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Abstract. This paper employs auxiliary receivers as a mathematical tool to identify Gallager-type auxiliary

random variables and write outer bounds for some basic multiuser settings. This approach is then applied to the
relay, interference, and broadcast channel settings, yielding new outer bounds that improve on existing outer

bounds and strictly outperform classical outer bounds. For instance, we strictly improve on: the cutset outer

bound for the scalar Gaussian relay channel, the outer bounds for the Gaussian Z-interference channel, and the
outer bounds for the two receiver broadcast channel.

1. Introduction

A number of techniques for proving infeasiblity results for achievable rate regions in multiuser information
theory settings are known in the literature. The generic and classical approach is based on the identification of
the auxiliary random variables as the past and/or future of the underlying random variables to write single-letter
converse (outer) bounds. We call such an identification to be a Gallager-type auxiliary identification [Gal74].
However, non-standard techniques have also been used in some specialized settings. Establishing the continuity
of differential entropy [PW15] with respect to the Wasserstein metric to develop an outer bound for the Gaussian
Z-interference channel is an example of a non-classical approach. For a class of relay channels called the primitive
relay channel, converse bounds based on the blowing-up lemma, concentration of Gaussian measure, or reverse
hypercontractivity are known [Zha88,Xue14,WBO19,LO19,WO18], which are again non-classical approaches. It
is also known that in distributed source/channel coding problems with dependent sources [KU10], less common
measures of correlation based on maximal correlation or hypercontractivity can provide better converse bounds
(see also [DMN18,GKS16] which studies the fundamental limits of this approach).

Cover, [Cov72], employed auxiliary random variables so that one can write achievable regions that captured
the idea of superposition coding (clusters) for broadcast channels. Subsequently, the use of auxiliary random
variables at the sender side to develop achievable rate regions has been a useful tool in the information-theorists’
toolbox. In this paper, we propose auxiliary channels (or auxiliary receivers) to write outer bounds for basic
multi-terminal settings and show that this can be used to develop bounds that outperform state-of-the-art
bounds in some basic settings. We call the new family of outer bounds developed in this paper to be the
J-bounds, with J being a generic pseudonym for an auxiliary receiver.

One can identify special instances of utilizing auxiliary receivers in prior works, notably in the genie-aided
outer bound proofs. Our converse bounds based on auxiliary receivers generalize genie-aided outer bounds
since the auxiliary receiver’s message may not be available to the existing receivers. One may also interpret
some of the existing bounds in the literature as special instances of J-bounds: See for instance, the auxiliary
J in [GA10, Corollary 2] for the secret key agreement, auxiliary variable X in [WA08, Definition 3] for the

multiterminal source coding problem, imaginary channel V̂2 in [LG09, Eq. 16] and the remote source and
channels in [YLL18, Eq. 12, 13] for a joint source-channel coding over a broadcast channel.

The basic idea of our outer bounds is to expand the space of possibilities of (Gallager-type) identification of
auxiliary variables in outer bounds: we consider one or multiple “auxiliary” receivers and use their past and/or
future when identifying the auxiliary random variables. These auxiliary random variables are then used to derive
new constraints on the achievable rates. For instance, one can use an existing upper bound to obtain a bound
on the flow of information towards the introduced auxiliary receiver. Separately, one can bound the difference
of the flow of information towards the legitimate receiver and the auxiliary receiver using the newly identified
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auxiliary random variables. Adding up these two bounds yields an upper bound on the flow of information to
the legitimate receiver. The idea of adding and subtracting the flow of information to an auxiliary receiver can
be noted in our upper bounds on the relay and interference channels.

Another important benefit of introducing the auxiliary receivers is the possibility of inducing certain Markov
chains and constraints on the auxiliary random variables. For instance, our upper bound for the relay channel
involves an auxiliary random variable W that satisfies a certain Markov structure. This Markov chain follows
from the restriction on the auxiliary receiver J , in that it is allowed to depend only on the transmitter’s input
signal and not on the relay’s input signal (for another example, see the Markov chain structure induced by the
choice of the auxiliary receiver in the follow-up work [EGGN21a, Theorem 7]).

The original motivation for the authors’ introduction of auxiliary receivers came from the following obser-
vation in the context of broadcast channels: Suppose one erases the output of every receiver with probability
ε, then the traditional single-letter outer bounds scale by (1 − ε); however the achievable region does not (see
Section 4.1). This motivated the authors, thanks also to a question asked by Young-Han Kim, to investigate
whether the true capacity region also scaled by (1− ε). It was here that the auxiliary receiver idea originated as
a tool to show that the true capacity region did not have the (1− ε) scaling property, as the outputs of the aux-
iliary channels need not undergo any erasure. Our outer bound in Theorem 7 addresses the above question. In
this bound, new auxiliary random variables (defined using past and/or future of the auxiliary receiver symbols)
are used to minimize the discarded terms in the various routine manipulations. In particular, the UV outer
bound (a previously known outer bound on the capacity of a general broadcast channel) and the terms that are
discarded in its derivation are considered. The bound is modified to minimize the discarded terms using the
new auxiliary random variables. This then led to a (strict) tightening of the rate constraints, whose strictness
is then demonstrated using a concrete example.

We also give a second outer bound for the general broadcast channel with two auxiliary receivers. Here,
instead of just considering the information flow of the messages to one auxiliary receiver, we also modify the
content of the message itself using another auxiliary receiver (see Remark 16).

One major difference between the approach in this paper and most of the earlier papers by the authors (and
perhaps others) is that the outer bounds were not “guided” by achievable regions; that is, here we were not
trying to develop a matching converse to an achievable region or even attempting to come close to one. The
fact that a small change of perspective of the standard techniques do give us these improvements suggests that
there is an entire unexplored landscape motivated by similar observations. It is also worthwhile to note that the
new upper bounds developed here and in the follow-up works in [EGGN21a, GNN21] can recover and improve
upon results obtained using (novel to the field) geometric techniques [PW15,WBO19,LO19,WO18].

Remark 1. There are some instances where there is, in the words of the wise reviewer, “a mathematical miasma”
induced by routine and unending manipulations of information measures. In such instances, a reader may
alternately use an automated software (https://github.com/cheuktingli/psitip, see [Li21]) to check the veracity
of the manipulations.

Remark 2. The authors believe that there is lots of room to explore with respect to the auxiliary receiver
approach for developing outer bounds even in the three basic settings considered in this paper. The main goal
of this paper is to illustrate that this approach is fruitful and leads to strict improvements in relay, interference,
and broadcast channels.

1.1. Organization. This paper is organized as follows: in Sections 2 and 3 we give our new outer bounds
for the relay and interference channels respectively. In Section 4 we give our outer bounds for the broadcast
channel.

Notation: We adopt most of our notation from [EK12]. The set {1, 2, · · · , n} is denoted by [n]. We use

Y i to denote the sequence (Y1, Y2, · · · , Yi), and Y ji to denote (Yi, Yi+1, · · · , Yj). We also use Y n\i to denote
(Y i−1, Y ni+1). For discrete settings, logarithms are in base two, and for continuous channels, the logarithms are
in base e. Conditional distributions representing channels are denoted by T (·|·). Given two random variables
X and Y , we use X ⊥ Y to denote X being independent of Y . We say that X −
− Y −
− Z forms a Markov
chain if I(X;Z|Y ) = 0. For square matrices A and B of the same size, we write A � B if B − A is a positive
semi-definite matrix.

https://github.com/cheuktingli/psitip
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Figure 1. Transmission of a message M over a memoryless relay channel with n uses of the channel.

2. Relay channel

A relay channel models the transmission of a message from a sender to a receiver in the presence of a
helper relay node. A relay channel is described by a conditional distribution T (y, yr|x, xr) where x ∈ X is the
transmitter’s input symbol, xr ∈ Xr is the input to the channel by the relay, y ∈ Y is the output symbol at
the receiver and yr ∈ Yr is the output symbol at the relay. An (n,R) code for a memoryless relay channel
T (y, yr|x, xr), depicted in Fig. 1, consists of an encoder E that maps a message M (uniform over [2nR]) to an
input sequence Xn ∈ Xn, i.e., Xn = E(M), a relay encoder Eri that assigns a symbol Xri to each past received

sequence Y i−1r for i ∈ [n], i.e., Xri = Eri(Y i−1r ), and a decoder D that produces an estimate M̂ from Y n. The
following joint distribution is induced by the code over a memoryless relay channel T (y, yr|x, xr):

p(m)p(xn|m)

(
n∏
i=1

p(xri|yi−1r )

n∏
i=1

T (yi, yri|xi, xri)

)
p(m̂|yn)

meaning that the current output symbols (Yi, Yri) are conditionally independent of (M,Xi−1, Xi−1
r , Y i−1r , Y i−1)

given (Xi, Xri). The error probability of the code is P[M 6= M̂ ]. A non-negative rate R is said to be achievable
if the transmitter is able to send a message at rate R such that the probability of error tends to zero as n, the
blocklength, tends to infinity. The supremum of all achievable rates is called the capacity for the relay channel
T (y, yr|x, xr).

There are different achievability schemes in the literature for a single-relay channel such as decode-and-
forward, compress-and-forward, etc (e.g. see [CG79, CM11, BSC14]). Outer bounds are discussed in [TU08,
ARY09,Xue14,WOX17,WBO19,LO19,WO18,EGGN21b] for the special class of relay channels with orthogonal
receiver components (where Y = (Y1, Y2) has two components and p(y, yr|x, xr) = p(y1, yr|x)p(y2|xr).) However
these bounds are not applicable to a general relay channel and the best known upper bound for a general relay
channel is the cutset bound [CG79]. For more details on relay channels and a collection of known results please
refer to [EK12, Chapter 16]. Interested readers can also look into [EGGN21a] where we do explore the relay
settings, using ideas developed in this paper, in much greater detail.

Definition 1. An auxiliary receiver is described by a conditional distribution TJ|Y,Yr,X,Xr
defined on arbitrary

alphabet set J . Let F be the class of TJ|Y,Yr,X,Xr
such that

TJ,Y,Yr|X,Xr
= TJ|Y,Yr,X,Xr

TY,Yr|X,Xr

also factorizes as

TJ,Y,Yr|X,Xr
= TJ|XTY,Yr|J,X,Xr

.

Equivalently, F is the class of TJ|Y,Yr,X,Xr
, a conditional distribution defined on arbitrary alphabet set J ,

satisfying

TJ|X,Xr
(j|x, xr) = TJ|X,Xr

(j|x, x′r), ∀j, x, xr, x′r (1)

where

TJ|X,Xr
(j|x, xr) =

∑
y,yr

TJ|Y,Yr,X,Xr
(j|y, yr, x, xr)TY,Yr|X,Xr

(y, yr|x, xr).
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In other words Xr −
−X −
− J is Markov.

The following theorem proves an upper bound to the capacity of a general relay channel T (y, yr|x, xr). It is
a J-version of the cutset bound.

Theorem 1. Consider a relay channel T (y, yr|x, xr). Then, a rate R is achievable only if

R ≤ max
pX,Xr

min
T∈F

max
pW |X,Xr

min
(
I(X,Xr;Y ), I(X;Y, Yr|Xr), I(X; J, Yr|Xr) + I(X,Xr;Y |W )− I(X,Xr; J |W )

)
(2)

where the first minimum is over TJ|Y,Yr,X,Xr
∈ F and the second maximum is over auxiliary random variables

W satisfying W −
− (X,Xr)−
− (Y, Yr, J). Further it suffices to consider |W| ≤ |X ||Xr|.

Remark 3. Other upper bounds on the capacity of the relay channels are given in a follow-up work [EGGN21a].
The upper bound given in Theorem 1 is not subsumed by the upper bounds in [EGGN21a] because it applies
to any arbitrary relay channel and imposes the Markov structure W −
− (X,Xr)−
− (J, Yr, Y ) on the auxiliary
random variable W .

Remark 4. The first two terms in the statement of the theorem are the cutset bound terms. The third term is the
summation of I(X; J, Yr|Xr) and I(X,Xr;Y |W )−I(X,Xr; J |W ). As the proof indicates, the term I(X; J, Yr|Xr)
is an upper bound on the flow of information to the auxiliary receiver J , while I(X,Xr;Y |W )− I(X,Xr; J |W )
is an upper bound on the flow of information to receiver Y minus the flow of information to auxiliary receiver
J .

Proof. The cardinality bound on |W| comes from the standard Caratheodory-Bunt [Bun34] arguments and is
omitted. Take an arbitrary code. The code defines a joint distribution pM,Xn,Xnr ,Y

n,Y nr
. Since randomization

at the sender or relay does not improve the capacity region, without loss of generality we assume that Xn is a
function of the message M and Xri is a function of Y i−1r i = 1, ..., n, the past symbols received by the relay. Note
that the first two constraints are the cutset upper bound constraints (see [EK12, Theorem 16.1]). Therefore, it
only remains to prove the third.

The proof uses Fano’s inequality and identifies auxiliary variables from the code-book induced distributions.
We use several data-processing inequalities inferred from Markov chains in the course of our proof.

Let

pJn|M,Xn,Xnr ,Y
n,Y nr

=

n∏
i=1

TJi|Xi,Xri,Yi,Yri
.

We can think of pJ,Y,Yr|X,Xr
as an extended memoryless relay channel. Observe that by Fano’s inequality we

have n(R− εn) ≤ I(M ;Y n) for some εn that tends to zero as n tends to infinity. Next, we write

I(M ;Y n) = I(M ; Jn) + I(M ;Y n)− I(M ; Jn) (3)

by adding and subtracting I(M ; Jn). The terms I(M ; Jn) and I(M ;Y n) − I(M ; Jn) are single-letterized
separately as follows: starting with the latter, we have

I(M ;Y n)− I(M ; Jn)
(a)
=
∑
i

I(M ;Yi|Jni+1, Y
i−1)−

∑
i

I(M ; Ji|Jni+1, Y
i−1)

(b)
=
∑
i

I(M,Xi;Yi|Jni+1, Y
i−1)−

∑
i

I(M,Xi; Ji|Jni+1, Y
i−1)

(c)
=
∑
i

I(M,Xi;Yi|Jni+1, Y
i−1)−

∑
i

I(Xi; Ji|Jni+1, Y
i−1)

(d)

≤
∑
i

I(Xri, Xi;Yi|Jni+1, Y
i−1)−

∑
i

I(Xi; Ji|Jni+1, Y
i−1)

(e)
=
∑
i

I(Xri, Xi;Yi|Jni+1, Y
i−1)−

∑
i

I(Xri, Xi; Ji|Jni+1, Y
i−1)
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Figure 2. Bayesian network for probability distribution induced by codes for T ∈ F , when
n = 4. In drawing this Bayesian network, we utilize the fact that TJ,Y,Yr|X,Xr

=
TJ|XTY,Yr|J,X,Xr

.

=
∑
i

I(Xri, Xi;Yi|Wi)−
∑
i

I(Xri, Xi; Ji|Wi)

where (a) follows from Lemma 5 in Appendix A, (b) follows from the fact that Xi is a function of M and (c),
(d), (e) follow from the Markov chains (Jni+1, Y

i−1,M,Xri)−
−Xi−
− Ji and (Jni+1, Y
i−1,M)−
− (Xi, Xri)−
− Yi

(deducible using the d-separation theorem and the Bayesian network in Figure 2)1, respectively. Finally we set

Wi = (Jni+1, Y
i−1). (4)

Next, observe that

I(M ; Jn) ≤ I(M ; Jn, Y nr ) (5)

=

n∑
i=1

I(M ; Ji, Yri|J i−1, Y i−1r , Xri)
(
∵ Xri = Eri(Y i−1r )

)
≤

n∑
i=1

I(M,J i−1, Y i−1r ; Ji, Yri|Xri)

≤
n∑
i=1

I(Xi; Ji, Yri|Xri)
(
∵ (J i−1, Y i−1r ,M)−
− (Xi, Xri)−
− (Ji, Yr,i)

)
.

Thus we get

n(R− εn) ≤ I(M ;Y n) ≤
n∑
i=1

(I(Xi; Ji, Yri|Xri) + I(Xri, Xi;Yi|Wi)− I(Xri, Xi; Ji|Wi)) . (6)

1Consider the Bayesian network representation for n = 4 in Figure 2. Time index 3 can be thought of as the present index,

while indices 1, 2 can be considered past and index 4 can be considered future. We plot for n = 4 rather than n = 3 since Xr,1 is

independent of M but every other Xr,i is a function of Y i−1
r .
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Take a time-sharing random variable Q uniform over {1, 2, · · · , n} and independent of previously defined random
variables. Observe that

n∑
i=1

(I(Xi; Ji, Yri|Xri) + I(Xri, Xi;Yi|Wi)− I(Xri, Xi; Ji|Wi))

= n (I(XQ; JQ, YrQ|Xr,Q, Q) + I(XrQ, XQ;YQ|WQ, Q)− I(XrQ, XQ; JQ|WQ, Q))

≤ n (I(Q,XQ; JQ, YrQ|Xr,Q) + I(XrQ, XQ;YQ|WQ, Q)− I(XrQ, XQ; JQ|WQ, Q))

= n (I(XQ; JQ, YrQ|Xr,Q) + I(XrQ, XQ;YQ|WQ, Q)− I(XrQ, XQ; JQ|WQ, Q))

Let X = XQ, Xr = XrQ, Y = YQ, Yr = YrQ, J = JQ and W = (Q,WQ). With this identification, (6) implies
that

R ≤ I(X; J, Yr|Xr) + I(X,Xr;Y |W )− I(X,Xr; J |W ).

From the proof of the cutset bound we also know that with the same identification of random variables we have

R− εn ≤ I(X,Xr;Y ),

R− εn ≤ I(X;Y, Yr|Xr),

where εn tends to zero as blocklength n tends to infinity.
The code defines a joint distribution on (Xn, Xn

r ). Observe that the joint distribution induced on (X,Xr)
does not depend on the choice of the auxiliary receiver J ; it only depends on the original code. However, the
conditional distribution pW |X,Xr

does depend on our choice of the auxiliary receiver J since Wi involves Jni+1.
Therefore, we conclude that there exists some pX,Xr

such that for every auxiliary receiver J there exists some
pW |X,Xr

such that

R ≤ min
(
I(X,Xr;Y ), I(X;Y, Yr|Xr), I(X; J, Yr|Xr) + I(X,Xr;Y |W )− I(X,Xr; J |W )

)
.

Equivalently,

R ≤ max
pX,Xr

min
T∈F

max
pW |X,Xr

min
(
I(X,Xr;Y ), I(X;Y, Yr|Xr), I(X; J, Yr|Xr) + I(X,Xr;Y |W )− I(X,Xr; J |W )

)
.

This completes the proof. �

Remark 5. One could see that the term I(M ; Jn) in (5) could be also bounded from above by nI(X,Xr; J),
yielding the apparently stronger constraint

R ≤ min (I(X,Xr; J), I(X; J, Yr|Xr)) + I(X,Xr;Y |W )− I(X,Xr; J |W ).

However, this apparent strengthening of the bound is not useful. To see this, observe that for the optimizing
W we have

I(X,Xr; J) + I(X,Xr;Y |W )− I(X,Xr; J |W ) ≥ I(X,Xr; J) + I(X,Xr;Y )− I(X,Xr; J) = I(X,Xr;Y )

since W being constant is always a valid choice.

Corollary 1. Consider the special case T (y, yr|x, xr) = Ta(yr|x)Tb(y|x, xr, yr) which includes, for instance, the
Gaussian relay channels. For this class, any achievable rate R must satisfy

R ≤ min
(
I(X,Xr;Y ), I(X;Y, Yr|Xr), I(X;Yr|Xr) + sup

W−
−(X,Xr)−
−(Y,Yr)

I(X,Xr;Y |W )− I(X,Xr;Yr|W )
)
, (7)

for some p(x, xr).

Proof. For this class, since Xr −
− X −
− Yr is Markov, we can set J = Yr, and the bound in (2) implies the
result. �

Remark 6. The upper bound in Corollary 1 can be compared with the partial decode-and-forward lower bound
which states that a rate R is achievable if

R ≤ min
(
I(X,Xr;Y ), I(X;Yr|Xr) + sup

W−
−(X,Xr)−
−(Y,Yr)

I(X;Y |W,Xr)− I(X;Yr|W,Xr)
)
, (8)

for some p(x, xr). More specifically, the last term in (8) is the same as that in (7) except that we have replaced
W by (W,Xr).
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Figure 3. Depiction of a Gaussian relay channel.

Remark 7. A weaker form of the bound in (2) which does not involve auxiliary random variables is

R ≤ min
(
I(X,Xr;Y ), I(X;Y, Yr|Xr), I(X; J, Yr|Xr) + I(X,Xr;Y |J)

)
(9)

for any arbitrary TJ|Y,Yr,X,Xr
∈ F . This follows from the following:

I(X,Xr;Y |W )− I(X,Xr; J |W ) ≤ I(X,Xr;Y |J,W ) ≤ I(X,Xr;Y |J).

In the next section we will show that the upper bound given in Theorem 1 can be strictly better than the
cutset bound for the scalar Gaussian relay channel.

2.1. Scalar Gaussian Relay Channel. Consider a scalar Gaussian relay channel described by

Yr = g21X + Z1, Y = g31X + g32Xr + Z2

where non-negative reals g21, g31, g32 are channel gains and Z1 and Z2 are independent standard Gaussian
random variables. We assume that the power constraints on X and Xr are both given by P . This is depicted
in Fig. 3. Let S21 = g221P , S31 = g231P and S32 = g232P . Finally, let C(S) = 1

2 ln(1 + S). Using Theorem 1, we
obtain the following upper bound:

Proposition 1. The capacity of the scalar Gaussian relay channel is bounded from above by

min

(
C
(
S31 + S32 + 2ρ

√
S31S32

)
, C

(
(1− ρ2)(S31 + S21)

)
,

min
SJ≥S21

{
C
(
SJ(1− ρ2)

)
+ C

(
x2∗ +

(
x∗

(√
S31 +

√
ρ2S32

)
+
√

(1− ρ2)S32

)2)
− C

(
x2∗(1 + SJ)

)})
,

(10)

for some ρ ∈ [−1, 1], where x∗ is the unique non-negative root of the quadratic equation:

x2
(√

S31 +
√
ρ2S32

)
(1 + SJ)

√
(1− ρ2)S32 + x

(
(1− ρ2)S32(1 + SJ)−

(√
S31 +

√
ρ2S32

)2
+ SJ

)
−
(√

S31 +
√
ρ2S32

)√
(1− ρ2)S32 = 0. (11)

The proof of the above proposition is given in Appendix B.1. The choice of J used in the proof is an
enhancement of Yr, i.e., X −
− J −
− Yr forms a Markov chain.2

Observe that the first two terms in (10) correspond to the cutset bound [EK12, Eq. 16.4]:

C ≤ max
−1≤ρ≤1

min

(
C
(
S31 + S32 + 2ρ

√
S31S32

)
, C
(
(1− ρ2)(S31 + S21)

))

=

C

((√
S21S32+

√
S31(S31+S21−S32)

)2

S31+S21

)
if S21 ≥ S32

C(S31 + S21) otherwise.

(12)

2The more restrictive choice of J = Yr is insufficient to obtain the stated bound in Proposition 2 on the slope. Moreover, in the

conference version of this work, we provide a different example of a Gaussian MIMO relay channel where J is not an enhancement
of Yr, but is taken as part of Y .
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Figure 4. Illustration of the bounds for a Gaussian relay channel. Parameters are S31 =
3.7585, S21 = 1.2139.

Example 1. As a specific example, set S21 = 1.2139, S31 = 3.7585, S32 = 0.032519 and SJ = S21. Then, the
cutset bound evaluates to 0.81327 (with maximizing ρ = 0.4221655), while the new upper bound is 0.79488
(with maximizing ρ = 0.159498). On the other hand, from the compress-and-forward lower bound, we know
that the capacity is greater than or equal to [EK12, Eq. 16.12]

C

(
S31 +

S21S32

S31 + S21 + S32 + 1

)
.

This expression evaluates to 0.78066 for this example. The lower bound of [CM11] also evaluates to 0.78066.
The decode-and-forward evaluates to 0.39737. See also Fig. 4 for a plot of the bounds.

Remark 8. The above bound is further improved in [EGGN21a]. In [EGGN21a], we also give a different upper
bound with an auxiliary receiver J which is an enhancement of the relay’s output variable Yr (similar to the
auxiliary receiver considered in this work). However, the identifications of the auxiliary variables in this work
are different from that in [EGGN21a].

2.2. On the derivative of the capacity at S32 = 0. Let C(S21, S31, S32) denote the capacity of the scalar
Gaussian relay channel with the given parameters. If S32 = 0, the link from the relay to the receiver is
disabled and it becomes a point-to-point channel. Therefore C(S21, S31, 0) = C(S31) (achieved via the direct-
transmission). We are interested in the derivative of C(S21, S31, S32) with respect to S32 at S32 = 0, at some
S31 > S21 > 0.

Assume that S31 > S21 while S32 is small. Then, the decode-and-forward lower bound equals C(S21) [EK12,
Eq. 16.6] which is weaker than the direct-transmission lower bound. On the other hand, the bound from the
compress-and-forward [EK12, Eq. 16.12] equals

C

(
S31 +

S21S32

S31 + S21 + S32 + 1

)
= C

(
S31 +

S21

S31 + S21 + 1
S32 +O(S2

32)

)
.
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M1

M2

Encoder 1

Encoder 2

Xn
1

Xn
2

T (y2|x1, x2)

T (y1|x1, x2)
Y n1

Y n2

Decoder 1

Decoder 2

M̂1

M̂2

Figure 5. The setup for an interference channel.

This implies that
∂

S32
C(S21, S31, S32)

∣∣
S32=0

≥ 1

2

S21

(1 + S31)(S31 + S21 + 1)
.

On the other hand the cutset bound, see (12), is given by:

C


(√

S21S32 +
√
S31(S31 + S21 − S32)

)2
S31 + S21

 = C

(
S31 +

2
√
S21S31√

S31 + S21

√
S32 +O(S32)

)
.

It has an infinite slope with respect to S32, at S32 = 0 since the first order term is
√
S32. The intu-

itive reason for the appearance of
√
S32 is that the cutset bound allows for cooperation between the re-

lay and the transmitter. To see this, observe that if we evaluate the cutset upper bound expression of
min (I(X,Xr;Y ), I(X;Y, Yr|Xr)) assuming X and Xr to be independent Gaussians (no cooperation) we ob-
tain a value min (C(S31 + S21),C(S31 + S32)).

The cutset bound fails to provide any finite bound on the derivative of the capacity with respect to S32 at
S32 = 0. However, the new bound gives a finite slope result:

Proposition 2. For S31 > S21, the derivative of the new upper bound with respect to S32 at S32 = 0 is less
than or equal to

1

2

S2
31(1 + SJ)2

(1 + S31)2SJ(S31 − SJ)

where

SJ = max

(
S21,

S31

S31 + 2

)
.

The proof of the above proposition is given in Appendix B.2. Fig. 4 illustrates the finite slope of the new
bound.

3. Interference Channel

A two-user interference channel models the transmission of messages from two senders X1 and X2 to two
receivers Y1 and Y2. An interference channel is described by a conditional distribution T (y1, y2|x1, x2). An
(n,R1, R2) code for a memoryless interference channel T (y1, y2|x1, x2), depicted in Fig. 5, consists of two
encoders E1 and E2 that map independent messages M1 and M2 (uniform over [2nR1 ] and [2nR2 ] respectively)
to input sequences Xn

1 ∈ Xn1 and Xn
2 ∈ Xn2 , i.e., Xn

1 = E1(M1) and Xn
2 = E2(M2) and two decoders D1 and D2

that produce estimates M̂1 and M̂2 from Y n1 and Y n2 respectively. The following joint distribution is induced
by the code over a memoryless interference channel T (y1, y2|x1, x2):

p(m1)p(m2)p(xn1 |m1)p(xn2 |m2)

(
n∏
i=1

T (y1i, y2i|x1i, x2i)

)
p(m̂1|yn1 )p(m̂2|yn2 ).

The error probability of the code is P[(M1,M2) 6= (M̂1, M̂2)]. A non-negative rate pair (R1, R2) is said to be
achievable if the transmitter Xi is able to send a message at rate Ri to receiver Yi such that the probability of
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error tends to zero as n, the blocklength, tends to infinity. The closure of the union of all achievable rate pairs is
called the capacity region for the interference channel T (y1, y2|x1, x2). A number of different outer bounds are
known in the literature on the capacity of a general interference channel T (y1, y2|x1, x2) (see [EK12, Chapter
6] for an overview of interference channels). One can attempt to write the J-version of each of these bounds.
As we aim to simply illustrate the use of J bounds, we only report one such bound here even though we were
also able to write J versions of the outer bound given in [EO11] as well.

Theorem 2. Take an arbitrary interference channel T (y1, y2|x1, x2). If (R1, R2) is achievable, then for any
TJ|X1,X2,Y1,Y2

such that pJ,Y1,Y2|X1,X2
= TY1,Y2|X1,X2

TJ|X1,X2,Y1,Y2
satisfies

pJ,Y1,Y2|X1,X2
= pJ|X1

pY2|J,X2
pY1|J,X1,X2,Y2

, (13)

we have

R1 ≤ min(I(X1;Y1|X2, Q), I(W ;Y2|Q) + I(X1; J |W,Q) + I(X1, X2;Y1|Ŵ ,Q)− I(X1; J |Ŵ ,Q)),

R2 ≤ min(I(X2;Y2|W,X1, Q), I(X2;Y2|W,Q)− I(X2; J |W,Q)),

for some p(q)p(x1|q)p(x2|q)p(w, ŵ|x1, x2, q)p(y1, y2, j|x1, x2) satisfying

I(X1; J |W,Q) ≥ I(X1;Y2|W,Q).

Further it suffices to consider |Q| ≤ 4, |W| ≤ |X1||X2|+ 2, |Ŵ| ≤ |X1||X2|.

Proof. The cardinality bounds on the auxiliary variables W, Ŵ follow from standard arguments and is omitted.
Take a code of length n with input sequences Xn

1 = E1(M1) and Xn
2 = E2(M2). Let

pJn|M1,M2,Xn1 ,X
n
2 ,Y

n
1 ,Y

n
2

=

n∏
i=1

TJi|X1i,X2i,Y1i,Y2i
.

We can think of pJ,Y1,Y2|X1,X2
as an extended interference channel. Observe from (13) that pJi|Xn1 ,Xn2 = pJi|X1i

and pY2i|Jn,Xn2 = pY2i|Ji,X2i
.

One can prove the above theorem by identifying the auxiliary variable

Wi = (Y i−12 , Jni+1), Ŵi = (Y i−11 , Jni+1).

Let Q ∈ [n] be a time-sharing random variable and let W = (WQ, Q) and Ŵ = (ŴQ, Q). The first bound
R1 ≤ I(X1;Y1|X2, Q) is standard.

Observe that by Fano’s inequality we have n(R1 − εn) ≤ I(M1;Y n1 ) ≤ I(Xn
1 ;Y n1 ) for some εn that tends to

zero as n tends to infinity. Now, observe that

I(Xn
1 ;Y n1 ) = I(Xn

1 ; Jn) + I(Xn
1 ;Y n1 )− I(Xn

1 ; Jn)

≤ I(Xn
1 ; Jn) + I(Xn

1 , X
n
2 ;Y n1 )− I(Xn

1 , X
n
2 ; Jn) ∵ Xn

2 ⊥ (Xn
1 , J

n)

=

n∑
i=1

(
I(Xn

1 ; Ji|Jni+1) + I(Xn
1 , X

n
2 ;Y1i|Ŵi)− I(Xn

1 , X
n
2 ; Ji|Ŵi)

)
(Lemma 4, Lemma 5)

=

n∑
i=1

(
I(X1i; Ji|Jni+1) + I(X1i, X2i;Y1i|Ŵi)− I(X1i; Ji|Ŵi)

)
(memoryless channels)

≤
n∑
i=1

(
I(X1i; Ji|Wi) + I(Wi;Y2i) + I(X1i, X2i;Y1i|Ŵi)− I(X1i; Ji|Ŵi)

)
(Lemma 4, Lemma 5)

establishing the second bound on R1.
Next, consider the bounds on R2. Observe that by Fano’s inequality we have n(R2 − εn) ≤ I(M2;Y n2 ) ≤

I(Xn
2 ;Y n2 ) for some εn that tends to zero as n tends to infinity. Observe that

I(Xn
2 ;Y n2 ) ≤ I(Xn

2 ;Y n2 |Xn
1 ) ∵ Xn

2 ⊥ Xn
1

=

n∑
i=1

I(Xn
2 ;Y2i|Xn

1 , Y
i−1
2 , Jni+1) ∵ Jni+1 −
−Xn

1i+1 −
− (Xn
2 , X

i
1)−
− (Y i1 , Y

i
2 )
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≤
n∑
i=1

I(X2i;Y2i|X1i,Wi) (memoryless channels)

establishing the first bound on R2.
To get the second bound, observe that

I(M2;Y n2 ) = I(M2;Y n2 )− I(M2; Jn) ∵M2 ⊥ Jn

=

n∑
i=1

I(M2;Y2i|Y i−12 , Jni+1)− I(M2; Ji|Y i−12 , Jni+1) (Lemma 4)

=

n∑
i=1

I(M2, X2i;Y2i|Y i−12 , Jni+1)− I(M2, X2i; Ji|Y i−12 , Jni+1) ∵ H(X2i|M2) = 0

(a)
=

n∑
i=1

I(X2i;Y2i|Y i−12 , Jni+1)− I(X2i; Ji|Y i−12 , Jni+1) + I(M2;Y2i|Y i−12 , Jni+1, X2i)

− I(M2; Ji, Y2i|Y i−12 , Jni+1, X2i)

≤
n∑
i=1

I(X2i;Y2i|Wi)− I(X2i; Ji|Wi),

where (a) follows since (Y i−12 , Jni+1,M2) −
− (X2i, Ji) −
− Y2i is Markov from (13). This establishes the second
bound on R2.

Finally, to show that I(X1; J |W,Q) ≥ I(X1;Y2|W,Q), observe

0 ≤ I(Xn
1 ; Jn, Xn

2 )− I(Xn
1 ;Y n2 ) ∵ Xn

1 −
− Jn −
− (Xn
2 , Y

n
2 )

= I(Xn
1 ; Jn)− I(Xn

1 ;Y n2 ) ∵ (Xn
1 , J

n) ⊥ Xn
2

=
∑
i

I(Xn
1 ; Ji|Wi)− I(Xn

1 ;Y2i|Wi) (Lemma 4)

=
∑
i

I(X1i; Ji|Wi)− I(Xn
1 ;Y2i|Wi) (memoryless channel)

≤
∑
i

I(X1,i; Ji|Wi)− I(X1i;Y2i|Wi),

completing the proof of the constraint. �

Consider a Z-interference channel, i.e. T (y1, y2|x1, x2) = T1(y1|x1)T2(y2|x1, x2). For such a channel, we can
simplify the outer bound in Theorem 2 as follows:

Corollary 2. Let J be an auxiliary receiver defined by the channel TJ|X1,X2,Y1,Y2
such that pJ,Y1,Y2|X1,X2

=
TY1,Y2|X1,X2

TJ|X1,X2,Y1,Y2
satisfies

pJ,Y1,Y2|X1,X2
= pJ|X1

pY2|J,X2
pY1|J,X1

,

and further let J be more-capable (as in [KM75]) than Y1. Then, any rate pair (R1, R2) in the capacity of the
Z-interference channel must satisfy the following constraints,

R1 ≤ min{I(X1;Y1|Q), I(W ;Y2|Q) + I(X1; J |W,Q)}
R2 ≤ min{I(X2;Y2|W,X1, Q), I(X2;Y2|W,Q)− I(X2; J |W,Q)}

for some p(q)p(x1|q)p(x2|q)p(w|x1, x2, q) satisfying

I(X1; J |W,Q) ≥ I(X1;Y2|W,Q).

Proof. Due to the Z-nature of the interference channel observe that

I(X1, X2;Y1|Ŵ ,Q)− I(X1; J |Ŵ ,Q) = I(X1;Y1|Ŵ ,Q)− I(X1; J |Ŵ ,Q) ≤ 0,

where the last inequality is a consequence of J being more-capable than Y1. �
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Figure 6. Illustration of a Gaussian Z-interference channel.

3.1. Gaussian Z-interference Channel (weak interference regime). Consider the two-user Z-Gaussian
interference channel (GIC):

Y1 = X1 + Z1

Y2 = aX1 +X2 + Z2 ,
(14)

with a ∈ (0, 1), Zi ∼ N (0, 1) and a power constraint on the n-letter codebooks:

‖Xn
1 ‖2 ≤ nP1, ‖Xn

2 ‖2 ≤ nP2. (15)

See Fig. 6 for an illustration.
The assumption 0 < a < 1 corresponds to the weak interference regime. The case of a ≥ 1 corresponds to

the strong interference regime and its capacity region is fully known [Sat81], [Cos85a].

Theorem 3. Take some arbitrary λ ≥ 1 and u, α, β ∈ [0, 1]. Then, any achievable rate pair (R1, R2) for the
scalar Gaussian Z-interference channel with power constraints P1, P2 respectively must satisfy

R1 + λR2 ≤
λα

2
log
(
K2(1− ρ2) + 1

)
+
β

2
log(1 + P1) +

(1− β)

2
log

(
1 + a2P1 + P2

u2

)
+

(
λ(1− α)

2
− (1− β)

2

)
log

(
1 + a2K1 +K2 + 2aρ

√
K1K2

K1 + u2

)
+
λ(1− α)

2
log

(
K1(1− ρ2) + u2

a2K1(1− ρ2) + 1

)
,

for some K1 ≤ P1 and K2 ≤ P2 and ρ ∈ [−1, 1] such that

(P1 −K1)(P2 −K2) ≥ ρ2K1K2,

and

K1 + u2

u2
≥ 1 + a2K1 +K2 + 2aρ

√
K1K2

1 +K2(1− ρ2)
. (16)

Remark 9. The proof follows by showing the Gaussian optimality for the outer bound in Corollary 2. The
proof technique used to show the Gaussian optimality is the one employed in [GN14], where a “Gallager-type”
proof of sub-additivity (or single-letterization) of information-theoretic functionals is used to deduce a certain
independence between two orthogonally rotated independent copies of the maximizing distribution, thereby
establishing Gaussianity by the Skitovic-Darmois characterization. Sometimes the “Gallager-type” proof for the
functional may not directly yield the requisite independence and so one has to consider perturbed functionals
that have Gaussian maximizers and then one is able to use continuity to argue that Gaussians are a maximizer
for the given functional, as in the case below.

Proof. The proof is given in Appendix C.1. �

Figure 7 plots the outer bound for a = 0.8, P1 = P2 = 1 for fixed choice of β = 0 and u = 1 in Theorem 3.
Note that the curve passes through both the non-trivial corner points of the capacity region of the Gaussian
Z-interference channel. This is formally established in Lemma 1 below.
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Remark 10. Consider a Gaussian interference channel in the weak interference regime parameterized by the
cross-gains a, b ∈ (0, 1):

Y1 = X1 + bX2 + Z1

Y2 = aX1 +X2 + Z2.
(17)

Then, Theorem 3 can be used to obtain two outer bounds on the capacity region of this channel, one by setting
b = 0 and the other by setting a = 0. This follows from the simple observation (see [Cos85b, p. 612] or [PW15]
for instance) that the capacity region of the Gaussian interference channel in the weak interference regime with
cross-gains a, b ∈ (0, 1) is contained in the capacity region of either of the two Z-interference settings, one by
setting b = 0 and the other by setting a = 0.

3.1.1. On the slope of the capacity region at Costa’s corner point. Let C2 = C(P2), the maximum achievable rate
at receiver Y2. Costa [Cos85b] aimed to determine the maximum value of R1 such that (R1, C2) is achievable

as R∗1 = C
(
a2P1

1+P2

)
. His argument involved two key steps. The first was to show the concavity of entropy power

with added Gaussian noise [Cos85a]. The second involved approximating the empirical estimates of differential
entropies seen at receivers by their distribution values. However, Sason (see [Sas04] and [Sas15] for a detailed
discussion) observed that the approximation proof had a flaw and that Pinsker’s inequality was insufficient to
guarantee that the approximation error would grow linearly with block size n. The problem then rested open
for eleven years until Polyanskiy and Wu [PW15], using Talagrand’s inequality [Tal96] as the central piece,

completed the continuity of entropy argument and established that R∗1 = C
(
a2P1

1+P2

)
is indeed the maximum

value of R1 such that (R1, C2) is achievable. However, similar to the cutset bound situation in Section 2.2,
the outer bound derived by Polyanskiy-Wu bound does not show if the corner point is an exposed point or an
extreme point of the capacity region. In Theorem 4 we show that Corollary 2 not only recovers the corner point,
but also establishes that it is an exposed point3 of the capacity region, thereby improving on the Polyanskiy-Wu
bound. Further, we also show that it is better than Sato’s outer bound for the interference channel (which is
optimal at the other corner point).

Lemma 1. Let ROB denote the outer bound given in Theorem 3. The following hold:

(i) If (R1, C2) ∈ ROB, then

R1 ≤ R∗1 =
1

2
log

(
1 +

a2P1

1 + P2

)
.

(ii) Further, the outer bound given in Theorem 3 lies inside the outer bound by Sato ( [Sat78]; see also Theorem
2 in [Kra04]). Consequently, if (C1, R2) ∈ ROB, then

R2 ≤ R∗2 =
1

2
log

(
1 +

P2

1 + a2P1

)
.

Proof. Suppose R2 = C2 = 1
2 log(1 + P2). Using Corollary 2, as we have,

1

2
log(1+P2) = C2 ≤ I(X2;Y2|W,X1, Q) = I(X2;Y2|X1, Q)−I(W ;Y2|X1, Q) ≤ 1

2
log(1+P2)−I(W ;Y2|X1, Q),

it immediately follows that X2 ∼ N (0, P2), is independent of (X1, Q) and I(W ;Y2|X1, Q) = 0. The last
inequality further implies I(W ;X2|X1, Q) = 0 (see Proposition 2 in [GN14]). Hence, X2 ⊥ (W,X1, Q) and
X2 ⊥ (W,X1, Q, J). Observe that

C2 ≤ I(X2;Y2|W,Q)− I(X2; J |W,Q)

= I(X2;Y2|W,Q)

= I(X2;Y2|W,X1, Q)− I(X2;X1|W,Y2, Q)

≤ C2 − I(X2;X1|W,Y2, Q)

3For the Han and Kobayashi achievable region [HK81] with Gaussian signaling (whose optimality or sub-optimality is not yet

determined for the Gaussian interference channel), it is known that the above corner point is an exposed point and in [CN16] the
(non-trivial) slope of the above region at the corner point was computed.
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implying I(X2;X1|W,Y2, Q) = 0. From I(X2;X1|W,Y2, Q) = 0, we deduce that I(X1;Y2 − X2|W,Y2, Q) =
I(X1; aX1 + Z2|W,Y2, Q) = 0. On the other hand,

I(Y2;X1|aX1 + Z2,W,Q) = I(X2;X1|aX1 + Z2,W,Q)

≤ I(X2;X1, aX1 + Z2,W,Q)

= 0

where in the last step we used X2 ⊥ (W,X1, Q). From I(X1; aX1 + Z2|W,Y2, Q) = 0 and I(Y2;X1|aX1 +
Z2,W,Q) = 0 we have a double Markovity property (see Lemma 6). From the double Markovity property and
since the joint distribution of (aX1 +Z2, Y2) is indecomposable (as defined in [CK11, Exercise 16.25]), we obtain
that conditioned on (W,Q), X1 ⊥ (aX1 +Z2, Y2). This implies, conditioned on (W,Q), that X1 is independent
of X1 + Z2

a . This implies that X1 is a constant conditioned on (W,Q). Consequently, R1 ≤ I(W ;Y2|Q) =

I(W,X1;Y2|Q) = I(X1;Y2|Q) ≤ 1
2 log

(
1 + a2P1

1+P2

)
. This establishes the first part.

Sato established (see Theorem 2 in [Kra04]) that any achievable rate pair for the interference channel must
satisfy for λ ≥ 1

λR2 +R1 ≤
λ

2
log(1 + a2P1 + P2) + max

K1≤P1

{
1

2
log(1 +K1)− λ

2
log(1 + a2K1)

}
.

In particular, if 1 ≤ λ ≤ 1+a2P1

a2(1+P1)
it is immediate that the above bound evaluates to

λ

2
log

(
1 +

P2

1 + a2P1

)
+

1

2
log(1 + P1)

implying that it passes through (C1, R
∗
2).

From Theorem 3, putting β = 0, α = 0, u = 1 we see that

R1 + λR2 ≤
1

2
log
(
1 + a2P1 + P2

)
+

(
λ− 1

2

)(
log

1 + a2K1 +K2 + 2aρ
√
K1K2

K1 + 1

)
+
λ

2
log

K1(1− ρ2) + 1

a2K1(1− ρ2) + 1
.

Therefore to show that the outer bound given in Theorem 3 lies inside the outer bound by Sato, it suffices to
show that

1

2
log
(
1 + a2P1 + P2

)
+

(
λ− 1

2

)(
log

1 + a2K1 +K2 + 2aρ
√
K1K2

K1 + 1

)
+
λ

2
log

K1(1− ρ2) + 1

a2K1(1− ρ2) + 1

≤ λ

2
log(1 + a2P1 + P2) +

1

2
log(1 +K1)− λ

2
log(1 + a2K1).

Equivalently, it suffices to show that(
λ− 1

2

)(
log(1 + a2K1 +K2 + 2aρ

√
K1K2)

)
+
λ

2
log

K1(1− ρ2) + 1

a2K1(1− ρ2) + 1

≤ λ− 1

2
log(1 + a2P1 + P2) +

λ

2
log(1 +K1)− λ

2
log(1 + a2K1).

This is immediate since (a ∈ (0, 1)) and

a2(P1 −K1) + (P2 −K2)− 2aρ
√
K1K2 ≥ a2(P1 −K1) +

ρ2K1K2

P1 −K1
− 2aρ

√
K1K2 ≥ 0.

This completes the proof. �

We now establish a significantly stronger result regarding Costa’s corner point by using Theorem 3.

Theorem 4. Let ROB denote the outer bound given in Theorem 3. Let C2 = 1
2 log(1 + P2) and R∗1 =

1
2 log

(
1 + a2P1

1+P2

)
. Then

max
(R1,R2)∈ROB

λR2 +R1 = λC2 +R∗1
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Figure 7. Illustration for a = 0.8, P1 = P2 = 1. The new outer bound is plotted for the fixed
choice of β = 0 and u = 1 in Theorem 3 and optimized over α. The Polyanskiy-Wu bound
is flat at Costa’s corner point. However, Theorem 4 establishes that the capacity region has
a kink at Costa’s corner point, with the slope of the capacity region at Costa’s corner point
being less than or equal to −0.1323. The slope of the Han-Kobayashi region with Gaussian
signaling [CN16] equals −0.3839 for this example.

when

λ ≥ 1 +

 (1+P2)(1−a2)
a2P2

(
1+
√

1+4a2(1−a2)P2

)2

4a2(1−a2)P2
a2 < 1

2

(1+P2)(1−a2)
a2P2

(1+
√
1+P2)

2

P2
a2 ≥ 1

2

.

Proof. The proof is presented in Appendix C.2. �

Remark 11. The exact computation of the outer bound in Theorem 3 is reasonably involved numerically. Even
though it passes through both the corner points, the authors find no reason to believe that this matches with
the Han–Kobayashi inner bound (with Gaussian signaling). If one considers Han-Kobayashi achievable region
RHK−GS with Gaussian signaling, it was shown in [CN16] that max(R1,R2)∈RHK−GS λR2 + R1 = λC2 + R∗1 if
and only if

λ ≥ 1 + max

− log a2 − 1−a2
(1+a2P1+P2)

log(1 + P2)− P2

1+P2

,
(1 + P2)(1− a2)

a2P2

 .

Note that the arguments in the Appendix can be seen to yield a stronger result (that also involves P1) for the
outer bound but does not match the above value (except in the limiting case, when P1, P2 →∞). However, it
is quite possible that a modification of the structure of the auxiliary receiver may close the gap.
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(M0,M1,M2) Encoder
Xn

T (y|x)

T (z|x)

Y n

Zn

Decoder 1

Decoder 2

M̂0, M̂1

M̃0, M̃2

Figure 8. Illustration of a discrete memoryless broadcast channel.

4. Broadcast Channel

A two-receiver broadcast channel [Cov72] models the transmission of messages from a single sender X to two
receivers Y and Z. A discrete memoryless broadcast channel is described by a conditional distribution T (y, z|x)
with |X |, |Y|, |Z| <∞. An (n,R0, R1, R2) code for a memoryless broadcast channel T (y, z|x), depicted in Fig. 8,
consists of an encoder E that maps three mutually independent messages M0, M1 and M2 (uniform over [2nR0 ],
[2nR1 ] and [2nR2 ] respectively) to an input sequence Xn ∈ Xn i.e., Xn = E(M0,M1,M2) and two decoders D1

and D2 that produce estimates (M̂0, M̂1) and (M̃0, M̃2) from Y n and Zn respectively. Random variable M0

represents the common message from transmitter to the two receivers while M1 and M2 are private messages
to the receivers. The following joint distribution is induced by the code over a memoryless interference channel
T (y, z|x):

p(m0)p(m1)p(m2)p(xn|m0,m1,m2)

(
n∏
i=1

T (yi, zi|xi)

)
p(m̂0, m̂1|yn)p(m̃0, m̃2|zn).

The error probability of the code is P[(M0,M1,M0,M2) 6= (M̂0, M̂1, M̃0, M̃2)]. A non-negative rate triple
(R0, R1, R2) is said to be achievable if the transmitter is able to send a common message at rate R0 and two
private messages at rates R1 and R2 to the receivers Y and Z such that the probability of error tends to zero as
n, the blocklength, tends to infinity. The closure of the union of all achievable rate pairs is called the capacity
region for the broadcast channel T (y, z|x). For more details on this model, the definition of the capacity region,
and a collection of known results please refer to [EK12, Chapters 5 and 8].

The best known achievable rate region for a two-receiver broadcast channel is the following inner bound
[Mar79].

Theorem 5 (Marton ’79). The union of non-negative rate triples (R0, R1, R2) satisfying the constraints

R0 ≤ min(I(W ;Y ), I(W ;Z)),

R0 +R1 ≤ I(U,W ;Y ),

R0 +R2 ≤ I(V,W ;Z),

R0 +R1 +R2 ≤ min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W )

+ I(V ;Z|W )− I(U ;V |W ),

for any triple of random variables (U, V,W ) such that (U, V,W )−
−X −
− (Y,Z) is achievable.

It is not known whether this region is the true capacity region or do there exist channels whose capacity
region is strictly larger than the above region. The situation with respect to the outer bounds for the capacity
region of the two-receiver broadcast channel is the following: among the various forms of the outer bounds
proposed (e.g. see [Nai11]), the UV-outer bound noted below has been the best known computable outer bound
for the general two-receiver broadcast channel with private messages. The UV outer bound [El 79,NE07,Nai11]
for the capacity region of the broadcast channel is as follows:

Theorem 6 (UV outer bound). Any achievable rate (R0, R1, R2) satisfies the constraints

R0 ≤ min(I(W ;Y ), I(W ;Z)),
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R0 +R1 ≤ min(I(W ;Y ), I(W ;Z)) + I(U ;Y |W ),

R0 +R2 ≤ min(I(W ;Y ), I(W ;Z)) + I(V ;Z|W ),

R0 +R1 +R2 ≤ min(I(W ;Y ), I(W ;Z)) + min(I(U ;Y |W ) + I(X;Z|U,W ), I(V ;Z|W ) + I(X;Y |V,W )),

for some triple of random variables (U, V,W ) such that (U, V,W )−
−X −
− (Y,Z).

In [GGNY14], the authors showed a class of product broadcast channels whose capacity region is strictly
contained in the region given by the UV outer bound. However the outer bound developed in [GGNY14] that
(strictly) improved on the UV outer bound was valid only for the class of product broadcast channels. In this
paper we provide two outer bounds for (general) broadcast channels, both of which (strictly) improve over the
UV outer bound. In particular, the second bound generalizes the one in [GGNY14] by relaxing the constraint
that the broadcast channel must have a product structure.

4.1. The J version of UV Outer Bound. Our first outer bound was motivated by the following question:
assume that we make the Y and Z receivers weaker by passing them through an erasure channel, i.e., by
considering p(y′, z′|x) =

∑
y,z p(y

′|y)p(z′|z)T (y, z|x) where p(y′|y) and p(z′|z) are erasure channels with erasure
probability ε. Then, for any pU,V,W,X , we have

I(W ;Y ′) = (1− ε)I(W ;Y ), I(U ;Y ′|W ) = (1− ε)I(U ;Y |W ), I(X;Y ′|V,W ) = (1− ε)I(X;Y |V,W ),

I(W ;Z ′) = (1− ε)I(W ;Z), I(V ;Z ′|W ) = (1− ε)I(V ;Z|W ), I(X;Z ′|U,W ) = (1− ε)I(X;Z|U,W ).

Therefore, the UV outer bound scales by 1− ε for an erased broadcast channel. However, Marton’s inner bound
involves a term −I(U ;V |W ) in its sum-rate constraint which does not (immediately) scale by 1− ε. This raises
the question of whether the capacity region scales by 1−ε or not. Our first (new) outer bound below shows that
the capacity region does not scale by 1− ε for any ε ∈ (0, 1) for the example of an erased Blackwell broadcast
channel (see Lemma 2).

Theorem 7. Given a broadcast channel characterized by T (y, z|x) and any achievable rate triple (R0, R1, R2),
one can find some input distribution p(x) such that for any auxiliary channel TJ|X,Y,Z , the following constraints
are satisfied:

R0 ≤ min{I(W ;Y ), I(Ŵ ;Y ), I(W ;Z), I(W̃ ;Z)}, (18a)

R0 +R1 ≤ min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ), (18b)

R0 +R1 ≤ min

{
I(W̃ ;Z) + min

[
0, I(W ;Y )− I(W ;Z)

]
, I(W̃ ; J) + I(Ŵ ;Y )− I(Ŵ ; J)

}
+ I(Ũ ; J |W̃ ) + I(Û ;Y |Ŵ )− I(Û ; J |Ŵ ), (18c)

R0 +R1 ≤ min

{
I(Ŵ ;Y ) + min

[
0, I(W ;Z)− I(W ;Y )

]
, I(Ŵ ; J) + I(W̃ ;Z)− I(W̃ ; J)

}
+ I(Û ;Y |Ŵ ), (18d)

R0 +R2 ≤ min{I(W ;Y ), I(W ;Z)}+ I(V ;Z|W ), (18e)

R0 +R2 ≤ min

{
I(Ŵ ;Y ) + min

[
0, I(W ;Z)− I(W ;Y )

]
, I(Ŵ ; J) + I(W̃ ;Z)− I(W̃ ; J)

}
+ I(V̂ ; J |Ŵ ) + I(Ṽ ;Z|W̃ )− I(Ṽ ; J |W̃ ), (18f)

R0 +R2 ≤ min

{
I(W̃ ;Z) + min

[
0, I(W ;Y )− I(W ;Z)

]
, I(W̃ ; J) + I(Ŵ ;Y )− I(Ŵ ; J)

}
+ I(Ṽ ;Z|W̃ ), (18g)

R0 +R1 +R2 ≤ min

{
I(Ŵ ;Y )− I(Ŵ ; J), I(W̃ ;Z)− I(W̃ ; J)

}
+ I(X; J)

+ I(Û ;Y |Ŵ )− I(Û ; J |Ŵ ) + I(Ṽ ;Z|W̃ )− I(Ṽ ; J |W̃ ), (18h)
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R0 +R1 +R2 ≤ min

{
I(W ;Y ), I(W ;Z)

}
+ min

{
I(V ;Z|W ) + I(X;Y |V,W ), I(U ;Y |W ) + I(X;Z|U,W )

}
, (18i)

for some choice of distribution over the variables

pU,V,W,Ũ,Ṽ ,W̃ ,Û,V̂ ,Ŵ ,X,Y,Z,J = pU,V,W,XpW̃ ,Ũ,Ṽ |XpŴ ,Û,V̂ |XTY,Z|XTJ|X,Y,Z

satisfying

I(W̃ ;Z)− I(W̃ ; J) + I(Ŵ ; J)− I(Ŵ ;Y ) = I(W ;Z)− I(W ;Y ), (19a)

I(Ũ ;Z|W̃ )− I(Ũ ; J |W̃ ) + I(Û ; J |Ŵ )− I(Û ;Y |Ŵ ) = I(U ;Z|W )− I(U ;Y |W ), (19b)

I(Ṽ ;Z|W̃ )− I(Ṽ ; J |W̃ ) + I(V̂ ; J |Ŵ )− I(V̂ ;Y |Ŵ ) = I(V ;Z|W )− I(V ;Y |W ), (19c)

and

0 ≤ I(X;Z|Ũ , W̃ )− I(X; J |Ũ , W̃ ) ≤ I(Ṽ ;Z|W̃ )− I(Ṽ ; J |W̃ ), (20a)

0 ≤ I(X;Y |V̂ , Ŵ )− I(X; J |V̂ , Ŵ ) ≤ I(Û ;Y |Ŵ )− I(Û ; J |Ŵ ), (20b)

I(V ;Z|W ) + I(X;Y |V,W ) = I(U ;Y |W ) + I(X;Z|U,W ). (20c)

Moreover, in computing the bound it suffices to assume that |W|, |Ŵ| and |W̃| are less than or equal to |X |+ 6,

while |U|, |V|, |Û |, |V̂|, |Ũ |, |Ṽ| ≤ |X |+ 1.

Proof. Take an arbitrary code (n,M0,M1,M2) with error probability εn. Let

pJn|M0,M1,M2,Xn,Y n,Zn =

n∏
i=1

TJi|Xi,Yi,Zi .

We can think of pJ,Y,Z|X as an extended broadcast channel.
Let Q be a time-sharing random variable, uniform over [n], and independent of all previously defined random

variables. Make the following identification

Ŵ = (M0, J
Q−1, Y nQ+1, Q), W̃ = (M0, Z

Q−1, JnQ+1, Q),W = (M0, Z
Q−1, Y nQ+1, Q),

U = Û = Ũ = M1, V = V̂ = Ṽ = M2.

Then, the constraints given in the statement of the theorem can be directly verified to hold if we allow for a
negligible violation of g(εn) where g(·) is a function that tends to zero as εn tends to zero. The constraints (18a),
(18b), (18e) are standard and are essentially the same (similar to UVW bound) but for completeness we present
their starting points here. The following represents the n-letter starting points for the proof of the constraints,
which can be obtained using Fano’s inequality. They are then single-letterized using Lemma 5, guided by the
identifications mentioned above.

nR0 ≤ min{I(M0;Y n), I(M0;Y n), I(M0;Zn), I(M0;Zn)}+ ng(εn) (21a)

n(R0 +R1) ≤ min{I(M0;Y n), I(M0;Zn)}+ I(M1;Y n|M0) + ng(εn), (21b)

n(R0 +R1) ≤ min

{
I(M0;Zn) + min

[
0, I(M0;Y n)− I(M0;Zn)

]
, I(M0; Jn) + I(M0;Y n)− I(M0; Jn)

}
+ I(M1; Jn|M0) + I(M1;Y n|M0)− I(M1; Jn|M0) + ng(εn), (21c)

n(R0 +R1) ≤ min

{
I(M0;Y n) + min

[
0, I(M0;Zn)− I(M0;Y n)

]
, I(M0; Jn) + I(M0;Zn)− I(M0; Jn)

}
+ I(M1;Y n|M0) + ng(εn), (21d)

n(R0 +R2) ≤ min{I(M0;Y n), I(M0;Zn)}+ I(M1;Zn|M0) + ng(εn), (21e)

n(R0 +R2) ≤ min

{
I(M0;Y n) + min

[
0, I(M0;Zn)− I(M0;Y n)

]
, I(M0; Jn) + I(M0;Zn)− I(M0; Jn)

}
+ I(M2; Jn|M0) + I(M2;Zn|M0)− I(M2; Jn|M0) + ng(εn), (21f)
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n(R0 +R2) ≤ min

{
I(M0;Zn) + min

[
0, I(M0;Y n)− I(M0;Zn)

]
, I(M0; Jn) + I(M0;Y n)− I(M0; Jn)

}
+ I(M2;Zn|M0) + ng(εn), (21g)

n(R0 +R1 +R2) ≤ min

{
I(M0;Y n)− I(M0; Jn), I(M0;Zn)− I(M0; Jn)

}
+ I(Xn; Jn)

+ I(M1;Y n|M0)− I(M1; Jn|M0) + I(M2;Zn|M0)− I(M2; Jn|M0) + ng(εn), (21h)

n(R0 +R1 +R2) ≤ min {I(M0;Y n), I(M0;Zn)}

+ min

(
I(M2;Zn|M0) + I(Xn;Y n|M2,M0), I(M1;Y n|M0) + I(Xn;Zn|M1,M0)

)
+ ng(εn),

(21i)

Further the constraints can be established from the following starting points again using Lemma 5, and using
Fano’s inequality:

I(M0;Zn)− I(M0; Jn) + I(M0; Jn)− I(M0;Y n) = I(M0;Zn)− I(M0;Y n),

I(M1;Zn|M0)− I(M1; Jn|M0) + I(M1; Jn|M0)− I(M1;Y n|M0) = I(M1;Zn|M0)− I(M1;Y n|M0),

I(M2;Zn|M0)− I(M2; Jn|M0) + I(M2; Jn|M0)− I(M2;Y n|M0) = I(M2;Zn|M0)− I(M2;Y n|M0),

and

0 ≤ I(Xn;Zn|M1,M0)− I(Xn; Jn|M1,M0) + ng1(εn) ≤ I(M2;Zn|M0)− I(M2; Jn|M0) + ng2(εn),

0 ≤ I(Xn;Y n|M2,M0)− I(Xn; Jn|M2,M0) + ng3(εn) ≤ I(M1;Y n|M0)− I(M1; Jn|M0) + ng4(εn),

I(M2;Zn|M0) + I(Xn;Y n|M2,M0) = I(M1;Y n|M0) + I(Xn;Zn|M1,M0) + ng5(εn).

Note that the bound depends only on the marginal distributions of (W̃ , Ũ ,X), (W̃ , Ṽ ,X), (Ŵ , Û ,X), (Ŵ , V̂ ,X),
(W,U,X) and (W,V,X). Therefore consistent distributions on X is all that is needed to ensure the existence
of a joint distribution. Then, similar to the original UV bound and using standard techniques, cardinality
bounds on all of the auxiliary random variables can be imposed. Both of these are the primary reasons why
we identified M1 separately as U, Ṽ , Û , and similarly for M2. Therefore, for each εn > 0, one can find a joint
distributions pε(ũ, ṽ, w̃, û, v̂, ŵ, x) with bounded alphabet sizes such that the constraints given in the statement
of the theorem are violated by at most g(εn). Since the space of joint distributions with bounded alphabet
sizes forms a compact set, by letting εn converge to zero, we can find a limit distribution p(ũ, ṽ, w̃, û, v̂, ŵ, x) for
which all of the constraints in the theorem hold.

Finally, the cardinality bounds come from the standard Caratheodory-Bunt [Bun34] arguments and are
omitted. �

Remark 12. From (18a), (18b), (18e), (18i), we can extract the following constraints:

R0 ≤ min{I(W ;Y ), I(W ;Z)},
R0 +R1 ≤ min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ),

R0 +R2 ≤ min{I(W ;Y ), I(W ;Z)}+ I(V ;Z|W ),

R0 +R1 +R2 ≤ min{I(W ;Y ), I(W ;Z) + min{I(U ;Y |W ) + I(X;Z|U,W ), I(V ;Z|W ) + I(X;Y |V,W )}.

This implies that the outer bound in Theorem 7 is at least as good as the UV outer bound for all broadcast
channels T (y, z|x).

The following corollary, which will be used later to show that Theorem 7 improves on the UV outer bound,
relates to the study of corner points of the capacity region.

Corollary 3. Consider a general broadcast channel T (y, z|x) where T (y|x) =
∑
ŷ T (y|ŷ)T (ŷ|x) for some Ŷ

which is an enhancement of Y . Furthermore, assume that

• I(X;Y |U) = 0 implies I(X; Ŷ |U) = 0.
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Then, the rate triple (0, C1, R2) is achievable only if

R2 ≤ I(V ;Z|W )− I(V ; Ŷ |W ) (23)

for some p(v, w, x) satisfying

C1 = I(X;Y ) ≤ I(W ;Z) + I(X; Ŷ |W ). (24)

Proof. Set J = Ŷ in Theorem 7. We have

C1 = R0 +R1 ≤ I(Û , Ŵ ;Y ) = I(X;Y )− I(X;Y |Û , Ŵ ) ≤ I(X;Y ) ≤ C1

implying that I(X;Y ) = C1 and I(X;Y |Û , Ŵ ) = 0 and hence (from our assumption) that I(X; Ŷ |Û , Ŵ ) = 0.

From (18c), since I(Û ; Ŷ |Ŵ ) ≥ I(Û ;Y |Ŵ ), we see that

C1 = R0 +R1 ≤ I(W̃ ;Z) + I(Ũ ; Ŷ |W̃ ) ≤ I(W̃ ;Z) + I(X; Ŷ |W̃ ).

From (18h) we see that

C1 +R2 = R0 +R1 +R2 ≤ I(Ŵ , Û ;Y ) + I(X; Ŷ |Ŵ , Û) + I(Ṽ ;Z|W̃ )− I(Ṽ ; Ŷ |W̃ ).

Since I(X; Ŷ |Ŵ , Û) = 0 and C1 ≥ I(X;Y ) ≥ I(Ŵ , Û ;Y ), we have that R2 ≤ I(Ṽ ;Z|W̃ )− I(Ṽ ; Ŷ |W̃ ). �

In the next section, we will demonstrate that Corollary 3 (and hence the outer bound of Theorem 7) outper-
forms the UV outer bound for a particular broadcast channel.

4.2. Erasure Blackwell Channel. In this subsection we will focus on the private message case, i.e. the
projection of the capacity region onto the plane R0 = 0. For generic broadcast channels the points (C1, 0) and
(0, C2) are the “corner” points of the capacity region and in [NKG16] the authors computed the slope of the
capacity region at these points. However for some broadcast channels (that has zero Lebesgue measure in the
space of parameters defining the broadcast channel given the input and output alphabet sizes), rate pairs of
the form (C1, R2) for some R2 > 0 and (R1, C2) for some R1 > 0 are achievable. For such channels, we define
(C1, R

∗
2) to be a corner point if no point of the form (C1, R

∗
2 + ε) for any ε > 0 belongs to the capacity region.

Similarly, one can define an analogous corner point of the form (R∗1, C2). The results in [NKG16] are insufficient
to determine these corner points. In this subsection, will demonstrate that Corollary 3 (and hence the outer
bound of Theorem 7) leads to an improvement in the bound for the corner point for the erasure Blackwell
channel described below.

The standard Blackwell channel is a deterministic broadcast channel T (ŷ, ẑ|x) where X = {0, 1, 2}, Ŷ =

{0, 1}, Ẑ = {0, 1}, Ŷ = 1[X = 2] and Ẑ = 1[X = 1]. The Erasure Blackwell channel is obtained when each of
the outputs of the Blackwell broadcast channel are erased with probability ε. More specifically, we assume that
T (y, z|x) =

∑
ŷ,ẑ T (ŷ, ẑ|x)p(y|ŷ)p(z|ẑ) where p(y|ŷ) and p(z|ẑ) are erasure channels with erasure probability ε.

If ε = 0, we get the Blackwell channel whose capacity is the union over all p(x) of

R1 ≤ H(Ŷ ),

R2 ≤ H(Ẑ),

R1 +R2 ≤ H(Ŷ , Ẑ).

The UV-outer bound scales by 1− ε for the erased Blackwell channel. Thus the UV-outer bound reduces to the
following for erased Blackwell:

R1 ≤ (1− ε)H(Ŷ ),

R2 ≤ (1− ε)H(Ẑ),

R1 +R2 ≤ (1− ε)H(Ŷ , Ẑ).

In particular, the corner point of the UV outer bound is (R1, R2) =
(
1− ε, 12 (1− ε)

)
. The outer bound developed

for the corner point in Corollary 3 is used in Lemma 2 to show that the rate pair (R1, R2) =
(
1− ε, 12 (1− ε)

)
is not achievable for any ε ∈ (0, 1). Therefore, the capacity region does not scale by 1− ε.
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Lemma 2. The rate pair (R1, R2) =
(
1− ε, 12 (1− ε)

)
is not achievable for any ε ∈ (0, 1) for the erasure

Blackwell channel.

Proof of Lemma 2 is given in Appendix D.1.

Remark 13. Even though Corollary 3 implies that the outer bound in Theorem 7 is strictly better than the UV
outer bound for the erasure Blackwell channel, numerical results indicate that there is still a gap between the
upper bound for the corner point in Corollary 3 and Marton’s inner bound for the erasure Blackwell channel. For
example, for ε = 0.1, the UV outer bound has a corner point (0.9, 0.45), while numerical simulations show that
the new outer bound has a corner point (0.9, 0.4265) and Marton’s inner bound has a corner point (0.9, 0.4205).
Determining the true corner point for the erasure Blackwell channel remains an open problem.

The authors’ original motivation for using auxiliary receivers for deriving converses came from the study
of multi-letter extensions of Marton’s Inner bound for the erasure Blackwell channel. We summarize some
facts about the multi-letter Marton’s inner bound (whose limit is the capacity region) for the erasure Blackwell
channel. Our main result here is that we can identify one of the optimal auxiliaries for computing the weighted
sum-rates of k-letter extensions of Marton’s bound for all sufficiently large weights (independent of k).

Remark 14. The issue of determining the optimality (or sub-optimality) of Marton’s inner bound stems from
the inability to compute multi-letter extensions due to the dimensionality of the optimization problems and
inability to identify the extremal auxiliaries. Thus the result here reduces the dimension as we determine the
optimal U , leaving only V,W to be determined.

More generally, we consider a channel p(y, z|x) such that

p(y, z|x) =
∑
ŷ

p(y|ŷ)p(z|x)p(ŷ|x)

where Ŷ = f(X) is a function of X. For α ≥ 1, we can express the α-sum rate of Marton’s inner bound as
follows (this follows from a minimax theorem in [GGNY14]):

max
(R1,R2)∈RMarton

αR1+R2 = min
λ∈[0,1]

max
p(u,v,w,x)

{
(α−λ)I(W ;Y )+λI(W ;Z)+αI(U ;Y |W )+I(V ;Z|W )−I(U ;V |W )

}
.

Similarly, for the k-letter Marton we have

max
(R1,R2)∈RMarton

αR1 +R2 =

1

k
min
λ∈[0,1]

max
p(u,v,w,xk)

{
(α− λ)I(W ;Y k) + λI(W ;Zk) + αI(U ;Y k|W ) + I(V ;Zk|W )− I(U ;V |W )

}
.

Proposition 3. The following two statements hold:

• To evaluate αR1 +R2 for k-letter Marton, it is optimal to set U = Ŷ k if α ≥ α∗(pŶ |XpY |Ŷ ) where

α∗(pŶ |XpY |Ŷ ) = sup
p(x):I(Ŷ ;Y )6=0

I(X; Ŷ )

I(Ŷ ;Y )
= sup
p(x):I(Ŷ ;Y ) 6=0

H(Ŷ )

I(Ŷ ;Y )
. (25)

In particular, if the channel from Ŷ to Y is erasure with probability ε, we have α∗ = 1
1−ε . Consequently,

for k = 1, α-sum rate of Marton’s inner bound reduces to

min
λ∈[0,1]

max
p(v,w,x)

{
(α− λ)I(W ;Y ) + λI(W ;Z) + αI(Ŷ ;Y |W ) + I(V ;Z|W )− I(Ŷ ;V |W )

}
,

for α ≥ α∗(pŶ |XpY |Ŷ ).

• Take some α ≥ α∗(pŶ |XpY |Ŷ ). Then, α-sum rate of Marton’s inner bound equals

max
p(v,x)

{
αI(Ŷ ;Y ) + I(V ;Z)− I(Ŷ ;V )

}
,
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if there exists some λ∗ ∈ [0, 1] for which the function

p(x) 7→ max
p(v|x)

{
− (α− λ∗)H(Y )− λ∗H(Z) + αI(Ŷ ;Y ) + I(V ;Z)− I(V ; Ŷ )

}
. (26)

is concave. In other words, concavity of the function in (26) is a sufficient condition for optimality of
setting W = ∅ when computing Marton’s inner bound.

Proof. We begin by proving the first part of the proposition. Consider the case of 1-letter Marton, i.e., k = 1.
We need to prove that

αI(U ;Y |W )− I(U ;V |W ) ≤ αI(Ŷ ;Y |W )− I(Ŷ ;V |W ).

Equivalently, we should prove that

I(Ŷ ;V |W )− I(U ;V |W ) ≤ αI(Ŷ ;Y |W )− αI(U ;Y |W ).

We have

I(Ŷ ;V |W )− I(U ;V |W ) ≤ I(Ŷ ;V |U,W ) ≤ H(Ŷ |U,W ) ≤ αI(Ŷ ;Y |U,W ) = αI(Ŷ ;Y |W )− αI(U ;Y |W )

where we used the fact that α ≥ α∗ to conclude that for any u,w we have

H(Ŷ |U = u,W = w) ≤ αI(Ŷ ;Y |U = u,W = w).

The result for the k-letter Marton follows from the tensorization property of α∗ given in Lemma 3.
To show the second part of the proposition, first observe that

min
λ∈[0,1]

max
p(v,w,x)

{
(α− λ)I(W ;Y ) + λI(W ;Z) + αI(Ŷ ;Y |W ) + I(V ;Z|W )− I(Ŷ ;V |W )

}
(27)

≥ max
p(v,x)

{
αI(Ŷ ;Y ) + I(V ;Z)− I(Ŷ ;V )

}
, (28)

as we can always choose W = ∅ in the inner maximization problem. On the other hand, assume that the
concavity property holds for some λ∗. We have

min
λ∈[0,1]

max
p(v,w,x)

{
(α− λ)I(W ;Y ) + λI(W ;Z) + αI(Ŷ ;Y |W ) + I(V ;Z|W )− I(Ŷ ;V |W )

}
≤ max
p(v,w,x)

{
(α− λ∗)I(W ;Y ) + λ∗I(W ;Z) + αI(Ŷ ;Y |W ) + I(V ;Z|W )− I(Ŷ ;V |W )

}
= max

p(x)
(α− λ∗)H(Y ) + λ∗H(Z)+ (29)

max
p(w|x)

{
− (α− λ∗)H(Y |W )− λ∗H(Z|W ) + αI(Ŷ ;Y |W ) + max

p(v|w,x)

{
I(V ;Z|W )− I(Ŷ ;V |W )

}}
.

The concavity property implies optimality of W = ∅ in (29).
�

Remark 15. Consider the erasure Blackwell channel with erasure probability ε. Let α = 1/(1− ε). Simulations
indicate that for small erasure probabilities ε ≤ 0.6, the concavity of the function given in (26) holds if we
choose λ∗ = 0.5. On the other hand, if ε is larger, say larger than 0.631, then not only is the function given in
(26) no longer concave, but simulation results also indicate that setting W = ∅ is not optimal when computing
Marton’s inner bound.

Lemma 3. For given channels pJ|X and pY |J , define

α∗(pJ|X , pY |J) = sup
p(x):I(J;Y )6=0

I(X; J)

I(J ;Y )
. (30)

Take some natural number k and let pJk|Xk =
∏k
i=1 pJi|Xi and pY k|Jk =

∏k
i=1 pYi|Ji be memoryless channel

extensions. Then

α∗(pJk|Xk , pY k|Jk) = α∗(pJ|X , pY |J).
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Proof. The direction
α∗(pJk|Xk , pY k|Jk) ≥ α∗(pJ|X , pY |J)

follows by taking a product input distribution on Xk. For the other direction, take some arbitrary p(xk). Then,

I(Xk; Jk)

I(Jk;Y k)
=

∑k
i=1 I(Ji;X

k|J i−1)∑k
i=1 I(Ji;Y k|J i−1)

=

∑k
i=1 I(Ji;Xi|J i−1)∑k
i=1 I(Ji;Y k|J i−1)

≤
∑k
i=1 I(Ji;Xi|J i−1)∑k
i=1 I(Ji;Yi|J i−1)

≤ α∗pJ|XpY |J

since for any i and every ji−1 where p(J i−1 = ji−1) > 0 we have

I(Ji;Xi|J i−1 = ji−1)

I(Ji;Yi|J i−1 = ji−1)
≤ α∗(pJ|X , pY |J).

�

4.3. The Second Outer Bound. This outer bound was motivated directly from the outer bound for product
broadcast channels developed in [GGNY14], which was used to demonstrate that the UV outer bound can be
strictly improved. The outer bound in [GGNY14] critically used the product nature of the channel and if one
perturbs the channel so as to lose the product nature, the outer bound becomes invalid. We now present an
outer bound that varies continuously with respect to channel perturbations.

The outer bound of Theorem 7 uses a single auxiliary receiver J . In this section, we write another version
of the UV bound with two auxiliary variables J and Ĵ . This bound may be also interpreted as a Genie-aided
bound with auxiliary receiver J provided to receiver Y , and auxiliary receiver Ĵ provided to receiver Z.

Theorem 8. Given a broadcast channel T (y, z|x) and any TJ,Ĵ|X,Y,Z any achievable non-negative rate triple

(R0, R1, R2) must satisfy the following constraints

R0 ≤ min{I(Wb; J) + I(Wa;Y |J), I(Wb;Z|Ĵ) + I(Wa; Ĵ)}, (31a)

R0 +R1 ≤ I(Ub,Wb; J) + I(Ua,Wa;Y |J), (31b)

R0 +R1 ≤ I(Wb;Z|Ĵ) + I(Wa, J ; Ĵ) + I(Ub; J |Wb, Ĵ) + I(Ua;Y |Wa, J), (31c)

R0 +R2 ≤ I(Wb, Ĵ ; J) + I(Wa;Y |J) + I(Vb;Z|Wb, Ĵ) + I(Va; Ĵ |Wa, J), (31d)

R0 +R2 ≤ I(Va,Wa; Ĵ) + I(Vb,Wb;Z|Ĵ), (31e)

R0 +R1 +R2 ≤ min{I(Wb, Ĵ ; J) + I(Wa;Y |J), I(Wb;Z|Ĵ) + I(Wa, J ; Ĵ)}

+ I(Ua;Y |Wa, J) + I(X; Ĵ |Ua,Wa, J)

+ min
{
I(Ub; J |Wb, Ĵ) + I(X;Z|Ub,Wb, Ĵ), I(Vb;Z|Wb, Ĵ) + I(X; J |Vb,Wb, Ĵ)

}
, (31f)

R0 +R1 +R2 ≤ min{I(Wb, Ĵ ; J) + I(Wa;Y |J), I(Wb;Z|Ĵ) + I(Wa, J ; Ĵ)}

+ I(Vb;Z|Wb, Ĵ) + I(X; J |Vb,Wb, Ĵ)

+ min
{
I(Ua;Y |Wa, J) + I(X; Ĵ |Ua,Wa, J), I(Va; Ĵ |Wa, J) + I(X;Y |Va,Wa, J)

}
, (31g)

for some p(wa, va, ua|x)p(wb, vb, ub|x)p(x) satisfying |Wb|, |Wa| ≤ |X |+7, |Ub|, |Va| ≤ |X |+2, |Vb|, |Ua| ≤ |X |+1.

Proof. Take a code of length n with message triple (M0,M1,M2) of rates (R0, R1, R2) and with error probability
of ε. Let Q be a random variable independent of the code book such that Q is uniform in [n]. Define

Wai = (M0, Y
i−1, Ĵni+1, J

n\i), Wbi = (M0, J
i−1, Zni+1, Ĵ

n\i) (32)

Ua = Ub = M1, Va = Vb = M2,

where Jn\i = (J i−1, Jni+1) and Ĵn\i = (Ĵ i−1, Ĵni+1).
The outer bound follows from routine manipulations using Lemma 5, guided by the above identification,

starting from each of the following n-letter expressions which are reasonably straightforward to obtain using
Fano’s inequality (please see Appendix E.3):

nR0 ≤ min{I(M0; Jn) + I(M0;Y n|Jn), I(M0;Zn|Ĵn) + I(M0; Ĵn)}+ ng(εn), (33a)

n(R0 +R1) ≤ I(M1,M0; Jn) + I(M1,M0;Y n|Jn) + ng(εn), (33b)
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n(R0 +R1) ≤ I(M0;Zn|Ĵn) + I(M0, J
n; Ĵn) + I(M1; Jn|M0, Ĵ

n) + I(M1;Y n|M0, J
n) + ng(εn), (33c)

n(R0 +R2) ≤ I(M0, Ĵ
n; Jn) + I(M0;Y n|Jn) + I(M2;Zn|M0, Ĵ

n) + I(M2; Ĵn|M0, J
n) + ng(εn), (33d)

n(R0 +R2) ≤ I(M2,M0; Ĵn) + I(M2,M0;Zn|Ĵn) + ng(εn), (33e)

n(R0 +R1 +R2) ≤ min{I(M0, Ĵ
n; Jn) + I(M0;Y n|Jn), I(M0;Zn|Ĵn) + I(M0, J

n; Ĵn)}

+ I(M1;Y n|M0, J
n) + I(Xn; Ĵn|M1,M0, J

n)

+ min

{
I(M1; Jn|M0, Ĵ

n) + I(Xn;Zn|M1,M0, Ĵ
n),

I(M2;Zn|M0, Ĵ
n) + I(Xn; Jn|M2,M0, Ĵ

n)

}
+ ng(εn), (33f)

n(R0 +R1 +R2) ≤ min{I(M0, Ĵ
n; Jn) + I(M0;Y n|Jn), I(M0;Zn|Ĵn) + I(M0, J

n; Ĵn)}

+ I(M2;Zn|M0, Ĵ
n) + I(Xn; Jn|M2,M0, Ĵ

n)

+ min

{
I(M1;Y n|M0, J

n) + I(Xn; Ĵn|M1,M0, J
n),

I(M2; Ĵn|M0, J
n) + I(Xn;Y n|M2,M0, J

n)

}
+ ng(εn). (33g)

Finally, the cardinality bounds come from the standard Caratheodory-Bunt [Bun34] arguments and are omitted.
�

Remark 16. An alternative approach to single-letterize (33a)-(33g) that skips using Lemma 5 is as follows:
consider the UV bound in Theorem 6. Take for instance, the sum-rate constraint:

R0 +R1 +R2 ≤ I(W ;Y ) + I(U ;Y |W ) + I(X;Z|U,W ).

This inequality is shown via the following expansion

I(M0;Y n) + I(M1;Y n|M0) + I(M2;Zn|M0,M1) ≤
∑
i

(I(Wi;Yi) + I(Ui;Yi|Wi) + I(Xi;Zi|Ui,Wi)) , (34)

where Wi = (M0, Y
i−1, Zni+1) and Ui = M1. The inequality (34) holds for any arbitrary joint distribution of

pM0,M1,M2,Y n,Zn . Thus, it continues to hold if we formally replace M0 and Zn by M̃0 = (M0, J
n) and Ĵn

respectively, while keeping all the other variables intact. With this replacement, the auxiliary variable Wi

becomes (M0, J
n, Y i−1, Ĵni+1) which is equal to (Wai, Ji) as defined in (32). This yields

I(M0, J
n;Y n) + I(M1;Y n|M0, J

n) + I(M2; Ĵn|M0, J
n,M1)

≤
∑
i

(
I(Wai, Ji;Yi) + I(Uai;Yi|Wai, Ji) + I(Xi; Ĵi|Uai,Wai, Ji)

)
.

Next, observe that the inequality (34) also continues to holds if we condition all the mutual information terms
on Jn. This implies that

I(M0;Y n|Jn) + I(M1;Y n|M0, J
n) + I(M2; Ĵn|M0, J

n,M1)

≤
∑
i

(
I(Wai;Yi|Ji) + I(Uai;Yi|Wai, Ji) + I(Xi; Ĵi|Uai,Wai, Ji)

)
.

Similarly, one can obtain two sets of inequalities by replacing M0 and Y n by (M0, Ĵ
n) and Jn respectively, or

alternatively by conditioning all the terms on Jn. One can single-letterize (33a)-(33g) by writing the above four
sets of inequalities for all the constraints in the UV bound, and mixing and matching appropriate equations
from these four sets of inequalities.

As a special case of Theorem 8 assume that H(J |Y ) = H(Ĵ |Z) = 0. More specifically, for a pair of bijective

mappings Y ↔ (Y1, Y2) and Z ↔ (Z1, Z2), set J = Y1 and Ĵ = Z2. Then, we obtain the following corollary:
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Corollary 4. Given a broadcast channel T (y, z|x) any achievable non-negative rate triple (R0, R1, R2) must
satisfy the following constraints

R0 ≤ min{I(Wb;Y1) + I(Wa;Y2|Y1), I(Wb;Z1|Z2) + I(Wa;Z2)},
R0 +R1 ≤ I(Ub,Wb;Y1) + I(Ua,Wa;Y2|Y1),

R0 +R1 ≤ I(Wb;Z1|Z2) + I(Wa, Y1;Z2) + I(Ub;Y1|Wb, Z2) + I(Ua;Y2|Wa, Y1),

R0 +R2 ≤ I(Wb, Z2;Y1) + I(Wa;Y2|Y1) + I(Vb;Z1|Wb, Z2) + I(Va;Z2|Wa, Y1),

R0 +R2 ≤ I(Va,Wa;Z2) + I(Vb,Wb;Z1|Z2),

R0 +R1 +R2 ≤ min{I(Wb, Z2;Y1) + I(Wa;Y2|Y1), I(Wb;Z1|Z2) + I(Wa, Y1;Z2)}
+ I(Ua;Y2|Wa, Y1) + I(X;Z2|Ua,Wa, Y1)

+ min
{
I(Ub;Y1|Wb, Z2) + I(X;Z1|Ub,Wb, Z2), I(Vb;Z1|Wb, Z2) + I(X;Y1|Vb,Wb, Z2)

}
,

R0 +R1 +R2 ≤ min{I(Wb, Z2;Y1) + I(Wa;Y2|Y1), I(Wb;Z1|Z2) + I(Wa, Y1;Z2)}
+ I(Vb;Z1|Wb, Z2) + I(X;Y1|Vb,Wb, Z2)

+ min
{
I(Ua;Y2|Wa, Y1) + I(X;Z2|Ua,Wa, Y1), I(Va;Z2|Wa, Y1) + I(X;Y2|Va,Wa, Y1)

}
,

for any pair of bijective mappings Y ↔ (Y1, Y2) and Z ↔ (Z1, Z2) and for some p(wa, va, ua|x)p(wb, vb, ub|x)p(x).

Remark 17. The following remarks are worth noting.

(1) This outer bound generalizes the outer bound of [GGNY14] to non-product broadcast channels. Consider
the special case of X = (X1, X2) and T (y1y2, z1z2|x) being of the form

T (y1y2, z1z2|x) = T (y1, z1|x1)T (y2, z2|x2).

Then, the above outer bound reduces to the one given in [GGNY14]. Since the outer bound in [GGNY14]
has been shown to strictly improve on the UV outer bound for some product broadcast channels, our
new outer bound is also a strict improvement on the UV outer bound.

(2) Setting Y1 = Y, Z1 = Z, and Y2 = Z2 = 0 (constant random variables) reduces the above outer bound
to the UV outer bond in [Nai11]. Hence this bound is at least as good as the UV outer bound for
any broadcast channel. Finally, since this is strictly better than the UV for some product broadcast
channels by virtue of the previous remark, this bound is a strict improvement over the UV outer bound.

(3) An interesting feature of the above outer bound is expressions like I(W1, Z2;Y1) where W1 comes with
Z2 on one side, and Y1 on the other side of the mutual information expression. This differs from the
UV outer bound (or Marton’s inner bound) where channel output variables and the auxiliary random
variables appear on the opposite sides of the mutual information expressions.

5. Conclusion and Future work

New outer bounds for relay, interference and broadcast channels have been developed using the idea of
auxiliary receivers. The bounds were then employed to demonstrate aspects of the capacity region that were
not determined from previous outer bounds such as: kinks (discontinuous derivatives) at the capacity region
around corner points for the relay and the interference channel, and that capacity regions can shrink by more
than 1 − ε if the received symbols were erased with probability ε (a phenomenon that does not happen in the
presence of feedback if the erasures are synchronous). As mentioned in the introduction, we aimed to give
an illustration of the techniques that one could use to develop outer bounds using auxiliary receivers, and we
are positive that we have not harnessed the full potential of the auxiliary receivers even in the basic settings
considered here.

In particular, a number of immediate future research directions is listed here:

(i) We note that there are many different ways to introduce auxiliary receivers. For instance, we give two
outer bounds for broadcast channels. The examples for which these two bounds strictly improve over the
UV outer bound are different. Unification of these two outer bounds into a single bound is left as future
work.
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(ii) Any choice of auxiliary receivers in the results of this paper yields a valid and computable upper bound
to the capacity region in discrete settings. A natural question is to determine the smallest possible outer
bound using these techniques. An immediate question in this direction: can one determine cardinality
bounds on the sizes of auxiliary receivers so as to obtain the best upper bound.

(iii) The bound for the Gaussian relay bound channel was obtained by choosing the auxiliary channel from X
to J to be an additive Gaussian channel. However, any arbitrary choice of the channel from X to J yields
a valid upper bound. One can study if one gets the best possible upper bound by taking the channel from
X to J to be additive Gaussian.
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Appendix A. Preliminaries

The following well-known result has be used repeatedly in the proofs in this paper.

Lemma 4 (Körner-Márton Lemma, (4.14) in [KM77]). For any tuple of random variables (U, Y n, Zn) the
following equality holds:

H(Y n|U)−H(Zn|U) =

n∑
i=1

H(Yi|U, Y i−1, Zni+1)−H(Zi|U, Y i−1, Zni+1)

=

n∑
i=1

H(Yi|U,Zi−1, Y ni+1)−H(Zi|U,Zi−1, Y ni+1).

Remark 18. This equality has been repeatedly used in the literature to provide outer bounds or converses to
capacity regions and in this paper we will continue to employ this frequently. Some generic ways of using this
inequality has been illustrated in Lemma 5 in the Appendix. The authors would also like to remark that this
lemma was called Csiszar-sum-lemma in the literature, based on its perceived first appearance as Lemma 7
in [CK78]. However a private communication to the authors by Körner revealed that this equality was first
identified by Katalin Márton and used in [KM77, (4.14)] in her joint work with Janos Körner. Hence the authors
find it appropriate to rechristen it as Körner-Márton Lemma.

Motivated by the above lemma, the generic manipulations that are being used in the converses are the
following.

Lemma 5. For any set of random variables (U, V,An, Bn) the following hold:

I(U ;An|V )− I(U ;Bn|V ) =

n∑
i=1

(
I(U ;Ai|V,Bn

i+1, A
i−1)− I(U ;Bi|V,Bn

i+1, A
i−1)

)
(35)

=

n∑
i=1

(
I(U ;Ai|V,An

i+1, B
i−1)− I(U ;Bi|V,An

i+1, B
i−1)

)
,

I(U ;Bn|V ) + I(U ;An|V )− I(U ;Bn|V ) ≤
n∑

i=1

(
I(U,Bn

i+1;Bi|V ) + I(U,Bn
i+1, A

i−1;Ai|V )− I(U,Bn
i+1, A

i−1;Bi|V )
)
(36)

=

n∑
i=1

(
I(U,Bi−1;Bi|V ) + I(U,Bn

i+1, A
i−1;Ai|V )− I(U,Bn

i+1, A
i−1;Bi|V )

)
=

n∑
i=1

(
I(U,Bn

i+1;Bi|V ) + I(U,An
i+1, B

i−1;Ai|V )− I(U,An
i+1, B

i−1;Bi|V )
)

=
n∑

i=1

(
I(U,Bi−1;Bi|V ) + I(U,An

i+1, B
i−1;Ai|V )− I(U,An

i+1, B
i−1;Bi|V )

)
,

I(U ;An|V ) + I(V ;Bn) ≤
n∑

i=1

(
I(U ;Ai|V,An

i+1, B
i−1) + I(V,An

i+1, B
i−1;Bi)

)
, (37)

I(U ;An|V ) + I(V ;Bn) ≤
n∑

i=1

(
I(U ;Ai|V,Bn

i+1, A
i−1) + I(V,Bn

i+1, A
i−1;Bi)

)
.

Proof. The proof follows immediately from repeated applications of Lemma 4, chain rule for mutual information,
and non-negativity of mutual information. The details are omitted as they are standard in literature. For



OUTER BOUNDS FOR MULTIUSER SETTINGS: THE AUXILIARY RECEIVER APPROACH 29

instance, (35) can be shown by writing the telescopic sum

I(U ;An|V )− I(U ;Bn|V ) =

n∑
i=1

(
I(U ;Bni+1, A

i|V )− I(U ;Bni , A
i−1|V )

)
.

To get (36), we use (35) as follows

I(U ;Bn|V ) + I(U ;An|V )− I(U ;Bn|V )

=

n∑
i=1

(
I(U,Bni+1;Bi|V )− I(Bni+1;Bi|V ) + I(U ;Ai|V,Bni+1, A

i−1)− I(U ;Bi|V,Bni+1, A
i−1)

)

=

n∑
i=1

(
I(U,Bni+1;Bi|V ) + I(U,Bni+1, A

i−1;Ai|V )− I(U,Bni+1, A
i−1;Bi|V )

− I(Bni+1;Bi|V )− I(Bni+1, A
i−1;Ai|V ) + I(Bni+1, A

i−1;Bi|V )

)
=

n∑
i=1

(
I(U,Bni+1;Bi|V ) + I(U,Bni+1, A

i−1;Ai|V )− I(U,Bni+1, A
i−1;Bi|V )

− I(Ai−1;Ai|V )

)
.

The proof for (37) can be found at [EK12, p. 226] in the proof of the UV outer bound for a general broadcast
channel.

�

Lemma 6. Double Markovity [CK11, Exercise 16.25] Let U,X, Y be three (real-valued) random variables
defined on the same probability space, such that both the Markov chains U → X → Y and U → Y → X hold.
Then

(1) There exists functions f(X) and g(Y ) such that f(X) = g(Y ) with probability one.
(2) U → f(X)→ (X,Y ) is Markov.

Proof. Disclaimer : We are only providing an outline of an argument to solve the Exercise for completeness.
This argument is a generalization of an argument in the discrete case and follows along the lines of [Mat].

Let FU |X , FU |Y denote the (regular) conditional distributions of U conditioned on X and Y respectively. We
define an equivalence class according to x1 ≡ x2, if the conditional distributions satisfy FU |X=x1

= FU |X=x2
.

This defines a partition of X. Let us similarly define an equivalence class and a partition of the values of Y .
Now define f(X), a measurable function, such that it takes the same value in a partition and differs across

partitions. Thus there is a bijection between f(X) and the conditional distributions FU |X . This yields FU |X =
FU |f(X).

The Markov chains imply that FU |X,Y = FU |X with probability one, and FU |X,Y = FU |Y with probability one.
Therefore we have FU |X = FU |Y = FU |X,Y with probability one. On this set define g(Y ) to take the same value
as f(X). Clearly, by construction g(Y ) = f(X) with probability one. Further it is also clear by construction
that FU |X,Y,f(X) = FU |X,Y = FU |X = FU |f(X) with probability one. Thus we also have U → f(X)→ (X,Y ) is
Markov.

Remark 19. It is worth noting that if support of (X,Y ) is the product of the support of X and the support of
Y , then f(X) and g(Y ) have to be constants, implying that U is independent of X,Y .

�

Appendix B. Proofs of Propositions for scalar Gaussian Relay channels

B.1. Proof of Proposition 1.

Proof. Remember that

Yr = g21X + Z1, Y = g31X + g32Xr + Z2.
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Take some α ∈ (0, 1] and assume that Z1 = αZ3 +
√

1− α2Z4 where Z2, Z3 and Z4 are mutually independent
standard Gaussian random variables. Then, let

J = (g21/α)X + Z3.

We have Yr = αJ +
√

1− α2Z4. Thus, J is an enhanced version of Yr and X −
− J −
− Yr forms a Markov chain.
Restricting the upper bound in Theorem 1 to the above families of J we obtain:

R ≤ max
p(X,Xr)∈P

min
(
I(X,Xr;Y ), I(X;Y, Yr|Xr),

min
α∈(0,1]

max
W :W−
−(X,Xr)−
−(Y,Yr,J)

I(X; J, Yr|Xr) + I(X,Xr;Y |W )− I(X; J |W )
)
, (38)

where P is the set of all pX,Xr satisfying the power constraint, i.e., E(X2) ≤ P, E(X2
r ) ≤ P . Hence we know

that there exists some ρ ∈ [−1, 1] such that

KX,Xr
�
[
P ρP
ρP P

]
=: Kρ, (39)

where KX,Xr
� Kρ stands for Kρ −KX,Xr

being a positive semi-definite matrix.
Elementary facts about Gaussian extremality4 for (conditional) differential entropy with respect to a covari-

ance constraint shows that if (39) holds then

I(X,Xr;Y ) ≤ C(S31 + S32 + 2ρ
√
S31S32), (40)

I(X;Y, Yr|Xr) ≤ C((1− ρ2)(S31 + S21)), (41)

where C(x) = 1
2 ln(1 + x).

With Kρ defined as in (39), note that

max
pX,Xr :

KX,Xr�Kρ

min
α∈(0,1]

max
W :W−
−(X,Xr)−
−(Y,Yr,J)

I(X; J, Yr|Xr) + I(X,Xr;Y |W )− I(X; J |W )

≤ min
α∈(0,1]

max
pX,Xr :KX,Xr�Kρ

W :W−
−(X,Xr)−
−(Y,Yr,J)

I(X; J, Yr|Xr) + I(X,Xr;Y |W )− I(X; J |W )

(a)
= min

SJ≥S21

C(SJ(1− ρ2)) +

 max
pX,Xr∼N (0,K′)

K′�Kρ

I(X,Xr;Y )− I(X; J)




where (a) follows from Lemma 7 below and from SJ := S21

α2 . Further from the second part of Lemma 7, we

know that
(
g21
α − fg31

)
X − fg32Xr = 0 almost surely, or that the maximizing K ′ takes the form

K ′ =

[
aP ±P

√
ab

±P
√
ab bP

]
�
[
P ρP
ρP P

]
.

For the matrix ordering above it is necessary and sufficient that 0 ≤ a, b ≤ 1 and

1− a− b ≥ ρ2 ∓ 2ρ
√
ab (42)

Observe that, when K ′ is defined as above

I(X,Xr;Y )− I(X; J) =
1

2
log(1 + aS31 + bS32 ± 2

√
abS31S32)− 1

2
log(1 + aSJ).

4If X,Y are random vectors with a block covariance matrix given by K :=

[
KX KX,Y

KT
X,Y KY

]
; then h(X,Y ) and h(X|Y ) are

maximized when (X,Y ) ∼ N (0,K). One way to observe the second part is that

h(X|Y ) = h(X −KX,YK
−1
Y Y |Y ) ≤ h(X −KX,YK

−1
Y Y ) ≤

1

2
log

(
(2πe)n

∣∣∣KX −KX,YK
−1
Y KT

X,Y

∣∣∣) .
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Optimizing the term above with respect to b for a fixed a subject to (42) we obtain that

max
pX,Xr∼N (0,K′)

K′�Kρ

I(X,Xr;Y )− I(X; J)

= max
0≤a≤1

1

2
log

(
1 +

(√
aS31 +

√
ρ2aS32 +

√
(1− ρ2)(1− a)S32

)2)
− 1

2
log(1 + aSJ). (43)

Setting a = x2

1+x2 , we see that the optimal x for the above maximization problem is the unique non-negative
root of the quadratic equation:

x2(
√
S31 +

√
ρ2S32)(

√
(1− ρ2)S32)(1 + SJ) + x

(
(1− ρ2)S32(1 + SJ)− (

√
S31 +

√
ρ2S32)2 + SJ

)
− (
√
S31 +

√
ρ2S32)(

√
(1− ρ2)S32) = 0. (44)

This completes the proof. �

Remark 20. From the above argument, we know that

max
pX,Xr∼N (0,K′)

K′�Kρ

I(X,Xr;Y )− I(X; J)

= max
pX,Xr∼N (0,Kρ)
W−
−(X,Xr)−
−(Y,J)

I(X,Xr;Y |W )− I(X,Xr; J |W )

≤ max
(U,W )−
−(X,Xr)−
−(Y,J)

I(U ;Y |W )− I(U ; J |W ) (45)

(a)
=

1

2

∑
i

[log φi]+,

where (a) follows from, for instance, [WO11, Eq. 7] (this, in turn, utilizes the enhancement technique of [WSS06]
for the MIMO Gaussian broadcast channel). Here [x]+ is zero if x is negative and x otherwise, and φi are the
set of generalized eigenvalues for the pencil(

K
1
2

X,Xr

[
g231 g31g32

g31g32 g232

]
K

1
2

X,Xr
+ I2, K

1
2

X,Xr

[
(g21/α)2 0

0 0

]
K

1
2

X,Xr
+ I2

)
.

Direct calculation shows that φi are the roots of the quadratic polynomial

2ρ
√
S31S32 + S31 + S32 + 1− λ

(
S32SJ(1− ρ2) + S31 + S32 + SJ + 2 + 2ρ

√
S31S32

)
+ λ2(SJ + 1) = 0. (46)

Only one of the roots of this polynomial is larger than one. Denoting the larger root by λmax, we obtain

max
(U,W )−
−(X,Xr)−
−(Y,J)

I(U ;Y |W )− I(U ; J |W ) =
1

2
lnλmax.

On the other hand, routine calculation shows that after substituting the unique non-negative root of (44) in
(43) and simplifying the expression, we have

max
pX,Xr∼N (0,K′)

K′�Kρ

I(X,Xr;Y )− I(X,Xr; J) =
1

2
lnλmax.

Thus, for this setting, the inequality in (45) is indeed an equality. We remark that the optimality of U = (X,Xr)
in (45) is similar to the observation made in [KW10] for the problem of secure transmission over a Gaussian
wiretap channel with multiple antennas.

Theorem 9 (Theorem 8 in [LV07], see also Theorem 1 in [GN14]). Let Z1,Z2 be two Gaussian vectors with
strictly positive definite covariance matrices KZ1

and KZ2
, respectively. Let µ ≥ 1 be a real number, S be a

positive semidefinite matrix, and W be a random variable independent of Z1,Z2. Consider the optimization
problem

max
p(x,w)

h(X + Z1|W )− µh(X + Z2|W )
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subject to Cov(X) � S
where the maximization is over p(w,x) such that Cov(X) � S, and W,X are independent of Z1,Z2. A Gaussian
p(x|w) with the same covariance matrix for each w is an optimal solution of this optimization problem.

Remark 21. In [LV07], the constraint for the optimization problem is listed as Cov(X|W ) � S, which is
seemingly a weaker statement. However what the authors proved and intended to prove is indeed the statement
mentioned above. There is also an alternate proof of the result in [GN14].

Lemma 7. Let A,B,C be matrices such that there exists Ã, B̃, C̃, and D̃ such that the extended matrices

Ae :=

[
A B

Ã B̃

]
, Ce :=

[
C 0

C̃ D̃

]
are invertible. Assume that Y = AX + BXr + Z and J = CX + Z for some vectors X,Xr,Y and J, and a
Gaussian random vector Z independent of (X,Xr) and distributed as N (0, I). Let K0 be an arbitrary symmetric
positive semi-definite matrix.

(i) To compute the maximum over p(w,x,xr), subject to KX,Xr � K0 and W −
− (X,Xr) −
− (Y,J), of the
expression

I(X; J|Xr) + I(X,Xr; Y|W )− I(X,Xr; J|W )

it suffices to assume that [X Xr]
T = U + W where U and W are independent, and U ∼ N (0,K ′),

W ∼ N (0,K0 −K ′) for some K ′ � K0.
(ii) Further, let [X∗,X∗r ] ∼ N (0,K ′) be the maximizer mentioned above. Then (C − FA)X∗ − FBX∗r = 0 for

some matrix F .

Proof. Note that the matrices

Aε :=

[
A B

εÃ εB̃

]
, Cε :=

[
C 0

εC̃ εD̃

]
are invertible for every ε 6= 0. This follows from the assumption that Ae and Ce are invertible. Let Z̃ ∼ N (0, I)

be independent of X,Xr and Z. Define Ẑ = [Z Z̃]T . Define X̂ := [X Xr]
T , Ŷε := AεX̂ + Ẑ and Ĵε := CεX̂ + Ẑ.

Consider the expression

I(X; Ĵε|Xr) + I(X̂; Ŷε|W )− I(X̂; Ĵε|W ). (47)

From Theorem 9 we know that there exists a matrix K ′ε � K0, such that X̂|{W = w} ∼ N (0,K ′ε) for every w,

maximizes the term I(X̂; Ŷε|W ) − I(X̂; Ĵε|W ). Thus the choice Uε ∼ N (0,K ′ε), Wε ∼ N (0,K0 −K ′ε), where
Uε and Wε are independent; and [X Xr]

T = Uε +Wε, maximizes the expression in (47) over p(w,x,xr), subject
to KX,Xr � K0. For any X,Xr such that KX,Xr � K0, observe the following:

I(X; J|Xr) ≤ I(X; Ĵε|Xr)

= I(X; J|Xr) + I(X; εC̃X + εD̃Xr + Z̃|J,Xr)

≤ I(X; J|Xr) + I(X,Xr; εC̃X + εD̃Xr + Z̃)

≤ I(X; J|Xr) +
1

2
log
∣∣∣I + ε2[C̃ D̃]K0[C̃ D̃]T

∣∣∣ .
Similarly, mimicking the steps as above,

I(X,Xr; Y|W ) ≤ I(X̂; Ŷε|W ) ≤ I(X,Xr; Y|W ) +
1

2
log
∣∣∣I + ε2[Ã B̃]K0[Ã B̃]T

∣∣∣ ,
I(X,Xr; J|W ) ≤ I(X̂; Ĵε|W ) ≤ I(X,Xr; J|W ) +

1

2
log
∣∣∣I + ε2[C̃ D̃]K0[C̃ D̃]T

∣∣∣ .
Therefore as ε→ 0, the maximum of the expression in (47) tends to maximum value of the optimization problem
in the theorem. Since {K : K � K0} is a compact set, there is a K ′ that is a subsequential limit of K ′ε. Hence
from the continuity of log |K|, we see that there is a maximizer for the optimization problem in the theorem of
the form: U ∼ N (0,K ′), W ∼ N (0,K0 −K ′), where U and W are independent; and [X Xr]

T = U + W , for
some K ′ � K0. This completes the proof of (i).
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Let [X∗ X∗r ]T ∼ N (0,K ′) be a maximizer. Let Y∗ := AX∗ +BXr
∗ + Z and J∗ := CX∗ + Z where [X∗,X∗r ]

is independent of Z. Then from the optimality of [X∗,X∗r ] we have that

I(X∗,Xr
∗; Y∗)− I(X∗,Xr

∗; J∗) ≥ I(X∗,Xr
∗; Y∗|W̃ )− I(X∗,Xr

∗; J∗|W̃ ) (48)

for any W̃ such that (W̃ ,X∗,Xr
∗) is independent of Z. Express CX∗ = F (AX∗ + BXr

∗) + X̃, where X̃ is

independent of AX∗ + BXr
∗ (such a decomposition is feasible for jointly Gaussian vectors).5 Since X̃ is a

function of X∗ and Xr
∗, it is independent of Z. Let W̃ = X̃. We obtain that W̃ and Y∗ are independent.

Consequently, I(X∗,Xr
∗; Y∗) = I(X∗,Xr

∗; Y∗|W̃ ) and using (48), we deduce that W̃ (= X̃) and J∗ are

independent. Consequently, X̃ and J∗ = CX∗ + Z are uncorrelated, implying that W̃ = X̃ and CX∗ are
uncorrelated (hence independent). Since CX∗ = F (AX∗ +BXr

∗) + X̃ and AX∗ +BXr
∗ are uncorrelated with

X̃, one obtains that E(X̃(X̃)T ) = 0, showing that X̃ = 0 almost surely. Thus, we have (C−FA)X∗−FBX∗r = 0
almost surely. �

B.2. Proof of Proposition 2.

Proof. When S21 < SJ < S31, the third bound (the new one) for the capacity of the relay channel in Proposition
1, can be bounded from above (using routine calculations given in Appendix E.2) by

max
ρ∈[−1,1]

min
SJ :S21≤SJ<S31

1

2
log(1 + SJ(1− ρ2)) +

1

2
log

(
1 + S31 + ρ2S32 + 2

√
ρ2S31S32

1 + SJ
+
S31S32(1− ρ2)

S31 − SJ

)

≤ min
SJ :S21≤SJ<S31

max
ρ∈[−1,1]

1

2
log(1 + SJ(1− ρ2)) +

1

2
log

(
1 + S31 + ρ2S32 + 2

√
ρ2S31S32

1 + SJ
+
S31S32(1− ρ2)

S31 − SJ

)
(a)

≤ min
SJ :S21≤SJ<S31

1

2
log

(
1 + S31 + S32

(
(1 + SJ)2S2

31

SJ(1 + S31)(S31 − SJ)

))
.

where the bound in (a) again follows from routine algebra given in Appendix E.2. Considering the derivative
with respect to SJ , we get the optimum value for SJ being equal to

SJ = max

(
S21,

S31

S31 + 2

)
.

�

Appendix C. Proofs of results for Gaussian Z-interference

C.1. Proof of Theorem 3.

Proof. Let J = X1 +uZ where Z is a standard normal random variable such that Z2 = auZ +
√

1− a2u2Z ′ for
some standard normal random variable Z ′ that is independent of Z. From Corollary 2 and standard arguments,
it follows that for any α, β ∈ [0, 1],

R1 + λR2 ≤ sup
pQpX1|QpX2|QpW |X1,X2,Q

[
λαI(X2;Y2|W,X1, Q) + λ(1− α)(I(X2;Y2|W,Q)− I(X2; J |W,Q))

+ βI(X1;Y1|Q) + (1− β)(I(W ;Y2|Q) + I(X1; J |W,Q))

]
, (49)

where X1 and X2 are assumed to satisfy the power constraints, and also satisfying that I(X1; J |W,Q) ≥
I(X1;Y2|W,Q).

Let us make the following definitions

Y
(ε)
2 :=

[
a 1
ε ε

] [
X1

X2

]
+

[
auZ1 +

√
1− a2u2Z2

Z3

]
,

5For every two jointly Gaussian random vectors S and V, one can decompose S as S = FV+R for some matrix F and random

vector R such that V is independent of R. Without loss of generality assume that V has an invertible covariance matrix. Then

F = E(SVT )E(VVT )−1 yields the desired decomposition. Please see Theorem 2.3 in https://web.mit.edu/gallager/www/papers/
chap2.pdf

https://web.mit.edu/gallager/www/papers/chap2.pdf
https://web.mit.edu/gallager/www/papers/chap2.pdf
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J(ε) :=

[
1 0
ε ε

] [
X1

X2

]
+

[
uZ1

Z3

]
,

Ĵ(ε) :=

[
εa ε
ε ε

] [
X1

X2

]
+

[
Z4

Z3

]
,

J̄(ε) :=

[
ε 0
ε ε

] [
X1

X2

]
+

[
Z5

Z3

]
,

where Zi’s are mutually independent standard Gaussian random variables, independent of (X1, X2). The

construction ensures that Ĵ(ε) is a stochastically degraded version of Y
(ε)
2 for any ε < 1, and that J(ε) −
−

(X1, Ĵ
(ε))−
−X2 is Markov. For simplicity, we sometimes drop the (ε) and simply write Ĵ instead of Ĵ(ε) (and

similarly for other variables).
For any ε > 0, γ > 1 consider the expression

λαI(X2; Y2|W,X1, Q) + λ(1− α)
[
I(X2; Y2|W,Q)− I(X2; J|W,Q)

]
+ βI(X1;Y1|Q) + (1− β)

[
I(W ; Y2|Q) + I(X1; J|W,Q)

]
+ Tε,γ (50)

where Tε,γ is a perturbation term, to the expression in (49), defined by

Tε,γ := (1− β)I(X2; J̄|W,X1, Q)− λαI(X2; Ĵ|W,X1, Q) + εI(X1, X2; Y2|W,Q)− γεI(X1, X2; J|W,Q).

Note that, given power constraints, εI(X1, X2; Y2|W,Q), γεI(X1, X2; J|W,Q), I(X2; Ĵ|W,X1, Q) are non-
negative and bounded from above by some g(ε) that tends to zero as ε → 0. Let V be the maximum
value of the expression among all the distributions satisfying the power constraints, the structure of the form
pQpX1|QpX2|QpW |X1,X2,Q, and I(X1; J|W,Q) ≥ I(X1; Y2|W,Q). Let p∗Qp

∗
X1|Qp

∗
X2|Qp

∗
W |X1,X2,Q

be a maximizer.6

Take two i.i.d. copies of the maximizer and denote them using subscripts a, b respectively. Let (·)+ = (·)a+(·)b√
2

and let (·)− = (·)a−(·)b√
2

. Then, observe that for any ε < 1, Ĵ− is a stochastically degraded version of Y2− and

Ĵ+ is a stochastically degraded version of Y2+. Moreover, J− −
− (X1−, Ĵ−)−
−X2− is Markov. Further as Z’s
are Gaussian random variables, under this transformation, Zi,+ and Zi,−, 1 ≤ i ≤ 5, are independent of each
other and satisfy the same independence relationship to other variables as in the original setting.

Now we have, by mimicking the single-letterization manipulations used in the proof of Theorem 2 after the
equality in (a) below,

2V = λαI(X2a, X2b; Y2a,Y2b|Wa,Wb, X1a, X1b, Qa, Qb)− λαI(X2a, X2b; Ĵa, Ĵb|Wa,Wb, X1a, X1b, Qa, Qb)

+ λ(1− α)I(X2a, X2b; Y2a,Y2b|Wa,Wb, Qa, Qb)

− λ(1− α)I(X2a, X2b; Ja,Jb|Wa,Wb, Qa, Qb) + βI(X1a, X1b; Y1a,Y1b|Qa, Qb)
+ (1− β)

[
I(Wa,Wb; Y2a,Y2b|Qa, Qb) + I(X1a, X1b; Ja,Jb|Wa,Wb, Qa, Qb)

+ I(X2a, X2b; J̄a, J̄b|Wa,Wb, X1a, X1b, Qa, Qb)
]

+ εI(X1a, X1b, X2a, X2b; Y2a,Y2b|Wa,Wb, Qa, Qb)− γεI(X1a, X1b, X2a, X2b; Ja,Jb|Wa,Wb, Qa, Qb)

(a)
= λαI(X2+, X2−; Y2+,Y2−|Wa,Wb, X1+, X1−, Qa, Qb)− λαI(X2+, X2−; Ĵ+, Ĵ−|Wa,Wb, X1+, X1−, Qa, Qb)

+ λ(1− α)I(X2+, X2−; Y2+,Y2−|Wa,Wb, Qa, Qb)

− λ(1− α)I(X2+, X2−; J+,J−|Wa,Wb, Qa, Qb) + βI(X1+, X1−; Y1+,Y1−|Qa, Qb)
+ (1− β)

[
I(Wa,Wb; Y2+,Y2−|Qa, Qb) + I(X1+, X1−; J+,J−|Wa,Wb, Qa, Qb)

+ I(X2+, X2−; J̄+, J̄−|Wa,Wb, X1+, X1−, Qa, Qb)
]

+ εI(X1+, X1−, X2+, X2−; Y2+,Y2−|Wa,Wb, Qa, Qb)− γεI(X1+, X1−, X2+, X2−; J+,J−|Wa,Wb, Qa, Qb)

6In the case of the Gaussian Z-interference channel, routine arguments will show that there is a maximizer - the power constraints

yield tightness (for instance, Proposition 17 and Theorem 4 in [GN14]), and the additive Gaussian noise yields the continuity

(Proposition 18 in [GN14]) for the various terms with respect to weak convergence. The interested readers can also look into
Section 5.2 of [AGS05].
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(b)
= λαI(X2+; Y2+|Wa,Wb, X1+,J−, Qa, Qb)− λαI(X2+; Ĵ+|Wa,Wb, X1+,J−, Qa, Qb)

+ λ(1− α)I(X2+; Y2+|Wa,Wb,J−, Qa, Qb)

− λ(1− α)I(X2+; J+|Wa,Wb,J−, Qa, Qb) + βI(X1+; Y1+|Qa, Qb)
+ (1− β)

[
I(Wa,Wb,J−; Y2+|Qa, Qb) + I(X1+; J+|Wa,Wb,J−, Qa, Qb)

+ I(X2+; J̄+|Wa,Wb, X1+,J−, Qa, Qb)
]

+ εI(X1+, X2+; Y2+|Wa,Wb,J−, Qa, Qb)− γεI(X1+, X2+; J+|Wa,Wb,J−, Qa, Qb)

+ λαI(X2−; Y2−|Wa,Wb, X1−, Qa, Qb,Y2+)− λαI(X2−; Ĵ−|Wa,Wb, X1−, Qa, Qb,Y2+)

+ λ(1− α)I(X2−; Y2−|Wa,Wb,Y2+, Qa, Qb)

− λ(1− α)I(X2−; J−|Wa,Wb,Y2+, Qa, Qb) + βI(X1−; Y1−|Qa, Qb)
+ (1− β)

[
I(Wa,Wb,Y2+; Y2−|Qa, Qb) + I(X1−; J−|Wa,Wb, Qa, Qb,Y2+)

+ I(X2−; J̄−|Wa,Wb, X1−, Qa, Qb,Y2+)
]

+ εI(X1−, X2−; Y2−|Wa,Wb, Qa, Qb,Y2+)− γεI(X1−, X2−; J−|Wa,Wb, Qa, Qb,Y2+)

−
{
λαI(X1−, Ĵ−; Y2+|Wa,Wb, X1+,J−, Qa, Qb)− λαI(X1−, Ĵ−; Ĵ+|Wa,Wb, X1+,J−, Qa, Qb)

}
−
{
λαI(X1+; Y2−|Wa,Wb, X1−, Qa, Qb,Y2+)− λαI(X1+; Ĵ−|Wa,Wb, X1−, Qa, Qb,Y2+)

}
− λ(1− α)I(X2−; J+|Wa,Wb, X2+,Y2+,J−, Qa, Qb)− λ(1− α)I(X2+; J−|Wa,Wb, X2−,Y2−,Y2+, Qa, Qb)

− βI(Y1+; Y1−|Qa, Qb)− (1− β)I(Y2+; Y2−|Qa, Qb)− (γ − 1)εI(Y2+; J−|Wa,Wb, Qa, Qb)

where (a) follows since bijections preserve mutual information and (b) from chain rule and data-processing
equality from the Markov structure relating the various variables. The detailed justification of going from (a)

to (b) is given in Appendix E.1. Since Ĵ+ ( Ĵ−) is a stochastically degraded version of Y2+ (Y2−), we have
that the expressions within the curly braces above satisfy

I(X1−, Ĵ−; Y2+|Wa,Wb, X1+,J−, Qa, Qb)− I(X1−, Ĵ−; Ĵ+|Wa,Wb, X1+,J−, Qa, Qb) ≥ 0,

I(X1+; Y2−|Wa,Wb, X1−, Qa, Qb,Y2+)− I(X1+; Ĵ2−|Wa,Wb, X1−, Qa, Qb,Y2+) ≥ 0. (51)

Further note that (this is to ensure the constraint I(X1; J |W,Q) ≥ I(X1;Y2|W,Q) remains true after rotation)

0 ≤ I(X1a, X1b; Ja,Jb|Wa,Wb, Qa, Qb)− I(X1a, X1b; Y2a,Y2b|Wa,Wb, Qa, Qb)

= I(X1+, X1−; J+,J−|Wa,Wb, Qa, Qb)− I(X1+, X1−; Y2+,Y2−|Wa,Wb, Qa, Qb)

= I(X1+, X1−; J+|Wa,Wb, Qa, Qb,J−)− I(X1+, X1−; Y2+|Wa,Wb, Qa, Qb,J−)

+ I(X1+, X1−; J−|Wa,Wb, Qa, Qb,Y2+)− I(X1+, X1−; Y2−|Wa,Wb, Qa, Qb,Y2+)

= I(X1+; J+|Wa,Wb, Qa, Qb,J−)− I(X1+; Y2+|Wa,Wb, Qa, Qb,J−)

+ I(X1−; J−|Wa,Wb, Qa, Qb,Y2+)− I(X1−; Y2−|Wa,Wb, Qa, Qb,Y2+)

+ I(X1−; J+|Wa,Wb, Qa, Qb,J−, X1+)− I(X1−; Y2+|Wa,Wb, Qa, Qb,J−, X1+)

+ I(X1+; J−|Wa,Wb, Qa, Qb,Y2+, X1−)− I(X1+; Y2−|Wa,Wb, Qa, Qb,Y2+, X1−).

Now, observe that

I(X1−; J+|Wa,Wb, Qa, Qb,J−, X1+) ≤ I(X1−; J+, Ĵ+|Wa,Wb, Qa, Qb,J−, X1+)

(c)
= I(X1−; Ĵ+|Wa,Wb, Qa, Qb,J−, X1+)

(d)

≤ I(X1−; Y2+|Wa,Wb, Qa, Qb,J−, X1+)

where (c) uses the fact that J+ −
− (Ĵ+, X1+)−
− (Wa,Wb, Qa, Qb,J−, X1−) is Markov and (d) uses that Ĵ+ is
a stochastically degraded version of Y2+. Similarly, one obtains that

I(X1+; J−|Wa,Wb, Qa, Qb,Y2+, X1−) ≤ I(X1+; Y2−|Wa,Wb, Qa, Qb,Y2+, X1−),
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implying

I(X1+; J+|Wa,Wb, Qa, Qb,J−)− I(X1+; Y2+|Wa,Wb, Qa, Qb,J−)

+ I(X1−; J−|Wa,Wb, Qa, Qb,Y2+)− I(X1−; Y2−|Wa,Wb, Qa, Qb,Y2+) ≥ 0.

Now set Q̃ be be uniform Bernoulli variable and when Q̃ = 0 we setQ = (Qa, Qb),W = (Wa,Wb,J−), (X1, X2) =

(X1+, X2+) and when Q̃ = 1 we set Q = (Qa, Qb),W = (Wa,Wb,Y2+), (X1, X2) = (X1−, X2−). Notice that
this distribution is a candidate maximizer of the expression and hence must induce a value of at most V .
Therefore from (b) and (51) above we obtain that

2V ≤ 2V − λ(1− α)I(X2−; J+|Wa,Wb, X2+,Y2+,J−, Qa, Qb)− λ(1− α)I(X2+; J−|Wa,Wb, X2−,Y2−, Qa, Qb)

− βI(Y1+; Y1−|Qa, Qb)− (1− β)I(Y2+; Y2−|Qa, Qb)− (γ − 1)εI(Y2+; J−|Wa,Wb, Qa, Qb).

This implies that the distribution generated above is a maximizer as well, but more importantly that the
last term, I(Y2+; J−|Wa,Wb, Qa, Qb) = 0, implying that

[
X1+ X2+

]
is independent of

[
X1− X2−

]
, which

further yields, by the Skitovic-Darmois characterization of Gaussians, that conditioned on W,Q, X1, X2 are
jointly Gaussians and that they have the same covariance matrix (independent of W,Q). Since the arguments
mimic Propositions 2, 8, and Corollary 3 of [GN14] we omit the details. Similarly, from I(Y1+; Y1−|Qa, Qb) = 0
and I(Y2+; Y2−|Qa, Qb) = 0 we have that X1 is a Gaussian with variance that does not depend on Q and so
is X2.

By monotonicity of the terms in the outer bound, it is immediate that variance of X1 is P1, the variance of
X2 is P2, and the covariance of X1, X2|W is given by some[

K1 ρ
√
K1K2

ρ
√
K1K2 K2

]
�
[
P1 0
0 P2

]
.

Now we substitute this distribution and obtain the bound in the weighted-sum rate. �

C.2. Proof of Theorem 4: Slope at Costa’s corner point. Let λ1 = λα and λ2 = λ(1−α). Setting β = 0
and ignoring the constraint in (16), we obtain that

R1 + (λ1 + λ2)R2 ≤
λ1
2

log(K2(1− ρ2) + 1) +
1

2
log

(
1 + a2P1 + P2

u2

)
+
λ2 − 1

2
log

(
1 + a2K1 +K2 + 2aρ

√
K1K2

K1 + u2

)
+
λ2
2

log

(
K1(1− ρ2) + u2

a2K1(1− ρ2) + 1

)
,

for some K1 ≤ P1, K2 ≤ P2 and ρ ∈ [−1, 1] satisfying

(P1 −K1)(P2 −K2) ≥ ρ2K1K2. (52)

We choose u = 1. Note that the expression is increasing in K2; and hence we fix K1, ρ and substitute for the
maximal K2 satisfying (52) to obtain

λ1
2

log(K2(1− ρ2) + 1) +
1

2
log
(
1 + a2P1 + P2

)
+
λ2 − 1

2
log

(
1 + a2K1 +K2 + 2aρ

√
K1K2

K1 + 1

)
+
λ2
2

log

(
K1(1− ρ2) + 1

a2K1(1− ρ2) + 1

)
≤ λ1

2
log

(
P2(P1 −K1)

P1 −K1 + ρ2K1
(1− ρ2) + 1

)
+

1

2
log
(
1 + a2P1 + P2

)
+
λ2 − 1

2
log

1 + a2K1 + P2(P1−K1)
P1−K1+ρ2K1

+ 2aρ
√
K1

P2(P1−K1)
P1−K1+ρ2K1

K1 + 1

+
λ2
2

log

(
K1(1− ρ2) + 1

a2K1(1− ρ2) + 1

)
.

To prove our result, note that it suffices to show that the maximum over K1,K2, ρ is upper bounded by
1
2 log(1 + a2P1 + P2) + (λ1+λ2−1)

2 log(1 + P2). Equivalently, we desire to show:

λ1 log

(
P2(P1 −K1)

P1 −K1 + ρ2K1
(1− ρ2) + 1

)
+ λ2 log

(
K1(1− ρ2) + 1

a2K1(1− ρ2) + 1

)
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+ (λ2 − 1) log

1 + a2K1 + P2(P1−K1)
P1−K1+ρ2K1

+ 2aρ
√
K1

P2(P1−K1)
P1−K1+ρ2K1

K1 + 1


≤ (λ1 + λ2 − 1) log(1 + P2).

Rearrangement of terms yields

λ1 log

 P2(P1−K1)(1−ρ2)
P1−K1+ρ2K1

+ 1

1 + P2

+ log

(
K1(1− ρ2) + 1

a2K1(1− ρ2) + 1

)

+ (λ2 − 1) log

 (1 + a2K1 + P2(P1−K1)
P1−K1+ρ2K1

+ 2aρ
√
K1

P2(P1−K1)
P1−K1+ρ2K1

)(1 +K1(1− ρ2))

(K1 + 1)(a2K1(1− ρ2) + 1)(1 + P2)


≤ 0.

From the concavity of log it suffices that

λ1

 P2(P1−K1)(1−ρ2)
P1−K1+ρ2K1

+ 1

1 + P2

+

(
K1(1− ρ2) + 1

a2K1(1− ρ2) + 1

)

+ (λ2 − 1)

 (1 + a2K1 + P2(P1−K1)
P1−K1+ρ2K1

+ 2aρ
√
K1

P2(P1−K1)
P1−K1+ρ2K1

)(1 +K1(1− ρ2))

(K1 + 1)(a2K1(1− ρ2) + 1)(1 + P2)


≤ λ1 + λ2.

This is equivalent to

− λ1
(

P2P1ρ
2

(P1 −K1 + ρ2K1)(1 + P2)

)
+

(
K1(1− a2)(1− ρ2)

a2K1(1− ρ2) + 1

)

+ (λ2 − 1)

 (1 + a2K1 + P2(P1−K1)
P1−K1+ρ2K1

+ 2aρ
√
K1

P2(P1−K1)
P1−K1+ρ2K1

)(1 +K1(1− ρ2))

(K1 + 1)(a2K1(1− ρ2) + 1)(1 + P2)
− 1


≤ 0.

Since

2aρ

√
K1

P2(P1 −K1)

P1 −K1 + ρ2K1
≤ λ1
λ2 − 1

(
P2P1ρ

2

(P1 −K1 + ρ2K1)

)
(K1 + 1)(a2K1(1− ρ2) + 1)

(1 +K1(1− ρ2))

+
λ2 − 1

λ1

(1 +K1(1− ρ2))

(K1 + 1)(a2K1(1− ρ2) + 1)

a2K1((P1 −K1))

P1

it suffices that(
K1(1− a2)(1− ρ2)

a2K1(1− ρ2) + 1

)

+ (λ2 − 1)

 (1 + a2K1 + P2(P1−K1)
P1−K1+ρ2K1

+ λ2−1
λ1

(1+K1(1−ρ2))
(K1+1)(a2K1(1−ρ2)+1)

a2K1((P1−K1))
P1

)(1 +K1(1− ρ2))

(K1 + 1)(a2K1(1− ρ2) + 1)(1 + P2)
− 1


≤ 0.

This is equivalent to(
K1(1− a2)(1− ρ2)

)
(53)

≤ (λ2 − 1)

a2K1(1− ρ2) + 1−
(1 + a2K1 + P2(P1−K1)

P1−K1+ρ2K1
+ λ2−1

λ1

(1+K1(1−ρ2))
(K1+1)(a2K1(1−ρ2)+1)

a2K1((P1−K1))
P1

)(1 +K1(1− ρ2))

(K1 + 1)(1 + P2)

 .
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This can be rewritten as(
(1− a2)(1− ρ2)

)
≤ (λ2 − 1)

(
a2P2(1− ρ2)(1 +K1) + ρ2(1− a2)

(1 +K1)(1 + P2)

)
+

(λ2 − 1)

(1 +K1)(1 + P2)

((
ρ2P2(1 + P1))

P1 −K1 + ρ2K1

)

− λ2 − 1

λ1

(
(1 +K1(1− ρ2))2

(K1 + 1)(a2K1(1− ρ2) + 1)

a2((P1 −K1))

P1

))
.

Note that

(1 +K1(1− ρ2))2

(a2K1(1− ρ2) + 1)
≤
(
K1

a2
(1− ρ2) + 1

)
.

Therefore it suffices that(
(1− a2)(1− ρ2)

)
≤ (λ2 − 1)

(
a2P2(1− ρ2)(1 +K1) + ρ2(1− a2)

(1 +K1)(1 + P2)

)
+

(λ2 − 1)

(1 +K1)(1 + P2)

((
ρ2P2(1 + P1))

P1

)

− λ2 − 1

λ1

(
(1 + K1

a2 (1− ρ2))

(K1 + 1)

a2((P1 −K1))

P1

))
.

Since the expression in linear in ρ2, we just need to ensure that this holds for ρ2 = 0 and ρ2 = 1.
At ρ2 = 0 we require(

(1− a2)
)
≤ (λ2 − 1)

(
a2P2

(1 + P2)

)
− (λ2 − 1)

(1 +K1)(1 + P2)

(
λ2 − 1

λ1

(
(a2 +K1)

(K1 + 1)

(P1 −K1)

P1

))
Optimizing over K1 : 0 ≤ K1 ≤ P1, it suffices that(

(1− a2)
)
≤ (λ2 − 1)

(
a2P2

(1 + P2)

)
− (λ2 − 1)2

λ1P1(1 + P2)
×

{
(P1+a

2)2

4(1+P1)(1−a2) if P1 >
a2

1−2a2 , a
2 < 1

2

a2P1 otherwise
.

Or one can even optimize over P1 to get a bound, that works for all P1,

1− a2 ≤ (λ2 − 1)

(
a2P2

(1 + P2)

)
− (λ2 − 1)2

λ1(1 + P2)
×

{
1

4(1−a2) if a2 < 1
2

a2 otherwise
.

Therefore we clearly need

λ2 − 1

λ1
<

{
4a2(1− a2)P2 if a2 < 1

2

P2 otherwise
.

At ρ2 = 1, we require

0 ≤ (λ2 − 1)

(
(1− a2)

(1 +K1)(1 + P2)

)
+

(λ2 − 1)

(1 +K1)(1 + P2)

((
P2(1 + P1))

P1

)
− λ2 − 1

λ1

(
1

(K1 + 1)

a2((P1 −K1))

P1

))
Or equivalently

0 ≤ (1− a2) +

((
P2(1 + P1))

P1

)
− λ2 − 1

λ1

(
1

(K1 + 1)

a2((P1 −K1))

P1

))
.

Optimizing over K1 it suffices that

0 ≤ (1− a2) +

((
P2(1 + P1))

P1

)
− λ2 − 1

λ1
a2

)
.
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Therefore, we need

λ2 − 1

λ1
≤

P2(1+P1)
P1

+ (1− a2)

a2
.

Thus the constraint (from ρ2 = 0) is the active one. We are now left with computing the minimum λ = λ1 +λ2
satisfying the above constraints.

Case (i): a2 < 1
2

We seek to minimize λ1 + λ2 subject to

1− a2 ≤ (λ2 − 1)

(
a2P2

1 + P2

)
− (λ2 − 1)2

λ1(1 + P2)
× 1

4(1− a2)
.

Let λ1

λ2−1 := γ. We seek to minimize

(1− a2)(1 + γ)
a2P2

1+P2
− 1

4γ(1+P2)(1−a2)
=

(1 + P2)(1− a2)

a2P2

γ(1 + γ)

γ − 1
4a2(1−a2)P2

.

The minimum value is

(1 + P2)(1− a2)

a2P2

(
1 +

√
1 + 4a2(1− a2)P2

)2
4a2(1− a2)P2

obtained when γ =

(
1+
√

1+4a2(1−a2)P2

)
4a2(1−a2)P2

.

Case (ii): a2 ≥ 1
2

We seek to minimize λ1 + λ2 subject to

1− a2 ≤ (λ2 − 1)

(
a2P2

1 + P2

)
− (λ2 − 1)2a2

λ1(1 + P2)
.

As before, let λ1

λ2−1 := γ. We seek to minimize

(1− a2)(1 + γ)
a2P2

1+P2
− a2

γ(1+P2)

=
(1 + P2)(1− a2)

a2P2

γ(1 + γ)

γ − 1
P2

.

The minimum value is

(1 + P2)(1− a2)

a2P2

(
1 +
√

1 + P2

)2
P2

obtained when γ =
(1+
√
1+P2)
P2

.

Appendix D. Proofs of Results for the Broadcast Channel

D.1. Proof of Lemma 2. We use the proof by contradiction. Observe that an erasure channel p(ŷ|y) satisfies
the assumptions of Corollary 3. From Corollary 3, there exists p(v, w, x) such that

1

2
(1− ε) ≤ I(V ;Z|W )− I(V ; Ŷ |W ) (54)

1− ε = I(Ŷ ;Y ) ≤ I(W ;Z) + I(X; Ŷ |W ) = I(W ;Z) +H(Ŷ |W ). (55)

Note that I(Ŷ ;Y ) = (1− ε)H(Ŷ ), thus 1− ε = I(Ŷ ;Y ) implies that Ŷ is uniform. Next note that

1− ε
2
≤ I(V ;Z|W )− I(V ; Ŷ |W )

= (1− ε)(I(V ; Ẑ|W )− I(V ; Ŷ |W ))− εI(V ; Ŷ |W )

= (1− ε)(I(V ; Ẑ|Ŷ W )− I(V ; Ŷ |Ẑ,W ))− εI(V ; Ŷ |W )

= (1− ε)(H(Ẑ|Ŷ )− I(W ; Ẑ|Ŷ )−H(Ẑ|V,W, Ŷ )− I(V ; Ŷ |Ẑ,W ))− εI(V ; Ŷ |W )

≤ (1− ε) P(Ŷ = 0)H(Ẑ|Ŷ = 0)
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Since Ŷ is uniform, we have 1
2 ≤ H(Ẑ|Ŷ ) = 1

2H(Ẑ|Ŷ = 0) ≤ 1
2 , implying that P (X = 0) = P (X = 1) = 1

4 . The

above sequence also implies that the following four terms I(W ; Ẑ|Ŷ ), H(Ẑ|V,W, Ŷ ), I(V ; Ŷ |W ), I(V ; Ŷ |Ẑ,W )

are zero. LetW0 := {w : P(Ŷ = 1|W = w) 6= 0}. For all w ∈ W0, and for any v such that P(V = v|W = w) > 0
observe that

p(v|w)p(ŷ = 1|w) = p(v|w)p(ŷ = 1|vw)p(ẑ = 0|vw, ŷ = 1) ∵ I(V ; Ŷ |W ) = 0, p(ẑ = 0|vw, ŷ = 1) = 1

= p(v|w)p(ẑ = 0|vw)p(ŷ = 1|vw, ẑ = 0)

= p(v|w)p(ẑ = 0|vw)p(ŷ = 1|w, ẑ = 0) ∵ I(V ; Ŷ |Ẑ,W ) = 0.

Canceling p(v|w) we see that p(ẑ = 0|vw) does not depend on v, implying that I(V ; Ẑ|W = w) = 0. Since we

have I(V ; Ẑ|W ) = 1
2 , this implies that

∑
w∈W0

P(W = w) ≤ 1
2 . Hence

1

2
=
∑
w

P(W = w, Ŷ = 1) =
∑
w∈W0

P(W = w, Ŷ = 1) ≤
∑
w∈W0

P(W = w) ≤ 1

2
.

The above implies that
∑
w∈W0

P(W = w) = 1
2 and that w ∈ W0 implies Ŷ = 1. On the other hand, by

definition w /∈ W0 implies Ŷ = 0, or that Ŷ is a function of W . Now, applying this to (55), we obtain that

1− ε ≤ I(W ;Z) = (1− ε)I(W ; Ẑ) ≤ (1− ε)H(Ẑ) = (1− ε)H2

(
1
4

)
, a contradiction.

Appendix E. Routine Calculations

E.1. Justification of equalities in the proof of Theorem 3. Consider the first equality:

2V = λαI(X2a, X2b; Y2a,Y2b|Wa,Wb, X1a, X1b, Qa, Qb)− λαI(X2a, X2b; Ĵa, Ĵb|Wa,Wb, X1a, X1b, Qa, Qb)

+ λ(1− α)I(X2a, X2b; Y2a,Y2b|Wa,Wb, Qa, Qb)

− λ(1− α)I(X2a, X2b; Ja,Jb|Wa,Wb, Qa, Qb) + βI(X1a, X1b; Y1a,Y1b|Qa, Qb)
+ (1− β)

[
I(Wa,Wb; Y2a,Y2b|Qa, Qb) + I(X1a, X1b; Ja,Jb|Wa,Wb, Qa, Qb)

+ I(X2a, X2b; J̄a, J̄b|Wa,Wb, X1a, X1b, Qa, Qb)
]

+ εI(X1a, X1b, X2a, X2b; Y2a,Y2b|Wa,Wb, Qa, Qb)− γεI(X1a, X1b, X2a, X2b; Ja,Jb|Wa,Wb, Qa, Qb)

= λαI(X2+, X2−; Y2+,Y2−|Wa,Wb, X1+, X1−, Qa, Qb)− λαI(X2+, X2−; Ĵ+, Ĵ−|Wa,Wb, X1+, X1−, Qa, Qb)

+ λ(1− α)I(X2+, X2−; Y2+,Y2−|Wa,Wb, Qa, Qb)

− λ(1− α)I(X2+, X2−; J+,J−|Wa,Wb, Qa, Qb) + βI(X1+, X1−; Y1+,Y1−|Qa, Qb)
+ (1− β)

[
I(Wa,Wb; Y2+,Y2−|Qa, Qb) + I(X1+, X1−; J+,J−|Wa,Wb, Qa, Qb)

+ I(X2+, X2−; J̄+, J̄−|Wa,Wb, X1+, X1−, Qa, Qb)
]

(56)

+ εI(X1+, X1−, X2+, X2−; Y2+,Y2−|Wa,Wb, Qa, Qb)− γεI(X1+, X1−, X2+, X2−; J+,J−|Wa,Wb, Qa, Qb)

This equality replaces the a, b copies of random variables with their rotated + and − versions. It holds since the
mapping (X2a, X2b) 7→ (X2+, X2−) (and the similar mapping for other pairs of random variables) is a bijection
and hence preserves mutual information terms. Indeed the determinant of the Jacobian of the transformation
(ra, rb) 7→ (r+, r−) is one, hence it would even preserve differential entropies.

The next step is equating (a) and (b) in the proof of Theorem 3. To justify this step we will break things
one by one. One of the repeated tricks that we will employ is the following

I(X+, X−;Y+, Y−|U)− I(X+, X−; Ŷ+, Ŷ−|U)

= I(X+, X−;Y+|U, Ŷ−)− I(X+, X−; Ŷ+|U, Ŷ−) + I(X+, X−;Y−|U, Y+)− I(X+, X−; Ŷ−|U, Y+)

This is just Lemma 6 with n=2.

• Considering the terms that are multiplied by λα in (56), we have:

I(X2+, X2−; Y2+,Y2−|Wa,Wb, X1+, X1−, Qa, Qb)− I(X2+, X2−; Ĵ+, Ĵ−|Wa,Wb, X1+, X1−, Qa, Qb)

= I(X2+, X2−; Y2+|Wa,Wb, X1+, X1−, Ĵ−, Qa, Qb)− I(X2+, X2−; Ĵ+|Wa,Wb, X1+, X1−, Ĵ−, Qa, Qb)
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+ I(X2+, X2−; Y2−|Wa,Wb, X1+, X1−,Y2+, Qa, Qb)− I(X2+, X2−; Ĵ−|Wa,Wb, X1+, X1−,Y2+, Qa, Qb)

= I(X2+, X2−; Y2+|Wa,Wb, X1+, X1−,J−, Ĵ−, Qa, Qb)− I(X2+, X2−; Ĵ+|Wa,Wb, X1+, X1−,J−, Ĵ−, Qa, Qb)

+ I(X2+, X2−; Y2−|Wa,Wb, X1+, X1−,Y2+, Qa, Qb)− I(X2+, X2−; Ĵ−|Wa,Wb, X1+, X1−,Y2+, Qa, Qb)

where in the second equality the (immediate) Markov chain

J− −
− (X1−, Ĵ−)−
− (Wa,Wb, Qa, Qb, X1+, X2+, X2−, Y2+)

is used to introduce J− in the conditioning. Next,

I(X2+, X2−; Y2+|Wa,Wb, X1+, X1−,J−, Ĵ−, Qa, Qb)− I(X2+, X2−; Ĵ+|Wa,Wb, X1+, X1−,J−, Ĵ−, Qa, Qb)

+ I(X2+, X2−; Y2−|Wa,Wb, X1+, X1−,Y2+, Qa, Qb)− I(X2+, X2−; Ĵ−|Wa,Wb, X1+, X1−,Y2+, Qa, Qb)

= I(X2+, X2−, X1−, Ĵ−; Y2+|Wa,Wb, X1+,J−, Qa, Qb)− I(X2+, X2−, X1−, Ĵ−; Ĵ+|Wa,Wb, X1+,J−, Qa, Qb)

− I(X1−, Ĵ−; Y2+|Wa,Wb, X1+,J−, Qa, Qb) + I(X1−, Ĵ−; Ĵ+|Wa,Wb, X1+,J−, Qa, Qb)

+ I(X2+, X2−, X1+; Y2−|Wa,Wb, X1−,Y2+, Qa, Qb)− I(X2+, X2−, X1+; Ĵ−|Wa,Wb, X1−,Y2+, Qa, Qb)

− I(X1+; Y2−|Wa,Wb, X1−,Y2+, Qa, Qb) + I(X1+; Ĵ−|Wa,Wb, X1−,Y2+, Qa, Qb)

= I(X2+; Y2+|Wa,Wb, X1+,J−, Qa, Qb)− I(X2+; Ĵ+|Wa,Wb, X1+,J−, Qa, Qb)

− I(X1−, Ĵ−; Y2+|Wa,Wb, X1+,J−, Qa, Qb) + I(X1−, Ĵ−; Ĵ+|Wa,Wb, X1+,J−, Qa, Qb)

+ I(X2−; Y2−|Wa,Wb, X1−,Y2+, Qa, Qb)− I(X2−; Ĵ−|Wa,Wb, X1−,Y2+, Qa, Qb) (57)

− I(X1+; Y2−|Wa,Wb, X1−,Y2+, Qa, Qb) + I(X1+; Ĵ−|Wa,Wb, X1−,Y2+, Qa, Qb)

where in the last step we used the fact that the channels are additive Gaussian (and hence Z+’s are
independent of other variables), we have Y2+ depends only on the “inputs” (X1+, X2+), (and similarly
for the negative terms).

• Considering the terms that are multiplied by λ(1− α) in (56), we have:

I(X2+, X2−; Y2+,Y2−|Wa,Wb, Qa, Qb)− I(X2+, X2−; J+,J−|Wa,Wb, Qa, Qb)

= I(X2+, X2−; Y2+|Wa,Wb,J−, Qa, Qb)− I(X2+, X2−; J+|Wa,Wb,J−, Qa, Qb)

+ I(X2+, X2−; Y2−|Wa,Wb,Y2+, Qa, Qb)− I(X2+, X2−; J−|Wa,Wb,Y2+, Qa, Qb)

= I(X2+; Y2+|Wa,Wb,J−, Qa, Qb)− I(X2+; J+|Wa,Wb,J−, Qa, Qb)

+ I(X2−; Y2−|Wa,Wb,Y2+, Qa, Qb)− I(X2−; J−|Wa,Wb,Y2+, Qa, Qb)

+ I(X2−; Y2+|Wa,Wb, X2+,J−, Qa, Qb)− I(X2−; J+|Wa,Wb, X2+,J−, Qa, Qb)

+ I(X2+; Y2−|Wa,Wb, X2−,Y2+, Qa, Qb)− I(X2+; J−|Wa,Wb, X2−,Y2+, Qa, Qb)

= I(X2+; Y2+|Wa,Wb,J−, Qa, Qb)− I(X2+; J+|Wa,Wb,J−, Qa, Qb)

+ I(X2−; Y2−|Wa,Wb,Y2+, Qa, Qb)− I(X2−; J−|Wa,Wb,Y2+, Qa, Qb) (58)

− I(X2−; J+|Wa,Wb, X2+,J−,Y2+, Qa, Qb)− I(X2+; J−|Wa,Wb, X2−,Y2−,Y2+, Qa, Qb)

Here the last inequality uses

I(X2−; Y2+|J+,Wa,Wb, X2+,J−, Qa, Qb) = 0,

I(X2+; Y2−|J−,Wa,Wb, X2−,Y2+, Qa, Qb) = 0.

The first equation follows from the structure of Y2+ which is a linear combination of X2+, J+ and some
independent noise. The second equation follows similarly.
• Considering the terms that are multiplied by β in (56), we have:

Since Y1 is X1 with some additive Gaussian noise, the following decomposition is immediate

I(X1+, X1−; Y1+,Y1−|Qa, Qb) = I(X1+; Y1+|Qa, Qb) + I(X1−; Y1−|Qa, Qb)− I(Y1+; Y1−|Qa, Qb). (59)
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• Considering the terms that are multiplied by 1− β in (56), we have:
The key equality used here is (one can also swap (A2, B1)↔ (A1, B2))

h(A1, A2|C)− h(B1, B2|C) = h(A1|C,A2)− h(B1|C,A2) + h(A2|C,B1)− h(B2|C,B1).

I(Wa,Wb;Y2+,Y2−|Qa, Qb) + I(X1+, X1−;J+,J−|Wa,Wb, Qa, Qb) + I(X2+, X2−; J̄+, J̄−|Wa,Wb, X1+, X1−, Qa, Qb)

= h(Y2+,Y2−|Qa, Qb) +
[
h(J+,J−|Wa,Wb, Qa, Qb)− h(Y2+,Y2−|Wa,Wb, Qa, Qb)

]
+
[
h(J̄+, J̄−|Wa,Wb, X1+, X1−, Qa, Qb)− h(J+,J−|Wa,Wb, X1+, X1−, Qa, Qb)

]
− h(J̄+, J̄−|Wa,Wb, X2+, X2−, X1+, X1−, Qa, Qb)

= h(Y2+|Qa, Qb) + h(Y2−|Qa, Qb)− I(Y2+;Y2−|Qa, Qb)

+
[
h(J+|Wa,Wb, Qa, Qb,J−)− h(Y2+|Wa,Wb, Qa, Qb,J−)

+ h(J−|Wa,Wb, Qa, Qb,Y2+)− h(Y2−|Wa,Wb, Qa, Qb,Y2+)
]

+
[
h(J̄+|Wa,Wb, X1+, X1−, Qa, Qb,J−)− h(J+|Wa,Wb, X1+, X1−, Qa, Qb,J−)

+ h(J̄−|Wa,Wb, X1+, X1−, Qa, Qb, J̄+, )− h(J−|Wa,Wb, X1+, X1−, Qa, Qb, J̄+, )
]

− h(J̄+|Wa,Wb, X2+, X2−, X1+, X1−, Qa, Qb,J−)− h(J̄−|Wa,Wb, X2+, X2−, X1+, X1−, Qa, Qb, J̄+)

In the last line we used the equality

h(J̄+|Wa,Wb, X2+, X2−, X1+, X1−, Qa, Qb) = h(J̄+|Wa,Wb, X2+, X2−, X1+, X1−, Qa, Qb,J−),

introducing an extra J− for free because J̄+ depends on the inputs (X2+, X1+) and some independent
additive Gaussian noise. Now we can recombine them back into mutual information terms as follows

I(Wa,Wb,J−;Y2+|Qa, Qb) + I(X1+, X1−;J+|Wa,Wb,J−, Qa, Qb) + I(X2+, X2−; J̄+|Wa,Wb, X1+, X1−,J−, Qa, Qb)

+ I(Wa,Wb,Y2+;Y2−|Qa, Qb) + I(X1+, X1−;J−|Wa,Wb, Qa, Qb,Y2+) + I(X2+, X2−; J̄−|Wa,Wb, X1+, X1−, Qa, Qb,Y2+)

− I(Y2+;Y2−|Qa, Qb)

= I(Wa,Wb,J−;Y2+|Qa, Qb) + I(X1+;J+|Wa,Wb,J−, Qa, Qb) + I(X2+; J̄+|Wa,Wb, X1+,J−, Qa, Qb)

+ I(Wa,Wb,Y2+;Y2−|Qa, Qb) + I(X1+, X1−;J−|Wa,Wb, Qa, Qb,Y2+) + I(X2+, X2−; J̄−|Wa,Wb, X1+, X1−, Qa, Qb,Y2+)

− I(Y2+;Y2−|Qa, Qb) +
{
I(X1−;J+|Wa,Wb,J−, X1+, Qa, Qb)− I(X1−; J̄+|Wa,Wb,J−, X1+, Qa, Qb)

}
+
{
I(X1+;J−|Wa,Wb, Qa, Qb,Y2+, X1−)− I(X1+; J̄−|Wa,Wb, Qa, Qb,Y2+, X1−)

}
The key observation is that both the terms in the curly braces are zero. This is where the peculiar

construction of the two variables J and J̄ are useful. Observe that the first components of both are X1

with different independent additive Gaussians. When conditioned on say X1+ the additive Gaussians of
both components are completely independent of the remaining terms and drop away from the mutual
information. The second components of both J and J̄ are identical. Hence the terms in the curly braces
are zero. This yields that the sum of the terms multiplied by (1− β) in (56) is equivalent to

I(Wa,Wb,J−;Y2+|Qa, Qb) + I(X1+;J+|Wa,Wb,J−, Qa, Qb) + I(X2+; J̄+|Wa,Wb, X1+,J−, Qa, Qb) (60)

+ I(Wa,Wb,Y2+;Y2−|Qa, Qb) + I(X1+, X1−;J−|Wa,Wb, Qa, Qb,Y2+) + I(X2+, X2−; J̄−|Wa,Wb, X1+, X1−, Qa, Qb,Y2+)

− I(Y2+;Y2−|Qa, Qb)

• Considering the terms that are multiplied by ε in (56), we have:

I(X1+, X1−, X2+, X2−; Y2+,Y2−|Wa,Wb, Qa, Qb)− γI(X1+, X1−, X2+, X2−; J+,J−|Wa,Wb, Qa, Qb)

= I(X1+, X2+; Y2+|Wa,Wb,J−, Qa, Qb)− γI(X1+, X2+; J+|Wa,Wb,J−, Qa, Qb) (61)

+ I(X1−, X2−; Y2−|Wa,Wb, Qa, Qb,Y2+)− γI(X1−, X2−; J−|Wa,Wb, Qa, Qb,Y2+)

− (γ − 1)I(Y2+; J−|Wa,Wb, Qa, Qb)

This is exactly as in Example 2 of [GN14] and follows from Lemma 4.
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Using (57), (58), (59), (60), (61) to substitute the terms in (56) we see that 2V can be further written as

2V = λαI(X2+; Y2+|Wa,Wb, X1+,J−, Qa, Qb)− λαI(X2+; Ĵ+|Wa,Wb, X1+,J−, Qa, Qb)

+ λ(1− α)I(X2+; Y2+|Wa,Wb,J−, Qa, Qb)

− λ(1− α)I(X2+; J+|Wa,Wb,J−, Qa, Qb) + βI(X1+; Y1+|Qa, Qb)
+ (1− β)

[
I(Wa,Wb,J−; Y2+|Qa, Qb) + I(X1+; J+|Wa,Wb,J−, Qa, Qb)

+ I(X2+; J̄+|Wa,Wb, X1+,J−, Qa, Qb)
]

+ εI(X1+, X2+; Y2+|Wa,Wb,J−, Qa, Qb)− γεI(X1+, X2+; J+|Wa,Wb,J−, Qa, Qb)

+ λαI(X2−; Y2−|Wa,Wb, X1−, Qa, Qb,Y2+)− λαI(X2−; Ĵ−|Wa,Wb, X1−, Qa, Qb,Y2+)

+ λ(1− α)I(X2−; Y2−|Wa,Wb,Y2+, Qa, Qb)

− λ(1− α)I(X2−; J−|Wa,Wb,Y2+, Qa, Qb) + βI(X1−; Y1−|Qa, Qb)
+ (1− β)

[
I(Wa,Wb,Y2+; Y2−|Qa, Qb) + I(X1−; J−|Wa,Wb, Qa, Qb,Y2+)

+ I(X2−; J̄−|Wa,Wb, X1−, Qa, Qb,Y2+)
]

+ εI(X1−, X2−; Y2−|Wa,Wb, Qa, Qb,Y2+)− γεI(X1−, X2−; J−|Wa,Wb, Qa, Qb,Y2+)

−
[
λαI(X1−, Ĵ−; Y2+|Wa,Wb, X1+,J−, Qa, Qb)− λαI(X1−, Ĵ−; Ĵ+|Wa,Wb, X1+,J−, Qa, Qb)

]
−
[
λαI(X1+; Y2−|Wa,Wb, X1−, Qa, Qb,Y2+)− λαI(X1+; Ĵ−|Wa,Wb, X1−, Qa, Qb,Y2+)

]
− λ(1− α)I(X2−; J+|Wa,Wb, X2+,Y2+,J−, Qa, Qb)− λ(1− α)I(X2+; J−|Wa,Wb, X2−,Y2−, Qa, Qb)

− βI(Y1+; Y1−|Qa, Qb)− (1− β)I(Y2+; Y2−|Qa, Qb)− (γ − 1)εI(Y2+; J−|Wa,Wb, Qa, Qb). (62)

This completes the justification of equating (a) and (b) in the proof of Theorem 3.

E.2. Steps in the proof of Proposition 2.

E.2.1. Argument 1. We first show the algebra manipulations for the first inequality in Appendix B.2.

C

(
x2∗ +

(
x∗

(√
S31 +

√
ρ2S32

)
+
√

(1− ρ2)S32

)2)
− C

(
x2∗(1 + SJ)

)
≤ 1

2
log

(
1 + S31 + ρ2S32 + 2

√
ρ2S31S32

1 + SJ
+
S31S32(1− ρ2)

S31 − SJ

)
,

or equivalently,

1 + x2∗ +
(
x∗

(√
S31 +

√
ρ2S32

)
+
√

(1− ρ2)S32

)2
≤

(
1 + S31 + ρ2S32 + 2

√
ρ2S31S32

1 + SJ
+
S31S32(1− ρ2)

S31 − SJ

)
(1 + x2∗(1 + SJ)),

which is equivalent to showing,

2x∗

(√
S31 +

√
ρ2S32

)√
(1− ρ2)S32

≤ S31 − SJ + ρ2S32 + 2
√
ρ2S31S32

1 + SJ
+
SJS32(1− ρ2)

S31 − SJ
+ x2∗(1 + SJ)

S31S32(1− ρ2)

S31 − SJ
.

Completing the square on x∗, it suffices to show that

(S31 − SJ)
(√

S31 +
√
ρ2S32

)2
S31(1 + SJ)

≤ S31 − SJ + ρ2S32 + 2
√
ρ2S31S32

1 + SJ
+
SJS32(1− ρ2)

S31 − SJ
or equivalently,
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SJ
1 + SJ

≤ SJ
1 + SJ

(√
S31 +

√
ρ2S32

)2
S31

+
SJS32(1− ρ2)

S31 − SJ
,

which is immediate.

E.2.2. Argument 2, step (a). Note that for ρ2 ≤ 1 and S21 ≤ SJ < S31

1

2
log(1 + SJ(1− ρ2)) +

1

2
log

(
1 + S31 + ρ2S32 + 2

√
ρ2S31S32

1 + SJ
+
S31S32(1− ρ2)

S31 − SJ

)
(a)

≤ 1

2
log

(
1 + S31 + S32

(
(1 + SJ)2S2

31

SJ(1 + S31)(S31 − SJ)

))
or equivalently,

1 + S31 + ρ2S32 + 2
√
ρ2S31S32 +

S31S32(1− ρ2)

S31 − SJ
(1 + SJ(1− ρ2))

≤ 1 + S31 + S32

(
(1 + SJ)2S2

31

SJ(1 + S31)(S31 − SJ)

)
+ ρ2SJ

(
1 + S31 + ρ2S32 + 2

√
ρ2S31S32

1 + SJ

)
.

Since (1+SJ )S31

S31−SJ + S31(1+SJ )
SJ (1+S31)

=
(1+SJ )

2S2
31

SJ (1+S31)(S31−SJ ) , the last inequality is equivalent to

ρ2S32 + 2
√
ρ2S31S32 +

S31S32(1− ρ2)

S31 − SJ
(1 + SJ(1− ρ2))

≤ S32

(
(1 + SJ)S31

S31 − SJ
+
S31(1 + SJ)

SJ(1 + S31)

)
+ ρ2SJ

(
1 + S31 + ρ2S32 + 2

√
ρ2S31S32

1 + SJ

)
.

The last inequality follows from the two immediate ones below

ρ2S32 +
S31S32(1− ρ2)

S31 − SJ
(1 + SJ(1− ρ2)) ≤ S32

(1 + SJ)S31

S31 − SJ

2
√
ρ2S31S32 ≤

S32S31(1 + SJ)

SJ(1 + S31)
+ ρ2SJ

(
1 + S31

1 + SJ

)
.

E.3. Steps in the proof of Theorem 8. To see (33c) observe that

I(M0;Zn|Ĵn) + I(M0, J
n; Ĵn) + I(M1; Jn|M0, Ĵ

n) + I(M1;Y n|M0, J
n)

= I(M0;Zn, Ĵn) + I(M1;Y n, Jn|M0) + I(Ĵn; Jn|M1,M0)

≥ n(R0 +R1)− ng(εn).

To see (33f) observe that

min{I(M0, Ĵ
n; Jn) + I(M0;Y n|Jn), I(M0;Zn|Ĵn) + I(M0, J

n; Ĵn)}

+ I(M1;Y n|M0, J
n) + I(M2; Ĵn|M1,M0, J

n)

+ min

{
I(M1; Jn|M0, Ĵ

n) + I(M2;Zn|M1,M0, Ĵ
n),

I(M2;Zn|M0, Ĵ
n) + I(M1; Jn|M2,M0, Ĵ

n)

}
= min{I(M0;Y n, Jn), I(M0;Zn, Ĵn)}

+ min

{
I(M1;Y n, Jn|M0) + I(M2;Zn, Ĵn|M1,M0) + I(Jn; Ĵn|M0,M1,M2),

I(M2;Zn, Ĵn|M0) + I(M1;Y n, Jn|M0) + I(Jn; Ĵn|M0,M1,M2) + I(M1;M2|M0, J
n, Ĵn)

}
≥ n(R0 +R1 +R2)− ng(εn).
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