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Abstract

Load balancing is a classical and important problem arising in a number of
application scenarios. Consider the following canonical abstraction: Jobs arrive
according to an arrival process at a bank of N identical servers each having a sepa-
rate queue. The arriving jobs need to be assigned to the servers so that load on the
servers is well balanced. The policy “join the server with shortest remaining work”
is known to be an optimal policy (Winston, 1977). When N is large, the complexity
of implementing this optimal scheme becomes very high. Therefore, many simple
randomized approximations have been proposed in the recent literature. These
various algorithms trade-off performance for implementation simplicity. In this pa-
per, we wish to understand this trade-off by using the entropy rate of the induced
queue-size process as a metric; i.e., the lower the entropy rate of the queue-size
process, the better the load-balancing.

1 Introduction

Load balancing has received considerable attention in the classical literature [4, 5]. We
consider the following canonical model, some times called the “supermarket model”. Jobs
arrive according to a rate N (where A < 1) Poisson process at a bank of N independent
rate 1 exponential server queues. The arriving jobs are to be assigned to the servers so as
to balance the load; or, more specifically, to minimize the expected delay or the expected
queue size. It is well-known that the assignment policy “join the shortest queue” is
optimal [12]. But, when N is large it becomes expensive to determine the shortest queue
for each arriving job.

This has recently motivated several randomized algorithms, all aimed at simplifying
the implementation of the assignment process. Azar et. al. [1] considered the following
static version of the load balancing problem: Drop N balls into /N bins so as to minimize
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the maximum loading. The policy “join the least loaded bin” results in an optimal
loading of one ball per bin. In contrast, consider the class of randomized algorithms: join
the shortest of d > 1 randomly chosen bins. Azar et. al. [1] show that for d > 2 the
maximum load is %% 4 O(1) with a high probability, as compared to % (1 + o(1))
for d = 1.

The dynamic supermarket model mentioned above has been studied by Mitzenmacher
[6] and Vvedenskaya et.al. [11]. For d = 1 the supermarket model reduces to N indepen-
dent M/M/1 queues with arrival rate A and service rate 1, and the queue-size distribution
is geometric; that is, P(Q > i) = \'. For d > 2, the following rather remarkable fact
is established in [6] and [11]. The tail of the queue-size distributions is super-geometric;

that is, P(Q > i) = ATT as N — oo,

More recently, Shah and Prabhakar [9] consider randomized load balancing algorithms
which use memory. Specifically, they consider the static problem of dropping N balls into
N bins by defining the following “(d,1) system”. At the beginning of the k' iteration the
(d, 1) system has stored in its memory the identity of the least loaded bins at the end of
the (k —1)™ iteration. During the k' iteration it selects d new bins uniformly at random
and assigns the k' ball to the least loaded of these d bins and the one bin retained in
memory. It concludes the k' iteration by writing the identity of the least loaded of the
d + 1 bins into memory. In this language [1] studies the (d,0) system. It is shown in
[9] that the maximum load in the (d, 1) system is bounded above 1;{'21{?7”1) + O(1) with a
high probability. Thus, the (d, 1) system performs no worse than the (2d — 1,0) system
so far as minimizing the maximum load is concerned.

Clearly, one can define the (d, 1) version of the supermarket model in a similar way.
For the remainder of the paper we will be concerned exclusively with the dynamic super-
market model. Due to Poisson arrivals and independent exponential services, the joint
queue-size process at time t, Q(t) = (¢:1(¢), ..., gn(t)), corresponding to each of the poli-
cies introduced above is an irreducible, aperiodic and ergodic continuous-time Markov
chain. A major thrust of this paper is to compute the entropy rate of these Markov
chains. Our interest for doing this rests on the following large conclusion obtained in the
paper: As d increases the entropy rate of the (d,0) decreases, and is the smallest for the
join the shortest queue system (which corresponds to the (N, 0) system when sampling is
done without replacement). Since systems are also better load-balanced as d increases,
we hope to connect the goodness of the load-balancing of an assignment policy with the
smallness of the entropy rate of the queue-size process it induces.

Now, the entropy rate of a discrete-time Markov chain living on a countable state
space is given by — >, m;p;; log p;j, where 7; is the invariant distribution and {pi;} is
the transition matrix (see Chapter 4 of [2], for example). Unfortunately, except for the
(1,0) system, the invariant distribution of all the systems mentioned above is difficult,
if not impossible, to compute explicitly. Further, if the arrival and service processes are
allowed to be arbitrarily distributed, then explicit formulas for the entropy rate of the
queue-size process are not known.

Nevertheless, we shall be interested in computing the entropy rate of such arbitrary
load-balancing systems. We do this by using the method employed in Prabhakar and
Gallager [8]. The method of [8] requires a discrete-time formulation which we shall adopt
in Section 1.1 and the main theorems concerning entropy rate of the (d,0) systems are
established in Section 2. The computation of entropy rates for the (d, 1) system, which
uses memory, seems more complicated. In particular, this makes it difficult to compare
the performance of systems using memory with that of systems which use no memory




with entropy as the metric. As mentioned above, [9] shows that the (d, 1) system is at
least as good as the (2d — 1,0) system in the metric of minimizing the maximum load.
In Section 3.1 we use simulations to further compare systems which use memory with
systems that do not by introducing another metric, motivated by the entropy approach.
Finally, in Section 4 we conclude the paper by discussing the lessons learnt about the
relevance of entropy as a metric for load balancing.

1.1 The Model and Notation

Consider a system of N first-come-first-served (FCFS) queues arranged in parallel each
with an independent rate 1 server providing i.i.d. service times. The arrival process to
the system of queues, A, is assumed to be stationary and ergodic. We assume that
time is slotted and that there is at most one arrival per time slot. The arrivals occur
at the beginning of the time slots and departures occur just before the end of the time
slots. The service time distribution, S, is arbitrary and, for convenience, we assume that
P(S =0) = 0. This ensures that at most one departure can occur at each queue in each
time slot.

Let Q(k™) = (qi(k™),...,qn (k™)) be the queue size vector at time k', where k% is
the time just after the occurrence of possible arrivals in time slot k. Similarly, define
Q(k™) = (q1(k7),...,qn(k7)), where k= is the time just after departures in time slot
k—1. Write Q(k) = (Q(k™),Q(k™)).

Let o(k) be the permutation of numbers 1, ..., N which arranges the queues according
to their size at time k7; i.e. ¢, 1) (k7)) < ... < @oyay (k7). To disambiguate between
several possible permutations when there are ties in queue sizes, assume that ties are
broken in a deterministic manner; for example, according to port numbers.

Let p = (p1,...,pn) be a probability vector representing the probabilities of the
outcome of the toss of a coin with N sides, and let p; > py > --- > py. With a given
vector p, we may identify an assignment policy as follows. If a packet arrives in time slot
k, we toss an N-sided coin distributed according to p. If the outcome of the coin toss is
C, 1< C < N, then the packet joins the queue o¢(k). Let T be the class of algorithms
describable by such a coin toss model.

We are now ready to identify the systems (d, 0) as algorithms in the above class. The
extreme case (1,0) is identified with the loading probability vector (4, ..., +-). The other
extreme case (N, 0) (join the shortest queue) corresponds to the loading probability vector
(1,...,0). Observe that ties are broken in a deterministic fashion in the (V,0) system.
The set of algorithms corresponding to the (d,0), 1 < d < N, also belong to class 7 with
corresponding loading probability vectors

d_(id )7(1;) (1)

2 Entropy Rate

The development in this section closely parallels the arguments in [8]. We borrow the
arguments used in [8] for the single queue system and apply them to the N-queue system
with the small changes that the increase in queues warrants. Let ..., a_9,a 1, a9, a1, a9, ...
be the doubly-infinite ordered sequence of time slots in which arrivals occur. We adopt
the convention, ay < 0 < ay. Let s; be the service time obtained by the packet which



arrived in the slot a;. Let A; = a;41 — a; be the sequence of inter-arrival times. Let C;
denote the outcome of the toss of the N-sided coin when the ith packet arrives. We also
assume that the arrivals, services and the coin tosses are independent of each other.

Definition 1 The bank of N parallel - /GI/FCFS queues is said to satisfy the )-condition
if the number of packets in each of the queues in equilibrium has a finite first moment;
i.e. E(qi(07)) <oo, foralli=1,.., N.

Conditions: First of all, we observe that even for a single queue system it is necessary
for the service distribution to have finite second moment, i.e E(s?) < oo. Further, it
is sufficient for the arrival process to be strongly mixing [8]. Now, we wish to find
sufficient conditions which guarantee that the Q-condition holds for our system of N
servers. Consider a particular algorithm: join a queue chosen uniformly at random. For
this case it is easy to see that if the arrival process to the entire bank of queues is strongly
mixing, then the property is preserved for each of the arrival processes to the N queues.
In fact, if the overall arrival process is geometric, so are the individual arrival processes.

Let T be any algorithm in 7 and let p be its associated coin toss vector. We have, by
definition of 7, p; > - -+, py. Let ¢(j) be the total number of packets present in the least
loaded j queues. Let (N — j) be the total queue size in the most loaded N — j queues.
Observe that, for every j, we have, 23:1 pi > z{ZI % This implies that, in algorithm
T it is more likely for any packet to go into ¢(j), than in algorithm (1,0). From, this it
not difficult to see that T is better load balanced than (1,0). Specifically, it is easy to
see that the total amount of service rendered by all the queues in 7" upto to any time
t, will stochastically dominate the same in the (1,0) algorithm. Given this fact, it is
not difficult to conclude that if the (1,0) system satisfies the Q-condition, so does all
other algorithms in 7. Therefore, it is sufficient that: (a) arrivals are strongly mixing or
renewal, and (b) service times have finite second moment.

Lemma 1 Let {Qg, k € Z} be the equilibrium queue-size process of the parallel bank of
N -/GI/1-FCFS queue satisfying the Q-condition. Then, H(Qy) < oo or equivalently
H(qi(k)) < oo foralli=1,...,N.

Proof The random variables ¢;(k~) and ¢;(k™) are non-negative, integer-valued and
have finite means. Therefore, their entropies are lesser than geometric random variables
with means equal to E(q;(k~)) and E(q;(k™)), respectively. It follows that H(q;(k™)) +
H(q;(kT)) < 0. |

Residual services: Let v;(k*) denote the ordered vector of packets in queue ¢;(k™)
along with the amount of service each has yet to receive.

Definition 2 The bank of N parallel - /GI/FCFS queues is said to satisfy the V-condition
if the entropy of the residual services are finite; i.e. H(v;(k™)) < oo for alli=1,...,N.

It is demonstrated in [8] that if the Q-condition is satisfied then the V-condition will be
satisfied if the services have bounded support.

The condition on services having bounded support is not necessary. For example,
if the services are i.i.d geometric, the residual services, by the memory-less property,
will also be geometric. In this case, it is easy to see that as long as the Q-condition is
satisfied, H(V (k7)) < H(s)E(XN, ¢;(k%)) + 2N, H(q;(k™)) < oo. Here, H(s), denotes
the entropy of the service distribution.



Theorem 1 Suppose the arrival process to the N -queue system is stationary, ergodic and
renewal. Furthermore, let the service distribution be independent of the arrival process
and 1.i.d. Let both the Q-conditions and the V-conditions be satisfied. Then the entropy
rate of the queue-size process of any algorithm which belongs to T is equal to N(Hgr(A)+
H(S)+ H(()).

Proof For K > 0 consider the queue-size process restricted to [0, K|: {Qo,...,Qk}.
Let N(K) = max{n : a, < K} be the number of arrivals in [0, K|. Given the vector
of residual services in each queue at time zero, all the arrival instances in [0, K], the
outcomes of the coin tosses and the services times of the packets, one can run the queue
in forwards time to get the queue-size at all times [0, K]. One could also obtain the
vector of residual services in each queue at time K.

Now given the queue-size at all times [0, K| and the vector of residual services in each
queue at time Kt one can find the arrival instances in [0, K] by looking for an upward
jump in any of the queues. One can also determine the outcome of the coin tosses during
this interval by looking at the particular queue in which an upward jump occurs. From
the downward jumps of the queue, one can compute the departure instances and so using
these arrivals and departures one can compute the services of the packets which departed
(residual services for all the packets that were already present in the queue at time zero)
during this period in all of the FCFS queues. With the help of the residual services in
each queue at time K, we could also compute the services of the packets in the system
at time K. Thus, we have the following bijection:

(QU; sy QK; VK+) <~ (QOJ ‘/U+J ay, AN(K)ilJ SN(K)JpN(K)) (2)

By Lemma 1 it follows that H(()y) < oco. This and the ergodicity of the process {Q, k €
Z} imply that it has a finite entropy rate. We have also seen that both H(Vj+) and
H(Vi+) are finite.

Now taking entropies® at (2), dividing both sides by K and letting K go to infinity
we get

A L. H{Qr0<k <K} . H(ANUO-1 GN(K) ON(K))
= lim = lim _
K—oo K Koo K

£ MNHgr(A)+ H(S)+ H(O)).

HER(Q)

The paper by Prabhakar and Gallager [8], gives a detailed argument establishing (a). B

3 Loading probability vector: Majorization, Load
Balancing and Entropy Rate

This section deals with the relationship of the loading probability vectors to load bal-
ancing and entropy rate. All the loading probability vectors we consider satisfies p; >
.-+ > py. Let T}, T, be two algorithms which belong to 7 and let p’* and p’ be their
loading probability vectors. We ask the question: Is it possibble to look at p’t, p’* and
determine which system balances the load better?

!This is precisely where the discrete time setting is required, since in continuous time, entropies are
not always preserved by bijections.



A vector p™t is said to majorize p™2, (p™ > p'?), with the elements of the vectors
arranged in decreasing order, if

k k
ZpiTl < ZpiTQ, for k=1,...,N.
i=1 i=1

Here, since both p™* and p™ are probability vectors, we have equality holding for & = V.
So, for such systems, it is quite clear that the algorithm 75, which is represented by
p’2, is a better load balancer than the algorithm 7T} represented by p’*. Let the loading
probability vector for the (k,0) system be denoted by p*.

Lemma 2 p? > pit!.

Proof From the definition of p? in equation (1), we have

() - ()

e m (=)
L= G

i N
=1 i=1 (d)

Therefore, it is sufficient to show that,

(]{f) B (Nf;i) < (dfl) _ (]dvﬁ) for i=1,..., N.

(%) (1)

This reduces to showing

(N =N —d=1)! _ (N =N - d)!
NI(N—i—d—1)! = NI(N—i-d)

N—-i—d< N —d.

Since this is true for all 2 > 1 and hence the proof is complete. [ |

Let two systems, 7} and T be such that p™ > p’2. From Theorem 1, it is possible to
compute the entropy rates of the two systems, 77 and 7T5. It is interesting that whenever
p’t > p’ then we have from the following lemma that the entropy rate of queue-size
process of T} is greater than that of T5.

Lemma 3 If p™ > p™ then H(p™) > H(p™).

Proof: We know from Theorem 4.3.33, page 197 of [3], that if p™ > p™, then there
exists a doubly stochastic matrix, I', such that p™ = I'p’2. Given this and the concavity
of the entropy, the result readily follows from Jensen’s inequality. [ |

3.1 Systems with memory

Consider the (d,1) system. Let us look at the bijection in equation (2). Given all the
arrivals, coin toss outcomes, services and the initial conditions at time zero, we can
compute the queue-size process until time K by running the queues in forwards time.
But given the queue-size vector, we cannot compute the outcome of the coin tosses at
precisely those instances when the memory bin was loaded. Thus, it is quite easy to see
that the entropy rate of the queue-size process for the (d, 1) system is lesser than that of
the (d,0) system.
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Figure 1: Loading probability vectors for different systems

It is difficult, if not impossible, to calculate the loading probability vector for the
(d,1) system analytically. Therefore, we use simulations to emperically determine the
loading probability vector for systems with memory. Theoretically, even if we calculate
the loading probability vectors, one would still not be able to calculate the entropy rate
of the (d, 1) system by the Theorem 1. This is due to the fact that the loads of the bins
chosen at any time k are dependent on the load of the bin in memory at time &, and the
latter is not independent from time to time. Therefore the entropy rate of systems with
memory is difficult to compute using the method of bijections. However, we note that
it is possible to obtain upper bounds on the entropy rate of systems with memory by
considering systems in which have the memory effects last only over a bounded duration
of time. We do not pursue this further here, but instead use simulations to study the
(d,1) systems.

Simulation setup: We consider a bank of 100 parallel -/M/1-FCFS queues.The arrival
rate to the system is 0.99*100 packets per second, and each of the hundred queues is served
by a unit rate exponential server. Every arriving packet is loaded to the least loaded of
the d randomly sampled queues and the queue in memory. Ties in queue sizes are broken
uniformly at random. The simulations are run for 10 million packet arrivals. This number
of iterations was observed to be sufficient for the emperical loading probability vectors
of the (d,0) systems (for d = 4,5) to converge to their theoretical values determined
at equation (1). Further, it is noted in [1] that the mixing time of Markov chains with
variations of the static (d, 0) systems is of the order of N* (equal to 100® here).

Using this setup for simulation, we obtain the loading probability vectors for the (2,1)
system and the (3,1) system. The simulations were done in MATLAB and the random
number generator used is that of MATLAB version 6.0.

Figure 1 plots the loading probability vectors of the (2,1) and the (3,1) systems along
with those of the (4,0) and the (5,0) systems. From the figure we observe that the loading
probability vectors of the (d,1) systems are not necessarily monotonically decreasing.
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Hence, they do not belong to the class of algorithms 7 in general. Note that if we
look at the least loaded 20 bins, the systems with memory load these bins with greater
probability than the (4,0) and the (5,0) systems. This is better illustrated in Figure 2,
which plots the cumulative loading vectors of the various systems. The cumulative loading
vector is the cumulative distribution obtained from the loading probability distribution.

From Figure 2, one can expect that the (2,1) and the (3,1) systems load lesser loaded
queues more frequently than the (4,0) and (5,0) systems. Thus, it is possible that the
(d, 1) system with memory might perform much better than the (2d — 1,0) lower bound
proved in [9]. To get an upper bound on the performance of the (3,1) system, we simulated
various (k,0) systems and found that the (9,0) system is the smallest value for k that
majorizes the (3,1) system as shown in Figure 3.

4 Conclusions

The paper considered different load balancing algorithms and the queue-size processes
generated by these algorithms. The entropy rate of the queue-size processes was com-
puted using the method of bijections introduced in [8] for a class of such algortihms,
which includes the (d,0) systems. We defined the notion of a loading probability vector
associated with every algorithm in this class, and found that if the loading probability
vectors of two algorithms T} and 75 are such that p’* majorizes p’2, then T} has a worse
load balancing performance than T5. Moreover, the entropy rate of the queue-size process
under T} is shown to be higher than that under 75.

The recent work of Vicking [10] obtains a rather puzzling result. He considers loading
N balls into N bins in the following fashion: Divide the N bins into d groups and take
one sample at random from each group. Load the ball into the least loaded bin, breaking
ties in of two ways (i) always to the left, and (ii) uniformly at random. The surprising
conclusion is that breaking ties to the left leads to better load balancing. Mitzenmacher
and Vocking [7] generalize this result to the continuous supermarket version. It is possible
to easily show that the entropy rate of the queue-size process corresponding to the break
ties to the left system is smaller than that of the break ties at random system, the extra
entropy being injected by the coins tossed to break ties. Based on the initial work of
this paper for relating the smallness of entropy rate to the goodness of load balancing,
we hope it is possible to better understand the phenomenon discovered by Vocking [10]
on how “asymmetry helps load balancing”.
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