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Achievable rates for the relay channel with orthogonal
receiver components

Abbas El Gamal, Amin Gohari and Chandra Nair

Abstract

This paper studies lower bounds on the capacity of the relay channel with orthogonal receiver components (also
referred to as primitive relay channel). We show that the lower bound in Theorem 7 of Cover and El Gamal which uses
mixed decode-forward and compress-forward strategies is identical to the lower bound of Chong, Motani and Garg, and
is always larger than or equal to the recent lower bound of Mondelli, Hassani and Urbanke. We provide a simplified
expression for the lower bound in Theorem 7 of Cover and El Gamal and interpret one of its auxiliary variables as
implementing the randomized time-sharing strategy. Next, we compare the lower bound for the Gaussian relay channel
with orthogonal receiver components to existing upper bounds. Finally, we disprove a conjecture by Ahlswede and Han
on the capacity of the subclass of relay channels with orthogonal receiver components and i.i.d. output.

1. INTRODUCTION

The capacity of the relay channel p(y, yr|x, xr) is one of the longstanding open problems in network information
theory. Lower and upper bounds on the capacity which coincide in some special cases have been developed. In [CEG79],
a number of coding strategies were introduced (later termed decode-forward, partial decode-forward, and compress-
forward). These strategies were combined to obtain a unified lower bound on the capacity in Theorem 7 of [CEG79].
Subsequently, Chong, Motani and Garg [CMG07], [CM11] put forth a lower bound and showed that it is greater than
or equal to the bound in Theorem 7. Supported by some numerical simulations for Gaussian relay channels, Chong,
Motani and Garg conjectured that their bound can be strictly larger than the bound in Theorem 7 [CMG07, Remark
6], [CM11, Remark 6]. The cutset bound on the capacity of the relay channel was introduced in [CEG79]. This bound
was recently strengthened by the authors in [EGGN21] (see also [GN20]).

There has been renewed interest in the class of relay channels with orthogonal receiver components in which
Y = (Y1, Y2) and p(y1, y2, yr|x, xr) = p(y1, yr|x)p(y2|xr). It is known that the capacity of this class of relay channels
depends on p(y2|xr) only through its capacity, hence it can be substituted with a noiseless link of the same capacity
C0 [Kim07] as shown in Figure 1. The capacity of the relay channel with orthogonal receiver components, however,
is also not known in general (see Section 16.7.3 in [EK11]). Recently, Mondelli, Hassani and Urbanke [MHU19]
proposed a lower bound for this class of relay channels. The cutset bound is known to be tight when Yr is a function
of (X,Y1) [Kim08] and the capacity for the Gaussian case coincides with the cutset bound for a certain range of
channel parameters [EK11]. In [ARY09], [TU08] examples of this class of relay channels are given for which the
cutset bound is not tight. More recently, it was also shown that the cutset bound is not tight for the special class of
relay channels with orthogonal receiver components introduced by Cover in [Cov87], e.g., see [WOX17], [WBO19],
[LO19], [EGGN21], [Liu20].

In this paper, we explore the unified lower bounds on the capacity of the relay channel with orthogonal receiver
components in Theorem 7 of [CG79], [CMG07], [CM11] and [MHU19], and establish the following results:
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Fig. 1. Relay channel with orthogonal receiver components.
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• In Section 2: We show that the lower bound in Theorem 7 of [CG79, Theorem 7] and the lower bound in
[CMG07], [CM11] are identical for relay channels with orthogonal receiver components. We also provide a
simplified expression of this lower bound. We show that this simplified expression of the lower bound is larger
than or equal to, and can be strictly larger than, the recent lower bound in [MHU19].

• Section 3: We compute our simplified expression of the lower bound for the Gaussian relay channels with
orthogonal receiver components when the input random variables conditioned on Q are assumed to be Gaussian.
Here Q plays the role of randomized time-sharing introduced for the binary skew-symmetric broadcast channel
in [HP79] and is shown to strictly improve on pure time-sharing (power-control).

• Section 4: Finally, we restrict the discussion to the class of relay channels with orthogonal receiver components for
which p(yr, y1|x) = p(yr)p(y1|x, yr) and show that the lower bound in Theorem 7 of [CG79, Theorem 7] reduces
to the compress-forward bound with time-sharing. While it is known that time-sharing can increase the achievable
rate in the compress-forward strategy, Ahlswede and Han conjectured in [AH83] that when Yr is independent of
the input signal X , time-sharing is not necessary and that the capacity of this class of channels is given by the
pure compress-forward strategy. We disprove this conjecture by finding an example for which time-sharing strictly
improves the compress-forward lower bound.

Notation: We adopt most of our notation from [EK11]. In particular, we use Y i to denote the sequence (Y1, Y2, · · · , Yi),
and Y ji to denote (Yi, Yi+1, · · · , Yj). All logarithms are to the base e. For a real number x, we use x̄ to denote 1− x.
We use h(·) to denote differential entropy and H2(·) to denote the binary entropy function.

2. SIMPLIFYING THE LOWER BOUNDS

In [CM11, Lemma 2], the following equivalent characterization of the lower bound on the capacity of the general
relay channel p(y, yr|x, xr) in [CG79, Theorem 7] is given.

Theorem 1 ( [CG79]). A rate R is achievable if

R ≤ I(X,Xr;Y |Q)− I(Yr;V |U,X,Xr, Y,Q), (1)
R ≤ I(X;V, Y |U,Xr, Q) + I(U ;Yr|W,Xr, Q), (2)
R ≤ I(X;V, Y |U,Xr, Q) + I(U ;Yr|W,Xr, Q) + I(Xr;Y |W,Q)− I(Yr;V |U,Xr, Y,Q), (3)

for some p(q, w, u, v, x, xr, yr, y) = p(q)p(w|q)p(u|w, q)p(x|u, q)p(xr|w, q)p(yr, y|x, xr)p(v|u, xr, yr, q).

Specific choices for the auxiliary random variables U, V,W,Q lead to the compress-forward, decode-forward and
partial decode-forward lower bounds.

In [CM11], the following improved version of the above bound is given.

Theorem 2 ( [CM11]). A rate R is achievable if

R ≤ I(X,Xr;Y |Q)− I(Yr;V |U,X,Xr, Y,Q), (4)
R ≤ I(X;V, Y |U,Xr, Q) + I(U ;Yr|W,Xr, Q), (5)
R ≤ I(X;V, Y |U,Xr, Q) + I(U ;Yr|W,Xr, Q) + I(Xr;Y |U,W,Q)− I(Yr;V |U,Xr, Y,Q), (6)

for some p(q, w, u, v, x, xr, yr, y) = p(q)p(w|q)p(u|w, q)p(x|u, q)p(xr|w, q)p(yr, y|x, xr)p(v|u, xr, yr, q).

Note that the only difference between the bounds in Theorems 1 and 2 is in one of the terms in equations (3) and (6).
Since U → (W,Q) → Xr forms a Markov chain, we have I(Xr;Y |U,W,Q) = I(Xr;Y, U |W,Q) ≥ I(Xr;Y |W,Q),
which shows that the achievable rate in Theorem 2 is at least as large as that in Theorem 1 (see Remark 6 of [CM11]).
Remark 1. Letting W ′ = (W,Q), U ′ = (U,Q) and Q′ = ∅ improves the region in Theorem 2. Thus, without loss
of generality, we can set Q = ∅ in the statement of Theorem 2. Next, using the fact that Xr → W → U → X
forms a Markov chain, one can verify that replacing U by U,W improves the rate constraints. Moreover, it relaxes
the condition p(v|u, xr, yr) to p(v|u,w, xr, yr). This leads to the equivalent characterization of Theorem 2: A rate R
is achievable if

R ≤ I(X,Xr;Y )− I(Yr;V |U,X,Xr, Y,W ),

R ≤ I(X;V, Y |U,Xr,W ) + I(U ;Yr|W,Xr),

R ≤ I(X;Y |U,Xr,W ) + I(U ;Yr|W,Xr) + I(Xr;Y |U,W )− I(Yr;V |U,Xr, X, Y,W ),

(7)
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for some p(w, u, v, x, xr, yr, y) = p(u,w)p(x|u,w)p(xr|w)p(yr, y|x, xr)p(v|u,w, xr, yr).
We now state the main result of this section.

Theorem 3. For any arbitrary relay channel p(yr, y1|x) with orthogonal receiver components, the lower bounds in
Theorem 1 and Theorem 2 are identical and have the equivalent form: A rate R is achievable if

R ≤ min(I(U ;Yr), I(U ;Y1)) + I(X;Y1|U) + C0 − I(Yr;V |U,X, Y1), (8)
R ≤ I(X;V, Y1|U) + I(U ;Yr), (9)

for some p(u, x, yr, v, y1) = p(u)p(x|u)p(yr, y1|x)p(v|u, yr).
Further it suffices to consider |V| ≤ |Yr|+ 1 and |U| ≤ |X |+ 2 when evaluating the bound.

The proof of this theorem can be found in Section 5.1.
Remark 2. Replacing U with (U,Q), we can rewrite the bound in Theorem 3 in the equivalent form:

R ≤ I(X;Y1) + C0 − I(Yr;V |U,Q,X, Y1), (10)
R ≤ I(Q;Yr) + I(U ;Yr|Q) + I(X;Y1|U,Q) + C0 − I(Yr;V |U,Q,X, Y1), (11)
R ≤ I(Q;Yr) + I(X;V, Y1|U,Q) + I(U ;Yr|Q), (12)

for some joint distribution satisfying p(q, u, x, yr, v, y1) = p(q)p(x, u|q)p(yr, y1|x)p(v|u, q, yr). We can view Q as a
time-sharing random variable and interpret the term I(Q;Yr) as implementing a randomized time-division strategy,
that is, Q also carries part of the message as well. This decomposition into (U,Q) is seen to improve the region for
the Gaussian setting over naive power control. The idea of exploiting Q, intuitively a time-sharing random variable,
to convey additional message was first considered for the skew symmetric binary broadcast channel in [HP79]. In
[GJNW13], it was shown that the randomized time-division region coincides with Marton’s inner bound for the two
receiver binary-input broadcast channel.

2.1. Comparison of the simplified bound with the lower bound of Mondelli, Hassani and Urbanke

Consider the relay channels with orthogonal receiver components In [MHU19], Mondelli, Hassani and Urbanke
derived the following lower bound for this class of relay channels.

Theorem 4 (Theorem 1 in [MHU19]). Take some arbitrary joint distribution p(x)p(y1, yr|x)p(v|yr) satisfying I(X;Yr) <
I(X;Y1) + C0 and C0 ≤ I(V ;Yr|Y1). Then, the following rate is achievable:

R =
(C0 − Imax)I(X;V, Y1) + max{I(X;Yr), I(X;Y1)}(I(V ;Yr|Y1)− C0)

I(V ;Yr|Y1)− Imax
where

Imax = max{0, I(X;Yr)− I(X;Y1)}.

The authors of [MHU19] conjectured that this lower bound strictly improves over the lower bound in Theorem 1.
The conjecture is justified in [MHU19, Section IV] by an incomplete simulation. We show that this conjecture is false.

Lemma 1. The achievable rate in Theorem 4 is subsumed by the achievable rate in Theorem 1.

The proof of this lemma can be found in Section 5.2.

3. LOWER BOUND FOR GAUSSIAN RELAY CHANNEL

Consider the Gaussian relay channel with orthogonal receiver components described by

Y1 = X +W1,

Yr = X +Wr,

where W1 ∼ N (0, N1) and Wr ∼ N (0, Nr) are independent of each other and of X , and a link of capacity C0 from
the relay to the destination. We assume average power constraint P on X and define S12 = P/Nr, S13 = P/N1 and
S23 = 22C0 − 1.



4

In the Gaussian setting, the channel p(yr|x) is less noisy than p(y1|x) if N1 ≥ Nr and vice versa. Therefore, the term
minimizing min(I(U ;Yr), I(U ;Y1)) in (8) can be found depending on whether N1 ≥ Nr holds or not. The following
lemma gives an alternative characterization of Theorem 3 when there is a less noisy relation between the channels
from the transmitter to the destination and to the relay.

Lemma 2. If p(yr|x) is less noisy than p(y1|x), we can express the lower bound in Theorem 3 as

R ≤ min
α∈[0,1]

max

[
I(X;Y1|U) + (1− α)I(U ;Yr) + αI(U ;Y1) + αC0 − αI(Yr;V |U,X, Y1)

+ (1− α)I(X;V |Y1, U)

]
(13)

where the inner maximum is over

p(u, x, yr, v, y1) = p(x, u)p(yr, y1|x)p(v|u, yr). (14)

If p(y1|x) is less noisy than p(yr|x), we can express the lower bound in Theorem 3 as

R ≤ min
α∈[0,1]

max

[
I(X;Y1|U) + I(U ;Yr) + αC0 − αI(Yr;V |U,X, Y1) + (1− α)I(X;V |Y1, U)

]
,

where the inner maximum is over (14). Further it suffices to consider |V| ≤ |Yr| and |U| ≤ |X | when evaluating the
above expressions.

The proof of this lemma can be found in Section 5.3.

3.1. Evaluation for Gaussian inputs with randomized power control

The joint distribution attaining the inner maximum is not clear. In the rest of this section we replace U with (U,Q)
in Lemma 2 and restrict the inner maximum to the case of Q being a discrete random variable. Moreover, for every
Q = q we assume that the conditional distribution of (U, V,X, Yr, Y1) given {Q = q} is zero mean, jointly Gaussian
random variables. Let X|{Q = q} ∼ N (0, Pq). The auxiliary random variable Q allows us to perform power control
by having Pq depend on the choice of q.1 Since Q itself contains some part of the message, we call the class of such
distributions as Gaussian inputs with randomized power control.

For the case of N1 ≥ Nr, we can write the bound in (13) (specialized to the above joint distribution on auxiliary
variables) as

min
α∈[0,1]

max
p(q,x)

[
(1− α)I(Q;Yr) + αI(Q;Y1) + αC0 +

∑
q

G(1)
α (Pq)

]
(15)

where Q is a discrete random variable, (X|Q = q) ∼ N (0, Pq) and

G(1)
α (P ) = max

p(u,v|x)

[
I(X;Y1|U) + (1− α)I(U ;Yr) + αI(U ;Y1)− αI(Yr;V |U,X, Y1) + (1− α)I(X;V |Y1, U)

]
.

In the definition of G(1)
α (P ) the maximum is over zero mean jointly Gaussian random variables (U, V,X, Yr, Y1)

satisfying X ∼ N (0, P ) and p(u, x, yr, v, y1) = p(x, u)p(yr, y1|x)p(v|u, yr). Similarly, for the case of N1 ≤ Nr, we
can write the lower bound (specialized to the above joint distribution on auxiliary variables) as

min
α∈[0,1]

max
p(q,x)

[
I(Q;Yr) + αC0 +

∑
q

G(2)
α (Pq)

]
(16)

where
G(2)
α (P ) = max

p(u,v|x)

[
I(X;Y1|U) + I(U ;Yr)− αI(Yr;V |U,X, Y1) + (1− α)I(X;V |Y1, U)

]
,

and maximum in G(2)
α (P ) is taken over the same set as G(1)

α (P ).

1Power control is known to be helpful to improve the compress-forward rate [EK11, Sec. 16.8].
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The following lemma gives an explicit expression for G(1)
α (P ) and G(2)

α (P ):

Lemma 3. For Nr ≤ N1 we have

G(1)
α (P ) =



α
2 log(1 + S13) + max

(
1−α

2 log(1 + S12), α ∈
[
0, S12

1+S12+S13+1

]
1
2 log(S12 + S13 + 1)− α

2 log(S12)− 1
2h(α)

)
α
2 log(1 + S13) + 1−α

2 log(1 + S12) α ∈
[

S12

1+S12+S13+1 , 1
] ,

where h(α) is the binary entropy function and S12 = P/Nr, S13 = P/N1.
For Nr ≥ N1 we have

G(2)
α (P ) =


α
2 log(1 + S13) + α

2 log 1+S13

S12
+ 1

2 log(1 + S12 + S13)− 1
2h(α), α ∈

[
0, S12

1+S12+S13+1

]
1
2 log(1 + S13) α ∈

[
S12

1+S12+S13+1 , 1
] ,

The proof of this lemma can be found in Section 5.4.
We call the bound in equations (15) and (16) as the Gaussian inputs with randomized power control lower bounds.

In Figure 2, we plot the these lower bound when Q is a constant random variable, Q is a binary random variable.
As one can see, increasing the size of Q improves the lower bound. We also plot a theoretical upper bound on the
Gaussian inputs with randomized power control lower bounds as the size of Q tends to infinity. This upper bound is
computed as follows: consider, for instance, the bound in (15):

min
α∈[0,1]

max
p(q,x)

[
(1− α)h(Yr)− (1− α)h(Yr|Q) + αh(Y1)− αh(Y1|Q) + αC0 +

∑
q

G(1)
α (Pq)

]
≤ min
α∈[0,1]

max
p(q,x)

[
1− α

2
log(2πe(P +Nr))− (1− α)h(Yr|Q) +

α

2
log(2πe(P +N1))− αh(Y1|Q)

+ αC0 +
∑
q

G(1)
α (Pq)

]
, (17)

where we use the fact that Gaussian distribution has higher entropy than a mixture Gaussian distribution with the same
variance. Note that it suffices to take binary Q to compute the above expression.

The upper bound in Figure 2 is as follows:

Theorem 5 ( [EGGN21]). Any achievable rate R for the relay channel with orthogonal receiver components p(y1, yr|x)
with a relay-to-receiver link of capacity C0 must satisfy the following inequalities

R ≤ I(X;Y1, Yr)− I(V ;Y1|Yr)− I(X;Yr|V, Y1), (18)
R ≤ I(X;Y1) + C0 − I(V ;Yr|X,Y1), (19)

for some p(x)p(y1, yr|x)p(v|x, yr). Further it suffices to consider |V| ≤ |X ||Yr|+ 1 when evaluating the bound.

For the Gaussian relay channel, this upper bound simplifies to the following expression [EGGN21, Proposition 4]
[WBÖ17]:

C ≤

{
1
2 log

(
1 + S13 + S12(S13+1)S23

(S13+1)(S23+1)−1

)
, for S12 ≤ S13 + S23 + S13S23,

1
2 log((1 + S13)(1 + S23)), otherwise.

(20)

The figure also plots the decode-forward lower bound and the compress-forward lower bound for this relay channel
whose expressions are given in [EK11, Eq. 16.16] and [EK11, Eq. 16.17]. When S12 ≥ S13 +S23 +S13S23, the upper
bound in (20), the cut-set bound and the decode-forward lower bound all coincide. This corresponds to the top corner
point in the figure.
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Fig. 2. Plots of the bounds for the Gaussian product-form relay channel with S13 = 0.2, S23 = 0.6.

4. DISPROVING AHLSWEDE-HAN CONJECTURE

A relay channel with orthogonal receiver components is said to be with i.i.d. output if its family of conditional
probabilities have the form

p(y, yr|x, xr) = p(yr)p(y1|x, yr)p(y2|xr). (21)

For this class of channels, the bound in Theorem 3 reduces to:

R ≤ I(X;V, Y1|U) = I(X;Y1|V,U)

R ≤ I(X;Y1|U) + C0 − I(Yr;V |U,X, Y1)

for some
p(u, x, yr, v, y1) = p(u, x)p(yr)p(y1|x)p(v|u, yr).

The above rate is just the compress-forward rate with a time-sharing variable U . If we set U = ∅, we obtain he
compress-forward rate without a time-sharing variable [EK11, Eq. 16.14].

Communication over a relay channel of the form (21) is equivalent to communication over a channel with rate-
limited state information available at the receiver [ARY09]. As such, the Ahlswede-Han conjecture in [AH83] for
the channels with rate-limited state information is equivalent to the capacity for this relay channel with orthogonal
receiver components being equal to max I(X;Y1|V ), where the maximum is over p(x)p(yr)p(y1|x, yr)p(v|yr) such that
I(V ;Yr|Y1) ≤ C0. In other words, the Ahlswede-Han conjecture is equivalent to the optimally of the compress-forward
strategy without time-sharing.

While it is known that the compress-forward rate is not concave in C0 for general relay channel with orthogonal
receiver components and time-sharing improves the compress-forward rate (e.g., see [EK11, Sec. 16.8]), the Ahlswede-
Han conjecture implies that time-sharing is unnecessary for the special case of relay channels of the form (21).
Interestingly, the Ahlswede-Han conjecture is valid for all channels for which the capacity is known [Kim08], [ARY09],
[TU08].

In this section, we construct an example for which the compress-forward rate with time-sharing is strictly better
than that without time-sharing, which shows that the Ahlswede-Han conjecture (as stated) is false. A key feature of
our example is its non-symmetric construction.
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Fig. 3. Conditional probability p(y1|x, yr). We assume P[Yr = 0] = β and P[X = 0] = θ.

Lemma 4. Take a discrete memoryless relay channel with orthogonal receiver components of the form p(yr)p(y1|x, yr).
Let

F (p(x), λ) = max
p(v|yr)

I(X;Y1|V ) + λ(C0 − I(V ;Yr|Y1)). (22)

Then, the compress-forward rate without time-sharing equals

max
p(x)

min
λ∈[0,1]

F (p(x), λ)

while the compress-forward rate with time-sharing equals

min
λ∈[0,1]

max
p(x)

F (p(x), λ).

The proof of this lemma can be found in Section 5.5. This lemma implies that the Ahlswede-Han conjecture does
not hold if one can construct an example for which

max
p(x)

min
λ
F (p(x), λ) < min

λ
max
p(x)

F (p(x), λ).

We now construct such an example. Consider a channel with binary X , Y1 and Yr where p(x, yr, y1) = p(x)p(yr)p(y1|x, yr)
is defined as follows: assume that Y1 = 0 if Yr = 1, and Y1 = X if Yr = 0 (see Fig. 3). Let P[Yr = 0] = β.

Let P[Yr = 0|v] = q and P[X = 0] = θ. Since p(x) is specified by θ, we can denote F (p(x), λ) by F (θ, λ) for
simplicity. Observe that

I(X;Y1|v) = H2(qθ̄)− θ̄H2(q),

H(Yr|v)−H(Y1|v) = H2(q)−H2(qθ̄),

where θ̄ = 1− θ. Thus,

F (θ, λ) = λ(C0 −H2(β) +H2(βθ̄)) + C [(1− λ)H2(qθ̄) + (λ− θ̄)H2(q)]q=β , (23)

where C [(1−λ)H2(qθ̄)+(λ−θ̄)H2(q)] is the upper concave envelope2 of the function q 7→ (1−λ)H2(qθ̄)+(λ−θ̄)H2(q)
defined for q ∈ [0, 1]. An explicit expression for C [(1− λ)H2(qθ̄) + (λ− θ̄)H2(q)] is given in Appendix A.

Let C0 = 0.06, β = 0.3. We claim that

max
θ

min
λ
F (θ, λ) < min

λ
max
θ
F (θ, λ).

Let
P = {t : t = 0.001 + 0.01k for k ∈ [0 : 99]}.

Define

GP(θ) := min
λ∈P

F (θ, λ)

ĜP(λ) := max
θ∈P

F (θ, λ).

2The concave envelope of the function is the smallest concave function that dominates f from above.
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Observe that

min
λ∈[0,1]

F (θ, λ) ≤ GP(θ)

max
θ∈[0,1]

F (θ, λ) ≥ ĜP(λ).

Therefore maxθ minλ F (θ, λ) < minλ maxθ F (θ, λ) holds if

max
θ∈[0,1]

GP(θ) < min
λ∈[0,1]

ĜP(λ).

The plots of GP(θ) and ĜP(λ) are given in Figures 5 and 7 respectively (in Appendix B). The plots are zoomed in
near their global maximum and minimum in Figures 6 and 8.

In particular, the maximum over θ of GP(θ) occurs around 0.5772631 and yields a value in (0.191232, 0.191235).
On the other hand, minimum over λ in ĜP(λ) occurs around 0.24868889 and yields a value in (0.191898, 0.1919). This
demonstrates that time-sharing does improve the rate and provides a counterexample to the Ahlswede-Han conjecture.

5. PROOFS OF THE RESULTS

In the following sections we present the proofs of the results stated in the previous section in their order of appearance.

5.1. Proof of Theorem 3

Let R0 be the bound of Theorem 1, R1 be the region given in Remark 1 and R2 be the region defined in the
statement of Theorem 3. We know that R0 ⊆ R1. It is clear that R2 ⊆ R0 by taking W = Q = ∅ and Xr independent
of (U, V,X) and p(xr) a capacity achieving distribution for the channel p(y2|xr). It remains to show that R1 ⊆ R2.

Take some arbitrary U, V,W for R1. Observe that

I(X,Xr;Y ) ≤ I(X;Y1) + C0, (24)
I(Xr;Y |U,W ) ≤ C0. (25)

Let W̃ = (W,Xr). Then, the constraints on R in R1 along with (24) and (25) imply that the rate R satisfies

R ≤ I(X;Y1) + C0 − I(Yr;V |U,X, Y, W̃ )

R ≤ I(X;V, Y |U,Xr, W̃ ) + I(U, W̃ ;Yr)

= I(X;V, Y1|U,Xr, W̃ ) + I(U, W̃ ;Yr)

R ≤ I(X;Y |U, W̃ ) + I(U, W̃ ;Yr) + C0 − I(Yr;V |U,X, Y, W̃ )

= I(X;Y1|U, W̃ ) + I(U, W̃ ;Yr) + C0 − I(Yr;V |U,X, Y1, W̃ )

The constraint
p(w, u, x, xr, yr, v, y) = p(u,w)p(x|u,w)p(xr|w)p(yr, y|x, xr)p(v|u, xr, yr, w)

implies
p(u, w̃, x, yr, v, y1) = p(u, w̃)p(x|u, w̃)p(yr|x)p(y1|x)p(v|u, w̃, yr).

Setting Ũ = (U, W̃ ) shows that R1 ⊆ R2. This completes the proof for R0 = R1 = R2. The cardinality bounds on
the auxiliary random variables in R2 come from the standard Caratheodory-Bunt [Bun34] arguments and is omitted.

5.2. Proof of Lemma 1

It turns out that the rate in Theorem 4 corresponds to a particular choice of variables Q,U, V in Remark 2.
Take some arbitrary p(x) and p(v′|yr) satisfying the constraints of Theorem 4:

I(X;Yr) < I(X;Y1) + C0, (26)
I(V ′;Yr|Y1) ≥ C0. (27)
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Consider the following choice for auxiliary variables U , V and Q in Remark 2:
Let Q ∈ {0, 1} be a Bernouli random variable independent of (X,Y1, Yr) satisfying

p(Q = 1) =
C0 − Imax

I(V ′;Yr|Y1)− Imax
,

where Imax = max{0, I(X;Yr)− I(X;Y1)}.
(i) If I(X,Yr) ≤ I(X;Y1), define U and V as follows: when Q = 0 set U = V = ∅ and when Q = 1 set U = ∅ and
V = V ′.
(ii) If I(X,Yr) > I(X;Y1), define U and V as follows: when Q = 0 set U = X , V = ∅, and when Q = 1 set U = ∅
and V = V ′.
One can verify that for this choice for auxiliary variables U,Q and V , the lower bound in Remark 2 reduces to the
one given in [MHU19].

5.3. Proof of Lemma 2

If p(yr|x) is less noisy than p(y1|x) we can write the bound in Theorem 3 as

R ≤ I(U ;Y1) + I(X;Y1|U) + C0 − I(Yr;V |U,X, Y1), (28)
R ≤ I(X;V, Y1|U) + I(U ;Yr), (29)

for some joint distribution distribution p(u, v, x, y1, yr) satisfying

p(u, x, yr, v, y1) = p(x, u)p(yr, y1|x)p(v|u, yr). (30)

Equivalently, we can write this bound as

max min
α∈[0,1]

[
I(X;Y1|U) + (1− α)I(U ;Yr) + αI(U ;Y1) + αC0 − αI(Yr;V |U,X, Y1) + (1− α)I(X;V |Y1, U)

]
where the outer maximum is over distributions of the form given in (30). It remains to prove that the maximum and
minimum can be exchanged. The proof follows from [GGNY13, Corollary 2] and mimics the proof of the exchange
of max and min in the proof of Lemma 1 in [GGNY13] by noting that the auxiliary variable U convexifies the region.

The other case of p(y1|x) being less noisy than p(yr|x) similar. The cardinality bounds on the auxiliary random
variables come from the standard Caratheodory-Bunt [Bun34] arguments and is omitted.

5.4. Proof of Lemma 3

Let Var[X|U ] = aP for some a ∈ [0, 1], and Var[Yr|U, V ] = b(aP +Nr) for some b ∈ [0, 1]. Then,

KX,Yr|U =

[
aP aP
aP aP +Nr

]
and

KX,Yr|U,V =

[
aP (abP+Nr)
aP+Nr

abP

abP b(aP +Nr)

]
Case of N1 ≥ Nr: Then, we obtain

G(1)
α = max

a,b∈[0,1]
α

(
1

2
log(

P +N1

N1
) +

1

2
log

b(aP +Nr)

abP +Nr

)
+ (1− α)

(
1

2
log

P +Nr

N1
+

1

2
log

(
aP

aP +Nr
+

N1

abP +Nr

))
.

To obtain the optimal a, b, we would like to maximize the expression

α log
b(aP +Nr)

abP +Nr
+ ᾱ log

(
aP

aP +Nr
+

N1

abP +Nr

)
.
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Let us reparameterize according to

x :=
aP

aP +Nr
, y :=

b(aP +Nr)

abP +Nr

which imposes the constraints 0 ≤ x ≤ P
P+Nr

and 0 ≤ y ≤ 1. Now we would like to maximize the expression

α log y + ᾱ log

(
x+

N1

Nr
(1− yx)

)
,

and it is clear that the maximum is attained at x = 0 or x = P
P+Nr

. If x = 0, then y = 1 is the maximizer; while if

x = P
P+Nr

(the expression is concave in y), we have y∗ = min
{

1, α(P (N1+Nr)+N1Nr)
PN1

}
as the maximizer.

Therefore putting things together, substituting, and simplifying, we obtain the following:
(i) When α ∈ [ S12

1+S12+S13
, 1] then

G(1)
α =

α

2
log(1 + S13) +

1− α
2

log(1 + S12),

(ii) When α ∈ [0, S12

1+S12+S13
) then

G(1)
α =

α

2
log(1 + S13) + max

(
1− α

2
log(1 + S12),

1

2
log(S12 + S13 + 1)− α

2
log(S12)− 1

2
h(α)

)
.

Case of N1 ≤ Nr: In this case we can write

G(2)
α (P ) = max

a,b∈[0,1]
α

(
1

2
log

P +Nr

N1
+

1

2
log

b(aP +N1)

abP +Nr

)
+ (1− α)

(
1

2
log

P +Nr

N1
+

1

2
log

(
aP

aP +Nr
+

N1

abP +Nr

))
.

To obtain the optimal a, b, we would like to maximize the expression

α log
b(aP +N1)

abP +Nr
+ (1− α) log

(
aP

aP +Nr
+

N1

abP +Nr

)
. (31)

Again, let us reparameterize according to

x :=
aP

aP +Nr
, t :=

b(aP +N1)

abP +Nr

which imposes the constraints 0 ≤ x ≤ P
P+Nr

and 0 ≤ t ≤ xNr+(1−x)N1

Nr
. Now we would like to maximize the

expression

α log t+ ᾱ log

(
xNr(xNr + (1− x)N1) +N1x(1− t)Nr +N2

1 (1− x)

Nr(xNr + (1− x)N1)

)
,

This expression is increasing with respect to t at t = 0 and hence is maximized at

t∗ = min

{
xNr + (1− x)N1

Nr
,
α(xNr +N1)(xNr + (1− x)N1)

xN1Nr

}
where the latter point is the unique stationary point in t. This breaks into two cases:
(i): If α ∈

[
S12

1+S12+S13
, 1
]

then t∗ = xNr+(1−x)N1

Nr
.

Now we have to maximize (after simplification) the expression

log

(
xNr + (1− x)N1

Nr

)
.

The above expression is increasing in x and maximized at x = P
P+Nr

leading to

G(2)
α (P ) =

1

2
log

P +Nr

N1
+

1

2
log

P +N1

P +Nr
=

1

2
log(1 + S13).
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(ii): If α ∈
[
0, S12

1+S12+S13

]
then we decompose into two sub-cases:

(a): If x ∈
[
0, αN1

N1−αNr

]
then again t∗ = xNr+(1−x)N1

Nr
. As in the earlier case the resultant expression is increasing

in x, and hence achieves it maximum at the boundary. By continuity of the expression in x, this implies that the global
maximum in x will lie in x ∈

[
αN1

N1−αNr
, P
P+Nr

]
.

(b): If x ∈
[

αN1

N1−αNr
, P
P+Nr

]
then t∗ = α(xNr+N1)(xNr+(1−x)N1)

xN1Nr
. Now we have to maximize (after simplification)

the expression

α log

(
α(xNr +N1)(xNr + (1− x)N1)

xN1Nr

)
+ (1− α) log

(
(1− α)(xNr +N1)

Nr

)
.

The derivative of the above expression in x is non-negative when

α ≤ xNr

xNr +N1
+

αx(Nr −N1)

x(Nr −N1) +N1
.

It is immediate to verify that this holds when x ∈
[

αN1

N1−αNr
, P
P+Nr

]
as it suffices to verify that it holds when x =

αN1

N1−αNr
. Thus the overall maximizer is when x = P

P+Nr
. Plugging in and simplifying, when α ∈

[
0, PN1

PNr+N1(P+Nr)

]
,

we obtain that
G(2)
α (P ) = −1

2
h(α) +

α

2
log

1 + S13

S12
+

1

2
log(1 + S12 + S13).

5.5. Proof of Lemma 4

The compress-forward rate with time-sharing has the following equivalent characterization (see Proposition 3 of
[Kim07]): it equals max I(X;Y1, V |U) over all p(u|x)p(v|u, yr) subject to I(V ;Yr|U, Y1) ≤ C0. This expression is
equivalent to

max
p(u,x)p(v|u,yr)

min
λ≥0

I(X;Y1, V |U) + λ(C0 − I(V ;Yr|U, Y1))

= min
λ≥0

max
p(u,x)p(v|u,yr)

I(X;Y1, V |U) + λ(C0 − I(V ;Yr|U, Y1)) (32)

= min
λ≥0

max
p(x)

max
p(v|yr)

I(X;Y1|V ) + λ(C0 − I(V ;Yr|Y1))

= min
λ∈[0,1]

max
p(x)

max
p(v|yr)

I(X;Y1|V ) + λ(C0 − I(V ;Yr|Y1)) (33)

where (33) holds because if λ ≥ 1 the optimal choice of V is a constant. The exchange of maximum and minimum is
justified as in the proof of Lemma 2 in Section 5.3. To apply the min-max interchange in (32), one can use [Sim95,
Theorem 12] which allows for the exchange of max and min without requiring λ to be in a compact set. The set of
distributions p(u, x)p(v|u, yr) can be restricted to a compact set as cardinality bounds can be imposed on the alphabet
sets of U and V . This theorem is applied to the function − [I(X;Y1, V |U) + λ(C0 − I(V ;Yr|U, Y1))] which satisfies
the conditions of [Sim95, Theorem 12] by a similar argument as in the proof of Lemma 1 in [GGNY13].

The compress-forward rate without time-sharing has the following equivalent characterization (see Proposition 3 of
[Kim07]): it equals max I(X;Y1, V ) over p(v|yr) subject to I(V ;Yr|Y1) ≤ C0. This expression is equal to

max
p(x)

max
p(v|yr)

min
λ≥0

I(X;Y1|V ) + λ(C0 − I(V ;Yr|Y1))

= max
p(x)

min
λ≥0

max
p(v|yr)

I(X;Y1|V ) + λ(C0 − I(V ;Yr|Y1))

= max
p(x)

min
λ∈[0,1]

max
p(v|yr)

I(X;Y1|V ) + λ(C0 − I(V ;Yr|Y1)).

Justification for restriction to λ ∈ [0, 1] and the exchange of maximum and minimum is similar to the earlier case.
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Fig. 4. Plot of q 7→ (1− λ)H2(q(1− θ)) + (λ+ θ − 1)H2(q) for θ = 0.1 and q′ = 0.3 (λ is found from (34)).

APPENDIX A
UPPER CONCAVE ENVELOPE CALCULATION

In this appendix we compute the upper concave envelope of the function q 7→ (1−λ)H2(q(1−θ))+(λ+θ−1)H2(q)
at q = β ∈ [0, 1]. If λ ≥ 1− θ, this function is concave in q. Thus,

C [(1− λ)H2(qθ̄) + (λ− θ̄)H2(q)]q=β = (1− λ)H2(βθ̄) + (λ− θ̄)H2(β).

If λ < θ̄, the second derivative of the function q 7→ (1− λ)H2(qθ̄) + (λ− θ̄)H2(q) will have a unique root in (0, 1).
The function is initially concave and then becomes convex; see Figure 4 for an illustration where the function and its
upper concave envelope are plotted. Since λ < θ̄, one can parameterize λ as

λ =
log 1−q′θ̄

θ

log 1−q′θ̄
θ + log 1

q′

(34)

for some q′ ∈ [0, 1). In this case, the upper concave envelope of the function q 7→ (1− λ)H2(qθ̄) + (λ− θ̄)H2(q) can
be computed as follows:

C
[
(1− λ)H2(qθ̄) + (λ− θ̄)H2(q)

]
=

{
(1− λ)H2(qθ̄) + (λ− θ̄)H2(q) q ∈ [0, q′),

ω
[
(1− λ)H2(q′θ̄) + (λ− θ̄)H2(q′)

]
+ ω̄(1− λ)H2(θ̄) q ∈ [q′, 1],

where
ω =

1− q
1− q′

.

In other words, the tangent points of the line in the upper concave envelope are at q = q′ and q = 1.

APPENDIX B
PLOTS OF THE FIGURES
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Fig. 5. Plot of the function GP (θ) = minλ∈P F (θ, λ).

Fig. 6. Plot of the function GP (θ) zoomed in near the maximum. Observe that the curve is below 0.1915
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Fig. 7. Plot of the function ĜP (λ) = maxθ∈P F (θ, λ).

Fig. 8. Plot of the function ĜP (λ) zoomed in near the minimum. Observe that the curve is above 0.1915
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