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Abstract—The paper develops algorithms for minimizing the energy re-
quired to transmit packets in a wireless environment. It is motivated by
the following observation: In many channel coding schemes it is possible to
significantly lower the transmission energy by transmitting packets over a
long period of time.

Based on this observation, we show that for a variety of scenarios the of-
fline energy-efficient transmission scheduling problem reduces to a convex
optimization problem. Unlike for the special case of a single transmitter-
receiver pair studied in [5], the problem does not, in general, admit a closed-
form solution when there are multiple users. By exploiting the special struc-
ture of the problem, however, we are able to devise energy-efficient trans-
mission schedules. For the downlink channel, with a single transmitter and
multiple receivers, we devise an iterative algorithm, called MoveRight, that
yields the optimal offline schedule. The MoveRight algorithm also opti-
mally solves the downlink problem with additional constraints imposed by
packet deadlines and finite transmit buffers. For the uplink (or multiaccess)
problem MoveRight optimally determines the offline time-sharing sched-
ule. A very efficient online algorithm, called MoveRightExpress, that uses
a surprisingly small look-ahead buffer is proposed and is shown to perfom
competitively with the optimal offline schedule in terms of energy efficiency
and delay.

I. I NTRODUCTION AND PROBLEM FORMULATION

The energy-efficiency of computing, signal processing and
communication devices is key to the widespread deployment
of wireless networks, especially of sensor and mobile ad hoc
networks. On the networking side, several recent papers have
proposed methods for conserving energy. For example, [1] pro-
poses a randomized algorithm that allows nodes in a dense wire-
less network to switch between on and sleep modes so as to
trade-off topology maintainence with energy conservation, [4]
proposes a method for empirically measuring the energy con-
sumed by a node in an ad hoc network by monitoring its power
consumption, [5] considers the problem of minimizing the trans-
mission energy of a wireless node and presents “lazy” schedules
that trade-off delay for energy; and, [9] studies the problem of
constructing energy-efficient multicast and broadcast trees.

This paper studies the problem of minimizing the energy re-
quired to transmit packets over a wireless network based on the
following observation [5]: In many channel coding schemes,
lowering transmission power and increasing the duration of
transmission leads to a significant reduction in transmission en-
ergy. In particular, it was observed that for a given channel cod-
ing scheme ifw(�) is the energy expended for transmitting a
packet over� units of time, thenw(�) is a non-negative, mono-
tonically decreasing, and strictly convex function of� .

Before we introduce the minimum-energy scheduling prob-
lem, we briefly discuss it within the larger context of packet
transmission protocols in wireless networks. Reducing energy
consumption by lowering transmission power (and thus increas-
ing transmission time) also reduces interference to other nodes,
resulting in an increase in the overall throughput of the network.
But, as noted in several previous papers ([10] is a recent refer-
ence), power control requires the participation of all nodes in
the network: Nodes that reduce transmission power unilaterally
risk suffering a high interference from nodes that do not. Thus,
a network-wide protocol is needed to ensure that users adhere
to the physical and link layer algorithms employed for energy
minimization or for interference mitigation. While considerable
research has been devoted to the design of good power control
algorithms for dealing with interference, energy minimization is
a more recent problem motivated by the advent of ad hoc and
sensor networks. It is the goal of this paper to develop algo-
rithms for energy-efficient scheduling in a wireless environment,
building upon the approach taken in [5].

A. Minimum-Energy Transmission Scheduling Problem

For concreteness, consider the downlink channel in a wireless
network involving a single transmitter and multiple receivers.
Suppose thatM packets arrive at the transmitter at random timesti in the interval[0; T ℄ destined for one ofn receivers. The node
is required to transmit allM packets within the interval[0; T ℄1.
Since the transmitter knows the destination of each packet, we
may assume, without loss of generality, that the energy required
to transmit packeti over� units of time is given by the energy
functionwi(�). Thewi(�) are assumed to satisfy the following
conditions:

1. wi(�) � 0.
2. wi(�) is monotonically decreasing in� .
3. wi(�) is strictly convex in� .
4. wi(�) is continuously differentiable and its derivative,_w i(�)
tends to�1 as� tends to 0.

The first three conditions have been justified in [5] by consider-
ing some channel coding schemes. The last condition is a tech-
nical condition introduced here for ease of exposition. It is not1The imposition of a strict deadline,T , by which all transmissions had to
terminate was intended to capture several realistic wireless scenarios (see [5] for
further details).
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required for the proofs, since strict convexity implies the exis-
tence of right and left derivatives and one can work with these.
The last condition is also not artificial since it is satisfied by sev-
eral channel coding schemes. For example, optimal coding over
an additive white Gaussian noise (AWGN) channel with noise
powerN yields the energy function�N(2 2B� � 1) for aB-bit
packet, which clearly satisfies condition 4.

Let si be the start time of theith packet’s transmission and�i be its transmission duration. Thecausalityconstraints i � ti
ensures that the transmission of a packet cannot begin before
its arrival time. Even though it is not necessary for minimizing
energy that packets be transmitted in the order of their arrivals,
it is easy to see that any set of transmission times that satisfy
the causality constraints and the overall deadline constraintT
for some packet transmission order also satifies them when the
packets are transmitted in the order of their arrivals. Thus, with-
out loss of generality, we can assume that thesi are monoton-
ically increasing ini. With this assumption the deadline con-
straint requires thatsM + �M � T . A vector of transmission
times and transmission duration pairs,f(si; �i); i = 1; :::;Mg
that satisfies the above conditions will be called afeasiblesched-
ule. We are now ready to state the offline energy minimization
problem.

Given:

a. a vector of packet arrival timesfti; i = 1; :::;Mg, wheret1 = 0, ti < ti+1, andtM < T , and
b. energy functionswi(�) which, for eachi 2 f1; :::;Mg, sat-
isfy the hypotheses 1-3 mentioned above;

find a feasible schedule so as to minimize the total transmission
energy:

PMi=1 wi(�i):
We note that the convexity of thewi(�) makes this a convex

optimization problem with linear constraints. For the special
case of a single receiver, thewi(�)s are identical, say equal to
the functionw(�). In this case, the problem was solved explicitly
in [5], yielding the following optimal offline schedule:��i = mj if kj�1 < i � kj ; (1)

wheremj andkj are obtained recursively as follows. Letk0 =0, and definem1 = maxk2f1;:::;Mgf tk+1k g andk1 = maxfk : tk+1k = m1g:
For1 � j � J , letmj+1 = maxk2f1;:::;M�kjgf tkj+k+1 � tkj+1k g andkj+1 = kj +max�k : tkj+k+1 � tkj+1k = mj+1� ;
whereJ = minfj : kj =Mg.

Unfortunately, for the general case involving multiple users,
the convex energy minimization problem does not admit such an

explicit solution. For example, in the downlink problem there is
a significant difference: thewi(�)s are not all identical. This is
because scheduling must be simulatneously done for the differ-
ent channels between the transmitter and each receiver. These
channels could possibly give rise to different packet transmis-
sion energy functions. For example, this occurs when the re-
ceivers are not equidistant from the transmitter. Since signal
attenuation depends on the distance between the transmitter and
each receiver, the energy required to transmit a packet reliably
in time � will be different for the different receivers.

This makes it impossible, in general, to obtain explicit solu-
tions for the optimal offline minimum-energy schedule in terms
of the ftigs as was possible before. Of course, one could use
general convex optimization techniques to solve the above prob-
lem numerically. However, we note that the problem has special
structure, making it amenable to special methods. In particular,
its cost function is the sum of several convex energy functions,
allowing us to perform local optimizations efficiently. Further-
more, the individual energy functionsdecreasemonotonically,
allowing local optimizations to be one-sided – namely, to the
right. These special features are exploited in developing the
MoveRight algorithm, which finds the optimal schedule effi-
ciently.

The MoveRight algorithm also solves several other convex
optimization problems related to determining offline energy ef-
ficient schedules in wireless networks. These include the fol-
lowing scenarios:

a. The downlink problem.
b. The optimaltime-sharingschedule for the uplink multiac-
cess2 problem.
c. All of the above scenarios when packets have individual
deadlines before which they must be transmitted. The dead-
lines may be different for each packet, but must satisfy some
conditions as stated later.
d. All of the above scenarios when the transmit buffer has a
finite size ofB.

Additionally, by employing a look-ahead buffer, the optimal
offline schedule determined by the MoveRight algorithm can be
used for online implementation. In this case, we show that a
much faster version of the MoveRight algorithm, which we call
MoveRightExpress, can be used to schedule the buffered pack-
ets. Of course, use of the look-ahead buffer would impose ad-
ditional delays, but energy-efficiency requires one to trade-off
an increase in delay for a decrease in energy consumption. The
trade-off would be worth it if a small increase in delay leads to
a significant reduction in energy. Previous work [5] shows that
this is indeed the case for the single transmitter-receiver pair. In
this paper we find that a small amount of look-ahead can lead
to a substantial reduction in energy in the scenarios mentioned
above.2Recall that the uplink problem involves multiple users transmitting to one
receiver using multiple access schemes. Information theory [2] tells us that
time-sharing is not optimal for the general multiple access problem. We may
nevertheless seek the optimal time-sharing schedule, similar to other work in
the networking literature on the multiple access channel [6].
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B. Organization of the paper

Section II develops the MoveRight algorithm for optimally
solving the downlink offline transmission scheduling problem,
and contains the main results of the paper. Section II-A pro-
vides the proof of optimality and Section II-B discusses the al-
gorithm’s worst-case complexity, implementation issues, and its
fairness properties. Section II-C shows that MoveRight can also
find the optimal offline schedule for scenarios involving dead-
lines for individual packets and finite transmit buffers. Section
III discusses offline transmission scheduling for the uplink prob-
lem. Online scheduling using look-ahead buffers is presented in
Section IV.

II. A N OPTIMAL ALGORITHM FOR THEOFFLINE

DOWNLINK SCHEDULING PROBLEM

We develop the MoveRight algorithm for determining the op-
timal offline schedule for the downlink problem. After intro-
ducing the algorithm, establishing its optimality properties and
analyzing its complexity, we shall show how it applies to other
situations of interest.

Using notation introduced in the previous section, consider
the problem of transmittingM packets that arrive at timesfti; i = 1; :::;Mg during the period[0; T ℄, and as before, we
assumet1 = 0. For notational convenience, settM+1 = T .
Let si be the time theith packet starts transmitting and let�i
be the duration of its transmission. A schedule is feasible if it
is causal:si � ti for every i; and all packets are transmitted
within the interval[0; T ℄: �1 + � � � + �M � T: It is easy to see
that�1+ � � �+ �M = T is a necessary condition for the optimal-
ity of the transmission timesf�ig. Otherwise, we may simply
increase some of the�i and reduce total energy (observe that
increasing transmission times does not hurt the causality con-
straint). This reduces the causality constraint for all schedules
which satisfy�1 + � � �+ �M = T to

Pji=1 �i � tj+1:
We are required to find a feasible schedule so as to minimize

the total transmission energy:
PMi=1 wi(�i).

The MoveRight Algorithm: The main idea of the MoveRight
algorithm is to iteratively move the starting times of packet
transmissions to the right, one packet at a time, so that each
move locally optimizes the overall energy function. As we shall
see, this iterative local optimization leads to the globally opti-
mum solution.

The algorithm proceeds iteratively. Initially, the start-times
of all packets are set equal to their arrival times; that is,s0i =ti; i = 1; : : : ;M , and we set the transmission duration of packeti to �0i = s0i+1 � s0i . Now consider the first two packets. Keep-
ing �01 + �02 fixed, we moves02 to s12 (see Figure 1), wheres12 2 [s01; s03℄ is the point which minimizes the sum of the trans-
mission energies of the first two packets. Note thats12 � s02 nec-
essarily, and therefore the start-time of packet 2 can only move
to the right. In this simple case it is easy to see that leftward
movements of the start time of packet 2 would violate the causal-
ity constraint, and are therefore not allowed. We prove that, in
general, leftward movements are not necessary, and hence name

the algorithm MoveRight.

Continuing, set� 11 to be the transmission time of the first
packet obtained after optimally increasings02 as above, and reset�02 by decreasing it by an amount� 11 � �01 .

Now consider the second and third packets. Again keeping�02 + �03 fixed, increases03 to s13 optimally, and hence obtain� 12 .
Reset�03 by reducing it by an amount� 12 � �02 , and proceed to
obtain� 1i , for i = 1; :::;M . This completes the firstpassof the
algorithm. Continue to make additional passes and terminate the
algorithm after passK, whereK = minfk : �ki = �k�1i ; for all i; i = 1; :::;Mg:
A pseudo-code for the algorithm is given below.

k = 0;

flag = 0;

for i = 1:M�0i = si+1 � si;
end

while flag==0

k=k+1;

for i=1:M-1[�ki ; �ki+1℄ =best([�k�1i ; �k�1i+1 ; i; ski ℄);
end

if �k == �k�1
flag=1;

end

end

Herebest([�k�1i ; �k�1i+1 ; i; ski ℄) returns the optimal transmission
durations when the total transmission duration is� k�1i + �k�1i+1
and the energy functions arewi(�) andwi+1(�). However,best
also keeps in mind the causality constraint thatski + �ki � tk+1i .

Arrival times

Pass 1

Pass 2

t1 = 0 t2 t3s12 s13s22 s23 T0
Fig. 1. Illustration of the MoveRight algorithm for3 packets.

A. Proof of optimality

We first establish the following lemma in the absence of
causality constraints.

Lemma 1: Consider two packets, 1 and 2, to be transmitted
in the time interval[s; t℄. Packet 1 is to begin its transmission at
times, while packet 2 is to end its transmission at timet. Letw1
andw2 be the transmission energy functions for packets 1 and
2, respectively, and assume that they satisfy conditions 1-4, then
the following hold.

1. The optimal transmission times are unique.

2. Let ŝ be the start time of the second packet’s transmission
in the optimal schedule. Then̂s increases whens increases,
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holdingt fixed. The same is also true ift increases ands is held
fixed, and also if boths andt increase.

3. If the total time,t � s, decreases (increases) then the trans-
mission durations of both packets decrease (increase, respec-
tively).

Proof Let �1 and�2 be any transmission transmission schedule
such that�1 + �2 = t� s:
1. Minimizing the strictly convex functionw1(�1)+w2(t�s��1) over0 � �1 � t� s will yield the optimal schedule, which
will obviously be unique given the strict convexity.

2. Consider the case whens increases tos0 andt is fixed. Let�opt1 and��1 denote the optimal transmission times for the first
packet over intervals[s; t℄ and [s0; t℄, respectively. Note that_w1(�opt1 ) � _w2(t � s � �opt1 ) = 0, where _w denotes the first
derivative.
Because the energy functions are strictly convex, their deriva-
tives are strictly increasing. Therefore, sinces < s 0, it follows
that _w1(�opt1 )� _w2(t�s0��opt1 ) > _w1(�opt1 )� _w2(t�s��opt1 ) =0. Similarly, _w1(�opt1 � (s0 � s))� _w2(t� s� �opt1 ) < 0.
We wish to find� so that _w1(�) � _w2(t � s0 � �) = 0. The
above two statements and the uniqueness of the optimal value
allow us to conclude that� opt1 � (s0 � s) < ��1 < �opt1 , or that�opt1 + s < ��1 + s0. This proves the claim.
The case whent increases can be established similarly. The last
case can be handled by first increasings and then increasingt.
3. Observe that the optimal transmission durations are just a
function of total time available,t � s, and do not depend on
the absolute values ofs andt. Hence a decrease int � s can
be made equivalent to increasings to s 0, say, while keepingt
fixed. From above we have� opt1 � (s0 � s) < ��1 < �opt1 .
Since��1 < �opt1 , we have that the transmission duration of the
first packet decreases. For the second packet we need to show
that t � s � �opt1 > t � s0 � ��1 . This readily follows from�opt1 � (s0 � s) < ��1 . The case whent � s increases can be
handled similarly.

We now introduce causality constraints to Lemma 1, which will
be needed in the proof of Theorem 1. Note that with no causal-
ity constraints, the start-times are unconstrained and the energy-
optimal start time of packet2 can be to theleft of (or earlier
than) its arrival time. Of course, this can violate the causality
constraint. However, it is not hard to see that, in this case, the
optimal start-time for packet2 is in fact equal to its arrival time.
Thus, part 1 of Lemma 1 holds with causality constraints. Part
2 needs to be modified to:
2. Let ŝ be the start time of the second packet’s transmission
in the optimal schedule. Then̂s does not decrease whens in-
creases, holdingt fixed. The same is also true ift increases ands is held fixed, and also if boths andt increase.

Now suppose there areM packets and let� k1 ; : : : ; �kM be their
transmission durations after thek th pass of the MoveRight al-
gorithm. Letsk1 = 0; ski = Pi�1j=1 �kj for i = 2; 3; :::;M and

let skM+1 = T . Let �opt1 ; : : : ; �optM be the optimal transmis-
sion times, which exist because of the convexity of the problem
and the compactness of the search space. Letsopt1 = 0; sopti =Pi�1j=1 �optj for i = 2; 3; :::;M and letsoptM+1 = T =PMj=1 �optj .

The main idea of the proof is to first show that, for eachi,ski is non-decreasing ink and that it is bounded above bys opti .
Therefore eachski " s1i . We finish by establishing thats1i =sopti , for everyi.

Theorem 1: Letski ; s1i ; sopti be as defined before. Then
1. ski � sk+1i .
2. ski � sopti .
3. s1i = sopti .

Proof

1. Recall that the algorithm works in passes: For each fixedk, the algorithm determinesski by increasingi from 1 throughM . Because of the causality constraint, it follows trivially thats0i � s1i for eachi; i = 1; 2; :::;M (recall thats0i = ti).
Suppose thati0 � 1 andk0 � 1 are the first time that there is a
violation; that is,sk0i0 > sk0+1i0 . Since this is the first instance, we

have thatsk0i0�1 � sk0+1i0�1 andsk0�1i0+1 � sk0i0+1.
Consider the intervals[sk0i0�1; sk0�1i0+1 ℄ and[sk0+1i0�1 ; sk0i0+1℄. The first
interval determined the boundaries within which the MoveRight
algorithm would placesk0i0 , the start-time of packeti0 in thek0th
pass. Likewise the second interval determines the boundaries
for placing the start-time of packeti 0 in passk0 + 1. The in-
equalities in the previous paragraph imply that each boundary
point of the second interval is to the right of the corresponding
boundary point in the fi rst interval. Given this, the modified
version of part 2 of Lemma 1 impliessk0i0 � sk0+1i0 . This con-

tradicts the assumptionsk0i0 > sk0+1i0 and hence property (1) will
always hold.

2. As above suppose thati0 � 1 andk0 � 1 are the first time
that there is a violation; that is,sk0i0 > sopti0 . (For reasons as
abovek0 = 0 will not violate.)
Again, as before, we obtainsk0i0�1 � sopti0�1 andsk0�1i0+1 � sopti0+1.
Notice that the boundary points of the interval[sk0i0�1; sk0�1i0+1 ℄
are each to the left of the corresponding boundary points of[sopti0�1; sopti0+1℄. Again by part 2 Lemma 1 we must havesk0i0 �sopti0 . This contradiction shows there can be no violation.

3. Let �1i = limk!1 �ki = s1i+1 � s1i . Note that the vectorsf�1i g andf� opti g are fixed points for the MoveRight algorithm:
passing them once through the algorithm does not alter any en-
try. This is true off�1i g, by definition. Since alterations by the
MoveRight algorithm only result in energy reduction, the opti-
mality of f� opti g ensures that it will be a fixed point. From part
(2), we haves1i � sopti , for all i = 1; : : : ;M +1, with equality
holding at both the boundaries. Also, froms1M+1 = soptM+1, we

have
PMi=1 �1i = T =PMi=1 �opti .

We will argue by contradiction and hence let us assume thatj =minfi � 1 : �1i < �opti ; �1i+1 � �opti+1g. It is easy to see from the
definition ofj that,s1j+1 < soptj+1. Therefore, it follows from the
feasibilty ofs1j+1 that the causality constraint did not play any

role in the placement ofsoptj+1. The same however cannot be said
of s1j+1. That is, the pairwise optimization of the transmission
durations of packetsj andj + 1 could have yielded a start-time
of s�j+1 for packetj + 1. However, packetj + 1 was forced to
begin transmission only ats1j+1, due to causality constraints. It
follows thats�j+1 � s1j+1.
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Let ��j = s�j+1 � s1j and��j+1 = s1j+2 � s�j+1. We have� �j ��1j < �optj and��j+1 � �1j+1 � �optj+1. Therefore,��j < �optj and��j+1 � �optj+1: (2)

We will now obtain the contradiction. First, suppose� �j+1 +��j < �optj+1+�optj . In this case from part 3 of Lemma 1 it follows

that ��j < �optj and��j+1 < �optj+1. Next suppose� �j+1 + ��j >�optj+1 + �optj . Then, by exactly similar arguments, it follows that��j > �optj and��j+1 > �optj+1. Finally, suppose� �j+1 + ��j =�optj+1 + �optj . Then, by part 1 of Lemma 1, it follows that� �j =�optj and��j+1 = �optj+1. In all three cases we have contradicted
equation (2) and proved the theorem.

B. Properties of the MoveRight Algorithm

1. An ordering on arrival times: Because the algorithm moves
start-times monotonically to the right, the worst-case inputs
(packet arrival times) are easily identifiable in the following
sense. Consider two different sets of arrival times,ftig andft0ig, whose optimal schedules are identical. Ifti � t0i, for ev-
ery i, andski ands0ki are the corresponding start-times after thekth pass of the MoveRight algorithm, thenski � s0ki , for everyi andk. Therefore, when the MoveRight algorithm converges
for the first input, it would have automatically converged for the
second. We may therefore say thatftig is worse thanft0ig. This
ordering can be used to determine the complexity of the algo-
rithm, as described next.

2. Computational complexity: From part 2 of Theorem 1 we
know that the MoveRight algorithm does not change the start-
times of packets which are restricted by the causality constraint
under the optimal schedule; that is, packetsi such thatsopti = ti.
Call these the “immovable packets”. The immovable packets
have an interesting decoupling property: movements of packets
to their left do not influence movements of packets to their right.
Thus, the packets that move can be broken down into bands at
whose end points there are immovable packets.

The rate of convergence of the MoveRight algorithm is deter-
mined by the rate at which packets in the slowest moving band
will converge to their optimal positions. So, how fast does the
slowest-moving band converge?

Observe that the start-times of packets within each band are
not affected by the causality constraint. Therefore, their optimal
start-times will be the same as determined by the MoveRight al-
gorithm, assuming that the movable packets within a band all
arrived at the beginning of the band! But, by the previous dis-
cussion on the ordering of arrival times, this last set of arrival
times represents the worst-case as far as the convergence of the
MoveRight algorithm is concerned.

Although the worst-case inputs are identified, without know-
ing the explicit form of the energy functions, it is difficult to
bound the worst-case number of iterations of the MoveRight al-
gorithm. However, assuming the energy functions are identical
(the single receiver case), yields the following lemma, whose
proof is presented in the Appendix.

Lemma 2: SupposeM packets with identical energy func-
tions arrive at time 0 destined for a single receiver. Letski be the
start-time of theith packet after thekth pass of the MoveRight
algorithm, and letjjsk � soptjj = maxi jski � sopti j. Then, given

an" > 0, jjsk � soptjj < " for k � O � log(pM=")log(1=j�M j)�, where�M
is the largest eigenvalue of the matrix exhibited in the Appendix.

Numerical evaluation of the above bound for values ofM up to1000 suggests growth rate ofM 1:7 passes.

Simulation shows that the run time and number of iterations
taken by the MoveRight algorithm are comparable (in terms of
orders) when the energy functions are all identical, as compared
with the case when they are distinct.

We considered 700 packets arriving at time0, to be sched-
uled for transmission during[0; 1000℄. Table I shows the num-
ber of moves, passes and the run-time of MoveRight when all
700 packets have equal energy functions. The algorithm was
terminated when the total energy was within a certain percent-
age, denoted by % Opt in Table I, from its optimal value. Then
we allowed each of the 700 packets to have an energy function
chosen from a set of 10 types uniformly at random. The corre-
sponding results are tabulated in Table II. The simulations were
performed on a Pentium III 800 MHz machine.

% Opt. No. of Passes Run-time (sec)

10 85085 132.8
5 85609 133.4
1 86059 133.9

0.1 86164 134.0

TABLE I

THE NUMBER OF PASSES AND THE RUN-TIME OF MOVERIGHT FOR

PACKETS WITH EQUAL ENERGY FUNCTIONS.

% Opt. No. of Passes Run-time (sec)

10 175425 240.1
5 186397 251.6
1 199081 264.9

0.1 203084 269.0

TABLE II

THE NUMBER OF PASSES AND THE RUN-TIME OF MOVERIGHT FOR

PACKETS WITH DIFFERENT ENERGY FUNCTIONS.

3. Algorithm implementation: The main computational mod-
ule in the execution of the MoveRight algorithm is thebest rou-
tine, which involves just two individual energy functions. For
each pair of energy functions, thebest routine can be imple-
mented via a precomputed lookup-table, resulting in significant
speedup. Note that, by comparison, general convex optimization
methods that do not exploit the special structure of the problem
would need to perform a significant amount of computation at
each iteration.

4. All packets available at the origin: An important special
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case is when all of theM packets are available att = 0. This
situation is particularly relevant for the online implementation
of the MoveRight algorithm via a look-ahead buffer, and for the
discussion on fairness to follow next.

Observe that none of theM packets is constrained by causal-
ity: their start-times can be anywhere in[0; T ℄. Number the
packets 1 throughM and let�1; : : : ; �M be the optimal schedule
as determined by the MoveRight algorithm. We claim that any
other numbering of the packets will also lead to each of them
having thesametransmission durations. To verify the claim,
simply note that cost function we’re minimizing is

Pi wi(�i)
subject to the constraint

Pi �i = T . Given the strict convex-
ity of the cost function (and hence the uniqueness of the optimal
schedule), the solution of this problem is identical to the solution
of the problem:

Minimize:
Xi w�(i)(��(i))

subject to:
Xi ��(i) = T;

for any permutation,�, of the numbers 1 through M.

5. Fairness: For concreteness, consider the downlink problem
with two receivers. Suppose the transmit durations,f� ig, of all
packets are computed using the MoveRight algorithm. If, at the
start of a new transmission, packets for both receivers are simul-
taneously present in the transmit buffer, then the packets may be
transmitted in any order without affecting the energy-efficiency.
This follows from the previous discussion point. Thus, when
packets destined for different receivers are present in the buffer,
in the interests of fairness, we may transmit packets in a round-
robin fashion as opposed to a first-come-first-served order. The
overall expenditure of energy is identical in both cases.

C. Extensions of the MoveRight Algorithm

Throughout this section we assume that there areM packets
to be scheduled in an offline fashion, given the arrival times of
the packets. We will show how the MoveRight algorithm can be
used to arrive at the optimal offline schedule.

1. Packets have individual deadlines:Packeti, i = 1; :::;M ,
arrives at timeti and must be transmitted by timeti+Di, whereDi > 0 is the deadline for packeti. Equally, ifd i is the departure
time of packeti, thendi � ti + Di. TheDi’s are allowed
to vary across packets. However,ti + Di, will be assumed to
be monotonically increasing withi. Observe, that these impose
additionallinear constraints on the energy cost-function.

The only modification to make in the MoveRight algorithm
is to change thebest subroutine. The modifiedbest subrou-
tine simply takes into account the individual packet deadlines
before returning the optimal transmission durations of two adja-
cent packets. It can be shown, but we omit it here due to lack
of space, that the convergence and optimality properties are pre-
served under this modification.

2. Finite transmit buffers: Consider the downlink problem,
where one transmitter is to send each of theM packets to one
of n receivers. When the transmitter has a finite buffer of size,

sayB (1 � B < M ), it is not allowed to simultaneously buffer
more thanB packets. (We include the packet currently being
transmitted for determining the buffer occupancy at any time.)

A transmission schedule under the presence of a buffer of sizeB is valid if, and only if, for everyi, packetsi andi + B never
reside in the buffer simultaneously. This translates to the fol-
lowing constraint on the departure time:d i � ti+B . Rewriting
the last constraint asdi � ti + (ti+B � ti), we see that this is
equivalent to the previous case whenDi = ti+B � ti. Note that
if packets arrive in batches, then it is possible that the optimal
schedule may be to set one or more transmission durations to 0
(thereby incurring infinite energy expenditure), if it is to satisfy
the buffer constraint. This can be addressed either by dropping
packets or by disallowing batch arrivals.

III. O FFLINE SCHEDULING FOR THEUPLINK PROBLEM

The uplink or multiaccess wireless channel consists of multi-
ple transmitters and a single receiver. In general, users transmit
simultaneously causing their signals to interfere at the receiver.
The optimal rates at which the users can simultaneously transmit
has been determined for fairly general channel models,e.g., the
Additive White Gaussian Noise (AWGN) channel (see Chapter
14 of [2]). The multiaccess offline scheduling problem involves
the determination of time intervals and transmission rates obey-
ing causality constraints. To make the discussion concrete we
will assume the AWGN multiaccess channel model and restrict
ourselves to two transmitters.

We assume that in time� the first transmitter wishes to trans-
mit aB1-bit packet while the second transmitter wishes to trans-
mit aB2-bit packet. We letw1 andw2 be the received energies
for users 1 and 2, respecively. Assuming receiver noise powerN , it can be shown thatw1 andw2 must obey the following
conditions for some� > 0 for reliable communication to take
place w1 � �(N(22B1=� � 1) + �)w2 � �(N(22B2=� � 1) + �)w1 + w2 � �(N(22(B1+B2)=� � 1) + �):
Moreover, any(w1; w2) pair that satisfy these bounds can be
achieved (with some probability of error that can be made as
small as needed by proportionally increasingB1, B2, and� )
using simultaneous communication. Figure 2 plots the bound-
ary of (w1; w2) pairs satisfying these conditions. If instead we
restrict ourselves totime-sharingtransmission schemes, where
the users do not transmit simultaneously, we can only achieve(w1; w2) pairs satisfyingw1 � ��(N(22B1=(��) � 1) + �)w2 � ���(N(22B2=(��� � 1) + �);
where� 2 [0; 1℄ is the fraction of time� the first user transmits
and�� = 1� � is the fraction of time the second user transmits.
The boundary of(w1; w2) pairs satisfying these conditions is
also plotted in Figure 2. Note that the boundary of the time
sharing region meets that of the optimal region at a single point.
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�N(22B2=� � 1) �N(22(B1+B2)=� � 1) w1

w2

Fig. 2. Achievable(w1; w2) region for the AWGN multiaccess channel. The
solid line represents the boundary of the optimal achievable region, while
the dashed line represents the boundary of the region achievable using time-
sharing.

The scheduling problem for the multiaccess channel involves
the minimization of the total transmitted energy. First we dis-
cuss the problem of minimizing the energy needed to send two
packets in time� . Assuming path loss factorsa1 > 0 for user
1 anda2 > 0 for user 2, the total transmitted energy can be
expressed asa1w1 + a2w2. In the symmetric case,i.e., whena1 = a2, it can be shown that time sharing achieves minimum
total energy. Specifically the following lemma holds.

Lemma 3: For the AWGN multiaccess channelB1 andB2
can be reliably transmitted in time� at total minimum energy us-
ing time sharing. In this casew1+w2 = �N(22(B1+B2)=� �1).
This lemma can be used to show that a time-sharing multiaccess
offline schedule exists that achieves minimum total energy. Such
optimal time-sharing schedule can be obtained by simply merg-
ing the packets of the two users and using the optimal offline
schedule for a single user. Unfortunately whena1 6= a2, time
sharing is no longer optimal for the offline multiacess schedul-
ing problem. However, the optimal time-sharing offline sched-
ule can be obtained by merging the packets and then applying
the MoveRight algorithm.

We omit the proofs of Lemma 3 and the fact that time-sharing
is optimal whena1 = a2 due to limited space.

IV. ONLINE SCHEDULING

The offline version of the MoveRight algorithm lends itself
nicely for online use by means of a look-ahead buffer. For con-
creteness, consider the downlink scheduling problem when there
areK distinct receivers (and hence energy functions ofK dif-
ferent types:w1; : : : ; wK). We are required to schedule pack-
ets arriving during the time interval[0; T ℄. Given the energy
functions, the MoveRight algorithm provides the optimal offline
schedule.

For an online implementation of the MoveRight algorithm,
buffer all packets which arrive in the interval[0; L℄, whereL � T . Using the MoveRight algorithm, schedule these pack-

ets for departure in the interval[L; 2L℄. Meanwhile, buffer the
packets arriving in[L; 2L℄ and schedule them for departure in
the interval[2L; 3L℄. Proceeding in this fashion, packets arriv-
ing in the interval[(m � 1)L;mL℄ are scheduled for departure
using the MoveRight algorithm in the interval[mL; (m+ 1)L℄.
Call this scheme the “static look-ahead scheme”. We shall now
see that property 4 of the MoveRight algorithm vastly simpli-
fies the scheduling complexity of the static look-ahead scheme,
yielding the following algorithm.

The MoveRightExpress Algorithm: Suppose there areN
packets in the look-ahead buffer at timemL, to be scheduled
for transmission in the interval[mL; (m + 1)L℄. Let there ben1; : : : ; nK packets destined for receivers 1 throughK respec-
tively. According to property 3 these packets may be scheduled
in any order. Therefore, by reordering if necessary, we may as-
sume the following order on the packets: all packets for receiver
1 appear first, followed by all packets for receiver 2, and so on,
with the packets for receiverK appearing at the end.

Suppose that all packets are of equal length3. Since the en-
ergy functions of the firstn1 packets are all equal tow1, we
may assemble these packets into a “superpacket”. The energy
function of the superpacket isW1(�) = n1 w1( �n1 ). Likewise
assemble the packets for the other receivers into superpack-
ets with corresponding energy functionsW i(�) = ni wi( �ni ),i = 2; : : : ;K.

Now run the MoveRight algorithm on theseK superpack-
ets to obtainT1; : : : ; TK as the optimal transmission durations.
Given this and the fact that the packets destined for a single re-
ceiver must all have the same transmission duration (they have
identical, strictly convex energy functions), it follows that the
optimal transmission durations for then1 packets of receiver 1
are T1n1 . Likewise, the optimal transmission durations for then i
packets of receiveri are Tini . Having determined the optimal
schedule for all the packets, another application of property 4
implies that they may be transmitted in any order in the interval[mL; (m+ 1)L℄.
Remark: It is worth noting the reduction in complexity
achieved by the MoveRightExpress algorithm over the basic
MoveRight algorithm. From depending on the total number of
packets,M , the MoveRight Online algorithm’s complexity only
depends on the number of receivers,K.

As a comparison, we ran MoveRightExpress for the scenario
of Table II. The results are tabulated in Table III. A comparison
of Tables II and III shows that MoveRightExpress is much
more efficient than the basic MoveRight algorithm. Again, the
simulations were performed on a 800 MHz Pentium III machine.

In contrast, one could also consider the following “dynamic
look-ahead scheme”. Set the transmit time of the first packet,�1 = L. Buffer all subsequent packets which arrive in the
interval [0; L℄. Schedule the second transmission using the
MoveRight Online algorithm in the interval[L; 2L℄. Suppose
according to this schedule, the transmit time of the second
packet is�2; i.e., it transmits fromL toL+�2. At L+�2, we have
access to all packets that arrived in the interval[0; L+�2℄. Given3Extending this to variable-length packets is straightforward, see [8].
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% Opt. No. of Passes Run-time (sec)

10 12 0.0
5 13 0.0
1 20 0.1

0.1 40 0.1

TABLE III

THE NUMBER OF PASSES AND THE RUN-TIME OF MOVERIGHTEXPRESS

FOR PACKETS WITH DIFFERENT ENERGY FUNCTIONS, AS CONSIDERED IN

THE SCENARIO OFTABLE II.

these packets, again using the MoveRight Online algorithm,
schedule the third transmission in the interval[L+ �2; 2L+ �2℄.
Proceeding thus, we may schedule packets one at a time by dy-
namically taking new arrivals into account. If no new packets
arrive and the buffer gets empty, then the next arrival is sched-
uled for a duration ofL and the scheme proceeds as before.
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Fig. 3. Comparison of the Online Static and Dynamic Look-ahead schemes
with the Offline MoveRight algorithm for a two-user downlink channel.
The users’ packets arrive according to two independent Poisson processes

with identical rates. The energy functions used are1046 �(212=� � 1) and16�1046 �(212=� � 1), T = 10000, and the look-ahead window for each
rate is chosen so that the energy/packet for static lookahead is20% larger
than that for the optimal offline. The simulated delay and energy/packet
functions are plotted as a function of the combined arrival rate.

Of course, one expects the dynamic look-ahead scheme to
outperform the static look-ahead scheme since it uses more in-
formation. However, the dynamic look-ahead scheme intro-
duces considerable extra complexity, since it needs to run the
MoveRight Online algorithm foreverytransmission. This is in
contrast to the static look-ahead scheme, which only runs the
MoveRight Online algorithm once for each look-ahead window
of lengthL. This extra complexity would be worth it if the dy-
namic look-ahead scheme considerably outperforms the static
look-ahead scheme. But, Figure 3 shows that the difference
in energy and delay performance between the two schemes is
negligible and quite competitive with respect to the offline algo-
rithm when there are two receivers.
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Fig. 4. Comparison of the Online Static and Dynamic Look-ahead schemes as
the size of the look-ahead window increases. The packet generation, energy
functions, andT used are the same as for Figure 3. The combined rate was0:6packets/unit time. The MoveRight algorithm gives energy2:5 � 106,
and delay of37:56.

Another interesting comparison is between the two online
schemes mentioned above, as the size of the look-ahead win-
dow, L, varies. Clearly, larger values ofL will make the on-
line schemes compete better with the offline scheme in terms of
energy, but will increase the delay considerably. On the other
hand, small values ofL will give good delay, but at the ex-
pense of energy efficiency. This suggests that there is a good
choice for the size of the look-ahead window,L, which trades-
off energy-efficiency and delay optimally for a given distribution
of the arrival times. Figure 4 illustrates this trade-off when there
are two users and the packet arrival times are independent Pois-
son processes. We notice that the energy curves have a sharp
knee aroundL = 20, suggesting that most of the gain in energy-
efficiency is obtained with a look-ahead window of this size.

Extension to Channels with fading: Suppose that the fading
state of the channel (or channels) is known causally, at the end
of each transmission to both the transmitter and receiver. Also
suppose that the fading changes slowly compared to the packet
transmission duration4. Knowing the fading state at time0
is tantamount to knowing the energy functions of all packets
(given this fade-state). With these assumptions, the dynamic
look-ahead scheme described can be readily used: The trans-
mission duration of the first packet is computed by running the
MoveRightExpress algorithm with this set of energy functions.
After the first packet is transmitted, the current fading state is
used to compute the transmission duration of the second packet,
and so on.

V. CONCLUSIONS

Recently, there has been a lot of research effort directed to-
ward the design of low power signal processing and computing
circuitry. On the networking side protocols are being designed4These are standard assumptions for the slowly fading wireless channel in the
literature (see, for example, [7]).
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for minimum-energy routing, and for power control to mitigate
interference.

We considered the energy-efficiency of packet transmission
in several scenarios arising in wireless networks. For the down-
link channel, we formulated the energy-efficient offline schedul-
ing problem as a convex optimization problem and exploited its
special structure to provide an efficient optimal algorithm, called
MoveRight. We showed that MoveRight also optimally solves
the downlink problem with additional constraints imposed by
packet deadlines and finite transmit buffers. For the uplink (mul-
tiaccess) problem, MoveRight optimally determines the offline
time-sharing schedule. A very efficient online algorithm, called
MoveRightExpress, that uses a look-ahead buffer of small size
was shown to perfom competitively with the optimal offline
schedule in terms of energy efficiency and delay.

Further work consists of integrating the ideas developed in
this paper with network-wide, decentralized, minimum-energy
transmission protocols.
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APPENDIX

CONVERGENCE PROPERTIES OF THEMOVERIGHT

ALGORITHM

Here we provide a proof for Lemma 2 in Section II-B, which
gives an estimate for the worst-case number of iterations for the
convergence of the MoveRight algorithm. For this analysis it
is assumed that the energy functions are identical and that all
packets are available at time0. The justifications for these as-
sumptions were discussed in Section II-B. From [5], we know
that the optimal scheduling times are equal.

Proof of Lemma 2:Let " > 0 andski , for i = 2; : : : ;M � 1
andk � 1, be the start-times of the packets at the beginning
of the kth pass of the MoveRight algorithm, wheres0i = 0,
for i = 1; : : : ;M , sk1 = 0, andskM+1 = T;8k � 0. The
algorithm is said to have"-converged to the optimal solution ifmaxi(sopti � ski ) < ".

Observe that theski s follow the recursion,ski = 12 (ski�1 +sk�1i+1 );8k � 1; i = 2; : : :M . Let sk = [sk1sk2sk3sk4 � � � skM+1℄t,
then the recursion can be rewritten assk = �Msk�1, where

�M =
2666666666666666666666664

1 0 0 0 � � � � � 012 0 12 0 0 � � � � 014 0 14 12 0 0 � � � 018 0 18 14 12 0 0 � � 0� � � � � � � � � �� � � � � � � � � �12M�1 0 12M�1 12M�2 � � � � 14 120 0 � � � � � � 0 1

3777777777777777777777775
Therefore, we haveks1 � skk1 = ks1 � �kMs0k1 =k�kM (s1 � s0)k1, wheres1 = sopt = [0 TM 2TM � � � T ℄t.

This implies that,s1 � so = [0 �TM �2TM � � � �(M�1)TM 0℄t.
Define�0M as the matrix obtained by removing the first row,
first column, last row and last column of�M . Let ~s =[�TM �2TM � � � �(M�1)TM ℄t. Now observe thatk�kM (s1 �s0)k1 = k�0kM ~sk1.

Let �M be the largest eigen-value (in magnitude) of�0M . Therefore, we have,j�M jkk~sk2 � k�0kM ~sk2 �k�0kM ~sk1. Hence, for all k, such thatj�M jkk~sk2 � ",
we havek�0kM ~sk1 � ". k~sk2 = TqM(M�1)(2M�1)6 �TqM3 . Taking T to be fixed, this implies for allk �log(pM3 T" )log( 1j�M j ) � O� log(pM"�1)log� 1j�M j� �, we havek�0kM ~sk1 � ".
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Below is a plot of
log(pM3 T" )log( 1j�M j ) , for T = 10000; " = 0:1;M =1; : : : ; 1000.
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Fig. 5. Number of passes versus number of packets assumingT = 10000 and" = 0:1.


