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ABSTRACT. Suppose that there are n jobs and n machines and it costs ¢;; to
execute job ¢ on machine j. The assignment problem concerns the determina-
tion of a one-to-one assignment of jobs onto machines so as to minimize the
cost of executing all the jobs. When the ¢;; are independent and identically

distributed exponentials of mean 1, Parisi (1998) made the beautiful conjecture

that the average cost of the minimum assignment equals Y7 | %2 Copper-

smith and Sorkin (1999) generalized Parisi’s conjecture to the average value
of the smallest k-assignment when there are n jobs and m machines. Build-
ing on the previous work of Sharma and Prabhakar (2002) and Nair (2002),
we resolve the Parisi and Coppersmith-Sorkin conjectures. In the process we
obtain a number of combinatorial results which may be of general interest.

1. INTRODUCTION

Suppose there are n jobs and n machines and it costs ¢;; to execute job ¢ on
machine j. An assignment (or a matching) is a one-to-one mapping of jobs onto ma-
chines. Representing an assignment as a permutation 7 : {1,...,n} — {1,...,n},
the cost of the assignment 7 equals Z?:l Cin(i)- The assignment problem consists

of finding the assignment with the lowest cost. Let

n
C, = mﬂin E Cim(i)
i=1

represent the cost of the minimizing assignment. In the random assignment problem
the ¢;; are ii.d. random variables drawn from some distribution. A quantity of
interest in the random assignment problem is the expected minimum cost, IE(C,,).

When the costs ¢;; are 1.i.d. mean 1 exponentials, Parisi [Pa 98] made the fol-
lowing conjecture:

1
(1.1) E(C,) = Zi—g.
i=1
Coppersmith and Sorkin [CS 99] proposed a larger class of conjectures which state
that the expected cost of the minimum k-assignment in an m x n matrix of i.i.d.
exp(1) entries is:

(1.2) C(k,m,n) = Z !

pistarien (M= —J)
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By definition, C'(n,n,n) = IE(C),) and the right hand sides of (1.2) and (1.1) are
equal when £ = m = n.

In this paper, we prove Parisi’s conjecture by two different but related strate-
gies. The first builds on the work of Sharma and Prabhakar [SP 02] and estab-
lishes Parisi’s conjecture by showing that certain increments of weights of matchings
are exponentially distributed with a given rate and are independent. The second
method builds on Nair [Na 02] and establishes the Parisi and the Coppersmith-
Sorkin conjectures. It does this by showing that certain other increments are ex-
ponentials with given rates; the increments are not required to be (and, in fact,
aren’t) independent.

The two methods mentioned above use a common set of combinatorial and prob-
abilistic arguments. For ease of exposition, we choose to present the proof of the
conjectures in [SP 02] first. We then show how those arguments also resolve the
conjectures in [Na 02].

Before surveying the literature on this problem, it is important to mention that
simultaneously and independently of our work, Linusson and Wéstlund [LW 03]
have also announced a proof of the Parisi and Coppersmith-Sorkin conjectures
based on a quite different approach.

1.1. Background and related work. There has been a lot of work on deter-
mining bounds for the expected minimum cost and on calculating its asymptotic
value. Assuming that lim, IE(C),) exists, let us denote it by C*. We survey some
of the work; more details can be found in [St 97, CS 99]. Early work used feasi-
ble solutions to the dual linear programming (LP) formulation of the assignment
problem for obtaining the following lower bounds for C*: (1 + 1/e) by Lazarus
[La 93], 1.441 by Goemans and Kodialam [GK 93], and 1.51 by Olin [Ol 92]. The
first upper bound of 3 was given by Walkup [Wa 79], who thus demonstrated that
lim sup,, E(C),) is finite. Walkup’s argument was later made constructive by Karp
et al [KKV 94]. Karp [Ka 84, Ka 87] made a subtle use of LP duality to obtain
a better upper bound of 2. Coppersmith and Sorkin [CS 99] further improved the
bound to 1.94.

Meanwhile, it had been observed through simulations that for large n, E(C),) ~
1.642 [BKMP 86]. Mézard and Parisi [MP 87] used the replica method [MPV 87]
of statistical physics to argue that C* = %2. (Thus, Parisi’s conjecture for the
finite random assignment problem with i.i.d. exp(1) costs is an elegant restriction

to the first n terms of the expansion: ”6—2 = Y2, +.) More interestingly, their
method allowed them to determine the density of the edge-cost distribution of the
limiting optimal matching. These sharp (but non-rigorous) asymptotic results, and
others of a similar flavor that they obtained in several combinatorial optimization
problems, sparked interest in the replica method and in the random assignment
problem.

Aldous [Al 92] proved that C* exists by identifying the limit as the average value
of a minimum-cost matching on a certain random weighted infinite tree. In the
same work he also established that the distribution of ¢;; affects C* only through
the value of its density function at 0 (provided it exists and is strictly positive).
Thus, as far as the value of C* is concerned, the distributions U[0, 1] and exp(1) are
equivalent. More recently, Aldous [Al 01] established that C* = 72 /6, and obtained
the same limiting optimal edge-cost distribution as [MP 87]. He also obtained a
number of other interesting results such as the asymptotic essential uniqueness
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(AEU) property—which roughly states that almost-optimal matchings have almost
all their edges equal to those of the optimal matching.

Generalizations of Parisi’s conjecture have also been made in other ways. Li-
nusson and Wastlund [LW 00] conjectured an expression for the expected cost of
the minimum k-assignment in an m X n matrix consisting of zeroes at some spec-
ified positions and exp(1) entries at all other places. Indeed, it is by proving this
conjecture in their recent work [LW 03] that they obtain proofs of the Parisi and
Coppersmith-Sorkin conjectures. Buck, Chan and Robbins [BCR 02] generalized
the Coppersmith-Sorkin conjecture to the case where the ¢;; are distributed accord-
ing to exp(a;b;) for a;,b; > 0. In other words, if we let a = [a;] and b = [b;] be
column vectors, then the rate matrix for the costs is of rank 1 and is of the form
abT.

Alm and Sorkin [AS 02], and Linusson and Wéstlund [LW 00] verified the conjec-
tures of Parisi and Coppersmith-Sorkin for small values of k, m and n. Coppersmith
and Sorkin [CS 02] studied the expected incremental cost, under certain hypothe-
ses, of going from the smallest (m — 1)-assignment in an (m — 1) X n matrix to
the smallest m-assignment in a row-augmented m x n matrix. However, as they
note, their hypotheses are too restrictive and their approach fails to prove their
conjecture.

An outline of the paper is as follows: in Section 2 we recall some previous
work from [SP 02] and state Theorem 2.4, whose proof implies a proof of Parisi’s
conjecture. In Section 3 we describe an induction procedure for proving Theorem
2.4. We then state and prove some combinatorial properties of matchings in Section
4 that will be useful for the rest of the paper. Section 5 contains a proof of Theorem
2.4. Section 6 builds on the work of [Na 02] and contains a proof of Theorem 6.3.
This implies a proof of the Coppersmith-Sorkin conjecture. We conclude in Section
7. We now present some conventions that are observed in the rest of the paper.

1.2. Conventions.

(1) The words ‘cost’ and 'weight’ are used interchangeably and mean the same
thing; the cost (or weight) of a collection entries is the sum of the values of
the entries.

(2) The symbol ‘~’ stands for ‘is distributed as’, and * 1L ’ stands for ‘is inde-
pendent of’.

(3) By X ~ exp(\) we mean that X is exponentially distributed with mean %;
ie., P(X >z)=e? for z, A > 0.

(4) We use the term ‘rectangular matrices’ to refer to m X n matrices with
m < n.

(5) We employ the following notation:

— Boldface capital letters such as A, C, M represent matrices.

— Calligraphic characters such as R, S, 7T,V denote matchings.

— The plain non-boldface version of a matching’s name, e.g R, S, T,V
represent the weight of that matching.

(6) Col(S) to represent the set of columns used by the matching S.

(7) Throughout this paper, we shall assume that the costs are drawn from some
continuous distribution. Hence, with probability 1, no two matchings will
have the same weight. This makes the ‘smallest matching’ in a collection
unique; tie-breaking rules will not be needed.
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Remark 1.1. Note that almost all of our claims in Section 4 will go through
even if we do not assume uniqueness. However, when there is a tie, the
claims must be re-worded as ‘there exists a matching with the smallest
weight satisfying’, instead of ‘the smallest matching satisfies’.

2. PRELIMINARIES

Let C = [¢;;] be an m x n (m < n) cost matrix with i.i.d. exp(1) entries. Let 7o
denote the smallest matching of size m in this matrix. Without loss of generality,
assume that Col(To) = {1,2,...,m}. For i = 1,...,n, let S; denote the smallest
matching of size m in the m x (n — 1) submatrix of C obtained by removing its
i*" column. Note that S; = Ty for i > m + 1. Therefore, the S;’s can take at most
m + 1 distinct values.

Definition 2.1 (S-matchings). The collection of matchings {Si,...,Sm,Sm+1(=
7o)} is called the S-matchings of C and is denoted by S(C).

Definition 2.2 (T-matchings). Let {T1,..., T} be a permutation of {S1,...,Sn}
such that Ty < Ty < -+ < T,,; that is, the 7;’s are a rearrangement of the S;’s in

order of increasing weight. The collection of matchings {7, 71,...,Tm} is called
the T-matchings of C and is denoted by T (C).

Remark 2.3. Nothing in the definition of the S-matchings prevents any two of the
S;’s from being identical; however, we will show in Corollary 4.2 that they are all
distinct.

These quantities are illustrated below by taking C to be the following 2 x 3
matrix:

31611
C:
912120
6111 3111 3|6
= 51 = 13; = Sy = 20; = S3=5="T;.
2120 920 912

In the above example, Tp = 5, T1 = 13 and T = 20.
We now state the main result that will establish Parisi’s Conjecture.

Theorem 2.4. Consider an m x n (m < n) matriz, A, with i.i.d. exp(1) entries.
Let {Ty, T, ..., Ty} denote the weights of the T-matchings of A. Then the following
hold:

oT; —T; 1 ~exp(m—j+1)(n—m+j—-1), forj=1,...,m.

.Tl—TO J_I_T2_T1 - J_LTm— m—1-

The proof of this theorem will be presented later. For completeness, we now
reproduce the arguments from [SP 02] which show how Theorem 2.4 implies Parisi’s
conjecture.

Corollary 2.5. Let C be an n X n cost matriz with i.i.d. exp(1) entries. Let Cp
denote the cost of the minimum assignment. Then

E(C,) =Y 112
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Proof. The proof is by induction. The induction hypothesis is trivially true when
n = 1 since IE(Cy) = 1. Let us assume that we have

Delete the top row of C = [¢;;] to obtain the rectangular matrix A of dimensions
(n—1) xn. Let {S1,...,S,} and {Tp,...,T,_1} be the weights of the matchings
in S(A) and T (A) respectively.

The relationship Cp, = min_, {c1; + S;} allows us to evaluate IE(C},) as follows:

/ P(Cp > z) dx
0

o0
= / P(cij>x—8;,j=1,...,n)dz
0

E(Cn)

(2.1)

/ Plciojy >z =T, j=0,...,n—1)dx
0

where o(-) is a 1-1 map from {0,1,...,n — 1} to {1,2,...,n} such that ¢, ;) is the
entry in the first row of C that hes outs1de the columns occupied by the matching
7; in A. Now, since the first row is independent of the matrix A and o(:) is a
bijection, the entries ¢;,(;) are i.i.d. exp(1) random variables. We therefore have
from (2.1) that

IE(C’n):IEA</ P(ch,(j)>z—tj,j:0,...,n—1)da:A).
0
We proceed by evaluating the expression inside the integral. Thus,

o0
/ P(ciojy >x—1t5,j=0,...,n—1)dx

— / H (Cro(j) >z —t;) da (independence of ¢4 (;))

tn—1
/ / (z=to) dz+...+/ e ((n=Dz—to=r—tn-2) g,
tn—2
+/ e~ (nr—to——tn 1) go

tn—1

(since the ¢;’s are increasing)

o (1met) 4 1 (et _ gttt 4

. 1 (e—((n—Q)t,._g—to—---—tn_g)_e—((n—l)tn_l—to—---—t,._g))

n—1

+ lef((nfl)t",l7t07---7tn,2)

=tg+1— %e*(tlfto) _ lef(2t27t07t1) _

6

7((n71)tn,17t07---7t",2) .

o,
nin —1)
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Therefore,
n—1 1
E(C = IE(T; 1-— E —(iT;—To——Ti—1)
( n) ( 0) + Z:ZI Z(z n 1) e )
n—1 i .
1 > —i(T;=Tj-1)
2.2 - E(T 1— E |2
=2 o) +1-, G+ \©

However, from Theorem 2.4 (setting m = n — 1), we obtain

_ ]E( —j(TJ-—TJ-ﬂ)) _ n-j_ _n-t
[ E( | e e
Jj=1 j=1

S (T =Ty 1)
IE | ei=t

Substituting this in (2.2) gives

1n1
+ =
n <

(3

1

(2.3) B(C) = B(Ty)+

S|

1

We are left with having to evaluate IE(Tp)). First, for j =1,...,n — 1,
(2.4)
J J 1
E(T;) = IE(T E(T), — Ty_1) = IE(T, —_—
(]) (0)+I; (k kl) (0)+]; k(n—k)

(by Theorem 2.4).

Now, the random variable Sy is the cost of the smallest matching of an (n—1) x (n—
1) matrix of i.i.d. exp(1) random variables obtained by removing the first column
of A. Hence S; is distributed as C),_;. However, by symmetry, S; is equally likely
to be any of {Tp,...,T,_1}. Hence we get that

IE(S1) = % i ]E(Tj) = %IE(T(]) + % i (IE(T(]) + Z m)
k

j=0 j=1 =
1 & 1
2. _ s 1
(25 BT+ 1Y
k=1
n—1
By the induction assumption, IE(C,,_;) = 7z = IE(S1). Substituting this into
k=1
(2.5) we obtain
n—1 1 1
2. E(Ty) = = —-—=].
(26) @)=Y (- )
k=1
Using this at (2.3) we get
n—1 n—1 n
1 1 1 1 1 1
2.7 E(C,) = o T — T i e
@7) (Cn) — (12 m) +n2 +n — i — P
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3. A SKETCH OF THE PROOF OF THEOREM 2.4

The proof uses induction and follows the steps below.

1. First, we prove that for any rectangular m x n matrix, A, Ty — Ty ~
expm(n —m).

2. The distribution of the higher increments is determined by an inductive pro-
cedure. We remove a suitably chosen row of A to obtain an m—1xn matrix,
B, which has the following property: let {Ty,...,T,,} and {Up,...,Upn_1}
be the weights of the T-matchings in 7 (A) and 7 (B) respectively. Then

Uj—U];l:Tﬂ,l—Tj forj:1,2,...,m—1.

Establishing this combinatorial property is one major thrust of the paper.
3. We will then show that B possesses a useful probabilistic property: Its
entries are i.i.d. exp(1l) random variables, independent of Ty — Ty. This
property, in conjunction with the results in 1 and 2 above, allows us to
conclude (i) To = T4 = Uy — Uy ~ exp(m — 1)(n —m + 1) and (ii) Tj41 —
T; LT, =Ty for j =1,2,...,m—1; in particular, 75 — Ty 1L T} — Tp.
We use the matrix B as the starting point in the next step of the induc-
tion and proceed.

Remark 3.1. We have seen above that T} — T} is independent of B and hence of
all higher increments T, — T}, 7 =1,2,...,m — 1. This argument, when applied
in the subsequent stages of the induction, establishes the independence of all the
increments of A.

The diagram below encapsulates our method of proof. We shall show that the
first increments Ty — Ty, U; — Uy, ..., Vi — Vi, ..., and W, — Wy are mutually
independent, that they are exponentially distributed with appropriate rates, and
that they are each equal to a particular original increment T4, — T}.

Matrix T-matchings
A T —To h-T1 ... Tj—-T; ... T —Tr—1
| | |
B: U-Up ... Uj—=Uj-1 ... Upnc1—Up-2
| |
D Vi—Vo Vie = Vi1
|
F: W1 —Wo

In summary, the proof of Theorem 2.4 involves a combinatorial and a probabilis-
tic part. We develop a number of combinatorial lemmas in the next section. The
lemmas and their proofs can be stated using conventional language; e.g., symmetric
differences, alternating cycles and paths, or as linear optimizations over Birkhoff
polytopes. However, given the straightforward nature of the statements, presenting
the proofs in plain language as we have chosen to do seems natural. The proba-
bilistic arguments and the proof of Theorem 2.4 are presented in Section 5.
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4. SOME COMBINATORIAL PROPERTIES OF MATCHINGS

To execute some of the proofs in this section, we will use the alternate represen-
tation of an arbitrary m x n matrix C as a complete bipartite graph K, ,,, with
m vertices on the left and n vertices on the right corresponding to the rows and
columns of C, respectively. The edges are assigned weights ¢;; with the obvious
numbering.

In a number of these combinatorial lemmas we are interested in properties of
“near optimal matchings.” That is, suppose M is the smallest matching of size k
in the matrix C. Near optimal matchings could be (i) M': the smallest matching
of size k which doesn’t use all the columns of M, or (ii) M": the smallest matching
of size k+1. A generic conclusion of the combinatorial lemmas is that near-optimal
matchings are “closely related” to the optimal matching M. For example, we will
find that M’ uses all but one of the columns of Col(M), and that the rows and
columns used by M" are a superset of those used by M.

Lemma 4.1. Consider an m x n matrizx C. For every j € Col(7y), we have

Col(S;) N Col(Tg)| = m — 1.

Proof. We represent the matrix C as a complete bipartite graph K, ,. Without
loss of generality, let Col(7o) be the first m columns of C, and let j = 1. Focus on
the subgraph consisting of only those edges which are present in 7o and S;. For
example, the subgraph is shown in Figure 1 where the bold edges belong to 7y and
the dashed edges belong to S;.

e —o
=" — o
. R
o= o
n
S °
©

FIGURE 1. Subgraph depicting an even-length path and a 2-cycle

In general, a subgraph of a bipartite graph can consist of the following compo-
nents: cycles, and paths of even or odd lengths. We claim that it is impossible for
the subgraph induced by the edges of Ty and S; to have cycles of length greater than
two, or paths of odd length. (Cycles of length two represent the entries common to
76 and Sl )

A cycle of length greater than two is impossible because it would correspond to
two different submatchings being chosen by 7q and S; on a common subset of rows
and columns. This would contradict the minimality of either 7y or of Sy.

An odd-length path is not possible because every vertex on the left has degree
2. Thus, any path will have to be of even length.

We now show that the only component (other than cycles of length 2) that can
be present in the subgraph is a single path of even length whose degree-1 vertices
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are on the right. Every node on the left has degree 2 and hence even paths with two
degree-1 nodes on the left are not possible. Now we rule out the possibility of more
than one even length path. Suppose to the contrary that there are two or more
paths of even length. Consider any two of them and note that at least one of them
will not be incident on column 1. Now the bold edges along this path are smaller
in weight than the dashed edges by the minimality of 7. Thus, we can append
these bold edges to the dashed edges not on this path to obtain a new matching S
which would be smaller than &;. This contradicts the minimality of S; amongst all
matchings that do not use column 1.

Therefore, the subgraph formed by the edges of 7o and S; can only consist of
2-cycles and one even length path. To complete the proof, observe that an even
length path with two degree-1 vertices on the right implies that the dashed edges
in the path use exactly one column that is not used by the bold edges in the path
(and vice-versa). This proves the lemma. O

Corollary 4.2. The cardinality of S(C) is m + 1.

Proof. From the definition of S; it is clear that for i < m, S; # To. We need to
show that S; # S; for i # j, i, j < m. From Lemma 4.1, S; uses all the columns of
To except column 4. In particular, it uses column j and therefore is different from
S;. O

Corollary 4.3. An arrangement of the S; for i € Col(To) N Col(Ty) --- Col(Tx) in
increasing order gives the sequence Tiy1, Thv2y - T

Proof. The proof follows in a straightforward fashion from Lemma 4.1 and the
definition of S-matchings. O

We can use Lemma 4.1 and Corollary 4.3 to give an alternate characterization
of the T-matchings that does not explicitly consider the S-matchings.

Lemma 4.4 (Alternate Characterization of the T-matchings). Consider an m x n
rectangular matriz, C. Let Ty be the smallest matching of size m in this matrix.
Consider matchings Ti, ..., Ty of size m, defined recursively as follows: Ty is the
smallest matching in the set R1 = {M : Col(M) 2 Col(To)}, T> is the smallest
matching in the set Ry = {M : Col(M) 2 (Col(Ty) N Col(T1))},..., and Ty, is
the smallest matching in the set R,, = {M : Col(M) 2 (Col(To) N Col(T1)---N
Col(Tm-1))}. Then {To,...,Tm} are the T-matchings of C.

Proof. The proof is straightforward and is omitted. (Note that the alternate char-
acterization was used in the definition of the T-matchings in [Na 02].)

Lemma 4.5. Consider an m x n rectangular matriz, C. Suppose there is a size-
m matching M with the following property: M < M' for all size-m matchings
M'(# M) such that |Col(M') N Col(M)| > m — 1. Then M = Ty.

) )

trivially true for n = m+ 1. Let & > 2 be the first value such that there is a matrix,
C, of size m x (m + k) which violates the lemma. We will show that this leads to
a contradiction and hence prove the lemma.

Clearly, C'ol(To) must contain all the columns {m+1,...,m+k}. If not, there is
a smaller value of k for which the lemma is violated. For any j € {m+1,...,m+k}

Proof. Without loss of generality, assume Col(M) = {1,2,..., m}. The lemma is
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consider Col(S;), where S; is the smallest matching that does not contain column
j.

The fact that & is the smallest number for which Lemma 4.5 is violated implies
S; = M. Hence |Col(S;) N Col(To)| < m —k < m — 2. This contradicts Lemma
4.1, proving the lemma. O

Lemma 4.6. Consider a m x n cost matriz C. Let D be an extension of C formed
by adding r additional rows (r < n —m). Then Col(To(C)) C Col(To(D)).

Proof. As before, we represent the augmented matrix D as a complete bipartite
graph K4, and focus on the subgraph (see Figure 2) consisting of only those
edges that are part of 7o(C) (bold edges) and To(D) (dashed edges).

m
n
o °
T L ettt ol
L et o
o

FIGURE 2. Subgraph depicting odd-length paths and a 2-cycle

We proceed by eliminating the possibilities for components of this subgraph. As
in Lemma 4.1, the minimality of the two matchings under consideration prevents
cycles of length greater than 2 from being present. Note that 2-cycles (or common
edges) are possible and these do not violate the statement of the lemma.

Next we show that paths of even length cannot exist. Consider even-length paths
with degree-1 vertices on the left. If such a path exists then it implies that there
is a vertex on the left on which a lone bold edge is incident. This is not possible
since the edges of 7o(D) are incident on every vertex on the left.

Now consider even-length paths with degree-1 vertices on the right. These have
the property that the solid and dashed edges use the same vertices on the left
(i.e. same set of rows). Now, we have two matchings on the same set of rows and
therefore by choosing the lighter one, we can contradict the minimality of either
To(C) or To(D).

Consider odd-length paths. Since every vertex corresponding to rows in C must
have degree 2, the only type of odd-length paths possible are those in which the
number of edges from 7g(D) is one more than the number of edges from 7,(C).
But in such an odd-length path, the vertices on the right (columns) used by 7o(C)
are also used by 7o(D). Since the only components possible for the subgraph are
odd length paths as above and common edges, Col(To(C)) C Col(To(D)). O
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Lemma 4.7. Let C be an m x n rectangular matriz. Let Sy, (i) denote the entry of
Sk; in row i. Consider three arbitrary columns ky, ko, k3. For every row i, at least
two of S, (i), Sk, (i) and Sk, (i) must be the same.

Proof. We shall first establish this claim for m = n — 1. Let us color the edges of
Sk, red (bold), the edges of Sy, blue (dash) and the edges of Sy, green (dash-dot).
Consider the subgraph formed by the edges present in S, and Sg,, i.e. the red
and blue edges (see Figure 3 (a)). Clearly this subgraph cannot have the following
components:

e Cycles of length more than 2, since that would contradict the minimality
of either Sy, or Si,.

e Odd length paths, since every vertex on the left has degree two.

e Even length paths with degree-1 vertices on the left, since every vertex on
left has degree two.

Thus the only possible components are even length paths with degree-1 vertices on
the right, and common edges.

Now we use the fact that m = n — 1 to claim that there can only be one even
length path. If there were two even length paths with degree-1 vertices on the right,
then the edges in S, will avoid at least two columns (one from each even length
path). But m = n — 1 implies the edges in Sy, can avoid only column k;. Similarly
the edges of Si, can avoid only column k,. This implies that the single even length
alternating path must have vertices k; and ko as its degree-1 vertices. Let us call
this path P12.

Arguing as above, we conclude that the subgraph formed by red and green
edges can only consist of common edges and one even length alternating path, P;3,
connecting vertices k1 and k3. Likewise, in the subgraph formed by green and blue
edges we have, other than common edges, exactly one even length alternating path,
Ps3, connecting vertices ko and k3.

We now proceed to prove the lemma by contradiction. Suppose that S, (i),
Sk, (1) and S, (i) are all distinct for some row i. Our method of proof will be to
construct a matching in C\ k3, say Skg, using only edges belonging to S, , Sk, and
possibly some from Sy, such that in the subgraph formed by the edges of Sk, , Sk,
and Sy, , the vertices on the left will have at most degree two. We will show that
this new matching Sy, has a cost smaller than the cost of Sy,. This will contradict
the minimality of S, and hence prove the lemma.

We shall construct S, in each of the following two cases.

e Case 1: The vertex k3 does not lie on the alternating path Pjs.

Consider the alternating path, Pi3, from k3 to k; consisting of red and
green edges. Start traversing the path from k3 along the red edge. Observe
that one takes the red edge when going from a right vertex to a left vertex
and a green edge when going from a left vertex to a right vertex. Let v be
the first vertex along this path that also belongs to the alternating path,
Py5, of red and blue edges.

We claim that v must be on the right. Suppose that v is on the left.
Since v is the first node common to P;3 and Pj», it must be that there are
two distinct red edges (belonging to each of Pi3 and Piy) incident on v.
But this is impossible, since the red edges belong to the same matching.
Therefore, v must be on the right.
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Now form the matching S’ks by taking the following edges:

— green edges in the path Py starting from ks until vertex v

— red edges in the path Pjs starting from v to ks

— blue edges in the path P starting from v to ky

— the red edges from all the uncovered vertices on left.

Note that, by construction of Skg, on the subgraph formed by the edges
of S, ,Sk, and Sy, the vertices on the left have degree at most two (see

Figure 3 b).
o ks

o—— == =0

o. _.--0 k‘l
~ o

o T _.-0
______ ~

o " o v

o—o

[ e EE—0 ]

o— o ko

Ficure 3. (a) Matchings Sg,, Sk,, Sy (b) Prs till vertex v and
Py5 (c) Matching S,

e Case 2: The vertex ks lies on Pis.

We can construct Sy, using the procedure stated in Case 1 if we take
v = k3. Then the matching Sk3 is formed by taking the following edges:

— red edges in the path P;» starting from k3 to ks

— blue edges in the path Pj, starting from ks to k;

— the red edges from all the uncovered vertices on left.

Observe that, by construction, we again have that on the subgraph
formed by the edges of Sk,, Sk, and 5k3 the vertices on left have at most
degree two.

To show that the cost of Sy, is less than Sy,, we cancel edges that are common
to the two matchings and thus obtain matchings 3,23 and S;, on C', a (possibly
smaller) submatrix of C\ k3. Now 5’,@3 consists of edges from either S, or Sk.;
denote these edges by Ed; and Eds respectively.

We have to show
(4.1) sum of edges in S, > sum of edges in {Ed;, Ed>} = sum of edges in Sy, .

The right hand side of the above inequality consists only of red and blue edges.
Let Ed§ and Ed§ be the remaining red and blue edges, respectively. Adding the
weights of these edges to both sides of (4.1), we are now required to show

(4.2) sum of edges in {Sy,, Ed{, Ed5} > Sk, + Sk,.

See Figure 4 for an illustration.

We establish (4.2) by showing that the left hand side splits into the weights of
two matchings, one each in C\ k; and C \ k2. The minimality of S, and S, will
then complete the proof.
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FIGURE 4. (a) Matching ;. (b) Edges Ed{ and Eds (c) Matching
Sy, and edges Edf and EdS

First observe that the edges in {S;,, Edf, Ed5} can be decomposed into the
following:

e An alternating path of (red or blue) and green edges from v to k.
e An alternating path of (red or blue) and green edges from v to ks.
e The common red/blue/green edges that are outside the vertices of P,.

Form the first matching, say M, in C\ ko by taking the following edges:

e The green edges in the alternating path of red and green edges from v to
k.

e The (red or blue) edges in the alternating path of blue and green edges
from v to ks.

e One of the red/blue/green edges that are outside the vertices of Pjs.

Form the other matching, say V', in C\ k1 by taking the following edges:

e The (red or blue) edges in the alternating path of red and green edges from
v to kl.

e The green edges in the alternating path of blue and green edges from v to
ko.

e The other set of red/blue/green edges that are outside the vertices of Pjs.

This splitting into the two matchings establishes (4.1) and thus shows that Sy, >
Sks. This contradiction proves the lemma when m =n — 1.

Remark 4.8. A less explicit way of obtaining the decomposition into the two match-
ings is to observe that in {S;_, Fd{, Ed5}, every vertex on the left has degree two,
and so does every vertex on the right, except ki and k.

If m <n—1, append an (n — m — 1) X n matrix to C to form an (n — 1) X n
matrix D. The entries in D\ C are i.i.d. random variables uniformly distributed on
[0,€/2(n —m)], where € < min{|M — M'| : M and M’ are size-m matchings in C}.
Then it is easy to see that for each i, S;(D) contains S;(C) since the combined
weight of the additional edges from the appended part is too small to change the
ordering between the matchings in C.

Now apply the lemma to D to infer that at least two of Sy, (i), Sk, (7) and Sk, (¢)
must be the same, where the Sy, are size-m matchings of C and row ¢ is in C. This
proves the lemma. O
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M and N/

Definition 4.9 (Marked elements). An element of an m x n matrix C is said to
be marked if it belongs to at least one of its T-matchings.

Lemma 4.10. An m x n matriz C has exactly two elements marked in each row.

Proof. Tt is obvious that at least two such elements are present in each row. If
there is any row that has three or more elements, by considering the S-matchings
that give rise to any three of these elements we obtain a contradiction to Lemma
4.7. O

5. PROOF OF THEOREM 2.4
We shall now execute the three steps mentioned in Section 3.

Step 1: T1 — Ty ~ expm(n —m). We will show that if A is an m x n rectangular
matrix with i.i.d. exp(1) entries, then T3 — Ty ~ expm(n — m). We begin by the
following characterization of C'ol(7y).

Claim 5.1. Let M be the smallest size-m matching in the columns Col(M) of
A. Consider any element, v, lying outside Col(M). Let N, = min{N : v €
N, |Col(N) N Col(M)| = m —1}. Then, N, > M for all v € A\ Col(M) iff
Col(M) = Col(Ty).

Proof. Clearly, if Col(M) = Col(Tg), then M = Ty and by the minimality of 7y we
have N, > M for all v lying outside Col(Tg). The reverse direction is an immediate
consequence of Lemma 4.5. 0

Theorem 5.2. For an m x n matriz, A, containing i.i.d. exp(1) entries, Ty — Ty ~
exp(m(n —m)).

Proof. Let v € A\ Col(Tp) and let M, be the submatching of NV, (defined in Claim
5.1) such that NV, = v U M,. Suppose v > Ty — M,, Y v € A\ Col(Ty). Then
Claim 5.1 implies that this is a necessary and sufficient condition to characterize
the columns of 7.

We recall a well-known fact regarding exponentially distributed random vari-
ables.
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Fact 5.3. Suppose X;, ¢ = 1,...,1, are i.i.d. exp(1) random variables. Let Y; >
0, i=1,...,1, be random variables such that o(Y7,...,Y;) C F for some o-algebra
F. If X; 1L F V i, then on the event {X; > VY;, i = 1,...,1}, X; — Y; are i.i.d.
exp(1) random variables and independent of F.

The above fact implies that the random variables {v—(To—M,), v € A\Col(To)}
are i.i.d. exp(1).

From Lemma 4.1, 77 has exactly one entry outside Col(7y). Hence Ty — Ty =
min, N, — Tg = min,(v — (T — M,)). Since the minimization is over m(n — m)
independent exp(1) random variables v — (Ty — M,), we have that T} — Ty ~
expm(n —m). O

Remark 5.4. A theorem in [Na 02] considers a slightly more general setting of
matchings of size k in an m x n matrix. The argument used in Theorem 5.2 is
an extension of the argument in [SP 02] for an (n — 1) X n matrix. A similar
argument was also used by Janson in [Ja 99] for a problem regarding shortest paths
in exponentially weighted complete graphs.

We note the following positivity condition that follows immediately from Theo-
rem 5.2.

Corollary 5.5. For any v ¢ Col(Ty), v — (Ty — Tp) > 0.
Proof. We know from the proof of Theorem 5.2 that for any v ¢ Col(7o)
v— (To — My) > min(v — (Ty — M,)) =min N, — Ty = Ty — Tp.

Y

This implies that v — (17 — Ty) > (To — M,). Now, let vy be the entry of 7y in the
same row as v. Consider the set of all matchings of size m—1 in Col(7p) that do not
contain an element in the same row as v. Then, both 7y \ vy and M, are members
of this set. But M, has the smallest weight in this set. Hence M, < Ty — vy < Tj
which finally implies v — (T} — To) > (To — M,) > 0. O

Step 2: From mxn matrices to (m—1)xn matrices. We will now demonstrate
the existence of a matrix with one less row, that preserves the higher increments
as described in Section 3. The matrix B is obtained from A by applying the two
operations ® and A (which we will shortly define), as depicted below
A2 A 4B

To prevent an unnecessary clutter of symbols, we shall employ the following nota-
tion in this section:

e T(A)={To,...., Tm}

o T(A*)={Ty,.... T}

L] T(B) = {u(], PN ,Z/{mfl}.
From Lemma 4.1 we know that the matchings 7y and 73 have m — 1 columns in
common. Hence there are two well-defined entries: e € Ty and f € Ti, that lie
outside these common columns. We now specify the operations ® and A.

® : Subtract Ty — Tp from each entry in A \ Col(To) to get the m x n matrix
A*. (Note that in the matrix A* the entry f becomes f* = f — (T} — Tp)).

A : Generate a random variable X, independent of all other random variables,
with IP(X = 0) =IP(X = 1) = L. If X = 0 then remove the row of A* containing
e, else remove the row containing f*. Denote the resultant matrix of size (m—1) xn
by B.
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Remark 5.6. The random variable X is used to break the tie between the two
matchings 75 and 7;*, both of which have the same weight (this shall be shown
in Lemma 5.8). This randomized tie-breaking is essential for ensuring that B has
i.i.d. exp(1) entries; indeed, if we were to choose e (or f*) with probability 1, then
the corresponding B will not have i.i.d. exp(1) entries despite the fact that it will
satisfy the combinatorial properties required of B.

Claim 5.7. The entries of A* are all non-negative.

Proof. The entries in Col(Ty) are left unchanged by ®; hence they are non-negative.
Corollary 5.5 establishes the non-negativity of the entries in the other columns. O

Lemma 5.8. The following statements hold:
() Ty =T5 =To.
(’L'L) For 1 2 1, Tz*+1 T = Ti+1 — Tz

k3

Proof. Since Ty is entirely contained in the submatrix Col(7), its weight remains
the same in A*. Let R(A™*) be the set of all matchings of size m in A* that contain
exactly one element outside C'ol(7g). Then, every matching in R(A*) is lighter by
exactly Ty — Ty compared to its weight in A.

Thus, by the definition of 77, every matching in R(A*) has a weight larger than
(or equal to) Ty — (T4 — Tp) = To. In other words, every size-m matching in A*
that has exactly one element outside Col(7o) has a weight larger than (or equal to)
Ty. Therefore, from Lemma 4.5 it follows that 7Tg is also the smallest matching in
A*. Thus, we have 73" = To, and T = Tp.

From Lemma 4.1 we know that 7;*, ¢ > 1, has exactly one element outside the
columns of Col(7*) (= Col(To)). Hence, it follows that

Ti* = Tz - (T1 - T(]) for i Z 1.

Substituting ¢ = 1, we obtain T} = Tp. This proves part (7). And considering

the differences T} | — T;* completes the proof of part (ii). O

To complete Step 2 of the induction we need to establish that B has the following
properties.

Lemma 5.9. Uz - Ui—l = Ti+1 - Ti; 1= 1,2, ., — 1.

Proof. The proof of the lemma consists of establishing the following: for i > 1

,\
e

Tipr —T; Tiy, — 17
Y U-U
Observe that (a) follows from Lemma 5.8. We shall prove (b) by showing that
(5.1) TF =Ui_1+v, i=1,...,m.

for some appropriately defined constant v.

Remark 5.10. Since T} = T, the above relation would additionally prove that
Tg = U(] + .

Two cases arise when applying the operation A: (1) e and f* are present in the
same row, and (2) they are in different rows. (Note that in Case 1, irrespective of
the outcome of X, the common row will be removed.) As observed before, since
f is in some column outside Col(7p), its value is modified by the operation ® to
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f*=f—(Ty — Ty). The value of e, however, is left unchanged by the operation ®.
For simplicity, we will use the symbols e and f* for both the names and the values
of these entries.

Case 1: In this case, we claim that e = f* (as values). To see this, let M be the
smallest matching of size m—1 in the columns Col(7)NCol(71) which does not have
an entry in the same row as e and f*. Then clearly, eU M = Ty and fUM = T;.
Hence, we 0btaine+M:Tg :Tl—(Tl —T(]) :f+M—(T1 —To) = f*+M
Therefore, in value, e = f*; call this value v. From Lemma 5.8 we know that
Ty = Ty and this implies e + M =T = f* + M.

Now consider any matching, M’ # M, of size m — 1 in B that has exactly one
entry outside Col(7g) N Col(T1). Clearly, one (or both) of the entries e and f*
could have chosen M’ to form a candidate for 7;*. Since v + M’ > T§ = v + M,
we infer that M’ > M for all matchings M’. Thus, from Lemma 4.5, we have
that M equals Uy. Therefore, Ty = Tj = 1y = Uy + v. This also implies that
Col(Up) = Col(To) N Col(Ty).

Next consider S, the smallest matching in A* obtained by deleting column
1 € Col(Up). Since this is T} for some k£ > 2, S must use one of the entries e or
f* by Lemma 4.10. Hence S} = v + 13, where V) is a matching of size m — 1 in B
that doesn’t use the column 1 € Col(Uy). Therefore, Sf > v + Wi, where W) is the
smallest matching of size m — 1 in B that doesn’t use column 1.

Remark 5.11. The non-uniqueness amongst the weights of matchings introduced
by forcing Ty = T does not effect the applicability of Lemma 4.10 since, with
probability one, this is the only equality amongst the matchings 7}'; i.e., T} are all
distinct for k > 1.

We will now present an argument for S; < v 4+ Wj. Applying Lemma 4.1 to
B, we have that W, has exactly one element outside Col(Uy). Therefore W can
pick either e or f*, since both lie outside Col(Up), to form a candidate for S}, with
weight v + Wy. This implies S} < v + W). Hence,

(5.2) Sf =v+ M.

But from Corollary 4.3 we know that arranging the matchings {Sj, 1 € Col(7o)N
Col(T1)}, in increasing order gives us Ty,..., T . And arranging the {11, 1 €
Col(Uy) = Col(To)NCol(T1)} in increasing order gives us Uy, ..., Up—1. Therefore,

(5.3) T =U;i—1 +vfori=1,...,m.

2
This proves the lemma under Case 1 when both the entries e and f are in the same
row.

Case 2: In this case, the entries e and f* are in different rows and depending
on the outcome of X, one of these two rows is removed with equal probability.
Let us denote by v the entry e or f* (depending on X), that is in the row of A*
removed by A. Further, let ¢ be the column in which v is present. Let M denote
the matching of size m — 1 in Col(Tg) N Col(T;) that v goes with to form 7,* (or
Ty*, depending on which of the two entries e or f* is removed).

Let us denote the entry, e or f*, that was not removed by u. Let d be the column
in which u is present. Let w denote the entry in the column of u and the row of
v. These are represented in Figure 6, where the entries of 75 and 77 are depicted
by stars and circles, respectively. In the figure we assume that the row containing
e was chosen to be removed by X (that is, v = e and u = f*).
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FIGURE 6. The entries e, f*, w

Agin Case 1, let M be the smallest matching of size m — 1 in B that is contained
in the columns Col(79) N Col(T1). Arguing as in the previous case yields v + M =
To =T =T}

This also implies that w + M > T = Tp. (In general, the definition of 73 only
implies w + M > Ty. However, since the matchings in A have distinct weights, it
is not hard to see that strict inequality holds when w is different from e and f.)
Therefore, let w = v 4+ z for some z > 0.

Remark 5.12. In the claim that follows, we will use a slightly unconventional method
to prove a combinatorial fact implied by equation (5.1). We believe it will be
helpful to preface the proof by a brief description of the steps involved. Consider
the elements v and w as defined above. First, we will reduce the value of w from
v+axtov+e x> e >0, and show that this does not alter the values of the
matchings 7;*,i > 0. Next, we will perturb the value of both v and w slightly to
v — €. By invoking Lemma 4.10 we will show that every matching 7;* for the new
matrix must use one of v or w. Moreover, we will also show that the matchings
{7;*} are formed by combining v or w with the matchings {l/;}. Since the values of
the T-matchings are continuous in the entries of the matrix, we let € tend to zero
to conclude equation (5.1) for Case 2. A purely combinatorial argument also exists
for this case which goes along the lines of Lemma 4.7. However, we feel that this
approach is simpler.

Returning to the proof: Given any 0 < € < z, let C® be a matrix identical to A*
in every entry except w. The value of w is changed from v + = to v + €. Let {P;}
denote the T-matchings of C¢. Also recall that ¢ is the column of v, and d is the
column of both v and w.

Claim 5.13. P; =T} for every i.

Proof. Since the only entry that was modified was w, it is clearly sufficient to show
that w is not used by any of the matchings {7;*} or {P;}. From Lemma 4.10 we
know that the matchings {7} have only two marked elements in the row of w and
one of them is v. The matching 7§ or T} (depending on the outcome of X) contains
u and cannot use any entry from the column of v. Hence it must use another entry
from the row of v (distinct also from w, as w lies in the column of u). Thus, since
w is not one of the two marked elements in its row, it is not part of any 7.

Now we have to show that w is not present in any of the {P;}. To establish this,
we exhibit two distinct marked elements in the row of w that are different from w.
Consider Sq: the smallest size m matching in C¢\ d. But the removal of column
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d in both C¢ and A* leads to the same m x n — 1 matrix. Hence, Sq is formed by
the entry v and M, where M is the matching defined earlier. This implies v is a
marked element.

Since v + M = T, it is clear that M is also the smallest matching of size m —1
in the matrix B\ ¢. Otherwise, v will pick a smaller matching and contradict the
minimality of 7.

Consider next the matching Se, the smallest matching in C¢ obtained by deleting
column c¢. The only candidates we have to consider are the matchings involving
w and the matching of weight T involving the element u. The smallest matching
of size m — 1 in the matrix B \ ¢ is M, which implies that the best candidate
for Se involving w is the matching formed by w and M. However this has weight
v+e+ M >v+ M =T;. Hence S; is the matching of weight Tj; involving the
element u. As before, this matching marks another element in the row of w which
is different from either v or w. Since there are two marked elements in the row of
w which are different from w, w cannot be in any of the matchings {P;}.

Thus the entry w is in neither of the set of matchings {7;*} or {P;}. Since w is
the only entry that the two matrices A* and C¢ differ in, this proves the claim. O

Moving to the next step of the proof for Case 2, define a matrix D¢ which is
identical to the matrix A* except for the entries v and w. We change the values of
both v and w to v — e. Let the T-matchings of D¢ be denoted by {Q;}.

Consider Sg, the smallest matching of size m in D¢\ d. It is easy to see that
since v was the only entry that was modified in this submatrix, Sq is formed by the
entry v and the matching M, and has weight Ty — e. Hence v is a marked element.

Next, let S¢ be the smallest matching in D€\ ¢. The only candidates we have to
consider are the matchings involving w and the matching of weight 7; that includes
the element u. As before, the smallest matching of size m — 1 in the matrix B\ ¢ is
M which implies that the best candidate for S¢ involving w is the matching formed
by w and M. This has weight v —e+ M < v+ M =T}. Hence S, is the matching
of weight Ty — € involving the element w. Hence w is a marked element.

Applying Lemma 4.10 to matrix D¢, it is clear that the only two marked elements
in the row of v are v and w. An argument similar to the one that proved (5.3) gives
us the following:

(5.4) Qi=U;i14+v—¢ fori=1,2,...,m.

As € — 0, the matrices C¢ and D¢ tend to each other. Since the weights of the
T-matchings are continuous functions of the entries of the matrix, we have that in
the limit € = 0, P; = ); and hence from Claim 5.13 and equation (5.4) we have

T =U;1 +vfori=1,2,...,m.
This proves the lemma, for Case 2 and hence completes the proof of the lemma. [
We now note the following consequence of our previous arguments:
v+ M=Ty=T; =T =Up+v
This gives us the following corollary:

Corollary 5.14. Let M be the smallest matching of size m — 1 in A*, contained
in Col(To) N Col(T1). Then M = U,.
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Step 3: B has i.i.d. exp(l) entries. We compute the joint distribution of the
entries of B and verify that they are i.i.d. exp(1) random variables. To do this, we
identify the set, ©, of all m x n matrices, A, that have a positive probability of
mapping to a particular realization of B under the operations & and A. We know
that the entries of A are i.i.d. exp(1) random variables. So we integrate over ® to
obtain the joint distribution of the entries of B.

To simplify the exposition, we partition the set © into sets {Dy,...,D,,} de-
pending on the row removed by the operation A to obtain B. We will characterize
D, i.e. the set of all m x n matrices in which A removes the last row. All the
other sets @;, i # m, can be characterized similarly. The next few lemmas concern
the complete characterization of the set ©,,.

Let Dy = A7'(B). Now A is a random map, whose action depends on the
value of X. In turn, this is related to e and f being on the same or different rows.
Therefore we may write Dy as the disjoint union of the sets D and D{, with the
obvious mnemonics. Finally, ®,, = ® 1 o A71(B).

Remark 5.15. Since we are focusing just on ®,,, the lift of the mapping A~1(B)
from ]Rfflxn into R7"*"™ will consist of the introduction of an additional row
below B. When dealing with ©;, the additional row would be introduced after the
(i — 1)t row of B.

Consider a matrix M € R"*", where the row vector ¥ = (r1,...,7pn_1) € ]RT71
denotes the elements in Col(Up):

M =

rn r2 - - Tm-1 T1 * * ZTpn—-m+l1

Let d be an element in B\ Col(Uy). Let Ay be the cost of the smallest matching
of size m — 1, say My, with entries in Col(Up) entries {ry,..,rm—1}) and but no
entry from the row of d. Clearly d U My is a matching of size m in the matrix M.
Amongst all such choices of d, let d, € B\ Col(Up) be that entry which minimizes
d+ Ag4. Let J=d, + Ag,, and denote the column of d, by j.

Given any ¥ = (r1,...,Tm—_1) € ]Rffl, the following lemma stipulates conditions
that the vector (zy,...,%,_m+1) must satisfy so that M € Djy.

Lemma 5.16. For any 7 € ]Rffl, let Fa(7) be the collection of all M such that
one of the following two conditions hold:

(i) There exist i and k such that x; = xy, x; + Uy < J and x; > x; for all

l#i,k.
(i7) There exists x; ¢ j such that x; > x; for alll #i and z; + Uy = J.

Then Dy = Fa = FeRT ! Fa(7).

Proof. (at) Dp C Fa: Let M € Dy be any matrix such that A(M) = B. Therefore,
B consists of the first m—1 rows of M (since, by assumption, A removes row m). By
the definition of A we know that the entry v occurs in the last row. From Corollary
5.14 we know that v chooses the matching U, to form a matching of weight T,
that is, v + Uy = T;. Hence v must be one of the z;’s. Again by definition, u lies
outside Col(Uy) U ¢, where ¢ is the column of v.

We shall now show that M € F, (7). Two cases occur:
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(a) v and u are in the last row: In this case, we know from the proof of Lemma
5.9 that v = u (the same as e = f* and this is Case 1 in the proof of Lemma
5.9). Since both v and u are in the last row and outside Col (i), we know
that v = z; and uw = x for some i # k. Therefore, z; = z;. We know
that v + Uy = T, hence from the minimality of 7 we have z; + Uy < J.
Also, z; + Ug < 27 + U for | # i,k for the same reason. This implies M
satisfies condition (¢) of Lemma 5.16. Therefore, under (a) it follows that
M € Fy (F)

(b) v is in the last row and u is not: arguing as before, we conclude that u = d,
and v = z;. Thus, T§ = v+ Uy = do + Ay, = J. We also know that v
and u occur in different columns, hence v = z; for some x; ¢ j. From the
minimality of 7}, we also have that z; + Uy < z; + Uy for [ # i. Thus, M
satisfies condition (i7) of Lemma 5.16 and hence M € Fx (7).

(B) Fa C Dp: Let M € Fy(7) for some . Then M satisfies condition (i) or
(77) of Lemma 5.16. Accordingly, this gives rise to two cases:

(a) M satisfies condition (i): We claim that A(M) = B. From Lemma 4.6
we have that 7o(M) must use all the columns of Uy. This implies that
exactly one entry of Tg(M) lies outside Col(Up). But, condition (i) implies
that z; + Uy < min{z; + Uy, J} = min{z; + Up,d + A4}. Since the last
minimization is over all possible choices of the lone entry d that 7o(M)
could choose outside Col(Uy), it follows that To(M) = z; + Up. Condition
() also implies that zx = ;. Hence To(M) = T1 (M) = zy, + U.

Since z; and xy are the entries of 7o(M) and T;(M) outside Col(Up),
this implies u and v are x; and z, in some order. Observe that A removes
the row in which v is present. Thus, we obtain A(M) = B and therefore
M € Dy.

(b) M satisfies condition (ii): We claim that A(M) = B with probability ;.
An argument similar to that in Case (a) yields z;+Uy = To (M) = T4 (M) =
J =d, + Ay,. Note that v and u are decided by the outcome of X. Hence
Pv=z,u=d,)=3%=Pu=z,v=4d,).

When v = z;, by the definition of A we get that A(M) = B. When
v = d, the row that is removed is the row containing d,, hence A(M) # B
in this case. Therefore, with probability % we will obtain B as the result
of the operation A(M). This implies M € Dj.

Thus both cases in (8) imply that Fo C Da, and this, along with (a) implies
Fr = Dy. O

Thus, Di and D¢ correspond to the matrices in D, which satisfy conditions (i)
and (i) of Lemma 5.16, respectively. Hence, when M € D{ we have A(M) = B
with probability one, and when M € D¢ we have A(M) = B with probability %
We are now ready to characterize ©,,.

Consider a matrix M € Dy and let 8 € IR;. Consider the column, say k, in M
which contains z;. (Recall, from Lemma 5.16, that z; is the smallest of the z;’s in
the last row deleted by A.) Add € to every entry in M outside Col(Uy) Uk. Denote
the resultant matrix by F (6, M). Let

A= |J FR6.M).

0>0,MeDy
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Now consider the column, say 1, in M where the entry z; or d, is present
(depending on whether M satisfies condition (i) or (i) of Lemma 5.16). Add 6 to
every entry in M outside Col(Uy) U1. Call the resulting matrix F5(6, M) and let

Fo= |J FR6.M)
§>0,McDy

Remark 5.17. Note that F; and F, are disjoint since k # 1. Also, 6 is added to
precisely m(n —m) entries in M in each of the two cases above.

Lemma 5.18. ©,, = F; U Fs.

Proof. Consider M’ € ©,,,. Subtracting § = Ty (M') — To(M') from the entries of
M’ outside Col(To(M')) leaves us with ®(M'). From the proof of Lemma 5.8 we
know that under @, the locations of the entries of T-matchings do not change; only
the weights of T;(M'), i > 1 are reduced by T3 (M') — To(M') = 6. It is clear that
if e and f are in same row, then the last row of ®(M’) satisfies condition (i) of
Lemma 5.16 and hence M’ = F; (§, ®(M')). If e and f are in different rows then the
last row of ®(M') satisfies condition (i) and therefore M' = F5(6, ®(M')). This
implies M' e F1U Fos.

For the converse, consider the matrix M’ = F; (6, M) for some M € D, and
6 > 0. Since To(M) = x;UlUy and M’ dominates M entry-by-entry, To(M') = z; Ul
by construction. Consider every size-m matching in M’ that contains exactly one
element outside Col(x; U Up). By construction, the weight of these matchings
exceeds the weight of the corresponding matchings in M by an amount precisely
equal to 6. Using Lemma 4.1, we infer that 7;(M') — T;(M) = 6 for i > 1.
Hence we have T3 (M') — To(M') = Ty (M) — To(M) 4+ 6. But for any M € Dy,
(M) = To(M) = z; + Ug. Therefore Ty (M') — To(M') = 6.

Now, ®(M’) is the matrix that results from subtracting 6 from each entry outside
the columns containing the matching 7o(M') = z; UUy. But, by the definition of
F1(6,M), ®(M’') is none other than the matrix M. Therefore M’ € D,,, and
Fi1 CD,,.

Next, let M’ = F5(6,M). In this case too, To(M) = =z + Uy (or d, + Ag,)
continues to be the smallest matching in M’'. An argument identical to the one
above establishes that ®(M') = M. Hence, M’ € ©,,, and F» C D,,, completing
the proof of the lemma. O

Remark 5.19. Note that the variable 6 used in the characterization of ©,,, precisely
equals the value of 71 (M') — To(M'), as shown in the proof of Lemma 5.18.

Continuing, we can partition D,, into the two sets 3, and D% as below:
(5.5) @ = F(Ry,Di)UF(R,,D}) and D% = Fi (IR, DY) U Fa(Ry, DY).

Observe that whenever M € @3 | we have ®(M) € D3 and hence A o ®(M) = B
with probability 1. For M € D%, (M) € D¢ and Ao ®(M) = M with probability
1. Recall also that ® = U, D;.

Now that we have characterized D, we return to considering the matrix A (which
has the same structure as M), and “integrate out the marginals” (r1,...,7m—1),

(z1,...,Zn—m+1) and @ by setting

7= (B,7,6) and @ = (7, 7),
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where B = [b;;] € R ™", We will evaluate [, fu(7,)dZ + [ fu(¥,Z)dE to
obtain the marginal density, f,(¢). The regions R and RQ are defined by the set
of all #’s that satisfy conditions (i) and (ii) of Lemma 5.16, respectively.

On Ry, we have that z; = x, < J — Up for J as in Lemma 5.16. We set
H =J— Uy, and u; = x; — x; for | # i, k. Finally, define

Sy=big+...+bp_1in+7r1+...Frmo1 +m(n—m)b.

Thus, s, denotes the sum of all of the entries of A except those in Z. As noted in
the remark preceding Lemma 5.18, the value 6 was added to precisely m(n — m)
entries. We have

fw(17 )dT

n—m+1 (sv+(n—m z; u
(5.6) <_> 2m< . >//// etz S ) ] du do;

14,k
=m(n —m)e * (1 — e*(”*mH)H) .

The factor (”_72”"'1) in equality (a) accounts for the choices for i and k from
{1,...,n — m + 1}; the factor m comes from the row choices available (i.e. the

regions D1, ..., ), and the factor 2 comes because A belongs to either F; or Fo.

Similarly, on R, we have that z; = J — Uy = H and we shall set u; = x; — x;
for [ # i to obtain

(5.7) ®) 1 (n — /// ~(so+(n=—m+1)H+ 3, ur) Hdul
2

l#i

=m(n — m)efs“ef("me)H

In equality (b) above, the factors n — m, m and 2 come, respectively, from the
choice! of positions available to z;, the row choices available and the partition, 7
or F», that A belongs to. The factor % comes from the fact that on R, e and
f occur on different rows. Therefore A is in ®% = U, D¢ and will map to the
desired B with probability =

Putting (5.6) and (5.7) together, we obtain
fv( ) (n m)efs” _ e*(b1,1+--.+bm71,n) xm(n_m)efm(nfm)é‘ Xef(r1+...+rm,1).
We summarize the above in the following lemma.

Lemma 5.20. For the matriz A, the following hold:

(1) B consists of i.i.d. exp(1) variables.

(ii) 6 = T1(A) — To(A) is an expm(n — m) random variable.

(1i1) 7 consists of i.i.d. exp(1) variables.

(iv) B, T1(A) — Ty(A), and 7 are independent.

Remark 5.21. Tt is worth noting that part (i7) of Lemma 5.20 provides an alternate
proof of Theorem 5.2.

INote that there are only n —m choices available to z; since it has to occur in a column other
than the one in which d, occurs.
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From Lemma 5.9 we know that the increments {Tj11(A) — Tr(A),k > 0} are a
function of the entries of B. Given this and the independence of B and T;(A) —
To(A) from the above lemma, we get the following;:

Corollary 5.22. Ti11(A) — T (A) is independent of T1(A) — To(A) for k > 0.

Thus we have established all the three steps mentioned in Section 3 required to
prove Theorem 2.4. This completes the proof of Theorem 2.4 and hence establishes
Parisi’s conjecture.

6. THE COPPERSMITH-SORKIN CONJECTURE

As mentioned in the introduction, Coppersmith and Sorkin [CS 99] conjectured
that the expected cost of the minimum k-assignment in an m X n rectangular matrix,
P, of i.i.d. exp(1) entries is:

1
6.1 F(k,m,n) = _ .
o = B T )

Nair [Na 02] has proposed a larger set of conjectures that identifies each term
in equation (6.1) as the expected value of an exponentially distributed random
variable corresponding to an increment of appropriately sized matchings in P. We
prove this larger set of conjectures using the machinery developed in Section 5 and
therefore establish the Coppersmith-Sorkin conjecture.

We define two classes of matchings for P, called W-matchings and V-matchings,
along the lines of the S-matchings and T-matchings. But the W- and V-matchings
will be defined for all sizes k, 1 < k < m. Thus, the superscript associated with a
matching will denote its size.

We now proceed to define these matchings for a fixed size k& < m. Denote the
smallest matching of size k by V§. Without loss of generality, we assume that
Col(VE) = {1,2,..., k}. Let WF denote the smallest matching in the matrix P

) )

when column i is removed. Note that for i > k, WF = VE.

Definition 6.1 (W-matchings). Define the matchings {V§, WE, ..., WFE} to be the
W-matchings of size k.
Definition 6.2 (V-matchings). Arrange the matchings {V§, Wf,...,W}'} in order
of increasing weights. Then the resultant sequence {Vi¥, Vi¥, ... V}}} is called the
V-matchings of size k.

Finally, we refer to the smallest matching of size m as V™.
We now prove the following theorem regarding the distributions of the increments
of the V-matchings.

Theorem 6.3. For each k, 1 <k <m — 1, the following hold:

(6.2) VE —VF ~ expm—i)n—k+i), 0<i<k-—1
and
(6.3) Vit vl ~  exp(m —k)n.

Remark 6.4. We have grouped the increments according to the size of the match-
ings; so equations (6.2) and (6.3) both concern the k" group. Equation (6.2) gives
the distribution of the differences of matchings of size k. The matching Vok+1 is
the smallest one of size k + 1, and equation (6.3) concerns the distribution of its
difference with V¥
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Before we prove Theorem 6.3, we show how it implies the Coppersmith-Sorkin
conjecture:

Corollary 6.5.

(6.4) F(k,m,n) = Z !

,5>0,i+j<k (m —i)(n —j)

Proof. From Theorem 6.3, using linearity of expectation, the telescopic sum Vok"'1 —
Vi has expected value F(k +1,m,n) — F(k,m,n). Also V' ~ exp(mn), being the
minimum of m X n independent exp(1) variables. Hence Theorem 6.3 establishes
the Coppersmith-Sorkin conjecture. O

We now proceed to the proof of Theorem 6.3.
Proof of Theorem 6.3

We will establish the theorem for the k** group inductively. The outline of the
induction is similar to the one in Section 3 and the details of the proof are similar
to those in Section 5.

Let L denote an | x n matrix with [ < m. Consider its V-matchings of size
vy = k—m +1 and denote them as {L{,...,£)}. Let L™ denote the smallest
matching of size v + 1 in L.

Inductive Hypothesis:

e Assume the increments satisfy the following combinatorial identities

(6.5) LI —L§ = V1= Vi
-1 = Vi Vi
_ k
Ll - Lz_l - mel+‘y - Vrzfl+'yfl
LE)Y+1 _ Lz — ‘/Ok—l—l _ ka.

e The entries of L are i.i.d. exp(1) random variables.

Induction Step:

Step 1: From L, form a matrix Q of size [ — 1 xn. Let {Q ™", ..., Q:’Yj} denote
its V-matchings of size v — 1 and let Q] denote the smallest matching of size y. We
require that

—1 -1
Q7 —Q~ = Ly-L]
v—1 o ol Y
2 Ql = Ly-1L,
Qv—l _ Qv—l - Iy
y—1 y=2 ol y-1

v i v+l
Q-Ql5 = LM -1L.

Step 2: Establish that the entries of Q are i.i.d. exp(1) random variables.

This completes the induction step since Q satisfies the induction hypothesis for
the next iteration.

In Step 2 we also show that L] — L] ~ expl(n — ) and hence conclude from
equation (6.5) that V¥ |, — V¥  ~expl(n—k+m—1).

m—I
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The induction starts with matrix L = P at [ = m and terminates at ] = m—k+1.
Observe that the matrix P satisfies the inductive hypothesis for [ = m by definition.
Proof of the Induction:

Step 1: Form the matrix L; of size [ x n + m — k by adding m — k columns of
zeroes to the left of L as below

L, =[0[L].

Let {7o,...,7;} denote the T-matchings of the matrix L;. Then, we make the
following claim:

Claim 6.6.
T, = L]
T o= L}
T, = L]
and
Tyi1=Typp = =T =LJ"

Proof. Note that any matching of size [ in L; can have at most m — k zeroes. It is
clear that the smallest matching of size [ in L; is formed by picking m — k zeroes
along with the smallest matching of size v in L. Thus, Ty = Lj.

The removal of any column c containing zeroes leads to the smallest matching of
size [ in L; \ ¢ being a combination of m — k — 1 zeroes with the smallest matching
of size v+ 1 in L. Hence m — k = [ — ~ of the T}’s, corresponding to each column
of zeroes, have weight equal to Lg“.

If we remove any column containing £J, then the smallest matching of size [ in L
is obtained by combining m — k zeroes with the smallest matching of size v in L that
avoids this column. Hence, these matchings have weights L] for i € {1,2,...,7}.

We claim that L™ is larger than L] fori € {0,1,2,...,7}. Clearly L3 > LJ.
Further, for i« > 1, we have a matching of size v in £g+1 that avoids the same
column that £] avoids. But L] is the smallest matching of size y that avoids this
column. So we conclude that L)™' > L7.

Hence arranging the weights (in increasing order) of the smallest matchings of
size [ in Lj, obtained by removing one column of 7y at a time, establishes the
claim. O

From the above it is clear that the matchings 7y and 7; are formed by m — k
zeroes and the matchings £ and L] respectively. Hence, as in Section 5, we have
two elements, one each of 7o and 77 that lie outside Col(7g) N Col(Ty).

We now perform the procedure outlined in Section 5 for obtaining Q from L by
working through the matrix L.

Accordingly, form the matrix L] by subtracting the value 77 — Ty from all the
entries in L that lie outside Col(Ty). Generate a random variable Z, independent
of all other random variables, with IP(Z = 0) = IP(Z = 1) = 3. As before, there are
two well-defined entries, e € 7o and f € 77 that lie outside these common columns.
(Note that in the matrix, L}, the entry f has a value f — (T} — Tp)). If X turned
out to be 0, then remove the row of L] containing the entry e, else remove the row
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containing the entry f. The resultant matrix of size (I — 1) X n + m — k is called

Q:. In matrix Q; remove the m — k columns of zeros to get the matrix Q of size
(I1-1)xn.

following claim.

Claim 6.7.
U = @
U = QY_I
Uyr = Q7]
and
Uy=-=U_1=0Q
Proof. The proof is identical to that of Claim 6.6. O

Now from Lemma 5.9 in Section 5 we know that
(66) TH_l—TZ’:UZ’—UZ’_lfOr’izl,...,l—l.
Remark 6.8. Though we have used the same notation, please bear in mind that
we are referring to two different sets of matchings here and in Section 5. However

since we adopted the same procedure to go from one matrix to the other, the proof
continues to hold.

Finally, combining Equation (6.6), Claim 6.6 and Claim 6.7 we obtain:

—1 —1
QI " -Q = Ly-Lj
v—1 -1 s Y
2 Ql = Ly-1L,
Qv—l _ Qv—l - Iy
y—1 y=2 v y-1

v y=1 v+1
Q-Ql5 = LM -1L.

This completes Step 1 of the induction.

Step 2: Again we reduce the problem to the one in Section 5 by working with
the matrices Ly and Q; instead of the matrices L and Q. (Note that the necessary
and sufficient conditions for L to be in the pre-image of a particular realization of
Q is exactly same as the necessary and sufficient conditions for a L; to be in the
pre-image of a particular realization of Q;.)

Let Ry denote all matrices L, that map to a particular realization of Q with
e and f in the same row. Let Ro denote all matrices L that map to a particular
realization of Q with e and f in different rows. Observe that in Ro, L will map to
the particular realization of Q with probability % as in Section 5. We borrow the
notation from Section 5 for the rest of the proof.

(Before proceeding, it helps to make some remarks relating the quantities in this
section to their counterparts in Section 5. The matrix A had dimensions m x n;
its counterpart L; has dimensions [ x (m — k + n). The number of columns in
A\ Col(Tp) equaled n — m; now the number of columns in L; \ Col(7s) equals
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m — k+n—1. This implies that the value § = Ty — T, = L] — L] will be subtracted
from precisely I(m — k+n —1) elements of Ly. Note also that the vector 7, of length
I —1, has exactly m — k zeroes and v = kK —m + [ — 1 non-zero elements. The vector
zis of length m —k+n—1+1.)

To simplify notation, set n = m — k + n — [; the number of columns from which
0 is subtracted. Thus, the vector x has length n 4+ 1. As in Section 5, let

7= (Q,7,0) and @ = (7, 7).

We will evaluate f,(¥) = [ fu(¥,#)dZ + [ fu(¥,)dZ, to obtain the marginal
density of 7.

On R4, we have that 2; = ; < H for H as in Section 5. (The counterparts of
x, and zp, in Section 5 were z; and zj, and these were defined according to Lemma
5.16.) We shall set u; = z; — x, for [ # a,b. Finally, define

Sy =qi+ - F Qo1+ T+ T mgr—1 + .

Thus, s, denotes the sum of all of the entries of L except those in Z. We have

fu(#, B)dE

) e [
I#a,b
=lne ?® (1 — e_(q"'l)H) .

The factor (") in equality (a) comes from the possible choices for a,b from the
set {1,...,n}, the factor I comes from the row choices available as in Section 5,
and the factor 2 corresponds to the partition, F; or Fy (defined likewise), that L
belongs to.

Similarly, on Ry, we have that z, = H and we shall set u; = z; — z, for | # a to
obtain

ﬂl (sv+(g+1)H+Y u
A e

l#a
—(g+1)H

In equality (b) above, the factor n comes from the choice of positions available to z,
(note that z, cannot occur in the same column as the entry d, which was defined
in Lemma 5.16). The factor I comes from the row choices available, and the factor
2 is due to the partition, F; or Fs, that L belongs to. Finally, the factor % comes
from the fact that on Ry, e and f occur on different rows. Therefore, L will map
to the desired Q with probability 3.

Substituting n = n — k +m — [ and adding (6.7) and (6.7), we obtain

fo@) = ln—k+m-—1)e
e—(q1,1+...+qu1,n)l(n —k4+m— l)e—l(n—k+m—l)0e—(r1+...+rl+k,m,1).

We summarize the above in the following lemma.
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Lemma 6.9. The following hold:

(i) Q consists of i.i.d. exp(1) variables.

(i) § = LT — L] is an expl(n — k + m — 1) random variable.
(iii) 7 consists of i.i.d. exp(1) variables and m — k zeroes.
(iv) Q, L] — L], and 7 are independent.

This completes Step 2 of the induction. O

From the inductive hypothesis we have LT — L§ =V _, ., — V¥, Further let

m
us substitute m — [ = i. Hence we have the following corollary.

Corollary 6.10. V/j_l —Vk ~exp(m —i)(n—k+i) fori=0,2,..,k—1.

To complete the proof of Theorem 6.3 we need to compute the distribution of
the “level-change” increment Vok+1 — V. At the last step of the induction, i.e.
l=m—k+ 1, we have a matrix K of size m — k + 1 x n consisting of i.i.d. exp(1)
random variables. Let {K}, K1} denote the V-matchings of size 1. Let K3 denote
the smallest matching of size 2. By induction, we have that the random variables
K}, K}, K satisfy the following: K| — K} =V} —~V} | and K - K} = VT -V}
The following lemma completes the proof of Theorem 6.3.

Lemma 6.11. The following identity holds: K2 — K| ~ exp(m — k)n.

Proof. This can be easily deduced from the memoryless property of the exponential
distribution; equally, one can refer to Lemma 1 in [Na 02] for the argument. 0

Remark 6.12. There is a row and column interchange in the definitions of the
V-matchings in [Na 02].

Thus, we have fully established Theorem 6.3 and hence the Coppersmith-Sorkin
Conjecture.

This also gives an alternate proof to Parisi’s conjecture since [CS 99] shows that
E,=F(n,n,n) = 2?21 %Q

7. CONCLUDING REMARKS

This paper provides a proof of the conjectures by Parisi [Pa 98] and Coppersmith-
Sorkin [CS 99]. In the process of proving these conjectures, we have discovered some
interesting combinatorial and probabilistic properties of matchings that could be
of general interest. Those related to the resolution of the conjectures have been
presented in the paper. Others will will appear in forthcoming publications. We
mention one particularly interesting property below.

Let Q be an (n — 1) x n matrix of i.i.d. exp(1) entries and let {7;} denote its T-
matchings. Let T denote the set of all placements of the row-wise minimum entries
of Q; for example, all the row-wise minima in the same column, all in distinct
columns, etc. Consider any fixed placement of the row minima ¢ € Y. Let 7;5
denote the T-matchings conditioned on the event that Q has its row-wise minima
placement according to £. Then the following statement holds:

Property 1: The joint distribution of the vector {7;£ — 7;5_1 ?;11 is the same for
all placements of the row-wise minima, £ € Y.

On the event, &, where all the row-wise minima lie in different columns, it is
quite easy to show that T5' =T ~ expi(n—i) fori =1,...,n—1 and that these
increments are independent. Combining this with Property 1 above one can obtain
an alternate proof of Theorem 2.4 and hence of Parisi’s conjecture.
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However, the argument we currently have for proving Property 1 uses the ma-
chinery in this paper for proving Theorem 2.4. It would be nice if another, simpler,
argument could be advanced for proving Property 1 since this would not only yield
a simpler proof of Theorem 2.4 but would give some interesting new insight into
the problem.
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