�o
king [7℄ generalize this result to the 
ontinuous supermarket version. It is possibleto easily show that the entropy rate of the queue-size pro
ess 
orresponding to the breakties to the left system is smaller than that of the break ties at random system, the extraentropy being inje
ted by the 
oins tossed to break ties. Based on the initial work ofthis paper for relating the smallness of entropy rate to the goodness of load balan
ing,we hope it is possible to better understand the phenomenon dis
overed by V�o
king [10℄on how \asymmetry helps load balan
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