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Abstract—In a seminal work Körner and Marton showed
that for computing the module-two sum of doubly symmetric
binary sources, linear codes achieved the optimal rates and
outperformed random coding and binning based arguments.
Körner also showed the optimality of Slepian-Wolf based random
coding for the same problem for a different class of pairwise
distributions. We show that the optimal sum-rate is given by
linear codes for a larger class of binary distributions, thus
extending the optimality results for this problem.

I. INTRODUCTION

Let p(x, y) denote the joint probability mass function of
two random variables taking values in some finite alphabet
space. Let (Xn, Y n) be a sequence of random variables
that are generated i.i.d. according to p(x, y). A distributed
source coding problem models communication from two
senders, one who observes Xn and the other who observes
Y n, to a common receiver who wishes to decode Zn =
(f(X1, Y1), f(X2, Y2), .., f(Xn, Yn)). An (n,RX , RY )-code
for this problem consists of two encoders: one that maps
sequences Xn into symbols MX ∈ [1 : d2nRX e] and another
that maps sequences Y n into symbols MY ∈ [1 : d2nRY e];
and a decoder that maps the received symbols (MX ,MY ) into
an estimate Ẑn of the sequence Zn. The probability of error
for an (n,RX , RY )-code, C, is defined as P(Ẑn 6= Zn). A
rate pair (RX , RY ) is said to be achievable for this problem
if there exists a sequence of (n,RX , RY )-codes such that the
probability of error tends to zero as n tends to infinity. The
closure of the set of all achievable rate pairs (RX , RY ) is
called the capacity region, denoted as C.

In [1], a remarkable result by Slepian and Wolf showed
that when Z = (X,Y ) random binning ideas can be used to
achieve the following rate region:

RX ≥ H(X|Y )

RY ≥ H(Y |X) (1)
RX +RY ≥ H(XY )

and hence this becomes an achievable region for any function
f(X,Y ). We shall call this region the Slepian-Wolf region.
Random coding and random binning ideas were used sub-
sequently for many network information theory problems to
yield the capacity results and still drives most of the achievable
regions studied in the community.

Körner and Marton considered the following Doubly Sym-
mmetric Binary Source (DSBS) distribution, i.e., for some
p ∈ [0, 1],

p(x, y) =

[
1−p

2
p
2

p
2

1−p
2

]
where row index is x ∈ {0, 1}, column index is y ∈ {0, 1}.
They investigated the capacity region when Z = X ⊕ Y , i.e.
the receiver wishes to compute the modulo-two sum of the
sequences Xn, Y n. In particular they showed that linear codes
can be used to achieve the rate region:

RX ≥ H(Z)

RY ≥ H(Z) (2)

and further that this matches the capacity region when p(x, y)
is DSBS distribution. We shall call this region the Körner-
Marton region. For any p ∈ (0, 1) it is immediate that the
above region is strictly larger than the region given by (1).
Thus it became apparent that random coding ideas had its
limitations and structured codes were needed for multiuser
information theory problems. This has then led to development
of lattice codes, coset codes, and other ideas that have spurred
a sub-field of algebraic network information theory.

Returning back to the modulo-two sum problem, Körner
showed the following result:

Theorem 1 (Exercise 16.23 in [2]). When H(Z) ≥
min{H(X), H(Y )}, Slepian-Wolf’s rate region characterizes
the capacity region C for the Körner-Marton sum modulo two
problem.

Remark 1. To the best of the knowledge of the authors, these
are all the collection of joint distributions p(x, y) for which the
capacity region has been determined. In this paper we show
that linear codes minimize the sum-capacity for a larger class
of distributions that include the DSBS as a special case.

In 1982, Ahlswede and Han [3] combined both the coding
schemes above and obtained the following achievable rate
region:

Theorem 2 (Ahlswede and Han [4]). A rate pair (RX , RY )
is achievable if

RX ≥ I(U ;X|V ) +H(Z|UV )



RY ≥ I(V ;Y |U) +H(Z|UV )

RX +RY ≥ I(UV ;XY ) + 2H(Z|UV )

for some U and V that satisfy the Markov chain U → X →
Y → V .

Remark 2. The following remarks are worth noting.
1) Observe that when U, V are constant random variables,

above rate region reduces to Slepian-Wolf’s rate region;
and when U = X,V = Y , it’s reduced to Körner-
Marton’s rate region obtained using linear codes.

2) The multi-letter extensions of the above region tends to
the capacity region. To see this, set U = MX and V =
My and apply Fano’s inequality.

3) The above rate region remains achievable (and multi-
letter extension tends to capacity) even if we assume
that X,Y take some values in a finite field and Z is
the modulo-sum in the field. See for instance Lemma 5
in [5].

4) It has been conjectured in [6], and verified by numerical
simulations by different groups of researchers, that the
smallest sum-rate yielded by the above region is indeed
the minimum of {H(XY ), 2H(Z)}, i.e. the minimum of
the Slepian-Wolf region and the Körner-Marton region.

5) It is also known that for weighted sum-rate the region is
strictly larger than the convex hull of the Slepian-Wolf
region and the Körner-Marton region

The following is the cut-set lower bound which is rather
immediate.

Theorem 3 ( [7]). Any achievable rate pair (RX , RY ) for the
modulo sum problem must satisfy

RX ≥ H(Z|Y ) = H(X|Y )

RY ≥ H(Z|X) = H(Y |X)

RX +RY ≥ H(Z).

Notation: x̄ := 1− x.

II. MAIN RESULTS

In this section, we derive a lower bound for the weighted
sum-rate of the capacity region. We will then show that the
lower bound is tight for several classes of distributions (in-
cluding distributions for which the optimality was not known
before). The following tensorization lemma will be used in the
proof of the theorem.

Lemma 1. Let λ ≥ 1 and let (Xn, Y n) be i.i.d distributed
according to p(x, y) where X,Y take values in a finite field.
Let Zn be obtained as Zi = Xi ⊕ Yi, i = 1, .., n, i.e. the
component-wise modulo sum on the field. Then for any λ ≥ 1
the following holds:

min
Û :Û→Xn→Y n

λH(Zn|Û)−H(Y n|Û)

= n
(

min
U :U→X→Y

λH(Z|U)−H(Y |U)
)
.

Proof. Clearly, by taking i.i.d. copies of the minimizer of the
right hand side, it is immediate that the left-hand-side is at

most the value of the right hand side. To show the other
direction, observe that

λH(Zn|Û)−H(Y n|Û)

=

n∑
i=1

(
(λ− 1)H(Zi|Û , Zi−1) +H(Zi|Û , Zi−1)

−H(Yi|Û , Y ni+1)
)

=

n∑
i=1

(
(λ− 1)H(Zi|Û , Zi−1) +H(Zi|Û , Zi−1, Y ni+1)

−H(Yi|Û , Zi−1, Y ni+1)
)

≥
n∑
i=1

λH(Zi|Ui)−H(Yi|Ui),

where Ui = (Û , Y ni+1, Z
i−1) and note that Ui → Xi →

(Yi, Zi) is Markov. The second equality above uses the
Körner-Marton identity that

∑n
i=1 I(Zi−1;Yi|Û , Y ni+1) =∑n

i=1 I(Y ni+1;Zi|Û , Zi−1). This completes the proof.

We now state a lower bound to the capacity region, which
we believe is new.

Theorem 4. Any achievable rate pair (RX , RY ) for the
modulo sum problem must satisfy the following constraints
for any λ ≥ 1:

RX + λRY ≥ H(XY ) + min
U→X→Y

λH(Z|U)−H(Y |U)

λRX +RY ≥ H(XY ) + min
V→Y→X

λH(Z|V )−H(X|V )

Proof. In the following proof, we will use the bold alphabets
to represent the random vectors of length n. As observed in
Remark 2 the n-letter extension of Ahlswede and Han’s region
tends to the capacity region C. Hence it suffices to show that
any point (nRX , nRy) that belongs to the n-letter extension
of the region in Theorem 2 satisfies the above constraints.

Note that for any achievable rate pairs (nRX , nRY ) in n-
letter extension of the region in Theorem 2 we have,

n(RX + λRY )

= I(U ;X) + λI(V ;Y|U) + (1 + λ)H(Z|UV )

(a)
= I(U ;X) + λI(V ;Z|U) + λI(V ;Y|UZ)

+ (1 + λ)H(Z|UV )

= I(U ;X) + λH(Z|U) + λI(V ;Y|UZ) +H(Z|UV )

(b)
= I(U ;X) +H(Y|U) +H(Z|UY ) + λI(V ;Y|UZ)

+ λH(Z|U)−H(Y|U) + I(Z;Y|UV )

(c)
= I(U ;X) +H(Y|U) +H(X|UY) + λI(V ;Y|UZ)

+ λH(Z|U)−H(Y|U) + I(Z;Y|UV )

= H(XY) + λI(V ;Y|UZ) + λH(Z|U)−H(Y|U)

+ I(Z;Y|U, V )

≥ nH(XY ) + λH(Z|U)−H(Y|U)

(d)

≥ nH(XY ) + n
(

min
U→X→Y

λH(Z|U)−H(Y |U)
)



The equalities (a) (b) follows from Markov chain V →
Y → (U,Z) and (c) is due to H(Z|UY) = H(XZ|UY) =
H(X|UY); while the last inequality (d) uses Lemma 1.

The other lower bound in the Theorem 4 follows in a similar
manner.

Remark 3. From [8] we can see that

min
U→X→Y

λH(Z|U)−H(Y |U)

= −
(

max
U→X→Y

H(Y |U)− λH(Z|U)
)

= −Cµ(x)[H(Y )− λH(Z)]
∣∣
p(x)

,

where Cx[f ]
∣∣
x0

denotes the upper concave envelope of the
function f(x) with respect to x evaluated at x = x0. Hence
the lower bound in Theorem 4 can be written as

RX + λRY ≥ H(XY )− Cµ(x)[H(Y )− λH(Z)]
∣∣
p(x)

λRX +RY ≥ H(XY )− Cµ(y)[H(X)− λH(Z)]
∣∣
p(y)

(3)

for any λ ≥ 1.

The following lemma exhibits two conditions under which
the lower bound is tight. A similar statement also holds when
the roles of X and Y are interchanged.

Lemma 2. The lower bound for the weighted sum-rate RX +
λRY , for λ ≥ 1 given in Theorem 4 is optimal, i.e. matches
the weighted sum-rate of the capacity region, if either of the
following conditions hold:

(i) Cµ(x)[H(Y ) − λH(Z)]
∣∣
p(x)

= H(Y ) − λH(Z) and Y

is independent of Z,
(ii) Cµ(x)[H(Y )− λH(Z)]

∣∣
p(x)

= H(Y |X)− λH(Z|X).

Further if condition (i) holds for some λ1 > 1, then it will
also hold for 1 ≤ λ ≤ λ1; and if condition (ii) holds for some
λ2 ≥ 1, then it will also hold for λ ≥ λ2.

Remark 4. A relatively easier condition to verify is the follow-
ing: For a fixed pY |X ( and hence pZ|X), if H(Y )− λH(Z)
is concave in the distribution of X , µ(x), then condition (i)
above holds. On the other hand if H(Y )−λH(Z) is convex in
the distribution of X , µ(x), then condition (ii) above holds.

Proof. If condition (i) holds: we have from (3)

RX + λRY ≥ H(XY )−H(Y ) + λH(Z)

= H(X|Y ) + λH(Z)

= (λ+ 1)H(Z)

where the last equality uses H(X|Y ) = H(Z|Y ) = H(Z).
Note that RX = H(Z), RY = H(Z) belongs to the Körner-
Marton achievable region, thus showing the achievability of
this optimal weighted sum-rate using linear codes.

If condition (ii) holds: we have from (3)

RX + λRY ≥ H(XY )−H(Y |X) + λH(Z|X)

= H(X) + λH(Y |X).

Note that RX = H(X), RY = H(Y |X) belongs to the
Slepian-Wolf achievable region, thus showing the achievability
of this optimal weighted sum-rate using random binning.

To show the second part, note that condition (i) is equivalent
to

H(Y |U)− λH(Z|U) ≤ H(Y )− λH(Z) ∀U −X − Y.

Hence if condition (i) holds for some λ1 then for 1 ≤ λ ≤ λ1,
we have

H(Y |U)− λH(Z|U)

= H(Y |U)− λ1H(Z|U) + (λ1 − λ)H(Z|U)

≤ H(Y )− λ1H(Z) + (λ1 − λ)H(Z)

= H(Y )− λH(Z).

Similarly, note that condition (ii) is equivalent to

H(Y |U)− λH(Z|U) ≤ H(Y |X)− λH(Z|X) ∀U −X − Y.

Hence if condition (ii) holds for some λ2 then for λ ≥ λ2,
we have

H(Y |U)− λH(Z|U)

= H(Y |U)− λ2H(Z|U)− (λ− λ2)H(Z|U)

≤ H(Y |X)− λ2H(Z|X)− (λ− λ2)H(Z|X)

= H(Y |X)− λH(Z|X),

where we have used U → X → Z being Markov in the last
inequality, apart from condition (ii).

Remark 5. The conditions for optimality in the lemma is
remniscent of the essentially less noisy condition for broadcast
channel in [9].

Corollary 1. The Slepian-Wolf rate region is optimal for
the modulo-sum problem if Cµ(x)[H(Y ) − H(Z)]

∣∣
p(x)

=

H(Y |X) − H(Z|X) = 0. Similarly, it is optimal if
Cµ(y)[H(X)−H(Z)]

∣∣
p(y)

= H(X|Y )−H(Z|Y ) = 0.

Proof. If Cµ(x)[H(Y ) −H(Z)]
∣∣
p(x)

= H(Y |X) −H(Z|X),
then we have from Equation (3) that

RX +RY ≥ H(XY ).

The constraints RX ≥ H(X|Y ) and RY ≥ H(Y |X) follow
from Theorem 3. The other condition follows similarly.

A. Application to binary alphabets

In this section we will study distributions over pairs of
binary alphabets and determine conditions under which one
of the conditions in Lemma 2 hold. We will see that we can
recover all the previously determined cases as well as recover
new distributions from the results listed below.

Notation: We will parameterize the space of distributions
over pairs of binary alphabets, p(x, y) as follows: P(X =
0) = x,P(Y = 0|X = 0) = c,P(Y = 1|X = 1) = d.

Proposition 1. The optimal weighted sum-rate of the capacity
region is given by the Slepian Wolf region if any of the
following conditions hold:



(i) For any λ, if (c− 1
2 )(d− 1

2 ) ≤ 0, or

(ii) λ ≥
(
c−d̄
c−d

)2

, c 6= d, and (c− 1
2 )(d− 1

2 ) > 0.

where d̄ = 1− d.

Proof. If condition (i) holds: then it suffices to show by Corol-
lary 1 that H(Y )−H(Z) is convex in µ(x), which will then
imply that Cµ(x)[H(Y )−H(Z)]

∣∣
p(x)

= H(Y |X)−H(Z|X).
Denoting µ(X = 0) = u, we need to show that

g(u) := H2(uc+ ūd̄)−H2(uc+ ūd)

is convex in u, when (c − 1
2 )(d − 1

2 ) ≤ 0. Here
H2(x) = −x log2(x) − (1 − x) log2(1 − x) denotes the
binary entropy function. Elementary calculations show that
g(u) is convex for u ∈ [0, 1] if and only if (c− 1

2 )(d− 1
2 ) ≤ 0.

If condition (ii) holds: then it suffices to show by Lemma 2

that for λ2 =
(
c−d̄
c−d

)2

, we have Cµ(x)[H(Y )−λ2H(Z)]
∣∣
p(x)

=

H(Y |X)− λ2H(Z|X). As before it suffices to show that

g(u) := H2(uc+ ūd̄)− λ2H2(uc+ ūd)

is convex in u. This is again verifiable by elementary calcu-
lations.

Remark 6. The following points are worth noting:
(i) The condition (i) above is already known and stated

as exercise 16.23 page 390 of Csiszár and Körner’s
book [2]. One can verify that that H(Z) ≥ H(Y ) is
equivalent to (c− 1

2 )(d− 1
2 ) ≤ 0.

(ii) Note that an equivalent Proposition can also be stated for
the alternate parameterization: P(Y = 0) = y,P(X =
0|Y = 0) = ĉ,P(X = 1|Y = 1) = d̂.

The next proposition determines conditions under which
the optimal weighted sum-rate is given by the Körner-Marton
region, i.e. satisfy the first constraint of Lemma 2. Continuing
with the same notation P(X = 0) = x,P(Y = 0|X = 0) =
c,P(Y = 1|X = 1) = d, since we require Y to be independent
of c, we need to restrict to x =

√
dd̄√

dd̄+
√
cc̄
.

Proposition 2. Let P(X = 0) = x,P(Y = 0|X = 0) =

c,P(Y = 1|X = 1) = d where x =
√
dd̄√

dd̄+
√
cc̄
. The optimal

weighted sum-rate of the capacity region is given by the
Körner-Marton region, i.e. using linear codes, if any of the
following conditions hold:

(i) For any λ, if c = d, or
(ii) 1 ≤ λ ≤ λ1, c 6= d, and (c− 1

2 )(d− 1
2 ) > 0, where λ1

is the larger root of the quadratic equation

λ2(c−d)2+λ
(
2(c−d)(c−d̄)−4dd̄(c−c̄)2

)
+(c−d̄)2 = 0.

where d̄ = 1− d, c̄ = 1− c.

Proof. If condition (i) holds: then Z is independent of X and
H(Y )− λH(Z) is concave in µ(x), therefore

Cµ(x)[H(Y )− λH(Z)]
∣∣
p(x)

= H(Y )− λH(Z).

Therefore Condition (i) in Lemma 2 (see (3)) is satisfied and
we are done. Note that this is precisely the DSBS source whose
capacity region was established by Körner and Marton in [7].

If condition (ii) in the proposition holds: define

g(u) := H2(uc+ ūd̄)− λ1H2(uc+ ūd)

where λ1 is the larger root of the quadratic equation

λ2(c−d)2 +λ
(
2(c−d)(c− d̄)−4dd̄(c− c̄)2

)
+ (c− d̄)2 = 0.

Then elementary calculations can be used to verify that g(u)
is concave for u ∈ [0, 1] and hence

Cµ(x)[H(Y )− λH(Z)]
∣∣
p(x)

= H(Y )− λH(Z).

As before Condition (i) in Lemma 2 (see (3)) is satisfied and
we are done.

Remark 7. The following points are worth noting:
(i) As long as, (c− 1

2 )(d− 1
2 ) > 0, we can see that λ1 > 1,

and hence the optimal sum-rate, will be given by the
Körner-Marton region, i.e. using linear codes. Note that
we still need x =

√
dd̄√

dd̄+
√
cc̄
. Thus linear coding strategy

of Körner-Marton are optimal for some larger class of
parameters.

(ii) As before, an equivalent Proposition can also be stated
for the alternate parameterization: P(Y = 0) =
y,P(X = 0|Y = 0) = ĉ,P(X = 1|Y = 1) = d̂.

B. Comparison of the bounds

In [3] Ahlswede and Han chose the following p(x, y) given
by

p(x, y) =

[
0.003920 0.019920
0.976080 0.000080

]
where row index is x ∈ {0, 1}, column index is y ∈ {0, 1}, to
show that their achievable rate region performs strictly better
than both Körner and Marton’s rate region and Slepian and
Wolf’s rate region. It turns out that for this distribution Y is
indeed independent of Z. Therefore from Remark 7 we already
know that the optimal sum-rate is given by the Körner-Marton
linear coding region.

The figure 1 plots Ahlswede-Han’s rate region, the lower
bound from Theorem 4, and the cut-set lower bound for the
above example.

As one can see readily and as established in Proposition 2,
the lower bound in Theorem 4 yields the optimal sum-rate of
2H(Z) for this example. By numerical simulations: the largest
λ for which the hyperplane of the lower bound passes through
the (H(Z), H(Z)) point is λ∗1 = 5.253 (matches, curiously,
the sufficient condition established in Proposition 2), while
that for the Ahlswede-Han region is λ†1 = 5.338. Then the
largest λ for which the hyperplane of the lower bound passes
through the (H(X), H(Y |X)) point is λ∗2 = 25.844 (matches
the sufficient condition established in Proposition 1), while,
by numerical simulations, that for the Ahlswede-Han region
is λ†2 = 6.620.
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Fig. 1. Compare Ahlswede Han rate region and our lower bound

C. Application to higher alphabet fields
The modulo-sum problem for binary alphabets has a pecu-

liar structure that was exploited in the Exercise 16.23 of [2].
If H(Z) ≥ H(Y ), then PY |X was a stochastic degradation
of pZ|X , and the reverse held if H(Y ) ≥ H(Z). In general
we know that for higher alphabets the above dichotomy does
not hold. Hence Lemma 2 establishes that a better compari-
sion between the channels pZ|X and pY |X for obtaining the
optimal weighted sum-rate is related to (essentially) less noisy
comparison.

Below we provide two examples in GF (3) for which the
results in Lemma 2 yield optimality.

For GF (3), one instance of p(x, y) satisfying that Z is inde-
pendent of Y and Cµ(x)[H(Y )−H(Z)]

∣∣
p(x)

= H(Y )−H(Z)

is given by the following distribution:

p(x, y) =

0.08 0.06 0.18
0.08 0.18 0.06
0.24 0.06 0.06


where row index is x ∈ {0, 1, 2}, column index is y ∈
{0, 1, 2}.

One can check that Z is independent of Y , and verify that
f(p(x)) = H(Y )−H(Z) is concave with respect to p(x). So
the first constraint of Lemma 2 is satisfied for λ = 1, and thus
Körner-Marton rate region is sum rate optimal.

And another instance of p(x, y) satisfying Cµ(x)[H(Y ) −
H(Z)]

∣∣
p(x)

= H(Y |X)−H(Z|X) is given by the following
distribution:

p(x, y) =

0.02 0.02 0.48
0.02 0.06 0.16
0.06 0.02 0.16


where row index is x ∈ {0, 1, 2}, column index is y ∈
{0, 1, 2}.

One can verify that f(p(x)) = H(Y ) − H(Z) is convex
with respect to p(x). So the second constraint of Lemma 2 is
satisfied for λ = 1, thus Slepian-Wolf rate region is sum rate
optimal.

III. SUMMARY

In this paper we established that linear coding strategy of
Korner and Marton [7] yields the optimal sum-rate for pairs
of distributions outside the doubly symmetric binary source.
This was shown by developing a lower bound and identifying
sufficient conditions when the lower bound is tight. The ideas
and results are applicable to larger fields as well.
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