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ABSTRACT. This paper employs auxiliary receivers as a mathematical tool to identify Gallager-type auxiliary
random variables and write outer bounds for some basic multiuser settings. This approach is then applied to the
relay, interference, and broadcast channel settings, yielding new outer bounds that improve on existing outer
bounds and strictly outperform classical outer bounds. For instance, we strictly improve on: the cutset outer
bound for the scalar Gaussian relay channel, the outer bounds for the Gaussian Z-interference channel, and the
outer bounds for the two receiver broadcast channel.

1. INTRODUCTION

A number of techniques for proving infeasiblity results for achievable rate regions in multiuser information
theory settings are known in the literature. The generic and classical approach is based on the identification of
the auxiliary random variables as the past and/or future of the underlying random variables to write single-letter
converse (outer) bounds. We call such an identification to be a Gallager-type auxiliary identification [ ].
However, non-standard techniques have also been used in some specialized settings. Establishing the continuity
of differential entropy | | with respect to the Wasserstein metric to develop an outer bound for the Gaussian
Z-interference channel is an example of a non-classical approach. For a class of relay channels called the primitive
relay channel, converse bounds based on the blowing-up lemma, concentration of Gaussian measure, or reverse
hypercontractivity are known [ , , , ], which are again non-classical approaches. It
is also known that in distributed source/channel codmg problems with dependent sources | ], less common
measures of correlation based on maximal correlation or hypercontractivity can provide better converse bounds
(see also | , ] which studies the fundamental limits of this approach).

Cover, | ], employed auxiliary random variables so that one can write achievable regions that captured
the idea of superposition coding (clusters) for broadcast channels. Subsequently, the use of auxiliary random
variables at the sender side to develop achievable rate regions has been a useful tool in the information-theorists’
toolbox. In this paper, we propose auxiliary channels (or auxiliary receivers) to write outer bounds for basic
multi-terminal settings and show that this can be used to develop bounds that outperform state-of-the-art
bounds in some basic settings. We call the new family of outer bounds developed in this paper to be the
J-bounds, with J being a generic pseudonym for an auxiliary receiver.

One can identify special instances of utilizing auxiliary receivers in prior works, notably in the genie-aided
outer bound proofs. Our converse bounds based on auxiliary receivers generalize genie-aided outer bounds
since the auxiliary receiver’s message may not be available to the existing receivers. One may also interpret
some of the existing bounds in the literature as special instances of J-bounds: See for instance, the auxiliary

J in | , Corollary 2] for the secret key agreement, auxiliary variable X in [ , Definition 3] for the
multiterminal source coding problem, imaginary channel V5 in [ , Eq. 16] and the remote source and
channels in | , Eq. 12, 13] for a joint source-channel coding over a broadcast channel.

The basic idea of our outer bounds is to expand the space of possibilities of (Gallager-type) identification of
auxiliary variables in outer bounds: we consider one or multiple “auxiliary” receivers and use their past and/or
future when identifying the auxiliary random variables. These auxiliary random variables are then used to derive
new constraints on the achievable rates. For instance, one can use an existing upper bound to obtain a bound
on the flow of information towards the introduced auxiliary receiver. Separately, one can bound the difference
of the flow of information towards the legitimate receiver and the auxiliary receiver using the newly identified
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auxiliary random variables. Adding up these two bounds yields an upper bound on the flow of information to
the legitimate receiver. The idea of adding and subtracting the flow of information to an auxiliary receiver can
be noted in our upper bounds on the relay and interference channels.

Another important benefit of introducing the auxiliary receivers is the possibility of inducing certain Markov
chains and constraints on the auxiliary random variables. For instance, our upper bound for the relay channel
involves an auxiliary random variable W that satisfies a certain Markov structure. This Markov chain follows
from the restriction on the auxiliary receiver J, in that it is allowed to depend only on the transmitter’s input
signal and not on the relay’s input signal (for another example, see the Markov chain structure induced by the
choice of the auxiliary receiver in the follow-up work [ , Theorem 7]).

The original motivation for the authors’ introduction of auxiliary receivers came from the following obser-
vation in the context of broadcast channels: Suppose one erases the output of every receiver with probability
€, then the traditional single-letter outer bounds scale by (1 — ¢); however the achievable region does not (see
Section 4.1). This motivated the authors, thanks also to a question asked by Young-Han Kim, to investigate
whether the true capacity region also scaled by (1 —¢). It was here that the auxiliary receiver idea originated as
a tool to show that the true capacity region did not have the (1 — ¢€) scaling property, as the outputs of the aux-
iliary channels need not undergo any erasure. Our outer bound in Theorem 7 addresses the above question. In
this bound, new auxiliary random variables (defined using past and/or future of the auxiliary receiver symbols)
are used to minimize the discarded terms in the various routine manipulations. In particular, the UV outer
bound (a previously known outer bound on the capacity of a general broadcast channel) and the terms that are
discarded in its derivation are considered. The bound is modified to minimize the discarded terms using the
new auxiliary random variables. This then led to a (strict) tightening of the rate constraints, whose strictness
is then demonstrated using a concrete example.

We also give a second outer bound for the general broadcast channel with two auxiliary receivers. Here,
instead of just considering the information flow of the messages to one auxiliary receiver, we also modify the
content of the message itself using another auxiliary receiver (see Remark 16).

One major difference between the approach in this paper and most of the earlier papers by the authors (and
perhaps others) is that the outer bounds were not “guided” by achievable regions; that is, here we were not
trying to develop a matching converse to an achievable region or even attempting to come close to one. The
fact that a small change of perspective of the standard techniques do give us these improvements suggests that
there is an entire unexplored landscape motivated by similar observations. It is also worthwhile to note that the
new upper bounds developed here and in the follow-up works in | , ] can recover and improve
upon results obtained using (novel to the field) geometric techniques | , , , ].

Remark 1. There are some instances where there is, in the words of the wise reviewer, “a mathematical miasma”
induced by routine and unending manipulations of information measures. In such instances, a reader may
alternately use an automated software (https://github.com/cheuktingli/psitip, see [Li21]) to check the veracity
of the manipulations.

Remark 2. The authors believe that there is lots of room to explore with respect to the auxiliary receiver
approach for developing outer bounds even in the three basic settings considered in this paper. The main goal
of this paper is to illustrate that this approach is fruitful and leads to strict improvements in relay, interference,
and broadcast channels.

1.1. Organization. This paper is organized as follows: in Sections 2 and 3 we give our new outer bounds
for the relay and interference channels respectively. In Section 4 we give our outer bounds for the broadcast
channel.

Notation: We adopt most of our notation from [ ]. The set {1,2,---,n} is denoted by [n]. We use
Y to denote the sequence (Y7,Ya, -+ ,Y;), and Yij to denote (Y;,Yiy1,---,Y;). We also use Y™\ to denote
(yi-1i, 711). For discrete settings, logarithms are in base two, and for continuous channels, the logarithms are
in base e. Conditional distributions representing channels are denoted by T'(-|-). Given two random variables
X and Y, we use X 1 Y to denote X being independent of Y. We say that X -e- Y —-e— Z forms a Markov
chain if I(X; Z]Y') = 0. For square matrices A and B of the same size, we write A < B if B — A is a positive
semi-definite matrix.
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FIGURE 1. Transmission of a message M over a memoryless relay channel with n uses of the channel.

2. RELAY CHANNEL

A relay channel models the transmission of a message from a sender to a receiver in the presence of a
helper relay node. A relay channel is described by a conditional distribution T'(y, y:|x, z,) where x € X is the
transmitter’s input symbol, x, € A&} is the input to the channel by the relay, y € ) is the output symbol at
the receiver and y, € ), is the output symbol at the relay. An (n,R) code for a memoryless relay channel
T(y,yc|x, x,), depicted in Fig. 1, consists of an encoder € that maps a message M (uniform over [2"7]) to an
input sequence X" € X", i.e., X" = E(M), a relay encoder &,; that assigns a symbol X;; to each past received
sequence Y1 for i € [n], i.e., Xp; = E4(Y;1), and a decoder D that produces an estimate M from Y. The
following joint distribution is induced by the code over a memoryless relay channel T'(y, y.|z, z;):

p(m)p(z"|m) (Hp wralyl” )HT(yi,yrilwwn)> p(rly")

i=1

meaning that the current output symbols (Y;, Y;;) are conditionally independent of (M, X*~1, Xi=1 yi=1 yi-1)
given (X;, Xy;). The error probability of the code is P[M # M ]. A non-negative rate R is said to be achievable
if the transmitter is able to send a message at rate R such that the probability of error tends to zero as n, the
blocklength, tends to infinity. The supremum of all achievable rates is called the capacity for the relay channel

T(y, yilz, 2x).
There are different achievability schemes in the literature for a single-relay channel such as decode-and-
forward, compress-and-forward, etc (e.g. see [ ) ) ]). Outer bounds are discussed in [ ,

, , ] for the special class of relay channels with orthogonal
receiver components (Where Y = (Y1, Yg) has two components and p(y, yr|x, 2:) = p(y1, ye|2)p(y2|2:).) However
these bounds are not applicable to a general relay channel and the best known upper bound for a general relay
channel is the cutset bound | |. For more details on relay channels and a collection of known results please
refer to | , Chapter 16]. Interested readers can also look into | ] where we do explore the relay
settings, using ideas developed in this paper, in much greater detail.

Definition 1. An auxiliary receiver is described by a conditional distribution Ty y, x x, defined on arbitrary
alphabet set J. Let F be the class of T}y,y, x x, such that
Tryyix.x, = Ty x x. Tyyvx.x,
also factorizes as
Tryyx.x. = TixTyy,1.x x,-

Equivalently, F is the class of Tyy, x x,, a conditional distribution defined on arbitrary alphabet set 7,
satisfying

Tyx.x, (le, z) = Tyx x, (Glz, xy), Vi, z, @,z (1)
where

Tyx,x, (T, ) = Z Ty, x,x, GV ve, 2, 20) Ty v x, x, (Y Y|, 20
Y
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In other words X, - X —e- J is Markov.

The following theorem proves an upper bound to the capacity of a general relay channel T'(y, y,|x, z,). It is
a J-version of the cutset bound.

Theorem 1. Consider a relay channel T(y, y,|x,x,). Then, a rate R is achievable only if

R < max min max min (I(X,X;Y), I(X;Y,Y;|X,), I(X; J,Y;|X,) + (X, X:; Y|W) — I(X, X5 J|W))
Px,xy TEF PW|X,X,
(2)

where the first minimum is over Tyyy, x,x, € F and the second maximum is over auziliary random variables
W satisfying W - (X, X;) - (Y, Y;, J). Further it suffices to consider |W| < |X||Xy].

Remark 3. Other upper bounds on the capacity of the relay channels are given in a follow-up work | ].
The upper bound given in Theorem 1 is not subsumed by the upper bounds in | ] because it applies
to any arbitrary relay channel and imposes the Markov structure W -e- (X, X,) - (J,Y;,Y) on the auxiliary
random variable W.

Remark 4. The first two terms in the statement of the theorem are the cutset bound terms. The third term is the
summation of I(X; J, Y;| X;) and I(X, X,; Y|W)—I(X, X,; J|W). As the proof indicates, the term I(X; J, Y| X,)
is an upper bound on the flow of information to the auxiliary receiver J, while I(X, X;; Y|W) — I(X, X,; J|W)
is an upper bound on the flow of information to receiver Y minus the flow of information to auxiliary receiver
J.

Proof. The cardinality bound on |[W)| comes from the standard Caratheodory-Bunt [ ] arguments and is
omitted. Take an arbitrary code. The code defines a joint distribution pys xn, Xn,yn,yn. Since randomization
at the sender or relay does not improve the capacity region, without loss of generality we assume that X™ is a
function of the message M and X,; is a function of Y;*~! i = 1,...,n, the past symbols received by the relay. Note
that the first two constraints are the cutset upper bound constraints (see | , Theorem 16.1]). Therefore, it
only remains to prove the third.

The proof uses Fano’s inequality and identifies auxiliary variables from the code-book induced distributions.
We use several data-processing inequalities inferred from Markov chains in the course of our proof.

Let

n

Dan|M, X7, X0, Y ", YR = HTJi‘Xi7Xri;Yi7Y}'i'
i=1
We can think of p;y,y.|x,x, as an extended memoryless relay channel. Observe that by Fano’s inequality we
have n(R — €,) < I(M;Y™) for some ¢, that tends to zero as n tends to infinity. Next, we write

I(M;Y™) =I(M;J") + I(M;Y") = I(M;J") (3)

by adding and subtracting I(M;J"™). The terms I(M;J") and I(M;Y™) — I(M;J") are single-letterized
separately as follows: starting with the latter, we have

IO Y™y = IO T 2 ST IO Y2, YY) = ST (M |7, YY)
23 I XYl Y ) = ST X T Y
ST I, X Yl T, YY) = S I T, Y

(d) L — n 71—
<Y (X, X Vil JP Y ) = Y (X Tl Y

?

N (X X Vil 2, YY) = ST (X, Xi Jil T, Y

3
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FIGURE 2. Bayesian network for probability distribution induced by codes for T' € F, when
n = 4. In drawing this Bayesian network, we utilize the fact that T;yy, x x, =
TyxTyy,17.x,%,-

=3 I(Xei, Xi; Vil W3) = > 1(Xui, X3 Ji| W)
i i

where (a) follows from Lemma 5 in Appendix A, (b) follows from the fact that X; is a function of M and (c),
(d), (e) follow from the Markov chains (J7 ,, Y"1 M, X,;) o X; - J; and (J/'.{, Y"1, M) o (X;, X)) = Y]
(deducible using the d-separation theorem and the Bayesian network in Figure 2)!, respectively. Finally we set

Wi = (JZL+1aYi_1)~ (4)
Next, observe that
I(M;J™) < I(M;J",Y)") (5)
n
=Y (M Ji, Yol I YT X)) (o Xpi = Ea(YTh)

i=1

<Y I(M, T Y L Yl X))
1=1

<> I(Xi i, Yail X)) (- (JTLYTE M) e (X, X)) o (i, Yas)).-
i=1
Thus we get
n(R—e,) < I(M;Y™) < Z (L(Xis i, Yei | Xoy) + 1 (X, Xig Yi|Wi) — 1( X, X3 Ji|W3)) (6)
i=1

LConsider the Bayesian network representation for n = 4 in Figure 2. Time index 3 can be thought of as the present index,
while indices 1,2 can be considered past and index 4 can be considered future. We plot for n = 4 rather than n = 3 since X, is
independent of M but every other X, ; is a function of le_l.



6 AMIN GOHARI AND CHANDRA NAIR

Take a time-sharing random variable @ uniform over {1,2,--- ,n} and independent of previously defined random

variables. Observe that
n

D I(Xis Jiy Yail Xo,) 4 T( X, X3 YilW3) — I( X, X3 Ji| W)

i=1

n(I(Xq; Jg, YrqlX1,q, Q) + 1(Xrq, Xq; Yo IWq, Q) — I(Xiq, Xq; Jo|Wa, Q)
n(1(Q, Xq; Jq, YrqlXr,Q) + 1(Xrq, Xq: Yo W, Q) — I(Xiq, Xq; Jo|Wa, Q)
n(I(Xq; Jg, YiqlXr.q) + 1(Xig, Xq; YoIWo, Q) — 1(Xig, Xq; Jo[We, Q)

Let X = X, X, = X,0,Y =Yg, Y, =Yg, J = Jg and W = (Q,Wy). With this identification, (6) implies
that

IA

R<I(X;J,Y:| X))+ (X, X, Y|W) — I(X, X,; J|W).
From the proof of the cutset bound we also know that with the same identification of random variables we have
R—e, < I(X,X;Y),
R—e < I(X;Y, Yi[X:),
where €, tends to zero as blocklength n tends to infinity.

The code defines a joint distribution on (X™, X7). Observe that the joint distribution induced on (X, X;)
does not depend on the choice of the auxiliary receiver J; it only depends on the original code. However, the
conditional distribution py|x x, does depend on our choice of the auxiliary receiver J since W; involves J7 ;.
Therefore, we conclude that there exists some px x, such that for every auxiliary receiver J there exists some
Pw|x,x, such that

R < min (I(XaXr;Y)v I(Xa}/aYHXr)a I(X, Jy}/;‘Xr) +I(X7Xr7Y|W) - I(Xer7J|W))
Equivalently,
R < max min max min (I(X, X Y), I(X;Y, Y11 X)), I(X;J, Y. X)) + (X, X; Y|W) — (X, Xy; J|W))

px,x; TEF Pw|x, X,
This completes the proof. O
Remark 5. One could see that the term I(M;J") in (5) could be also bounded from above by nI(X, X,;J),
yielding the apparently stronger constraint
R <min(I(X, X,; J), I(X; J,Y;|Xy)) + I(X, X.; YIW) — I(X, Xy J|W).
However, this apparent strengthening of the bound is not useful. To see this, observe that for the optimizing
W we have

I(XaXr§'])+I(XaXr§Y|W) _I(XaXr§J|W) > I(XerQJ)+I(X7Xr§Y) _I(Xer;J) :I(XaXrQY)
since W being constant is always a valid choice.

Corollary 1. Consider the special case T(y,ye|x,xr) = To(ye|2)To(y|z, r, yr) which includes, for instance, the
Gaussian relay channels. For this class, any achievable rate R must satisfy

R <min (I(X,Xr;Y), I(X; Y, Y1 X)), I(X; Y| X)) + sup I(X,X,;YWV)—I(X,X,;Yr\VV))7 (7)
We(X,X;)e (YY)

for some p(x, x,).

Proof. For this class, since X, o X —o- Y; is Markov, we can set J = Y}, and the bound in (2) implies the
result. [
Remark 6. The upper bound in Corollary 1 can be compared with the partial decode-and-forward lower bound

which states that a rate R is achievable if

R < min (I(X,Xr;Y)7 I(X; Y| X,) + sup I(X;Y|VV,Xr)—I(X;Yr|I/V,Xr)), (8)
WG—(X,Xr)'e'(Yvyr)

for some p(z,z,). More specifically, the last term in (8) is the same as that in (7) except that we have replaced
W by (W, X).
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FIGURE 3. Depiction of a Gaussian relay channel.

Remark 7. A weaker form of the bound in (2) which does not involve auxiliary random variables is
R <min (I(X, X,;Y), I(X;Y,Y;|X,), I(X;J,Y;|X;) + (X, X;Y]J) ) 9)
for any arbitrary Ty y, x,x, € F. This follows from the following:
I(X, X, YIW) - I(X, Xy, JJW) < I(X, X, Y[J,W) < I(X, X,; Y|J).

In the next section we will show that the upper bound given in Theorem 1 can be strictly better than the
cutset bound for the scalar Gaussian relay channel.

2.1. Scalar Gaussian Relay Channel. Consider a scalar Gaussian relay channel described by
Yi=gnX+2Z1, Y =gnX+gnX +2

where non-negative reals g¢o1, 931,932 are channel gains and Z; and Z, are independent standard Gaussian
random variables. We assume that the power constraints on X and X, are both given by P. This is depicted
in Fig. 3. Let So1 = g3, P, S31 = g3, P and S5 = g3, P. Finally, let C(S) = 3In(1 4+ S). Using Theorem 1, we
obtain the following upper bound:

Proposition 1. The capacity of the scalar Gaussian relay channel is bounded from above by

min (C (531 + S33 + 2py/ 531532) , C((1=p*)(Ss1+ S21))
min {C (SJ(I — )) +C (Jj + (ar* (@+ \/p2532> + \/ 1-— 5'32)2> —C (ch(l + SJ))}>’

S52>821
(10)

for some p € [—1,1], where . is the unique non-negative root of the quadratic equation:
2
( S31 + 2532) (14 85)V/(1 —p?)S32 + (( p*)Ss2(1+ Sy) — ( S31 + p2532) + SJ)

- (\/5731-1- \/,02532) V(1= p?)S32 = 0. (11)

The proof of the above proposition is given in Appendix B.1. The choice of J used in the proof is an
enhancement of Y;, i.e., X e J e~ Y; forms a Markov chain.?

Observe that the first two terms in (10) correspond to the cutset bound [ , Eq. 16.4]:
Cc< max min (C (531 + S32 + 2pv/ 531532) , C((1 = p*)(Ss1 + S21)) )
—1<p<
(\/521532+\/ 331(531+521*532))2 .
RS ( S31 4521 if Sa1 > Ss2 (12)
C(S31 + 521) otherwise.

2The more restrictive choice of J = ¥; is insufficient to obtain the stated bound in Proposition 2 on the slope. Moreover, in the
conference version of this work, we provide a different example of a Gaussian MIMO relay channel where J is not an enhancement
of Yz, but is taken as part of Y.
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FIGURE 4. Illustration of the bounds for a Gaussian relay channel. Parameters are S3; =
3.7585, Soy = 1.2139.

Example 1. As a specific example, set So; = 1.2139, S3; = 3.7585, S32 = 0.032519 and S; = So;. Then, the
cutset bound evaluates to 0.81327 (with maximizing p = 0.4221655), while the new upper bound is 0.79488
(with maximizing p = 0.159498). On the other hand, from the compress-and-forward lower bound, we know

that the capacity is greater than or equal to | , Eq. 16.12]
5215
C (Sgl + 21732 > .
S31 + S21 + S32 + 1

This expression evaluates to 0.78066 for this example. The lower bound of | | also evaluates to 0.78066.
The decode-and-forward evaluates to 0.39737. See also Fig. 4 for a plot of the bounds.

Remark 8. The above bound is further improved in | ]. In | |, we also give a different upper
bound with an auxiliary receiver J which is an enhancement of the relay’s output variable Y; (similar to the
auxiliary receiver considered in this work). However, the identifications of the auxiliary variables in this work
are different from that in [ ]

2.2. On the derivative of the capacity at S3» = 0. Let C(S21,531,.532) denote the capacity of the scalar
Gaussian relay channel with the given parameters. If S3» = 0, the link from the relay to the receiver is
disabled and it becomes a point-to-point channel. Therefore C(Sa1,S51,0) = C(S31) (achieved via the direct-
transmission). We are interested in the derivative of C'(S21, 531, S32) with respect to S3e at Szz = 0, at some
S31 > S91 > 0.

Assume that S3; > S while S3o is small. Then, the decode-and-forward lower bound equals C(S21) | ,
Eq. 16.6] which is weaker than the direct-transmission lower bound. On the other hand, the bound from the
compress-and-forward | , Eq. 16.12] equals

521532 Soy , )
ClBmt = C(Ss1+ 22— 83+ 0(S%,) ).
< . 531+521+532+1> ( 31+531+521+1 32+ O(532)
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FIGURE 5. The setup for an interference channel.

This implies that

0 1 Sa1
——C(S21, 531, S > - .
532 ( 21,31 32)|532:0 2 (1 +5'31)(531 —1—521 + 1)
On the other hand the cutset bound, see (12), is given by:

2
c (\/521532 + \/531(531 + 591 — 532))

2/ 8
=C (531 + 22 S + 0(532)> .
S31 + So1

V831 + So1

It has an infinite slope with respect to Ssa, at S3a = 0 since the first order term is +/S32. The intu-
itive reason for the appearance of \/Ssy is that the cutset bound allows for cooperation between the re-
lay and the transmitter. To see this, observe that if we evaluate the cutset upper bound expression of
min (I(X, X,;Y), I(X;Y,Y:|X;)) assuming X and X, to be independent Gaussians (no cooperation) we ob-
tain a value min (C(Sg,l + 521), C(S31 + 532)).

The cutset bound fails to provide any finite bound on the derivative of the capacity with respect to Sso at
S32 = 0. However, the new bound gives a finite slope result:

Proposition 2. For S3; > Ss1, the derivative of the new upper bound with respect to Ssza at Sz = 0 is less
than or equal to

1 S%l(l + SJ)2
2 (14 531)255(531 — Sy)

where

The proof of the above proposition is given in Appendix B.2. Fig. 4 illustrates the finite slope of the new
bound.

3. INTERFERENCE CHANNEL

A two-user interference channel models the transmission of messages from two senders X; and X5 to two
receivers Y7 and Y3. An interference channel is described by a conditional distribution T(yi1,ys2|x1,22). An
(n, R1, R2) code for a memoryless interference channel T'(y1,ya|z1,22), depicted in Fig. 5, consists of two
encoders £; and & that map independent messages M; and My (uniform over [27F1] and [272] respectively)
to input sequences X7 € A7 and X3 € X3, i.e., X7 = & (M;) and XT = E(Ms) and two decoders Dy and Do
that produce estimates M; and M> from Y" and Y3' respectively. The following joint distribution is induced
by the code over a memoryless interference channel T'(yy, ya|z1, 22):

p(ma)p(ma)p(zy|mi)p(xs|ms) (H T (Y14, yoilT1i, m)) p(ma |y )p(malyy).

The error probability of the code is P[(My, My) # (Mi, My)]. A non-negative rate pair (R, Ry) is said to be
achievable if the transmitter X; is able to send a message at rate R; to receiver Y; such that the probability of
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error tends to zero as n, the blocklength, tends to infinity. The closure of the union of all achievable rate pairs is
called the capacity region for the interference channel T'(y1, y2|z1, 2). A number of different outer bounds are
known in the literature on the capacity of a general interference channel T'(y1,y2|x1,22) (see | , Chapter
6] for an overview of interference channels). One can attempt to write the J-version of each of these bounds.
As we aim to simply illustrate the use of J bounds, we only report one such bound here even though we were
also able to write J versions of the outer bound given in | ] as well.

Theorem 2. Take an arbitrary interference channel T(y1,yz2|x1,22). If (Ry1, Ra) is achievable, then for any
Ty1x,,x,,v1,v2 Such that pry, vy x, x, = Ty va1x1,. X, 171X X0 1y, Satisfies
PJY1,Y2|X1,X2 = PJ|X1PY5| 7, X2PY1|J,X1,X2,Yas (13)
we have
Ry < min(I(X1;Y1|X2, Q), I(W;Y2|Q) + I(X1; J|W, Q) + I(X1, Xo; V1[W, Q) — I(X1; J|W, Q)),
Ry < min(I(X2; Y2 [W, X1, Q), I(X2: Yo | W, Q) — I(X2; J|W, Q)),

for some p(q)p(x1|q)p(w2lq)p(w, blxy, 22, Q)p(yr, y2, jlw1, ¥2) satisfying
I(X1; J|W, Q) > I(X1; Y2[W, Q).
Further it suffices to consider |Q| < 4, [W| < |X1||Xa| 4 2, W] < | X1 || Xz

Proof. The cardinality bounds on the auxiliary variables W, W follow from standard arguments and is omitted.
Take a code of length n with input sequences X7* = &£;(M;) and X§ = E3(Mz). Let

n
Pyn My My X7, X2 Y)Y = H TJiIXI'i7X21'7Y1'i7Y2i'
i=1
We can think of p;y, v, |x,,x, as an extended interference channel. Observe from (13) that py,|xp x3 = P, x,,
and Pyyi|Jn, X5 = PYa|Ji, X2
One can prove the above theorem by identifying the auxiliary variable
Wi = (Yzi_la z'n+1)7Wz' = (Yf_la z'n+1)-
Let Q € [n] be a time-sharing random variable and let W = (Wg,Q) and W = (W, Q). The first bound
Ry < I(X1;Y1|X2, Q) is standard.
Observe that by Fano’s inequality we have n(Ry — €,) < I(My;Y]") < I(X7;YT") for some €, that tends to
zero as n tends to infinity. Now, observe that

IXT5 ") = IXT5J7) + LXT5 YY) — T(XT5 ™)

S I(XT5J7) + I(XT, X5 YY) — I(XT, X35 ™) XL (XTI

=> (I(XIL; JilJP) + T(XT, X3 Y| Wi) — I(XT, X3 Ji|Wi)> (Lemma 4, Lemma 5)
=1
n A~ A

=> (I(Xu; il ) 4+ 1( X1, Xois Y| Wi) — I(Xas; Ji|Wi)> (memoryless channels)
=1

<> (I(Xh-; Ti\Wi) + T(Wis Yo ) + 1(Xi, X Yai Wi) — I(Xus; JAWZ»)) (Lemma 4, Lemma 5)
=1

establishing the second bound on R;.
Next, consider the bounds on Ry. Observe that by Fano’s inequality we have n(Rgy — €,) < I(Ma;Y3") <
I(X%;Yy) for some ¢, that tends to zero as n tends to infinity. Observe that
I(X3:Y5") < I(X3: Y5 XT) Xy LXT
= (X35 Yail X7, Y5 Jf) Ll e Xy e (X3, XY) e (Y1, Y5)
i=1
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n
< Z I(Xa;; Y2 | X146, W) (memoryless channels)
i=1
establishing the first bound on Rs.
To get the second bound, observe that

I(Ms;Y3') = I(My; Yg') — I(Ma; J™) My LN
=3 T(Ma; Yo [Y3 1 J00) = T(Mas Ji| Y3~ J7 ) (Lemma 4)
=1
= I(My, Xoi3 Y Yy 71 T0 1) = T(Ma, Xogs Ji|Ys ™ 7 ) " H(Xa2i|Ma) =0
=1

2 Enlf (Xai; Yail Yo =1 Ty ) = T(Xais JilYs ™ TR y) + T(Mo; Yai Yo =t Ty, Xoi)
i=1
- I(M2; Ji7 Y§i|Yg_1’ in+17 X2i)
< ZH:I(X% Yoi|Wi) — I(Xai; Ji|W3),
i=1
where (a) follows since (Y3 ™', JI% |, Ms) o~ (Xa;, J;) - Ya; is Markov from (13). This establishes the second

bound on Rs.
Finally, to show that I(X7; J|W,Q) > I(X1; Y2|W, @), observe

0 < I(X7;J" X3) — I(XT;Yy") X e T e (X5, YY)
= I(X75 ") = I(XT5 ¥5') (XYL L XY
=TI W) — (X Vil W) (Lemmma 4)
= Z I(Xq4; Ji|\W5) — I(XT; Yo |[W5) (memoryless channel)

i

< ZI(XM; Ji|Wi) — I(X14; Yoi | W3),

completing the proof of the constraint. O

Consider a Z-interference channel, i.e. T'(y1, y2|x1,x2) = T1(y1|z1)T2(y2|z1, z2). For such a channel, we can
simplify the outer bound in Theorem 2 as follows:

Corollary 2. Let J be an auziliary receiver defined by the channel Ty x, x,,v,y, such that pyy, y,x,,x, =
Ty, vo1x0. %2 Ta1x0 X011 v, Satisfies
P y1,Ys|X1,Xs = PJ|X1PY5|J, X2 PY1|J, X1 5

and further let J be more-capable (as in [ /) than Y1. Then, any rate pair (R, Rg) in the capacity of the
Z-interference channel must satisfy the following constraints,

Ry < min{I(X1;11]Q), I[(W;Y2|Q) + I(X1; J|W,Q)}
Ry < min{I(Xy; Y2|W, X1, Q), I(X2; Y2[W, Q) — I(X2; J[W,Q)}
for some p(q)p(z1]q)p(z2|q)p(w|z1, 22, q) satisfying
I(X1; JW,Q) > I(X1; Y2 W, Q).

Proof. Due to the Z-nature of the interference channel observe that
I(X1, Xo: i |W, Q) = (X1 J|W, Q) = I(Xi; Y1 W, Q) = I(Xy: W, Q) <0,

where the last inequality is a consequence of J being more-capable than Y. O
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M; —»| Encoder 1 Decoder 1 —» Ml

Yy .
My — Encoder 2 P + Decoder 2 ¥ M,
2

Z

FIGURE 6. Illustration of a Gaussian Z-interference channel.

3.1. Gaussian Z-interference Channel (weak interference regime). Consider the two-user Z-Gaussian
interference channel (GIC):

Ww=X\+2,
(14)
YQZCLX1+X2+ZQ,
with a € (0,1), Z; ~ N(0,1) and a power constraint on the n-letter codebooks:
IXT* <nPr X3 < 0Py (15)

See Fig. 6 for an illustration.
The assumption 0 < a < 1 corresponds to the weak interference regime. The case of a > 1 corresponds to
the strong interference regime and its capacity region is fully known | I, ]

Theorem 3. Take some arbitrary A > 1 and u,a, 8 € [0,1]. Then, any achievable rate pair (Ri, Ry) for the
scalar Gaussian Z-interference channel with power constraints Py, Py respectively must satisfy

1+a’P, +P2>

A 1—
Ry + ARy < ;log (Kg(l—pQ)-i-l) +§10g(1+P1)+( 26) 1og( 5

n AMl-—a) (1-5) o 1+ a?K; + Ko + 2apV/K Ko +)\(17a) o Ki(1—p%) +u?
2 2 & Ki +u? 2 B \@2K0-p)+1)°
for some K1 < Py and Ko < Py and p € [—1,1] such that

(P — K1) (Py — K3) > p* K1 Ko,

u

and
Kl —|—U,2 > 1—|—a2K1 —|—K2+2ap\/K1K2 (16)
uz T 1+ Ky(1—p?) '
Remark 9. The proof follows by showing the Gaussian optimality for the outer bound in Corollary 2. The
proof technique used to show the Gaussian optimality is the one employed in | |, where a “Gallager-type”

proof of sub-additivity (or single-letterization) of information-theoretic functionals is used to deduce a certain
independence between two orthogonally rotated independent copies of the maximizing distribution, thereby
establishing Gaussianity by the Skitovic-Darmois characterization. Sometimes the “Gallager-type” proof for the
functional may not directly yield the requisite independence and so one has to consider perturbed functionals
that have Gaussian maximizers and then one is able to use continuity to argue that Gaussians are a maximizer
for the given functional, as in the case below.

Proof. The proof is given in Appendix C.1. (]

Figure 7 plots the outer bound for a = 0.8, P, = P, = 1 for fixed choice of § =0 and © = 1 in Theorem 3.
Note that the curve passes through both the non-trivial corner points of the capacity region of the Gaussian
Z-interference channel. This is formally established in Lemma 1 below.
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Remark 10. Consider a Gaussian interference channel in the weak interference regime parameterized by the
cross-gains a, b € (0, 1):
Yi=X1+bXo+ 2,
YQ = C(,X1 —|—X2 —|—Z2

Then, Theorem 3 can be used to obtain two outer bounds on the capacity region of this channel, one by setting
b =0 and the other by setting a = 0. This follows from the simple observation (see | , p. 612] or | ]
for instance) that the capacity region of the Gaussian interference channel in the weak interference regime with
cross-gains a,b € (0,1) is contained in the capacity region of either of the two Z-interference settings, one by
setting b = 0 and the other by setting a = 0.

(17)

3.1.1. On the slope of the capacity region at Costa’s corner point. Let Co = C(P2), the maximum achievable rate

at receiver Y3. Costa | ] aimed to determine the maximum value of R; such that (R;,C2) is achievable
as Rf =C ({ig ) His argument involved two key steps. The first was to show the concavity of entropy power
with added Gaussian noise [ ]. The second involved approximating the empirical estimates of differential

entropies seen at receivers by their distribution values. However, Sason (see | | and | ] for a detailed
discussion) observed that the approximation proof had a flaw and that Pinsker’s inequality was insufficient to
guarantee that the approximation error would grow linearly with block size n. The problem then rested open

for eleven years until Polyanskiy and Wu | ], using Talagrand’s inequality | | as the central piece,
completed the continuity of entropy argument and established that R} = C (i’iﬁ ) is indeed the maximum

value of R; such that (Rj,Cs) is achievable. However, similar to the cutset bound situation in Section 2.2,
the outer bound derived by Polyanskiy-Wu bound does not show if the corner point is an exposed point or an
extreme point of the capacity region. In Theorem 4 we show that Corollary 2 not only recovers the corner point,
but also establishes that it is an exposed point® of the capacity region, thereby improving on the Polyanskiy-Wu
bound. Further, we also show that it is better than Sato’s outer bound for the interference channel (which is
optimal at the other corner point).

Lemma 1. Let Rop denote the outer bound given in Theorem 3. The following hold:
(1) If (R1,C2) € Ros, then

1 a?P
ngRTng(HHé).

(14) Further, the outer bound given in Theorem 3 lies inside the outer bound by Sato (| [; see also Theorem

21n [ ]). Consequently, if (C1, R2) € Rop, then

.1 P,

Proof. Suppose Ry = Cs = 1 log(1 + P2). Using Corollary 2, as we have,
1 1
510g(1+P2) = Cy < I(Xo; YW, X1, Q) = I(Xa;Ya| X1, Q) — I(W; Y| X1,Q) < §log(1+P2)—I(W;Y2|X1,Q),

it immediately follows that Xs ~ AN(0, ), is independent of (X1,Q) and I(W;Y5]|X1,Q) = 0. The last

inequality further implies I(W; X5|X;,Q) = 0 (see Proposition 2 in | ). Hence, Xo L (W, X1,Q) and
Xo L (W, X1,Q,J). Observe that
O < I(X2; Yo [W, Q) — I(X2; J[W, Q)

I(
= 1(X2; Y2|W, Q)
I(X2; Y2|W, X1, Q) — I(X2; X1 |W, Y2, Q)
< Oy — I(X2; X1|W, Y2, Q)
3For the Han and Kobayashi achievable region [ ] with Gaussian signaling (whose optimality or sub-optimality is not yet

determined for the Gaussian interference channel), it is known that the above corner point is an exposed point and in [ ] the
(non-trivial) slope of the above region at the corner point was computed.
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implying I(X2; X1|W,Y2,Q) = 0. From I(Xo; X1|W,Y3,Q) = 0, we deduce that I(X;1;Ys — Xo|[W,Y5,Q) =
I(X1;aX1 4+ Zo|W, Y, Q) = 0. On the other hand,

I(Yo; X1 |aXy + Z2, W, Q) = I(X2; X1]a X1 + Z2, W, Q)
< I(X9; X1,aX1 + Z5, W, Q)
=0

where in the last step we used Xo L (W, X1,Q). From I(Xi;aX; + Z2|W,Y2,Q) = 0 and I(Ys; Xq|aX:1 +
Z5, W, Q) = 0 we have a double Markovity property (see Lemma 6). From the double Markovity property and
since the joint distribution of (a X7 + Z2, Y2) is indecomposable (as defined in | , Exercise 16.25]), we obtain
that conditioned on (W, Q), X7 L (aX; 4+ Z5,Y3). This implies, conditioned on (W, @), that X; is independent
of Xy + % This implies that X; is a constant conditioned on (W, Q). Consequently, Ry < I(W;Y3|Q) =

I(W, X1;Y3|Q) = I(X1;Y2]Q) < Llog (1 + f?;;) This establishes the first part.

Sato established (see Theorem 2 in | ]) that any achievable rate pair for the interference channel must
satisfy for A > 1

A 9 1 A 5
< — - — .
ARy + Ry < 5 log(1+ a*P; + P2) + Iglg)}gl {2 log(1+ K1) 5 log(1+a Kl)}

In particular, if 1 < X < alg*('l‘i];i) it is immediate that the above bound evaluates to

by Py |
2log (14 —2 ) + - log(1+P
2 Og( +1+a2P1>+2 og(1+F1)

implying that it passes through (C1, R3).
From Theorem 3, putting 8 = 0,a = 0,u = 1 we see that

1+a2K1 +K2+2(1/)VK1K2 +élo K1(17p2)+1
K+ 1 2 2K (1—p)+ 1

1 A—1
R1+)\R2§2log(1+a2P1+P2)+< 2 ) <log
Therefore to show that the outer bound given in Theorem 3 lies inside the outer bound by Sato, it suffices to

show that

1 )\—1 1—|—a2K1—|—K2+2ap\/K1K2 A Kl(l—p2)+1
—log (1 P+ P o — 1 —1
ylog (1+a%Pr+ 2)+( 2 )(Og Ki+1 2 % 2K (1 p2) + 1

A
2
Equivalently, it suffices to show that

A—1 A Kl(l—p2)+1
Z__ 2 ) (log(l + a’Kq + Ko + 2apy/ K1 K 21
( 2 )(Og( tatiit Kat 2apy i 2))+2 2K (1 p?)+1

1 A
< Zlog(1+4a’Py + Py) + 3 log(1+ K;) — 3 log(1 4 a®K;).

A—1
2
This is immediate since (a € (0,1)) and

A A
< log(1 4 a®Py + Py) + 3 log(1+ K;) — 3 log(1 + a*K;).

K1 K.
(12(P1 — Kl) —+ (P2 — KQ) - 2ap\/ KlKQ 2 a2(P1 - Kl) + % - 2(1[)\/ K1K2 Z 0.
1 — i1

This completes the proof. O
We now establish a significantly stronger result regarding Costa’s corner point by using Theorem 3.
Theorem 4. Let Rop denote the outer bound given in Theorem 3. Let Cy = $log(l + P,) and R} =

Llog (14 55 ). Then

max ARy + Ry = \Cs + RT
(R1,R2)€ERoB
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FIGURE 7. Ilustration for a = 0.8, P, = P, = 1. The new outer bound is plotted for the fixed
choice of § = 0 and v = 1 in Theorem 3 and optimized over . The Polyanskiy-Wu bound
is flat at Costa’s corner point. However, Theorem 4 establishes that the capacity region has
a kink at Costa’s corner point, with the slope of the capacity region at Costa’s corner point
being less than or equal to —0.1323. The slope of the Han-Kobayashi region with Gaussian
signaling | | equals —0.3839 for this example.

when
2
(+Py=at) (HVIHICA—aDP) 5
A>1+ a2P, 1a>(1-a?) P, at <3
B (1+Py)(1=a?) (14+VIFT2) 25 1
a2 P; P; a =3
Proof. The proof is presented in Appendix C.2. O

Remark 11. The exact computation of the outer bound in Theorem 3 is reasonably involved numerically. Even
though it passes through both the corner points, the authors find no reason to believe that this matches with
the Han—Kobayashi inner bound (with Gaussian signaling). If one considers Han-Kobayashi achievable region

Ruk-cs with Gaussian signaling, it was shown in | ] that max(r, r,)eRyx_gs A2 + R1 = ACo + R if
and only if
_logag_i (1+P)(1 a2)
a? -
A > 1+ max (+ PIPJFPZ) , 22
log(1+ P») — 115 a Py

Note that the arguments in the Appendix can be seen to yield a stronger result (that also involves P;) for the
outer bound but does not match the above value (except in the limiting case, when P;, P, — o). However, it
is quite possible that a modification of the structure of the auxiliary receiver may close the gap.
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T(ylz) | —» Decoder 1 —» My, M;

(Mo, My, M) —» Encoder 1

: T(z|z) — Decoder 2 — M, M

Ficure 8. Illustration of a discrete memoryless broadcast channel.

4. BROADCAST CHANNEL

A two-receiver broadcast channel | ] models the transmission of messages from a single sender X to two
receivers Y and Z. A discrete memoryless broadcast channel is described by a conditional distribution T'(y, z|x)
with |X],]Y|,|Z| < 0o. An (n, Ry, R1, R2) code for a memoryless broadcast channel T'(y, z|z), depicted in Fig. 8,
consists of an encoder £ that maps three mutually independent messages My, M; and My (uniform over [2"F0]
[27F1] and [27F2] respectively) to an input sequence X™ € X" i.e., X" = &(My, M, My) and two decoders D,
and D, that produce estimates (Mo, M) and (M, Ms) from Y™ and Z™ respectively. Random variable M,
represents the common message from transmitter to the two receivers while M; and M, are private messages
to the receivers. The following joint distribution is induced by the code over a memoryless interference channel
T(y, z|z):

p(mo)p(ma)p(ma)p(x"mo, my, ms) (H T(yi, ZM‘z‘)) p(o, maly™)p(mo, ma|2").

The error probability of the code is P[(My, My, My, M) # (Mo,Ml,]\;[O,Mg)]. A non-negative rate triple
(Ro, Ry, R2) is said to be achievable if the transmitter is able to send a common message at rate Ry and two
private messages at rates Ry and Ry to the receivers Y and Z such that the probability of error tends to zero as
n, the blocklength, tends to infinity. The closure of the union of all achievable rate pairs is called the capacity
region for the broadcast channel T'(y, z|z). For more details on this model, the definition of the capacity region,
and a collection of known results please refer to | , Chapters 5 and 8].

The best known achievable rate region for a two-receiver broadcast channel is the following inner bound

[ J-
Theorem 5 (Marton ’79). The union of non-negative rate triples (Ro, R1, Ra) satisfying the constraints
Ro < min(I(W;Y), I(W; 2)),
Ro+ Ry < I(U,W;Y),
Ro+ Ry < I(V,W;2),
Ro + Ry + Re <min{I(W;Y),[(W; 2Z)} + I(U; Y|W)
+1(V; Z|W) = I(U; VW),

for any triple of random variables (U, V,W) such that (U,V,W) e~ X —o- (Y, Z) is achievable.

It is not known whether this region is the true capacity region or do there exist channels whose capacity
region is strictly larger than the above region. The situation with respect to the outer bounds for the capacity
region of the two-receiver broadcast channel is the following: among the various forms of the outer bounds
proposed (e.g. see | 1), the UV-outer bound noted below has been the best known computable outer bound
for the general two-receiver broadcast channel with private messages. The UV outer bound | , , ]
for the capacity region of the broadcast channel is as follows:

Theorem 6 (UV outer bound). Any achievable rate (Ro, Ry, R2) satisfies the constraints
Ro < min(I(W;Y),I(W; 2)),
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Ro+ Ry <min(I(W;Y),I(W;2))+ I[(U;Y|W),
Ro+ Ry <min(I(W;Y), I(W;2))+ I(V; Z|W),

Ry+ Ry + Ry <min(I(W;Y), I(W;2)) + min(I(U;Y|W) + I[(X; Z|U, W), I(V; ZIW) + I(X; Y|V, W)),
for some triple of random variables (U, V,W) such that (U,V,W) -e- X o (Y, Z).

In [ ], the authors showed a class of product broadcast channels whose capacity region is strictly
contained in the region given by the UV outer bound. However the outer bound developed in [ ] that
(strictly) improved on the UV outer bound was valid only for the class of product broadcast channels. In this
paper we provide two outer bounds for (general) broadcast channels, both of which (strictly) improve over the

UV outer bound. In particular, the second bound generalizes the one in | ] by relaxing the constraint
that the broadcast channel must have a product structure.

4.1. The J version of UV Outer Bound. Our first outer bound was motivated by the following question:
assume that we make the Y and Z receivers weaker by passing them through an erasure channel, i.e., by
considering p(y’, 2'|z) = >_, . p(y'[y)p(2'[2)T (y, z|x) where p(y'|y) and p(2’|z) are erasure channels with erasure
probability €. Then, for any py,v,w,x, we have

I(W:Y') = (1 - QIW:Y), IU:Y'|W) = (1—IU;YW), I(X:Y'[V,W) = (1— I(X; Y|V, W),

IW;2)=1—-eI(W;2), IV;Z|W)=1-eI(V;Z|W), I(X;Z|UW)=(1-el(X;Z|UW).

Therefore, the UV outer bound scales by 1 — ¢ for an erased broadcast channel. However, Marton’s inner bound
involves a term —I(U; V|W) in its sum-rate constraint which does not (immediately) scale by 1 —e. This raises
the question of whether the capacity region scales by 1 —e or not. Our first (new) outer bound below shows that
the capacity region does not scale by 1 — ¢ for any € € (0,1) for the example of an erased Blackwell broadcast
channel (see Lemma 2).

Theorem 7. Given a broadcast channel characterized by T (y, z|x) and any achievable rate triple (Rg, R1, R2),
one can find some input distribution p(x) such that for any auwiliary channel Ty x y,z, the following constraints
are satisfied:

Ro < min{I(W;Y), I(W;Y),I(W;Z),I(W;Z)}, (18a)
Ro + Ri < min{I(W;Y), I(W; 2)} + I(U; Y|W), (18b)

Ry+ R1 < min{I(W; Z) + min [O,I(W;Y) — I(W; Z)]7 I(W;J) Jr[(W;Y) _ ]({f[/; J)}
+ I(U; J|W) + I({U; Y|W) — I(U; J|W), (18¢)
Ro+ Ry < min{I(W;Y) + min [0,/(W; Z) — I(W;Y)], IW;J)+ I(W; Z) — I(W; J)}

+ I(U; Y|W), (18d)
Ry + Ry < min{I(W;Y), I(W;2)} + 1(V; Z|W), (18e)

Ro + Ry < min {I(W; Y) +min [0, 1(W; Z2) — I(W;Y)], I(W;J) + I(W;Z) — [(W; J)}
+ I(V; JW) + I(V; ZIW) = [(V; J|W), (18f)
Ry + Ry < min {I(W; Z) +min [0, (W;Y) — I(W; 2)], I(W;J)+I(W;Y) — I(W; J)}
+ I(V; Z|W), (18g)
Ro + Ry + Ry < min {I(W; Y) = I(W;J), I(W;Z) — I[(W; J)} +I(X;J)

+ I({U;Y|W) = I(U; JW) + I(V; Z|W) — I(V; J|W), (18h)
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Ro+ Ry + Ry < min {I(W;Y),I(W; Z)}

+ min {I(V; ZW)+ I(X;Y|V,W), I(U;Y|W) + I[(X; Z|U, W)}7 (18i)
for some choice of distribution over the variables

PUVW,O0 W0,V WXy, 2,0 = PUVIWXPYW 0.7 xPv,0,v x Tv.zixTrx,v,z

satisfying
I(W;2Z) — I(W;.J) + I(W;J) = I(W;Y) = I(W;2) — I(W;Y), (19a)
IU; Z\W) - 1(U; JW) + LU JW)=1U;Y|W) = IU;ZlW)—-IU;Y|W),  (19b)
IV;Z2W) = I(V;JW)  +  I(V;JW)—I(V;Y|W) = I(V;ZW)-I(V;Y|W),  (19¢)

and

0<I(X;Z|U,W) - I(X;J|U,W) < I(V; Z|W) — [(V; J|W), (20a)
0<I(X;Y|V, W)= I(X;J|V,W) < I(U;Y|W) = [(U; J|W), (20b)
IV ZW) + I(X;Y|V,W) = I(U;Y|W) + I(X; Z|U,W). (20c)

Moreover, in computing the bound it suffices to assume that |W)|, W| and W) are less than or equal to |X|+6,
while (U, [V, U], V], [U], V] < |X]+1.

Proof. Take an arbitrary code (n, Mo, My, M3) with error probability €,,. Let

n

PoriMo s xm v zn = | [ Trixoviz.-
i=1
We can think of p;y z|x as an extended broadcast channel.
Let @ be a time-sharing random variable, uniform over [n], and independent of all previously defined random
variables. Make the following identification

W= (Mo, JO7H Y51, Q) W = (Mo, 2971, 03,4, Q), W = (Mo, 2971, Y51, Q),
U=U=U=M,V=V=V=DM.
Then, the constraints given in the statement of the theorem can be directly verified to hold if we allow for a
negligible violation of g(e,) where g(-) is a function that tends to zero as €, tends to zero. The constraints (18a),
(18b), (18e) are standard and are essentially the same (similar to UVW bound) but for completeness we present
their starting points here. The following represents the n-letter starting points for the proof of the constraints,

which can be obtained using Fano’s inequality. They are then single-letterized using Lemma 5, guided by the
identifications mentioned above.

nRy < min{I(MO; Yn)’ I(MO; Yn)vl(MO; Zn)’ I(MO; Zn)} + ng(en) (213‘)
n(Ro + R1) < min{I(My; Y™), [(Mo; Z™)} + I(My; Y™ | Mp) + ng(ey,), (21b)

+ [(My; J"|Mo) + I(My; Y™ |Mo) — I(My; J" [ Mo) + ng(en), (21c)

+ I(My; Y[ Mo) + ng(en), (21d)
n(Ro + Ry) < min{I(Mo; Y™),I(Mo; Z")} + I(My; Z"|Mo) 4 ng(en), (21e)

n(Rp + R2) < min {I(MO; Y™) + min [0,1(Mo; Z") — I(Mo; Y™)], I(Mo; J™) 4+ I(Mo; Z™) — I(Mo; J")}
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n(Ro + Ry) < min {I(Mo; Z™) + min [0, 1(Mo; Y™) — I(Mo; Z)], I(Mo: J™) + I(Mo; Y™) — I(My; J”)}
+ I(My; Z™|Mo) + ng(en), (21g)
n(Ro + R1 + R2) < min {I(MO;YH) — I(My; J™), I(My; Z™) — I(Moy; Jn)} +I(X™ J™)
+ I(My; Y™ | Mo) — I(My; J"|[Mo) + I(Ma; Z™|Mo) — I(Ma; J"[Mo) + ng(en), (21h)
n(Ro + Ry + Ro) < min {I(Mo; Y™), I(Mo: Z")}
+ min (I(MQ; 27 Mo) + I(X™ Y™ My, Mo), I(My; Y™ | Mo) + I1(X™; Z"| My, MO)) +ng(en),
(211)

Further the constraints can be established from the following starting points again using Lemma 5, and using
Fano’s inequality:

I(My; Z™) — I(My; J™) + I(My; J") — I(Mo; Y™) = I(Mo; Z™) — I(Mo; Y™),
I(Mq; Z™|\My) — I(Mq; M| Mo) +  I(My;J"|Mo) — I(M1; Y™ My) = I(My;Z"|\Mo) — I(My; Y™ M),
I(My; Z"|Mo) — I(Ma; J"[Mo) + I(My;J"|[Mo) — I(Mo; Y™ |Mo) = 1(Ma;Z"|Mo) — I(Ma; Y™ |My),

and

0 < I(X™; Z" My, My) — I(X™; J"[My, Mo) + ngi(en) < I(Ma; Z"|Mo) — I(Mz; J"|Mo) + nga(en),
0 < I(X”;Yn‘Mg,Mo) — I(Xn; J”|M2,MQ) + ngg(en) < I(MUY”M()) — ](Ml; Jn|M()) + ng4(en),
I(My; Z™[Mo) + I(X"; Y™ Mg, Mo) = I(My; Y™ |My) + I(X™; Z"| My, My) + ngs(en).

Note that the bound depends only on the marginal distributions of (W, U, X), (W, Vv, X), (W, U, X), (W, v, X),
(W, U, X) and (W, V, X). Therefore consistent distributions on X is all that is needed to ensure the existence
of a joint distribution. Then, similar to the original UV bound and using standard techniques, cardinality
bounds on all of the auxiliary random variables can be imposed. Both of these are the primary reasons why
we 1dent1ﬁed M, separately as U, V U, and similarly for Mg Therefore, for each €n > 0 one can find a joint

which all of the constraints in the theorem hold.
Finally, the cardinality bounds come from the standard Caratheodory-Bunt | ] arguments and are
omitted. ]

Remark 12. From (18a), (18b), (18e), (18i), we can extract the following constraints:

Ry < min{I(W:Y), I(W; Z)},
Ro+ Ry <min{I(W;Y),I(W;2)} + [(U;Y|W),
Ro+ Ry < min{I(W7 V), I(W; 2)} + I(V; Z|W),
Ro+ R1 + Ro < min{I(W;Y),I(W; Z) + min{I(U;Y|W) + I(X; Z|[U,W), [(V; ZIW) + I(X; Y|V, W)}.

This implies that the outer bound in Theorem 7 is at least as good as the UV outer bound for all broadcast
channels T'(y, z|z).

The following corollary, which will be used later to show that Theorem 7 improves on the UV outer bound,
relates to the study of corner points of the capacity region.

Corollary 3. Consider a general broadcast channel T(y,z|x) where T(y|z) = >, T(y|9)T (g|x) for some Y
which is an enhancement of Y. Furthermore, assume that

o I(X;Y|U) =0 implies I(X;Y|U) = 0.
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Then, the rate triple (0,C1, Rg) is achievable only if
Ry <I(V; ZIW) = I(V;Y|W) (23)
for some p(v,w, x) satisfying

C,=I1(X;Y)<IW;2)+ I(X;Y|W). (24)

Proof. Set J =Y in Theorem 7. We have
Ci=Ro+R <I(UW;Y)=I(X;Y)-I(X;Y|UW)<I(X;Y) <O

implying that I(X;Y) = Cy and I(X;Y|U, W) = 0 and hence (from our assumption) that I(X;Y|U, W) = 0.
From (18c), since I(U;Y|W) > I(U; Y |W), we see that

Ci=Ro+ R <IW;2)+I(U;Y|W) < I(W;2Z)+ I(X;Y|W).
From (18h) we see that
Ci+Ry=Ro+ R+ Ry <IW,U;Y)+ I(X;Y|W,U0)+ I(V; Z|W) — [(V;Y|W).
Since I(X;Y|W,U) =0 and C, > I[(X;Y) > I(W,U;Y), we have that Ry < I(V; Z|W) — I(V;Y|W). O

In the next section, we will demonstrate that Corollary 3 (and hence the outer bound of Theorem 7) outper-
forms the UV outer bound for a particular broadcast channel.

4.2. Erasure Blackwell Channel. In this subsection we will focus on the private message case, i.e. the
projection of the capacity region onto the plane Ry = 0. For generic broadcast channels the points (Cy,0) and
(0,C5) are the “corner” points of the capacity region and in [ ] the authors computed the slope of the
capacity region at these points. However for some broadcast channels (that has zero Lebesgue measure in the
space of parameters defining the broadcast channel given the input and output alphabet sizes), rate pairs of
the form (C1, Rz) for some Ry > 0 and (R;, Cs) for some Ry > 0 are achievable. For such channels, we define
(C1, R%) to be a corner point if no point of the form (Cy, RS + €) for any € > 0 belongs to the capacity region.
Similarly, one can define an analogous corner point of the form (R}, C3). The results in | | are insufficient
to determine these corner points. In this subsection, will demonstrate that Corollary 3 (and hence the outer
bound of Theorem 7) leads to an improvement in the bound for the corner point for the erasure Blackwell
channel described below.

The standard Blackwell channel is a deterministic broadcast channel T'(j, 2|z) where X = {0,1,2},) =
{0,1}, £ = {0,1}, Y = 1[X = 2] and Z = 1[X = 1]. The Erasure Blackwell channel is obtained when each of
the outputs of the Blackwell broadcast channel are erased with probability e. More specifically, we assume that
T(y, z|x) = >, s T(9, 2lx)p(y|9)p(2|2) where p(y|§) and p(z|2) are erasure channels with erasure probability .
If e = 0, we get the Blackwell channel whose capacity is the union over all p(x) of

Ry <H(Y),
Ry < H(Z),
R+ Ry < H(Y,Z).
The UV-outer bound scales by 1 — € for the erased Blackwell channel. Thus the UV-outer bound reduces to the
following for erased Blackwell:

Ri < (1-eH(Y),
Ry < (1-eH(2),
Ri+Ry<(1—e)H(Y,Z2).
In particular, the corner point of the UV outer bound is (Ry, R2) = (1 — ¢, 3(1 — €)). The outer bound developed

for the corner point in Corollary 3 is used in Lemma 2 to show that the rate pair (Ry, Rg) = (1 — €, %(1 - e))
is not achievable for any e € (0,1). Therefore, the capacity region does not scale by 1 — e.
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Lemma 2. The rate pair (R, Ry) = (1 —¢,5(1 —¢)) is not achievable for any e € (0,1) for the erasure
Blackwell channel.

Proof of Lemma 2 is given in Appendix D.1.

Remark 13. Even though Corollary 3 implies that the outer bound in Theorem 7 is strictly better than the UV
outer bound for the erasure Blackwell channel, numerical results indicate that there is still a gap between the
upper bound for the corner point in Corollary 3 and Marton’s inner bound for the erasure Blackwell channel. For
example, for € = 0.1, the UV outer bound has a corner point (0.9,0.45), while numerical simulations show that
the new outer bound has a corner point (0.9,0.4265) and Marton’s inner bound has a corner point (0.9, 0.4205).
Determining the true corner point for the erasure Blackwell channel remains an open problem.

The authors’ original motivation for using auxiliary receivers for deriving converses came from the study
of multi-letter extensions of Marton’s Inner bound for the erasure Blackwell channel. We summarize some
facts about the multi-letter Marton’s inner bound (whose limit is the capacity region) for the erasure Blackwell
channel. Our main result here is that we can identify one of the optimal auxiliaries for computing the weighted
sum-rates of k-letter extensions of Marton’s bound for all sufficiently large weights (independent of k).

Remark 14. The issue of determining the optimality (or sub-optimality) of Marton’s inner bound stems from
the inability to compute multi-letter extensions due to the dimensionality of the optimization problems and
inability to identify the extremal auxiliaries. Thus the result here reduces the dimension as we determine the
optimal U, leaving only V, W to be determined.

More generally, we consider a channel p(y, z|z) such that

p(y, 2lz) = Zp(ylﬁ)p(ZIx)p(ﬂlx)

where YV = f(X) is a function of X. For a > 1, we can express the a-sum rate of Marton’s inner bound as
follows (this follows from a minimax theorem in | D:

max aR1+ Ry = min  max {(a—)\)I(W;Y)+>\I(W;Z)+aI(U;Y|W)+I(V;Z|W)—I(U;V|W)}.
(R17R2)ERMarton /\E[O,I]p(u,v,w,x)

Similarly, for the k-letter Marton we have

max aRy + Ry =
(R11R2)ERMarton

1
= )\m[énl] oo {(a — NI(W;Y*) 4+ X(W; ZF) + ol (U; YR W) + 1(V; ZMW) — 1(U; V|W)}.
€(0,1] p(u,v,w,x"

Proposition 3. The following two statements hold:
o To evaluate aRy + Ro for k-letter Marton, it is optimal to set U = Yk if o > oz*(p{,lXley) where
I(X:Y) H(Y)

a* (py xPyy) = sup — = sup ~ .
e p): 120 LY3Y)  payraryyz0 I(Y5Y)

(25)

In particular, if the channel from Y toY is erasure with probability €, we have o* = i Consequently,
for k=1, a-sum rate of Marton’s inner bound reduces to

/\m[%nl} (rnax){(a)\)I(W;Y)Jr)\I(W;Z)+aI(Y;Y|W)+I(V;Z|W)I(?;V|W)},
€[0,1] p(v,w,x

for a = a”(py xPy |y )-

o Take some a > o* (pmxpy‘i,). Then, a-sum rate of Marton’s inner bound equals

max {af(f/;Y) +I(V;Z) - 1(Y; V)},

p(v,z)
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if there exists some \* € [0, 1] for which the function
p(x) — max { —(@=XNVH(Y) = NH(Z)+al(Y;Y)+ I(V; Z) - I(V; ?)}. (26)
p(v|x
is concave. In other words, concavity of the function in (26) is a sufficient condition for optimality of

setting W = () when computing Marton’s inner bound.

Proof. We begin by proving the first part of the proposition. Consider the case of 1-letter Marton, i.e., k = 1.
We need to prove that

oI(U;Y|W) = I(U; VW) < od(Y;Y|W) = I(Y; V|W).
Equivalently, we should prove that
I(V; VW) = I(U; VW) < aI(Y;Y|W) = ad(U; Y|W).
We have
IV, VW) = I(U; VIW) < IY; VU W) < HY|UW) < al(Y;Y|UW) =al(Y;Y|W) — ol (U; Y|W)
where we used the fact that a > a* to conclude that for any u,w we have
HY|U=u,W=w) <al(Y;Y|U =u,W = w).

The result for the k-letter Marton follows from the tensorization property of o™ given in Lemma 3.
To show the second part of the proposition, first observe that

)\m[g)nl] max {(a —NI(W;Y)+ X(W; 2) 4+ al(YV;Y|[W) + I(V; Z|W) — I(Y; V|W)} (27)
€10,1] p(v,w,z

2;2);?;() {aI(Y;Y)JrI(V;Z)I(Y;V)}, (28)

as we can always choose W = () in the inner maximization problem. On the other hand, assume that the
concavity property holds for some A*. We have

/\m[(i)nl} (max){(a)\)I(W;Y)Jr/\I(W;Z)+aI(Y;Y|W)+I(V;Z|W)I(Y;VW)}
€[0,1] p(v,w,x

< (max : {(a — NVI(W;Y) + N I(W; 2) 4+ al(Y;Y|W) + I(V; ZIW) — I(Y; VW)}
p(v,w,z
= m(aic(oz —N)H(Y)+NH(Z)+ (29)
p(x
max { —(a = XNVH(Y|W) = NH(Z|W) + oI (Y;Y|W) + max {I(V; Z\W) - I(Y; V|W)}}.
p(wlz) p(v|w,z)
The concavity property implies optimality of W = @ in (29).
([

Remark 15. Consider the erasure Blackwell channel with erasure probability €. Let « = 1/(1 — €). Simulations
indicate that for small erasure probabilities ¢ < 0.6, the concavity of the function given in (26) holds if we
choose A* = 0.5. On the other hand, if € is larger, say larger than 0.631, then not only is the function given in
(26) no longer concave, but simulation results also indicate that setting W = ) is not optimal when computing
Marton’s inner bound.

Lemma 3. For given channels pjx and py,;, define
I1(X;J)
sup
p(a):1(1iv)20 1(J;Y)

Take some natural number k and let pjr xr = Hlein‘Xi and pyr| e = Hle Py;|s; be memoryless channel
extenstons. Then

o (psix,py|s) = : (30)

O‘*(pJ’ClX’“va’“\J’“) = O‘*(pJ|XapY\J)-
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Proof. The direction
Q" (pyr|xk, Py*r|gr) = @ (Dy)x,Py|s)
follows by taking a product input distribution on X*. For the other direction, take some arbitrary p(z*). Then,

k i— k i— k i—
I(Xk§Jk) o Zi:l I(Ji5Xk|J 1) _ Zi:l I(J3; Xq|J 1) < Zi:l I(Ji; Xi|J 1)

ITSYR) S8 T YR S T YR )
since for any i and every j*~! where p(J'~! = j'=1) > 0 we have

I(J Xl T =571
- - < .
I(Ji;YHJZ*l :jzfl) S @ (levaY\J)

*

SE I vilimn) e

O
4.3. The Second Outer Bound. This outer bound was motivated directly from the outer bound for product
broadcast channels developed in | ], which was used to demonstrate that the UV outer bound can be
strictly improved. The outer bound in [ ] critically used the product nature of the channel and if one

perturbs the channel so as to lose the product nature, the outer bound becomes invalid. We now present an
outer bound that varies continuously with respect to channel perturbations.

The outer bound of Theorem 7 uses a single auxiliary receiver J. In this section, we write another version
of the UV bound with two auxiliary variables J and J. This bound may be also interpreted as a Genie-aided
bound with auxiliary receiver J provided to receiver Y, and auxiliary receiver J provided to receiver Z.

Theorem 8. Given a broadcast channel T(y, z|x) and any T, JIx,v,z @Y achievable non-negative rate triple
(Ro, R1, R2) must satisfy the following constraints

Ry < min{I(Wy; J) + I(Wa; Y|.J), I(Wy; Z|.J) + 1(Was J)}, (31a)
Ro+ Ry < I(Up,Wp; J) + I(Ua, Wo; Y| J), (31b)
Ro+ Ry < I(Wy; Z|J) + I(Wa, J; J) + I(Uy; J|Wy, J) + I(Uy; YWy, J), (31c)
Ry + Ry < I(Wh, J5.J) + I(Wa; YIT) + I(Vi; Z|W, ) + I(Va; J|Wa, J), (31d)
Ro+ Ry < I(Vy, Wai J) + I(Vy, Wy Z|.J), (31e)

Ro+ Ry + Ry < min{I(Wy, J; J) + I(Wa; Y|J), I(Wy; Z|J) + I(W,, J; J)}
+ I(Ua Y[ Wa, J) + 1(X; J|Ua, Wa, J)
+min {I(Uy; J|Wy, J) + I(X; Z|Uy, Wy, J), 1(Vis Z|Wa, J) + 1(X; TV, Wy, 1)}, (316)
Ry + Ry + Ry < min{I(Wy, J;J) + I(Wa; Y|J), I(Wy; Z1J) + 1(Wa, J; J)}
+ 1(Vis Z| W, J) + 1(X5 T Vo, Wa, J)
+min {I(Ua; YW, J) + I(X; J|Usy, Wa, ), I(Vas J|Wa, J) + I(X;Y |V, W, )}, (31g)
for some p(wq, Vo, ug|T)p(wp, Vo, up|z)p(x) satisfying [Wh|, Wa| < |X|+7, [Upl, | Va| < |X]+2, Vb, [Ual < |X]+1.
Proof. Take a code of length n with message triple (Mg, My, M) of rates (Rp, R1, R2) and with error probability

of e. Let @ be a random variable independent of the code book such that @ is uniform in [n]. Define
Wai = (Mo, Y™, J7 g, T™N), - Wy = (Mo, J71, 20, 7Y (32)
Uo = Up = My, Vo =W = My,
where J"\t = (J°=1, Jn ) and J\Ni = (Ji=1 j{j_l).
The outer bound follows from routine manipulations using Lemma 5, guided by the above identification,

starting from each of the following n-letter expressions which are reasonably straightforward to obtain using
Fano’s inequality (please see Appendix E.3):

nRo < min{I(Mo; J") + I(Mo; Y™ |J™), I(Mo; Z"|J™) + I(Mo; J™)} + ng(en), (33a)
n(Ro + Ry) < I(My, Mo; J") + I(M1, Mo; Y™ |J") + ng(eyn), (33b)
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n(Ro + Ry) < I(Mo; Z"|J™) + I(Mo, J™; J™) + I(My; J"| Mo, J™) + I(My; Y| Mo, J™) + ng(e,), (33c)

n(Ry + Ra) < I(My, J"; J™) 4+ I(My; Y™|J™) 4+ I(My; Z"™| My, J") + I(Ms; J"| My, J") + ng(en), (33d)

n(Ro + Ra) < I( Q,MO,J”)—|—I(]\/[2,M0,Z"|J")—|—ng(en)7 (33e)
n(Ry + Ry + Ry) < min{I(My, J™; J™) + I(Mo; Y™|J™), I(My; Z™|J™) 4+ I(Myg, J"; J™)}

+ I(Mlayn|MOa Jn) + I(Xn7 Jn|M17M07 ‘]n)

+ min {I(Ml; J"| Mg, J™) + I(X™; Z"| My, My, J™),

I(May; Z™| My, J™) + I(X™; J"| My, My, j”)} + ng(en), (33f)

n(Ro + R1 4+ Ry) < min{I(Mo, J"; J") 4+ I(My; Y"|J"), I(My; Z"|J™) + I(My, J™; J™)}
+ I(My; Z"| Mg, J™) + I(X™; J"| My, My, J™)

+ min {I(Ml;Y"MO, J") + I(X™; J"| My, My, J"™),

(MQ,J |M0,Jn)+I(Xn Yn|M2,M0,J )}—l—ng(en) (33g)
Finally, the cardinality bounds come from the standard Caratheodory-Bunt | ] arguments and are omitted.
O

Remark 16. An alternative approach to single-letterize (33a)-(33g) that skips using Lemma 5 is as follows:
consider the UV bound in Theorem 6. Take for instance, the sum-rate constraint:

Roy+Ri+ R <IW;Y)+I(U;Y|W)+ I(X; Z|UW).
This inequality is shown via the following expansion

I(My; Y™) 4+ I(My; Y™ | M) + I(Ms; Z™ | My, My) < Z (Wi, Vo) + LU Y3 (Wh) + I(Xy; Z:|\ Ui, We)) - (34)

1

where W; = (Mo, Y*™*,Z" ) and U; = M;. The inequality (34) holds for any arbitrary joint distribution of

DMy, My, My, v, zn. Thus, it continues to hold if we formally replace My and Z" by My = (M, J") and Jn
respectively, while keeping all the other variables intact. With this replacement, the auxiliary variable W;
becomes (Mg, J", V=1, J 1) which is equal to (Wy;, J;) as defined in (32). This yields

(Mg, J";Y™) + I(My; Y™ | Mg, J") + I(My; J"| My, J", M)

< Z (F(Wais Ji5 Yi) + 1(Uais il Wa, i) + 1(X5 Jil Ui, Wais 1)) -
Next, observe that the inequality (34) also continues to holds if we condition all the mutual information terms
on J". This implies that

I(Mo; Y™ J™) + I(My; Y " [Mo, J") + I(Ma3 J* | Mo, J", M1)

<X (1(Wais YilJ2) + T(Uais YilWai J2) + 1(Xi3 Tl Uais Wais J2))
Similarly, one can obtain two sets of inequalities by replacing My and Y™ by (Mo, J ™) and J" respectively, or
alternatively by conditioning all the terms on J™. One can single-letterize (33a)-(33g) by writing the above four

sets of inequalities for all the constraints in the UV bound, and mixing and matching appropriate equations
from these four sets of inequalities.

As a special case of Theorem 8 assume that H(J|Y) = H(.J|Z) = 0. More specifically, for a pair of bijective
mappings Y + (Y1,Ys) and Z + (Z1, Zs), set J =Y, and J = Z5. Then, we obtain the following corollary:
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Corollary 4. Given a broadcast channel T (y, z|z) any achievable non-negative rate triple (Ro, R1, R2) must
satisfy the following constraints

Ro <min{I(Wy; Y1) + I(Wo; Ya|Y1), [(Wy; Z1|Z2) + 1(Wa; Z2) },
Ro + Ry < I(Up, Wy; Y1) + I(Ua, W3 Ya| Y1),
Ro + Ry < I(Wy; Z1|Z2) + I(Wa, Y1; Za) + 1(Uy; Y1 Wi, Z2) + 1(Uy; Ya|Wa, Y1),
Ro + Ry < I(Wy, Zo; Y1) + 1(Wa; Yo Y1) + 1 (Vi; Z1[Wh, Za) + 1 (Va; Z2|Wa, Y1),
Ro + Ry < I(Vy,Wa; Zo) + 1(Vy, Wy; Z1| Z3),

Ry + Ry + Ry < min{I(Wy, Zo; Y1) + I(Wy; Yo Y1), I(Wy; Z11Z2) + I(Wy, Y15 Z2)}

+1(Uq; Ya|Weo, Y1) + 1(X; Z2|Uqy, Wa, Y1)
+ min {I(Ub, Yl‘Wb, Zz) + I(X, Zl|Ub, Wb, 22)7 I(Vb; Z1|VV1,7 ZQ) + I(X, Y1|Vb, Wb, ZQ)},

Ro+ Ry + Ry <min{I(Wy, Zo; Y1) + I(Wo; Yo Y1), I(Wh; Z1| Z2) + 1(We, Y1; Z2) }

+ I(Vo; Z1|Why, Z2) + 1(X; Y1V, Wiy, Zo)
+ min {I(Uqg; Y2|Wa, Y1) + I(X; Z2|Ua, Wa, Y1), I(Va; Z2|Wa, Y1) + 1(X; Ya|Va, Wa, Y1) },

for any pair of bijective mappings Y < (Y1,Ys) and Z < (Z1, Zs) and for some p(wq, Va, Uq|2)p(wp, vy, up|z)p(x).

Remark 17. The following remarks are worth noting.

(1)

This outer bound generalizes the outer bound of | ] to non-product broadcast channels. Consider
the special case of X = (X7, X2) and T'(y1y2, 2122|2) being of the form

T(y1y2, z122|x) = T(y1, 21|21)T (y2, 22|22).

Then, the above outer bound reduces to the one given in | ]. Since the outer bound in | ]
has been shown to strictly improve on the UV outer bound for some product broadcast channels, our
new outer bound is also a strict improvement on the UV outer bound.

Setting Y1 =Y, Z; = Z, and Y2 = Z5 = 0 (constant random variables) reduces the above outer bound
to the UV outer bond in | ]. Hence this bound is at least as good as the UV outer bound for
any broadcast channel. Finally, since this is strictly better than the UV for some product broadcast
channels by virtue of the previous remark, this bound is a strict improvement over the UV outer bound.
An interesting feature of the above outer bound is expressions like I(W7, Z2; Y1) where Wi comes with
Z5 on one side, and Y7 on the other side of the mutual information expression. This differs from the
UV outer bound (or Marton’s inner bound) where channel output variables and the auxiliary random
variables appear on the opposite sides of the mutual information expressions.

5. CONCLUSION AND FUTURE WORK

New outer bounds for relay, interference and broadcast channels have been developed using the idea of
auxiliary receivers. The bounds were then employed to demonstrate aspects of the capacity region that were
not determined from previous outer bounds such as: kinks (discontinuous derivatives) at the capacity region
around corner points for the relay and the interference channel, and that capacity regions can shrink by more
than 1 — e if the received symbols were erased with probability € (a phenomenon that does not happen in the
presence of feedback if the erasures are synchronous). As mentioned in the introduction, we aimed to give
an illustration of the techniques that one could use to develop outer bounds using auxiliary receivers, and we
are positive that we have not harnessed the full potential of the auxiliary receivers even in the basic settings
considered here.

In particular, a number of immediate future research directions is listed here:

(i) We note that there are many different ways to introduce auxiliary receivers. For instance, we give two
outer bounds for broadcast channels. The examples for which these two bounds strictly improve over the
UV outer bound are different. Unification of these two outer bounds into a single bound is left as future
work.



26 AMIN GOHARI AND CHANDRA NAIR

(#4) Any choice of auxiliary receivers in the results of this paper yields a valid and computable upper bound
to the capacity region in discrete settings. A natural question is to determine the smallest possible outer
bound using these techniques. An immediate question in this direction: can one determine cardinality
bounds on the sizes of auxiliary receivers so as to obtain the best upper bound.

(#4i) The bound for the Gaussian relay bound channel was obtained by choosing the auxiliary channel from X
to J to be an additive Gaussian channel. However, any arbitrary choice of the channel from X to J yields
a valid upper bound. One can study if one gets the best possible upper bound by taking the channel from
X to J to be additive Gaussian.
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APPENDIX A. PRELIMINARIES
The following well-known result has be used repeatedly in the proofs in this paper.
Lemma 4 (Korner-Mdarton Lemma, (4.14) in | ). For any tuple of random variables (U, Y™, Z™) the
following equality holds:

H(Y™U) - H(Z"U) =) HY|UY'"™,Z%,) - H(Z|U, Y™, Z} )

-

s
Il
-

H(YilUﬂ Zi_lﬂ 111) - H(Zi|U7 Zi_17 ﬁrl)

-

Il
=

7

Remark 18. This equality has been repeatedly used in the literature to provide outer bounds or converses to
capacity regions and in this paper we will continue to employ this frequently. Some generic ways of using this
inequality has been illustrated in Lemma 5 in the Appendix. The authors would also like to remark that this
lemma was called Csiszar-sum-lemma in the literature, based on its perceived first appearance as Lemma 7
in [ ]. However a private communication to the authors by Korner revealed that this equality was first
identified by Katalin Mérton and used in [ , (4.14)] in her joint work with Janos Koérner. Hence the authors
find it appropriate to rechristen it as Kérner-Marton Lemma.

Motivated by the above lemma, the generic manipulations that are being used in the converses are the
following.

Lemma 5. For any set of random variables (U, V, A™, B™) the following hold:
I(U; A™V) = I(U; B"[V) = > (I(U; A;|V, By, ATY) — I(U; By|V, By, AH)) (35)
=1
-y (I(U; Ai|V, AT 1, BY) — (U3 Bi|V, AT, BH)) ,

i=1

I(U; B"|V) + I(U; A™V) — I(U; B"|V) < (I(U, By Bi|V) + I(U, Bl , A5 AV — I(U, BRr, A Bi|V )

-

i=1

)
(36)
)

I(U,B" Y Bi|V) + I(U, Bl'y1, A" " Ai|V) — I(U, Bl 1, A Bi|V )
I(U7 an«l»l; BZ‘V) + I(Ua A?+17Bi_l;Ai|V) - I(U7 A?+17Bi_l; BJV))
) b

= (I(U, B L BV) + I(U, ALy, BT AV — I(U, Ay, BT Y BV
LU A"V) + I(V;B") < S (I(U; AV, ATy BTY) + I(V, ATy B Bi)) , (37)

IU;A"WV) + I(V;B") < S (I(U; AV, By AN + I(V, By, AT Bi)) .

Proof. The proof follows immediately from repeated applications of Lemma 4, chain rule for mutual information,
and non-negativity of mutual information. The details are omitted as they are standard in literature. For
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instance, (35) can be shown by writing the telescopic sum
I(U; A™|V) — I(U; B"|V) = zn: (I(U; B, |, A'\V) — I(U; B, A V).
i=1
To get (36), we use (35) as follows
I(U; B"|V) + I(U; A"|V) = I(U; B"|V)
-y (10 B BAIV) = (B BIV) + T AV By, 470 — 103 BV, By, A
i=1

7

-

(I(Uv BZTLJrl; Bz|v) + I(Ua B;;nJrlv Ai_l; A1|V) - I(U7 B?Jrlv Ai_l; Bz|v)

i=1

- I(B’Zi’l; Bi|V) — I(B?H»Ai_l; AilV) + I(B?Jrlv Ai_lQ Bi|V)>

I

Il
-

(I(Uv Bln+11 BZ|V) + I(Ua Bin-i-lv Al_17A1|V) - I(Ua Bin-i-hAi_l; BZ|V)

7

— (AT A,»|V)>.
The proof for (37) can be found at | , D- 2206] in the proof of the UV outer bound for a general broadcast
channel.
O
Lemma 6. Double Markovity [ , Exercise 16.25] Let U, X,Y be three (real-valued) random wvariables

defined on the same probability space, such that both the Markov chains U - X — Y and U — Y — X hold.
Then

(1) There exists functions f(X) and g(Y') such that f(X) = g(Y) with probability one.
(2) U— f(X) - (X,Y) is Markov.

Proof. Disclaimer: We are only providing an outline of an argument to solve the Exercise for completeness.
This argument is a generalization of an argument in the discrete case and follows along the lines of | ].

Let Fy|x, Fyjy denote the (regular) conditional distributions of U conditioned on X and Y respectively. We
define an equivalence class according to x1 = w3, if the conditional distributions satisfy Fyx—., = Fy|x=z,-
This defines a partition of X. Let us similarly define an equivalence class and a partition of the values of Y.

Now define f(X), a measurable function, such that it takes the same value in a partition and differs across
partitions. Thus there is a bijection between f(X) and the conditional distributions Fy|x. This yields Fyx =
Fujp(x)-

The Markov chains imply that Fy;|x y = Fy|x with probability one, and Fyx y = Fyjy with probability one.
Therefore we have Fyy\x = Fyy = Fy|x,y with probability one. On this set define g(Y") to take the same value
as f(X). Clearly, by construction g(Y) = f(X) with probability one. Further it is also clear by construction
that Fyix,v,rx) = Fuix,y = Fuix = Fujs(x) with probability one. Thus we also have U — f(X) — (X,Y) is
Markov.

Remark 19. Tt is worth noting that if support of (X,Y) is the product of the support of X and the support of
Y, then f(X) and g(Y) have to be constants, implying that U is independent of X, Y.

O

APPENDIX B. PROOFS OF PROPOSITIONS FOR SCALAR (GAUSSIAN RELAY CHANNELS
B.1. Proof of Proposition 1.

Proof. Remember that
Yi=gnX+ 21, Y =gnX+gX + 2.
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Take some « € (0, 1] and assume that 7, = aZ3 + V1 — a?Z; where Z,, Z3 and Z4 are mutually independent
standard Gaussian random variables. Then, let

J = (ggl/a)X + Zg.

We have Y; = aJ ++1 — a2Z,. Thus, J is an enhanced version of ¥; and X -e- J - Y; forms a Markov chain.
Restricting the upper bound in Theorem 1 to the above families of J we obtain:

R< max min (I(X,Xr;Y), I(X:Y, Y| X,),

p(X,X,)EP
min max I(X; Y, X,) + I(X, X,; Y|W) — I(X; J|W)), (38)
@€ (0,1] W:W o (X, X;) e (Y,Ys,J)

where P is the set of all px x, satisfying the power constraint, i.e., E(X?) < P, E(X?) < P. Hence we know
that there exists some p € [—1,1] such that

Kx x, = L’P P} =: K,, (39)

where Kx x, = K, stands for K, — Kx x, being a positive semi-definite matrix.
Elementary facts about Gaussian extremality* for (conditional) differential entropy with respect to a covari-
ance constraint shows that if (39) holds then

I(X, Xr; Y) S C(S31 + 532 + Qp\/ 531532), (40)
I(X;Y, Y] Xy) < C((1 = p*)(S31 + S21)), (41)

where C(z) = 2 In(1 + ).
With K, defined as in (39), note that

max  min max I(X; LY X))+ I(X, X Y W) — I[(X; J|W)
PX.X:  ae(0,1] W:We(X,X,)o(Y,Ys,J)

Kx,x, 3K,

< min max I(X; LY X))+ I(X, X, YW) — I[(X; J|W)

a€e(0,1] px, x. Kx x, 2K,
WW o (X,X,) o (Y,Ys,J)

—
=

= min | C(S;(1-p?)+ I(X, X Y) — I(X; J
gin o C(S(1—p7)) S v T ( ) = 1(X;J)
K'<K,
where (a) follows from Lemma 7 below and from S; := % Further from the second part of Lemma 7, we
know that (% — fggl) X — fg32 X, = 0 almost surely, or that the maximizing K’ takes the form
| o +Pvab P pP
+PvVab  bP |~ |pP P |’

For the matrix ordering above it is necessary and sufficient that 0 < a,b < 1 and

l—a—b>p>F2pVab (42)

Observe that, when K’ is defined as above

1 1
I(X, Xr; Y) — I(X, J) = 5 log(l + (1531 + bS32 + 2\/ ab531532) — 5 10g(1 + aSJ).

Kx Kxy

41¢ X,Y are random vectors with a block covariance matrix given by K := T
K Xy Ky

}; then A(X,Y) and h(X|Y) are
maximized when (X,Y) ~ N (0, K). One way to observe the second part is that

1
RIXIY) = h(X = Kx,y Ky 'YIY) S (X = Kxy Ky'Y) < 5 log ((2me)" |[Kx — Kxy Ky K% v ).
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Optimizing the term above with respect to b for a fixed a subject to (42) we obtain that

max I(X,X;Y) - I(X;J)
px,x,~N(0,K")

K'=K,
2 1
= Jpax 5 log <1 + (\/GSgl +v/p2aSsy + /(1 — p2)(1 — a)Sgg) > ~3 log(1 + aSy). (43)
Setting a = 117, we see that the optimal = for the above maximization problem is the unique non-negative
root of the quadratic equation:
2(\/S31 + \//)2532)(\/(1 —p?)S32)(1+ Sy) + (( p?)S32(1 + Sy) — (\/Sa1 + v/ p2S32)* + SJ)
— (V/Ss1 4+ V/p*S32) (/(1 = p?)S32) = 0. (44)
This completes the proof. O

Remark 20. From the above argument, we know that

max I(X,X;Y) = I(X;J)
px,x, ~N(0,K")
K'<K,
= max I(X, X Y|W) - I(X, X,; J[W)
px, x;~N(0,K,)
We(X,X;)e(Y,J)

< max I(U;Y|W) = I(U; J|W) (45)
(UW)e(X,X,)e(Y,J)

a) 1
E 3 > log il ¢

i
where (a) follows from, for instance, | , Eq. 7] (this, in turn, utilizes the enhancement technique of | ]

for the MIMO Gaussian broadcast channel). Here [z]4 is zero if z is negative and = otherwise, and ¢; are the
set of generalized eigenvalues for the pencil

1 931 9mgs2| L 3 (g21/a)® 0] 1
<KX7Xr o IR e K, | K ).

Direct calculation shows that ¢; are the roots of the quadratic polynomial

2p\/ 531532 + S31 + Sz + 1 — /\(S3QSJ(1 — p2) + 531+ S50+ S5+ 24+ 2py/ 531532) + )\2(5’] +1)=0. (46)

Only one of the roots of this polynomial is larger than one. Denoting the larger root by Apax, we obtain

1
max I(U;Y|W) — I[(U; JJW) = = In Apax-
(UW)e(X,X,)e(Y,J) 2
On the other hand, routine calculation shows that after substituting the unique non-negative root of (44) in
(43) and simplifying the expression, we have

1
max I(X, X;Y) - I(X, X:; J) = = In Apax.
px,x, ~N(0,K") 2
K'<K,
Thus, for this setting, the inequality in (45) is indeed an equality. We remark that the optimality of U = (X, X,)
n (45) is similar to the observation made in [ ] for the problem of secure transmission over a Gaussian
wiretap channel with multiple antennas.

Theorem 9 (Theorem 8 in | ], see also Theorem 1 in | D). Let Zy,Zs be two Gaussian vectors with
strictly positive definite covariance matrices Kz, and Kz,, respectively. Let yp > 1 be a real number, S be a
positive semidefinite matriz, and W be a random wvariable independent of Z1,Zy. Consider the optimization
problem

max h(X 4+ Z1|W) — ph(X + Z3|W)

p(x,w)
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subject to Cov(X) <X S

where the mazimization is over p(w,x) such that Cov(X) < S, and W, X are independent of Z1,Zs. A Gaussian
p(x|w) with the same covariance matriz for each w is an optimal solution of this optimization problem.

Remark 21. In | ], the constraint for the optimization problem is listed as Cov(X|W) =< S, which is
seemingly a weaker statement. However what the authors proved and intended to prove is indeed the statement
mentioned above. There is also an alternate proof of the result in | ].

Lemma 7. Let A, B,C be matrices such that there exists A, B, C, and D such that the extended matrices

A B c 0
Ae = |:A~ B:|, Ce = |:é D:|

are invertible. Assume that Y = AX + BX, +Z and J = CX + Z for some vectors X, X, Y and J, and a
Gaussian random vector Z independent of (X, X,) and distributed as N'(0,I). Let Ky be an arbitrary symmetric
positive semi-definite matriz.
(i) To compute the mazimum over p(w,X,X,), subject to Kx x, =X Ko and W - (X, X,) - (Y,J), of the
expression
I(X; Jlxr) + I(X7 Xy Y‘W> - I<X7 X3 J|W)
it suffices to assume that [X X;|T = U + W where U and W are independent, and U ~ N(0,K’),
W ~ N(0,Kg — K') for some K' < K.
(1) Further, let [X*, X*] ~ N(0, K') be the mazimizer mentioned above. Then (C — FA)X* — FBX! =0 for
some matriz F.

Proof. Note that the matrices

A B c 0
Aci= |:6A GB:| » Cei= [eé eb}
are invertible for every € ## 0. This follows from the assumptlon that A, and C., are invertible. Let Z ~ A (0,1)

be independent of X, X, and Z. Define Z = [Z Z]”. Define X := [X X,]7, —AX+ZandJ, :=CX+Z.
Consider the expression

I JeX0) + 13X Y W) = I(X; T [W). (47)

From Theorem 9 we know that there exists a matrix K/ < Ky, such that X|{W = w} ~ N(0, K') for every w,

maximizes the term I(X; Y |W) — I(X;J|W). Thus the choice U, ~ N'(0,K’), W, ~ N'(0, Ko — K), where

U. and W, are independent; and [X X,]7 = U, + W,, maximizes the expression in (47) over p(w, x, X, ), subject
to Kx,x, = Ko. For any X, X, such that Kx x, = Ky, observe the following:

I(Xa J|Xr) < I(X, je|Xr)
= I(X;J|X,) + I[(X;eCX + eDX, + Z|J, X,)
< I(X;J[X,) + I(X X,;eCX + eDX, + Z)
< I(X;JX,) + log ‘I+ &[C D)Ko [C D]T’ .
Similarly, mimicking the steps as above,

I(X, X Y|W) < I(X: YW < (X, Xo; Y|W) + %log |1+ €14 Blold BY”

1(X, X,s I|W) < I(X: 3.|W) < (X, X,; I|IW) + %log 146 DK [C DI,

Therefore as € — 0, the maximum of the expression in (47) tends to maximum value of the optimization problem
in the theorem. Since {K : K < Ky} is a compact set, there is a K’ that is a subsequential limit of K. Hence
from the continuity of log | K|, we see that there is a maximizer for the optimization problem in the theorem of
the form: U ~ N(0,K'), W ~ N(0, Ky — K'), where U and W are independent; and [X X,|]T = U + W, for
some K’ < Ky. This completes the proof of (7).
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Let [X* X¥]T ~ N(0, K') be a maximizer. Let Y* := AX* + BX,* + Z and J* := CX* + Z where [X*, X}]

is independent of Z. Then from the optimality of [X*, X}] we have that
I(X*, X, Y") = I(X5, X550 = (XX Y W) - 1K, X5 (W) (48)
for any W such that (W,X*,X,*) is independent of Z. Express CX* = F(AX* + BX.") + X, where X is
independent of AX* + BX,” (such a decomposition is feasil?le for jointly GaussiNan vectors).” Since X is a
function of X* and X.,*, it is independent of Z. Let W = X. We obtain that W and Y* are independent.
Consequently, I(X*,X,%Y") = I(X*,X,";Y*|W) and using (48), we deduce that W (= X) and J* are
independent. Consequently, X and J* = CX* 4+ Z are uncorrelated, implying that W = X and CX* are
uncorrelated (hence independent). Since CX* = F(AX* + BX,") + X and AX* + BX,* are uncorrelated with

X, one obtains that E(X(X)T) = 0, showing that X = 0 almost surely. Thus, we have (C' — FA)X* - FBX* =0
almost surely. O

B.2. Proof of Proposition 2.

Proof. When So1 < Sy < Ss1, the third bound (the new one) for the capacity of the relay channel in Proposition
1, can be bounded from above (using routine calculations given in Appendix E.2) by

/ 2 _
max min 1log(l +S;(1 - p2)) + élog (1 + Ss1 4 p* S5 +2 531552 SnggQ ! )>

pE[fl,l] S7:521<S7<S31 1 +SJ 531 SJ
' 1 1 14 S31 + p2S32 4+ 24/p2S31532 531532 1—p?)
< —log(1+ S;(1— p? —1
- SJ:S2IIr§11£J<SSI per?fal}fl] 2 og(1 +S( P+ 2 o8 < 1+S8; S31 — SJ

(@) . 1 (14 S;)252,
< — 1 1 .
- 5(11521H%1£]<531 2 08 ( + 51+ 53 (SJ(l + 531)(531 — SJ)

where the bound in (a) again follows from routine algebra given in Appendix E.2. Considering the derivative
with respect to S;, we get the optimum value for S; being equal to

S7 = max <5’21, 531> .
3

APPENDIX C. PROOFS OF RESULTS FOR (GAUSSIAN Z-INTERFERENCE
C.1. Proof of Theorem 3.

Proof. Let J = X1 +uZ where Z is a standard normal random variable such that Zs = auZ + /1 — a2u?Z’ for
some standard normal random variable Z’ that is independent of Z. From Corollary 2 and standard arguments,
it follows that for any o, 8 € [0,1],

Ry + ARy < sup Aol (Xo; Ya| W, X1, Q) + A(1 — o) (1(Xo; Yo | W, Q) — I(Xa; J|W, Q))

PRPX1|1QPX5|QPW|X1,X5,Q
+ BI(X1;N1|Q) + (1 = B)U(W; Y2|Q) + I(X1: J[W,Q)) [, (49)

where X; and X, are assumed to satisfy the power constraints, and also satisfying that I(Xy;J|W,Q) >
I(X1; Y2|W, Q).
Let us make the following definitions

v ._|@ 1 au21 +V1—a?u?Z,
2 X2

)

€ Z3

5For every two jointly Gaussian random vectors S and V, one can decompose S as S = F'V + R for some matrix F' and random
vector R such that V is independent of R. Without loss of generality assume that V has an invertible covariance matrix. Then
F =E(SVTE(VVT)~1 yields the desired decomposition. Please see Theorem 2.3 in https://web.mit.edu/gallager /www/papers/
chap2.pdf


https://web.mit.edu/gallager/www/papers/chap2.pdf
https://web.mit.edu/gallager/www/papers/chap2.pdf
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IO = SH } [uzﬂ’
IR
o= [+ 2]

where Z;’s are mutually independent standard Gaussian random variables, independent of (X7, Xs). The

construction ensures that J(© is a stochastically degraded version of Yée) for any € < 1, and that J(¢) —e—

(X1,J©)) - X, is Markov. For simplicity, we sometimes drop the (¢) and simply write J instead of J(©) (and
similarly for other variables).
For any € > 0, > 1 consider the expression

Al (X2; Yo W, X1, Q) + A1 — ) [I(X2; Y2 |W, Q) — I(X2; J|W, Q)]
+BI(X1;;Y11Q) + (1= B) [I(W:Y2|Q) + I(X1; I W, Q)] + T, (50)
where T ., is a perturbation term, to the expression in (49), defined by

Ty i= (1 = B)I(Xo; J|W, X1, Q) — Ml (Xo; I[W, X1, Q) + el (X1, Xo; Ya|W, Q) — el (X1, Xo; I[W, Q).

i) . |ea
) €

Note that, given power constraints, el(X7, Xo; Yo|W,Q),vel (X1, Xo; J|W, Q),I(Xg;jWV, X1,Q) are non-
negative and bounded from above by some g(e) that tends to zero as ¢ — 0. Let V be the maximum
value of the expression among all the distributions satisfying the power constraints, the structure of the form
PQPX11QPX3|QPW X1, X2,Q> and I(X1; J[W, Q) > 1(X1; Yo W, Q). Let ptypy, 1oPX, 0Py x,,x,,0 Pe & maximizer. 6

_ (at(e
V2

and let (+)- = % Then, observe that for any € < 1, J_isa stochastically degraded version of Yo_ and

Take two i.i.d. copies of the maximizer and denote them using subscripts a, b respectively. Let (+)1

j+ is a stochastically degraded version of Yo . Moreover, J_ - (X;_, j_) -o- Xy is Markov. Further as Z’s
are Gaussian random variables, under this transformation, Z; y and Z; _, 1 < ¢ < 5, are independent of each
other and satisfy the same independence relationship to other variables as in the original setting.
Now we have, by mimicking the single-letterization manipulations used in the proof of Theorem 2 after the

equality in (a) below,
2V - AO[I(XQ(M XQb; Y2(La Y2b|W(L7 va Xla) le) Qa7 Qb) - )\aI(XQLLa XQb; ja; jb|Waa Wb; Xlav X1b7 Qaa Qb)

+ )\(1 - a)I(X2aa X2b; Y2aa Y2b|Wa7 Wba Qzu Qb)

- )\(1 - a)I(X2a7 X2b; Jaa Jb‘Waa Wln Qaa Qb) + BI(Xlav le; Y1a7 Y1b|Qa7 Qb)

+ (1= B)[L(Wa, Wy; Yaa, Yol Qar Qb) + 1(X1a, X3 Ja, Io| Wa, W, Qa, Q)

+ I(XQa; X2b; ja7 jb|Wa7 Wb7 Xlaa X1b7 Qzu Qb)]
+ 6I()(laa X1b7 X2a7 X2b; Y2a7 Y2b|Wa7 Wb7 Qaa Qb) - ’YCI(Xlay le; X2a7 X2b; Jaa Jb|Wa7 Wba Qaa Qb)

W AT (Xar, Xoo: Yor, Yo [Wa, Wi, X1ty X1, Qas Qp) — Aad (Xog, Xo; 3o, T [Way Wi, X140, X1y Qu, Q)
+ A1 — a)I(Xoy, Xo—; Yor , Yo [Wo, Wy, Qa, Q)
— A1 —a)I(Xoq, Xo—; I, T [Wo, Wi, Qo Qp) + BI(X 14, X135 Y14, Y 1_[Qa, Qp)
+ (1= B) [ IT(Wa, Wy; You , Yo |Qa, Qp) + I(X14, X154, J_[Wo, Wiy, Qa, Q1)
+ I(Xop, Xo s I, J_[Wo, W, X141, X1, Qa, Qb)|
el (Xiq, X1, Xoy, Xo 5 Yo, Yo [We, Wy, Qa, Qp) — vel (X4, Xu—, Xog, Xo 3 I, I [Wo, Wy, Qu, Qp)

6In the case of the Gaussian Z-interference channel, routine arguments will show that there is a maximizer - the power constraints
yield tightness (for instance, Proposition 17 and Theorem 4 in | ), and the additive Gaussian noise yields the continuity
(Proposition 18 in [ ]) for the various terms with respect to weak convergence. The interested readers can also look into
Section 5.2 of | ].
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b ~
O NI (Xoy s You [Wa, Wi, X1, Qu Qb) — Al (Xoss 3 [Wa, W, X140, I, Qay Q1)

+ A1 = ) I(Xop; You (W, Wy, J_,Qq, Qs)
=M1 — ) I (Xo; I 4| Wa, Wy, I, Qa, Qp) + BI( X113 Y14 |Qa, Qp)
+ (L= B) [ I(Wa, Wi, I Yoru |Qay Qu) + I(X143 I [Wa, Wo, I, Qa, Qo)
+ I(Xop; I |[Wa, Wo, X114, 3, Qa, Qp)]
+el(X1q, Xog; Your [Wo, Wo, J -, Qu, Q) — vel (X114, Xo; I [Wa, W, -, Qa, Qp)
+ A (Xoo; Yo [Wa, Wi, X1, Qa, Qp, You ) — Aad (Xa—; I [Wa, Wi, X1, Qa, Qp, Yo )
+ A1 = a)[(X2—; Yo [Wa, Wy, Yori, Qu, Qb)
— A1 =) I(Xo; I [Wa, Wy, You,Qa, Q) + BI(X1-5Y1-|Qa, Qp)
+ (1= B)[I(Wa, Wo, Yor ; Yo |Qa, Qo) + I(X1—; I _[Wa, Wy, Qa, Qv, Yair)
+ 1(Xo; T (W, Wy, X1, Qa, Qb, Yoy )]
+ el (X1—, Xo; Yo [Wo, Wy, Qa, Qb, Yo, ) —vel (X1_, Xo ; J_|W,o, Wy, Qu, Qp, Yoi)
- {AaI(Xl,,j,;YmWa, W, X143, Qay Qb) — AaI(Xl,,j,;j+|WmWb,XH,J,,Qa,Q,,)}

- {AO‘I(XI-F;YQ—‘WavWbaXl—yQ(vava2+) - )\&I(X1+;j—|wa7Wb7X1—’Qa7Qb7Y2+)}
— A1 =) I(Xo; Iy [Wa, Wy, Xoy, You , I, Qa, Qp) — M1 — @) [(Xo ;s I [Wo, Wy, Xo, Yo, You,Qa,Qp)
—BI(Y145Y1[Qa, Qy) — (1 = B)I(Your; Yo |Qu,Qp) — (v — 1)el (You; I_|Wo, Wy, Qa, Q)

where (a) follows since bijections preserve mutual information and (b) from chain rule and data-processing

equality from the Markov structure relating the various variables. The detailed justification of going from (a)
to (b) is given in Appendix E.1. Since J, ( J_) is a stochastically degraded version of Yo, (Ys_), we have
that the expressions within the curly braces above satisfy

I(X1—, T Yo [ Wa, W, X4, T, Qa, Q) — T(Xa—, T3 T W, Wiy, X140, T -, Qu, Qp) > 0,
I(X143 Yoo [Wo, Wi, X1-, Qa, Q, Yoy ) — I(X14; T2 [Wa, Wy, X1—, Qq, Qb Yaiu) > 0. (51)
Further note that (this is to ensure the constraint I(Xy; J|W, Q) > I(X1; Y2|W, Q) remains true after rotation)
0 < I(X1a, X103 Ja, J6|Wa, We, Qay Q) — 1(X1a, X165 Yaa, Yop|Wa, Wh, Qa, Qp)
=1(X14, Xao3 34, I [Wa, Wi, Qa, Qv) — I( X4, X135 Yoo, Yo [Wo, Wi, Qa, Qo)
= I( X1, Xo 3 I [Wo, W, Qay Qp, I ) — I( Xy, Xa 5 Yo [We, Wy, Qa, Qp, I )
+ (X4, X5 I [Wa, We, Qa, Quy You ) — I( X4, Xa—5 Yo [ W, Wi, Qa, Qb, Yai)
= I(X14; 34 [Wa, Wo, Qa, Qu, I ) — I(X14; You [Wa, Wy, Qa, @b, I -)
+ I( X1 I W, Wo, Qa, Qb, Yoru) — I(X1—5 Yo [We, Wy, Qa, @, Yo )
+ 1(X1—5 4 (W, Wh, Qa, Qv I, Xay ) — I(X1—; You [Wa, Wy, Qu, Qp, I -, X14)
+ 1( X145 I [Wo, Wh, Qa, Qb You, Xa-) — I(X14; Yo [Wo, Wy, Qa, @b, Yoi, X1-).
Now, observe that
I(X15 34 W, Wh, Qa, Qu, I -, X14) < T(Xa—5 34, 34 [ Wa, Wh, Qa, Qu, I -, X14)

(:C) I(le;j+|Wa, Wb»Qanva*7X1+)

(d)
S I(le;Y2+|Wa7 Wb7 Q(M Qbﬂ]fu X1+)

where (c) uses the fact that J - (j+, X14) = (Wo, Wy, Qa, Qp, J—, X1-) is Markov and (d) uses that J. is
a stochastically degraded version of Yo . Similarly, one obtains that

I(Xl-i-;']—‘Wav Wba Q(M Qb7Y2+aX1—) S I(X1+;Y2—|WCL’ Wb7 Qav Qb7Y2+7X1—)7
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implying
I(X1+§J+|Wa;WbaQanvaf) _I(X1+§Y2+|Wa»vaQaava‘]*)
+ I(le;Jf‘WaaWbaQa7Qb7Y2+) - I(le;Y27|Wa7WbaQaaQb7Y2+) Z 0.

Now set Q be be uniform Bernoulli variable and when Q = 0 we set Q = (Qas Quv), W = (Wo, Wy, J_), (X1, X2) =

(X14,Xo1) and when @Q = 1 we set Q = (Qq,Qp), W = (W, Ws, Yaq ), (X1, X2) = (X1-, X5 ). Notice that

this distribution is a candidate maximizer of the expression and hence must induce a value of at most V.

Therefore from (b) and (51) above we obtain that

2V S 2V — >\(1 - a)I(X27; J+‘Wa7 Wba X2+u Y2+7 J77 Qaa Qb) - >\(1 - Oé)I(X2+; J*‘Wan Wbu X277Y277 Q(u Qb)
- /BI(YI-‘,-? Yl—IQCH Qb) - (1 - 5)I(Y2+7 Y2—|Qaa Qb) - (’Y - 1)€I(Y2+7 J—|Waa Wb7 Qaa Qb)

This implies that the distribution generated above is a maximizer as well, but more importantly that the
last term, I(Yoi;J_|W,, Wy, Qu,@p) = 0, implying that [XH X2+] is independent of [Xl, Xg,], which
further yields, by the Skitovic-Darmois characterization of Gaussians, that conditioned on W, Q, X, Xs are
jointly Gaussians and that they have the same covariance matrix (independent of W, Q). Since the arguments
mimic Propositions 2, 8, and Corollary 3 of | ] we omit the details. Similarly, from I(Y14;Y1-|Qq, Q) =0
and I(Ya4;Y2-|Qa, @») = 0 we have that X; is a Gaussian with variance that does not depend on @ and so
is XQ.

By monotonicity of the terms in the outer bound, it is immediate that variance of X; is P;, the variance of
Xs is Py, and the covariance of X1, Xo|W is given by some

Ky pVELKs | [P 0
p\/KlKQ Ky - 10 P

Now we substitute this distribution and obtain the bound in the weighted-sum rate. O

C.2. Proof of Theorem 4: Slope at Costa’s corner point. Let \; = Ao and Ay = A(1 — ). Setting 5 =0
and ignoring the constraint in (16), we obtain that

A 1
Ri+ (A1 + A2)Re < ?1 log(K2(1 = p®) + 1) + 5 log (

/\2—110 14+ a’K; + Ko + 2apVK Ko +&lo Ki(1—p?) + u?
& Ky +u? 2 a?Ki(1—p?)+1)"°

1+a?P; +P2>
2

_|_

for some K1 < Py, Ky < P; and p € [—1, 1] satisfying
(P1 — Kl)(P2 — KQ) 2 pQKlKQ. (52)
We choose u = 1. Note that the expression is increasing in Ko; and hence we fix Kj, p and substitute for the
maximal K satisfying (52) to obtain
A 1
?1 log(Ka(1—p?) +1) + 3 log (1+a*P; + P»)

+)\2llog<1+a2K1+K2+2ap\/K1K2> )\2 < K1(17p2)+1 >

22
2 K +1 R Py vy e g

A Py(P, — K4)

1
< —1 e T (11— p? 1 — 1 1 2p P
=3 Og(Pl—K1+p2K1( )+ )+2 og (1+a°Pr + Py)

2 P (P —-K ) P (P —-K )
A —1 1o L+ a”Ky + P13K1+P21K1 + 2&/) Ky P1iK1+021K1 + & 1o Kl(]- - p2) +1
5 %8 K+ 1 2 BleK 1 —p)+1)"

To prove our result, note that it suffices to show that the maximum over K, Ks,p is upper bounded by
Llog(l+a’P + Py) + W log(1 + P,). Equivalently, we desire to show:

Py(Py — Ky) 2 Ki(1-p°)+1
—_— (1 — 1 Ag 1
Pl—K1+p2K1( P )+ t A2 08 a2K1(1—p2)+1

A1 log <
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+ (A2 —1)log K 1

< (M + A2 —1)log(1 + Ps).
Rearrangement of terms yields

Py(P1—K1)(1—p?)

1 Ki(l—p*)+1
Al P1—Ki1+p2K, ] 1
1 log 1+ P + log a2K1(1—p2)+1
(A 1 (1+a2K1+%+2a0\/fm>(l+[ﬁ(lfp2))
—1)lo
2 : (K1 +1)(a?EK1(1 = p?) +1)(1 + P2)
<0.

From the concavity of log it suffices that

Py(PL—K1)(1—p?)

A P —K1+p2 K, +1 K1(17p2)+1
' 1+ P, a?Ki(1—p?) +1
Cou) (1+ @Ky + 2P0 1 2ap, 1 52100 ) (14 Ko (1 - p2)
2 (K, + 1)(a2K.(1—p2) + 1)(1 + P)
<A+ Ao

This is equivalent to

A1( PPy p? >+(mafmﬁg
(Pl_Kl +p2K1)(1+P2) a2K1(1—p2)—|—1
(1+ 0Ky + 220 4 2apy [ 1 2 250 ) (1 + Ko (1 - )

F + D)@K (1— ) + (1 + By !

+ (A2 —1)

<0.

Since

PQ(Pl_Kl) )\1 P2P1p2 (K1+1)(G2K1(1—p2)+1)
2ap Klp K 2 < 2 2
1= K1+ 02K T A =1 \(P1— K1+ p°Ky) (14 Ki(1-p?)
)\2—1 (1+K1(1—p2)) CL2K1((P1—K1))
)\1 (K1+1)(Q2K1(1—p2)+1) P1

it suffices that
Ki(1 - a?)(1 — p*)
a’?Ki(1—p?)+1

Py(P—K _ K (1—p? a’Ki((Pi—K
(L+ @K+ 52 e + M e s o (1 + Ki(1 - p%)

+ (e —1) K+ D)@K (1- ) 1 (1 + ) -1
<o0.
This is equivalent to
(K21 =ah0 = Y) (53)
(1+ 0Ky + 2Rt + 50 e ) (L4 (1~ p?)

<A —1) | ®Ki(1—p?)+1— (K1 +1)(1+ P)
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This can be rewritten as

(-1 ) < 0= 1)

612132(1—/’2)(1+K1)+f92(1—<12)>jL (A2 —1) ( p*Po(1+ P1)) >
1+ K1)(1+ P) 1+ K1)(1+ P) P, — Ky + p?K;

_ Al ( (1+ K (1—p%)? a2((P1K1))>
( :

M K1+1)(a2K1(1—p2)+1) P
Note that

(1+ Kq(1—p?))? K
@Ri—) 1 1) = <a2“ "’2”1>‘

Therefore it suffices that
a?Py(1—p?)(1+ K1) + p*(1 — a?) (A2 — 1) P’ Pa(1+ Py))
(== ) < 0a - (SRR ) + <1+K1><1+P2><< n )

a1 <<1+ (1 p%) a?((P Kﬂ)) )

A1 (Kl + 1) P

Since the expression in linear in p?, we just need to ensure that this holds for p?> = 0 and p? = 1.
At p? = 0 we require

2P (/\2—1) Ag—l (a2+K1) (P1 —Kl)
<o () (s
(A=a%) = (e )<(1+P2) 1+ K1)(1+ Py) A1 (K1 +1) P
Optimizing over K; : 0 < K; < P, it suffices that

a2 2
(=) < 0 -1 (5 a )

(Ag — 1) X { it if P > 1:a22a2’70/2 <3 .

__\e 4(1+P1)(1-a?)
MP(1+ P) a’Py otherwise

Or one can even optimize over P; to get a bound, that works for all Py,

2 2 1 o2 1

P2 ()\2—1) ) if a <35

1—a2< (o —1 a _ « J A(T=a?) 2
@< (2 )<(1+P2)> M1+ Py) {2

a otherwise

Therefore we clearly need

M1 _ 4a*(1—a®)P, ifa®> <}
A1 P, otherwise -

At p? = 1, we require

(1-a?)
0<0s 0 (T i)

()\271) P2(1+P1)) )\271 1 aQ((Pl—Kl))
+(1+K1)(1+P2)<( Py >_ Al <(K1+1) Py ))

0<(-a)t ((&(1;1 PN daol( L _£(R-K)) )

Optimizing over K it suffices that

0<(1—a?)+ ((PQ(l;LlPl))> - AQ/\: 1a2>.

Or equivalently
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Therefore, we need

Ay — 1 Pz(?l-Pﬂ +(1- a2)
< .
)\1 - a2
Thus the constraint (from p? = 0) is the active one. We are now left with computing the minimum A = A\; + o
satisfying the above constraints.
Case (i): a® <
We seek to minimize A\; + A2 subject to

2 2
1-a®< (1) <1a+];232) N ,\(321 +1112) AT i a2’
Let )\2’\_1 := 7. We seek to minimize
(1-a®)(1+7) _ (A+P)1-d®) ~(l+7)
fjj% - 47(1+P;)(1—a2) - a*Pp v m.

The minimum value is

2
(Lt P - a) (1 VTF AT =)
a’Py 4a%(1 — a?) Py

(1+ 1+4a2(1—a2)P2)
4a2(1—a?) P,

obtained when ~ =
Case (ii): a® > 3
We seek to minimize A\; + Ao subject to

1—a2§()\2—1)<

a2P2 ) _ ()\2 — 1)2a2

1+ Py M+ P’

As before, let )\2’\11 := 7. We seek to minimize
(1-a®)(1+7)  (1+PR)A-a*)y(1+1)
a? P, a? a?Ps v — P% ’

1+P; — ~(1+Pz)
The minimum value is
(1+P)(1-a?) (1+VIF )’
a2P2 Pg

obtained when v = @.

APPENDIX D. PROOFS OF RESULTS FOR THE BROADCAST CHANNEL

D.1. Proof of Lemma 2. We use the proof by contradiction. Observe that an erasure channel p(gly) satisfies
the assumptions of Corollary 3. From Corollary 3, there exists p(v,w, ) such that

1 .

(1= < I(V; Z|W) = I(V: Y W) (54)

1—e=1(Y;Y)<I(W;Z)+ I(X;Y|W) = I(W;Z) + H(Y|W). (55)

Note that I(Y;Y) = (1 — e)H(Y), thus 1 — e = I(Y;Y) implies that ¥ is uniform. Next note that
1—e€

(1= e)(V; ZIW) = I(V:Y|W)) = el (V;Y|W)

=(1—e)(I(V;ZIYW) = I(V;Y|Z,W)) — el (V;Y|W)
(L= )H(Z|Y) = I(W; Z]Y) = H(Z|V,W,Y) = I(V;Y|Z,W)) — eI (V; Y|W)
(1-P(Y =0)H(Z]Y =0)
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Since Y is uniform, we have 3 < H(Z|Y) = %H(ZW? =0) < 1, implying that P(X = 0) = P(X =1) = 1. The
above sequence also implies that the following four terms I(W; Z|Y), H(Z|V,W,Y),I(V;Y|W),I(V;Y|Z, W)
are zero. Let Wy := {w : P(Y = 1|W = w) # 0}. For all w € W}, and for any v such that P(V = v|W = w) >0
observe that
p(olw)p(§ = Lw) = p(olw)p(g = How)p(2 = Ofvw,§ =1)  ~ I(V;Y|W) =0,p(2 = Oow,j = 1) = 1
= p(v|w)p(2 = Olow)p(§ = 1jvw, 2 = 0)
= p(v|w)p(z = Oow)p(y = 1w, £=0) = I(V;Y|Z,W)=0.

Canceling p(v|w) we see that p(2 = 0lvw) does not depend on v, implying that I(V; Z|W = w) = 0. Since we
have I(V; Z|W) = 1, this implies that > wew, PW =w) < 1. Hence

=Y PW=wY=1)= ) PW=wY=1)< Y PW=w)<
w weEW)q weWp

| —
N | —

The above implies that ) ., P(W = w) = % and that w € W, implies Y = 1. On the other hand, by

definition w ¢ Wy implies Y =0, or that Y is a function of W. Now, applying this to (55), we obtain that
1—e<IW;Z)=(1—-e)I(W;2) < (1-€)H(Z)=(1—¢€)H; (%), a contradiction.

APPENDIX E. ROUTINE CALCULATIONS

E.1. Justification of equalities in the proof of Theorem 3. Consider the first equality:
2V = Al (Xoa, Xov; Yoa, Yoo Wa Wo, Xias X16, Qas Qb) = Aad (Xaa, Xop; Jar Io|Wa, W, X1a, Xip, Qa, Q)
+ A1 = a)[(X2a, Xob; Yaa, Yoo |[Wa, Wi, Qa, Q)
=M1 = a)l(Xza, Xop; I, Io|Wa, W, Qa, Qb) + BI(X1as X103 Yias Y1b|Qa, Qb)
+ (1= B) [I(Wa, We; Yaa, You|Qa, Qb) + 1 (X1a, X165y Jo|Wa, Wi, Qa, Qp)
+1(X2a, Xav3 Jay Io| Wa, Wo, X1a, X160, Qa, Qb)]
+ €l (X1a, X16, X2a, Xov; Yoa, Yoo [Wa, W, Qa, Qp) — el (X1a, X1b, Xoa, Xov; Jay Io|Wa, Wi, Qa, Q)
= (Xog, Xo—: You, Yo  [Wa, Wo, X14, X1-,Qa, Qp) — Aal(Xoy, Xo; I I_|Wa, Wy, X140, X1—, Qa, Qb)
A1 — ) (Xoy, Xo—;Yor , Yo [W,, Wy, Qu, Q)
=AMl = a)[(Xoy, Xo; I, T [Wa, Wh, Qu, Qv) + BI(X14, X135 Y14, Y1-[Qa, Qb)
+ (1= B) [ I(Wa, Wy; You , Yo |Qa, Q) + I(X14, X154, J_[Wo, Wi, Qa, Qu)
+ I(Xop, Xo; I, T [Wo, W, X114, X1—, Qa, Qb)) (56)
+el(Xiy, X1, Xog, Xo 5 Yoy, Yo [We, Wy, Qa, Qp) — vel (X114, Xa—, Xoy, Xo 3 I, I [Wo, Wiy, Qa, Q)
This equality replaces the a, b copies of random variables with their rotated + and — versions. It holds since the
mapping (Xoq, Xop) — (Xat, Xo—) (and the similar mapping for other pairs of random variables) is a bijection
and hence preserves mutual information terms. Indeed the determinant of the Jacobian of the transformation
(ra,7mp) — (r4,r_) is one, hence it would even preserve differential entropies.
The next step is equating (a) and (b) in the proof of Theorem 3. To justify this step we will break things
one by one. One of the repeated tricks that we will employ is the following
I(X4, XY Y |U)—I(X, X_; Y., Y_|U)
=I(X, XY U Y) = (X, XYL U Y + I(Xy, X3 Y_|U, YY) — I(X o, X Y |U, YL
This is just Lemma 6 with n=2.

o Considering the terms that are multiplied by Ao in (56), we have:
I(Xoy, X5 Yor, Yo  [Wa, Wy, X140, X1, Qa, Qu) — I(Xoy, Xo s I, T [Wa, Wy, X14, X1, Qa, Qb)
= I(Xap, Xoo; Yoy [Wa, Wy, Xa4, X1, Qa, Qp) — T(Xap, Xoo3 Iy [Wa, W, Xuy, X1, T, Qa, Q)
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+1(Xay, Xo s Yo [Wa, Wy, X14, X1, Yau , Qa, Qu) — I(Xop, Xo 5 3 [Wa, W, X14, X1, Yor, Qa, Qb)
= I(Xap, Xoo; You Wa, Wo, Xug, X103, 3 Qa, Qo) — I( Xy, X Ty [Wa, Wo, Xiy, X1, I, T2, Qa, Q)
+1(Xay, Xo o Yo [Wa, Wy, X14, X1, Yau, Qa, Qu) — I(Xop, Xo 5 3 [Wa, W, X1y, X1, Yor, Qa, Qb)
where in the second equality the (immediate) Markov chain
I (X1-,3) o (Wa, Wy, Qa, Qb, X141, Xop, Xo—, Yoy )
is used to introduce J_ in the conditioning. Next,
I(Xot, Xoo; You [Wa, Wo, X1, Xao, 32, 32, Qa, Q0) — I(Xog, Xoo T [Wa, Wo, X, X1, 2, T, Qa, Q)
+ 1(Xop, Xom3 Yo [Wa, W, Xus, X1, Yo, Qay Qo) — I(Xop, Xoo3 I [Wa, Wo, X14, X1, Yo, Qu, Q)
= I( Xy, Xoo, Xaoy I o5 Yo [Wa, Wo, Xii, I, Qa, Qb) — I( Xy, Xoo, Xao I s T4 [Wa, Wo, X, I, Qa,y Q)
— I(X1 -, 35 Yo [Wa, W, Xa4, T, Qay Qo) + T(X1—, T3 34 [ Wa, Wh, X14, T, Qa Q1)
+1(Xop, Xooy Xig; Yoo [Wa, Wo, Xio, You, Qay Q) — (X2, Xoo, Xuis I [Wa, W, Xio, Yo, Qa, Q)
— I( X143 Yo [Wa, W, X1, You, Qay Qb) + (X143 [Wa, Wy, X1, Yar, Qu, Qb)
= I(Xa4; Yori [Wa, Wo, X1, I, Qa, Q) — (X245 34 [Wa, Wo, X141, I, Qa, Q)
— (X1, 5 Yo [Wa, W, Xai, T, Qay Qo) + T(X1—, T3 34 [ Wa, Wh, X14, T, Qa Q1)
+ 1(Xo—; Yo [Wa, Wy, X1, Yau, Qa, Qu) — I(Xo5 3 [Wa, W, X1, Yar, Qa, Q) (57)
— I( X143 Yo [Wa, W, X1, You, Qay Qb) + (X145 3 [Wa, Wy, X1, Yar, Qa, Qb)
where in the last step we used the fact that the channels are additive Gaussian (and hence Z,’s are
independent of other variables), we have Y5, depends only on the “inputs” (X;1, Xay), (and similarly
for the negative terms).
o Considering the terms that are multiplied by A(1 — &) in (56), we have:
I(Xoy, Xo 5 Yoy, Yo [Wo, Wy, Qu, Q) — I(Xoy, Xo;J4, I [Wa, Wy, Qa, Qb)
= I(Xot, Xo—; Yor [Wa, Wy, I, Qa, Qp) — I(Xot, Xo—; I [Wa, Wi, I, Qq, Q)
+ 1(Xot, Xo—; Yo [Wa, Wi, You, Qa, Q) — I(Xoy, Xo s I [We, Wy, Yo, Qu, Q)
= I(Xog; Yoi (Wo, Wy, I, Qa, Qv) — I(Xo45 I 4 [Wa, Wy, I, Qa, Qb)
+ 1 X2 Yo [Wa, Wy, Yori, Qa, Qb) — I(Xo—; I [Wa, Wi, Yaou, Qa, Qb)
+ 1 X You [Wo, Wo, Xog, I, Qa, Qb) — I(Xo—3 I [Wa, Wy, Xot, I, Qa, Q)
+1(Xot; Yo [Wo, Wi, Xoo, You, Qay Qb) — I(Xoi s I [Wa, We, Xoo, Yo, Qa, Qb)
= 1(Xog; Yoi (Wo, Wy, I, Qa, Qv) — I(Xo45 J4 [Wa, Wi, I, Qa, Qb)
+ I(Xo—; Yo [Wa, Wy, You, Qa, Qp) — I(Xo—; J_[Wo, Wy, Yor, Qa, Q) (58)
= I(Xo; I [Wo, Wi, Xog, I, You, Qu, Qp) — I(Xoy; I [Wo, Wy, Xo o, Yo, You, Qu, Qb)
Here the last inequality uses
I(Xoo; Yor [Jp, We, Wy, Xot, I, Qq, Qp) =0,
I(Xoq; Yo |Jo, Wo, Wi, Xo—, Yoru, Qa, Qp) = 0.

The first equation follows from the structure of Y5, which is a linear combination of X5, J4 and some
independent noise. The second equation follows similarly.
e Considering the terms that are multiplied by 8 in (56), we have:
Since Y7 is X7 with some additive Gaussian noise, the following decomposition is immediate

I(X14, X15Y 14, Y1 |Qa, Qp) = 1( X145 Y14 |Qa, Q) + 1(X15Y1[Q0, Qp) — I(Y143Y1-|Qa, Qp).  (59)
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e Considering the terms that are multiplied by 1 — 8 in (56), we have:
The key equality used here is (one can also swap (As, By) + (A1, B2))

h(Ay, A2|C) — h(B1, B2|C) = h(A1|C, A2) — h(B1[C, Az) + h(A2|C, By) — h(B:|C, B1).

I(WG«?Wb;YQ‘FaYQ*‘Qa?Qb) +I(Xl"r?Xl*;J+7J*‘Wa7Wb7Qa7Qb) +I(X2+7X2*;j+7j*|Wa7Wb7X1+aX1*3Qa7Qb)
= h(Y2+aY2*|QE7 Qb) + [h(J+7J*|WHd Wba ch Qb) - h(Y2+7Y2*|WCLa Wba Qﬂd Qb)]
+ I:h(j+7j*|Waa WbaX1+aX1*7Qa7Qb) - h(JvLaJ*‘Wa?Wb7X1+aX1*aQﬂ‘7 Qb)]
—h(j+,jf|Wa,Wb,X2+7X277X1+7X1*7QG7Q17)
= h(Y2+|Qa, Qv) + M(Y2-|Qa, Qv) — I(Y24; Y2 [Qa, Qs)
+ [h(J+|Wa7 WIHQCHQb,J—) - h(Y2+|Wa7 WluQa,Qb,J—)
+ h(I-|Way Wo, Qa, @, Yar) = h(Ya [Wa, Wi, Qa, Qb Yai )|
+ |:h(j+|W(l7 Wb7X1+7X1—7QCLaQbaJ—) - h’(J+|Waa WbaX1+7X1—7Qa7Qb7J—)

(T |Wa, W, Xty X1, Qay Qo, T4,) = BT Wa, Wh, X1, X1, Qa, Qo T4
— W(T 4| Wa, W, Xog, Xo—, X145 X1—, Qa, Qo I ) — R(T_|Wa, Wy, Xos, Xoe, X140, X1—, Qu, Qu, T 1)
In the last line we used the equality
(T | Way Wi, Xog, Xoy X14, X1, Qar Q) = h(T 4 [Wa, Wiy, Xy, Xo, X1, X1, Quy Quy I ),

introducing an extra J_ for free because J; depends on the inputs (X2, X14) and some independent
additive Gaussian noise. Now we can recombine them back into mutual information terms as follows

T(Wa, Wi, J -5 Yo [Qa, Q) + T( X4, X1 4 [Wa, W, T, Qa, Qb) + 1(Xog, Xo—; T [Wa, We, Xi4, X1, T, Qa, Q)
+ I(Wa, Wo, You; Yo [Qa, Q) + I(X14, Xi—; I [Wa, W, Qu, Qb, Yor ) + I(Xoy, Xom; I [Wa, Wy, X14, X1, Qa, Qp, Yai.)
= 1(Y24;Y2-[Qa, Qv)

= I(Wa, Wy, J -5 Y04 |Qa, Qp) + T (X143 34 [Wa, Wo, T, Qa, Qp) + I (X243 I 4 |[Wa, Wo, X14,T -, Qa, Qb)
+ I(Wa, Wo, You ;5 Yo [Qa, Q) + I(X14, X1 I |[Wa, W, Qu, Qv, Yoi.) + I(Xoy, Xo—; I [We, W, Xi4, X1, Qa, Qb, You)
~ 1Yo Yoo |Qu, Q) + { 1(X0 -3 34| Wa, Wo, I, X4, Qus Q1) = 1(Xa 3 T [ Way, Woy I, X4, Qu, Q1) }
+ {I(Xu;Jf\Wa?Wb,Qme,Yzﬂle) - I(X1+;37\Wa7Wb7Qa7Qb,Yz+aX17)}

The key observation is that both the terms in the curly braces are zero. This is where the peculiar
construction of the two variables J and J are useful. Observe that the first components of both are X3
with different independent additive Gaussians. When conditioned on say X7 the additive Gaussians of
both components are completely independent of the remaining terms and drop away from the mutual
information. The second components of both J and J are identical. Hence the terms in the curly braces
are zero. This yields that the sum of the terms multiplied by (1 — ) in (56) is equivalent to

I(Waa Wb,J—;YQJ,-‘Qa,Qb) + I(X1+;J+|Wa7Wb7J—7Qa7Qb) + I(X2+;j+‘Wa7Wb7X1+7J—7Qa7Qb) (60)
+ I(Waa Wb,Y2+;Y27‘Qa,Qb) + [(X1+7X17;J7|WH4’ Wbde,Qb7Y2+) + [(X2+7X2*;j*|Wﬂd WbaX1+7X1*7QCLaQbaY2+)
—1(Y213;Y2-|Qa, Q)

e Considering the terms that are multiplied by € in (56), we have:
I(Xl-i-aX1—7X2+7X2—;Y2+7Y2—|Wa7WbaQaaQb) 77I(X1+7X1—aX2+aX2—;J+7‘]—|WaaWbaQaaQb)
= I(XlJrvX2+;Y2+|WaavaJ77QaaQb) - ’YI(XIJHX2+;J+|Wa7Wb7J77QaaQb) (61)
+ I(X177X27;Y27|Wa7WbaQaaQbaY2+) - 71(X177X27;J7|Wa7WbaQaaQb7Y2+)
- ('Y - I)I(Y2+7J—|WLL’ Wb)Qanb)

This is exactly as in Example 2 of | | and follows from Lemma 4.
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Using (57), (58), (59), (60), (61) to substitute the terms in (56) we see that 2V can be further written as

2V = Al (Xop; You [ Wa, Wi, X140, 3 -, Qa, Qp) — Aol (Xog; T4 |[Wa, Wi, X140, T -, Qa, Q)

+ A1 — ) (Xoy; Yor Wy, Wy, J_, Qu, Q)

=AML — ) (Xop; I [Wo, Wy, -, Qa, Qv) + BI(X143 Y 14|Qa, Qb)

+ (1= B) [ IT(Wa, Wi, I 5 Yoi | Qar Q) + (X145 T4 | Wa, Wi, I, Qa, Q1)
+[(X2+§j+|Wa,Wb7X1+>J77Qa,Qb)]

+ el (X114, Xog; Yor [Wo, Wy, I, Qa, Qp) — vel (X4, Xog; I [Wea, Wy, I, Qu, Q)

+ Al (Xo—; Yoo [Wa, Wo, X1, Qa, Qu, Yor ) — Aad (Xo; J_|Wo, Wy, X1, Qa, Qb, Yoru)

FAL = a)[(Xo; Yo [Wo, Wy, Yoy, Qa, Q)

A1 — o) [(Xo—; I [Wo, Wy, You, Qa, Qb) + BI(X1-3 Y1-[Qa;s Qb)

+ (1= B) [ IT(Wa, Wy, You ;Y2 |Qa, Qp) + I( X1 I _|Wo, Wy, Qa, Qb, Yor.)
+ I( X5 J_|Wo, Wy, X1, Qa, Qp, Yoy

+el(X1-, Xo ;Yo [Wo, Wy, Qa, Qp, Yo, ) —vel (X1, Xo 5 I [Wo, Wy, Qa, Qp, Yoy )

— [N (X1—, T2 Yo [ W, Wi, Xa4, T, Qus Qo) — Aad (X1, T 34 [Wo, W, X14, T, Qa, Q)]

— AT (X145 Yo [Wa, Wy, X1—, Qu, Qp, Yor) — Aol (X145 T_|[Wa, W, X1, Qa, Qb, Yau )]

A1 =) I(Xoe; T4 |[Weo, W, Xog, Yor, I, Qa, Qp) — A1 — o) I (Xoy; I [Wo, Wy, Xo, Yo, Qa, Q)

= BI(Y1+:Y1-|Qq, Q) — (1 = B) (Y213 Yo |Qq, Qp) — (v — 1)el (You 5 I [Wa, Wi, Qa, Q). (62)

This completes the justification of equating (a) and (b) in the proof of Theorem 3.

E.2. Steps in the proof of Proposition 2.

E.2.1. Argument 1. We first show the algebra manipulations for the first inequality in Appendix B.2.
C <$§ + (ﬂf* ( Ss1 + 02532> +v (1= /72)532)2> —C(a?(1+5)))

< }1 (1 + S31 + p?Sa2 +2\/m S31532(1 — )) 7

1+ 5 S31— Sy
or equivalently,

2
1+a22+ (x* ( Ss1 + p2532) + (1= p2)532)

(1 + S31 + p?Ss2 + 24/p2531532 531532

1+S;, S31 —

which is equivalent to showing,

2z, (\/ Sa1 + \/p25'32) V(1= p?)Ss2

< S51 — Sy + p?Sso + 24/p> 531552 SJS32 1—p%)
= 1+, S31 =85y

- /)
S, >(1+$ (1+SJ))

S31532(1 — p?)
2 1 3132 )
+ 2. (1+5) S — 5,

Completing the square on z,, it suffices to show that

2

(S51—5y) (” Sa1 + p2532) < Ss1 — Sy 4 p?Saz 4+ 24/p2 5951532 SJ532 1—p?)
S31(1+Sy) - 1+ Sy S31 — SJ

or equivalently,
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2
S, _ S (\/STﬂJr P2532) . S7S55(1 — p?)
1+8; 7 1+8; S31 Sg1 =Sy

which is immediate.

E.2.2. Argument 2, step (a). Note that for p?> <1 and So; < S; < S3;

1+ S31 4 p2S32 + 24/p2 5931932 S315932(1 — p?)
+
1+ Sy S31 — Sy

(1+5,)%53% ))
SJ(]. + Sgl)(Sgl — SJ)

1 1
3 log(1 4 S;(1 — p?)) + 3 log (

(a) 1
< 210g<1+531+532<

or equivalently,

S318952(1 — p?)
S31— Sy

1+ 5,)283 1+ S31 + p?Ss2 + 2¢/p25315
<1+531+532< U+ 5,) 55 >+p2sJ + S5+ p?S3 +2v/p* S S |
Sy(1+ S831)(S31 — Sy) 1+ Sy

(14S4)8S31 + S31(1+8s) _ (1+5,)%S3,
S31—S Sy (1+S31) Sy(1+831)(S31—S1)’

S31532(1 — p?)
Sz1 =Sy
(14+57)S31 , S31(14+Sy) 9 1+ S31 + pS32 + 24/ p?S31.932
< Sz +p°S; .
S31 — Sy S'](l -+ 531) 1+S5y
The last inequality follows from the two immediate ones below
S31532(1 — p?)

14 81 + p?Ss + 2¢/p? 531552 + (145,01 —p%)

Since the last inequality is equivalent to

p*S32 + 21/ p? 531532 + (1+S5(1—p%)

(1 + SJ)Sgl

p?Saa + (1+8;(1—p*) < S32

531 — S] SBl - SJ
S32531(1 4+ Sy) 9 (1 + 531>
24/ 0285185y < = 77 S .
p731932 = SJ(1+531) TS 1+ Sy,

E.3. Steps in the proof of Theorem 8. To see (33¢) observe that
I(My; Z™|J™) 4+ I(My, J™; J™) 4+ I(My; J"| Mg, J™) + I(My; Y™ | My, J™)
= I(My; Z", J") + I(My; Y™, J"|My) + I(J™; J"| My, My)
> n(Ro + Ry) — ng(en).
To see (33f) observe that
min{I(Mo, J"; J") 4+ I(Mo; Y"|J"), I(Mo; Z"|.J") + I(My, J™; J™)}
+ I(My; Y™ | My, J™) + I(My; J"| My, Mg, J")

+ min {I(Ml; J" Mo, J™) 4+ I(Ma; Z™|My, My, J™),
I(My; Z"| My, J™) + I(Mi; J" My, Mo, j")}
= min{I(Mo; Y™, J"), [(My; Z",J"™)}
+ min {I(Ml; Y™, I M) + I(My; Z™, J"| My, My) + 1(J™; J"| My, My, My),

I(May; Z™, J"|Mg) + I(My; Y™, J"|Mg) + I(J™; J"| My, My, My) + I(My; My| My, J", j”)}

> n(Ro + R1 + Ra) — ng(en).
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