
PROOFS OF THE PARISI AND COPPERSMITH-SORKINCONJECTURESCHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMAAbstrat. Suppose that there are n jobs and n mahines and it osts ij toexeute job i on mahine j. The assignment problem onerns the determina-tion of a one-to-one assignment of jobs onto mahines so as to minimize theost of exeuting all the jobs. When the ij are independent and identiallydistributed exponentials of mean 1, Parisi (1998) made the beautiful onjeturethat the average ost of the minimum assignment equals Pni=1 1i2 . Copper-smith and Sorkin (1999) generalized Parisi's onjeture to the average valueof the smallest k-assignment when there are n jobs and m mahines. Build-ing on the previous work of Sharma and Prabhakar (2002) and Nair (2002),we resolve the Parisi and Coppersmith-Sorkin onjetures. In the proess weobtain a number of ombinatorial results whih may be of general interest.1. IntrodutionSuppose there are n jobs and n mahines and it osts ij to exeute job i onmahine j. An assignment (or a mathing) is a one-to-one mapping of jobs onto ma-hines. Representing an assignment as a permutation � : f1; : : : ; ng ! f1; : : : ; ng,the ost of the assignment � equals Pni=1 i�(i). The assignment problem onsistsof �nding the assignment with the lowest ost. LetCn = min� nXi=1 i�(i)represent the ost of the minimizing assignment. In the random assignment problemthe ij are i.i.d. random variables drawn from some distribution. A quantity ofinterest in the random assignment problem is the expeted minimum ost, IE(Cn).When the osts ij are i.i.d. mean 1 exponentials, Parisi [Pa 98℄ made the fol-lowing onjeture:(1.1) IE(Cn) = nXi=1 1i2 :Coppersmith and Sorkin [CS 99℄ proposed a larger lass of onjetures whih statethat the expeted ost of the minimum k-assignment in an m � n matrix of i.i.d.exp(1) entries is:(1.2) C(k;m; n) = Xi;j�0;i+j<k 1(m� i)(n� j) :Chandra Nair was supported by the Stanford Graduate Fellowship and Stanford NetworkingResearh Center grant 1005544-1-WAAXI.Balaji Prabhakar was supported in part by the NSF grant ANI-9985446.Mayank Sharma was supported by Stanford OÆe of Tehnology grant 2DTA112, StanfordNetworking Researh Center grant 1005545-1-WABCJ and NSF grant ANI-9985446.1



2 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMABy de�nition, C(n; n; n) = IE(Cn) and the right hand sides of (1.2) and (1.1) areequal when k = m = n.In this paper, we prove Parisi's onjeture by two di�erent but related strate-gies. The �rst builds on the work of Sharma and Prabhakar [SP 02℄ and estab-lishes Parisi's onjeture by showing that ertain inrements of weights of mathingsare exponentially distributed with a given rate and are independent. The seondmethod builds on Nair [Na 02℄ and establishes the Parisi and the Coppersmith-Sorkin onjetures. It does this by showing that ertain other inrements are ex-ponentials with given rates; the inrements are not required to be (and, in fat,aren't) independent.The two methods mentioned above use a ommon set of ombinatorial and prob-abilisti arguments. For ease of exposition, we hoose to present the proof of theonjetures in [SP 02℄ �rst. We then show how those arguments also resolve theonjetures in [Na 02℄.Before surveying the literature on this problem, it is important to mention thatsimultaneously and independently of our work, Linusson and W�astlund [LW 03℄have also announed a proof of the Parisi and Coppersmith-Sorkin onjeturesbased on a quite di�erent approah.1.1. Bakground and related work. There has been a lot of work on deter-mining bounds for the expeted minimum ost and on alulating its asymptotivalue. Assuming that limn IE(Cn) exists, let us denote it by C�. We survey someof the work; more details an be found in [St 97, CS 99℄. Early work used feasi-ble solutions to the dual linear programming (LP) formulation of the assignmentproblem for obtaining the following lower bounds for C�: (1 + 1=e) by Lazarus[La 93℄, 1.441 by Goemans and Kodialam [GK 93℄, and 1.51 by Olin [Ol 92℄. The�rst upper bound of 3 was given by Walkup [Wa 79℄, who thus demonstrated thatlim supnE(Cn) is �nite. Walkup's argument was later made onstrutive by Karpet al [KKV 94℄. Karp [Ka 84, Ka 87℄ made a subtle use of LP duality to obtaina better upper bound of 2. Coppersmith and Sorkin [CS 99℄ further improved thebound to 1.94.Meanwhile, it had been observed through simulations that for large n, E(Cn) �1:642 [BKMP 86℄. M�ezard and Parisi [MP 87℄ used the replia method [MPV 87℄of statistial physis to argue that C� = �26 . (Thus, Parisi's onjeture for the�nite random assignment problem with i.i.d. exp(1) osts is an elegant restritionto the �rst n terms of the expansion: �26 = P1i=1 1i2 .) More interestingly, theirmethod allowed them to determine the density of the edge-ost distribution of thelimiting optimal mathing. These sharp (but non-rigorous) asymptoti results, andothers of a similar avor that they obtained in several ombinatorial optimizationproblems, sparked interest in the replia method and in the random assignmentproblem.Aldous [Al 92℄ proved that C� exists by identifying the limit as the average valueof a minimum-ost mathing on a ertain random weighted in�nite tree. In thesame work he also established that the distribution of ij a�ets C� only throughthe value of its density funtion at 0 (provided it exists and is stritly positive).Thus, as far as the value of C� is onerned, the distributions U [0; 1℄ and exp(1) areequivalent. More reently, Aldous [Al 01℄ established that C� = �2=6, and obtainedthe same limiting optimal edge-ost distribution as [MP 87℄. He also obtained anumber of other interesting results suh as the asymptoti essential uniqueness



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 3(AEU) property|whih roughly states that almost-optimal mathings have almostall their edges equal to those of the optimal mathing.Generalizations of Parisi's onjeture have also been made in other ways. Li-nusson and W�astlund [LW 00℄ onjetured an expression for the expeted ost ofthe minimum k-assignment in an m � n matrix onsisting of zeroes at some spe-i�ed positions and exp(1) entries at all other plaes. Indeed, it is by proving thisonjeture in their reent work [LW 03℄ that they obtain proofs of the Parisi andCoppersmith-Sorkin onjetures. Buk, Chan and Robbins [BCR 02℄ generalizedthe Coppersmith-Sorkin onjeture to the ase where the ij are distributed aord-ing to exp(aibj) for ai; bj > 0. In other words, if we let a = [ai℄ and b = [bj ℄ beolumn vetors, then the rate matrix for the osts is of rank 1 and is of the formabT.Alm and Sorkin [AS 02℄, and Linusson and W�astlund [LW 00℄ veri�ed the onje-tures of Parisi and Coppersmith-Sorkin for small values of k;m and n. Coppersmithand Sorkin [CS 02℄ studied the expeted inremental ost, under ertain hypothe-ses, of going from the smallest (m � 1)-assignment in an (m � 1) � n matrix tothe smallest m-assignment in a row-augmented m � n matrix. However, as theynote, their hypotheses are too restritive and their approah fails to prove theironjeture.An outline of the paper is as follows: in Setion 2 we reall some previouswork from [SP 02℄ and state Theorem 2.4, whose proof implies a proof of Parisi'sonjeture. In Setion 3 we desribe an indution proedure for proving Theorem2.4. We then state and prove some ombinatorial properties of mathings in Setion4 that will be useful for the rest of the paper. Setion 5 ontains a proof of Theorem2.4. Setion 6 builds on the work of [Na 02℄ and ontains a proof of Theorem 6.3.This implies a proof of the Coppersmith-Sorkin onjeture. We onlude in Setion7. We now present some onventions that are observed in the rest of the paper.1.2. Conventions.(1) The words `ost' and 'weight' are used interhangeably and mean the samething; the ost (or weight) of a olletion entries is the sum of the values ofthe entries.(2) The symbol `�' stands for `is distributed as', and ` ?? ' stands for `is inde-pendent of'.(3) By X � exp(�) we mean that X is exponentially distributed with mean 1� ;i.e., IP(X > x) = e��x for x; � � 0.(4) We use the term `retangular matries' to refer to m � n matries withm < n.(5) We employ the following notation:{ Boldfae apital letters suh as A;C;M represent matries.{ Calligraphi haraters suh as R;S; T ;V denote mathings.{ The plain non-boldfae version of a mathing's name, e.g R;S; T; Vrepresent the weight of that mathing.(6) Col(S) to represent the set of olumns used by the mathing S.(7) Throughout this paper, we shall assume that the osts are drawn from someontinuous distribution. Hene, with probability 1, no two mathings willhave the same weight. This makes the `smallest mathing' in a olletionunique; tie-breaking rules will not be needed.



4 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMARemark 1.1. Note that almost all of our laims in Setion 4 will go througheven if we do not assume uniqueness. However, when there is a tie, thelaims must be re-worded as `there exists a mathing with the smallestweight satisfying', instead of `the smallest mathing satis�es'.2. PreliminariesLet C = [ij ℄ be an m�n (m < n) ost matrix with i.i.d. exp(1) entries. Let T0denote the smallest mathing of size m in this matrix. Without loss of generality,assume that Col(T0) = f1; 2; : : : ;mg. For i = 1; : : : ; n, let Si denote the smallestmathing of size m in the m � (n � 1) submatrix of C obtained by removing itsith olumn. Note that Si = T0 for i � m+ 1. Therefore, the Si's an take at mostm+ 1 distint values.De�nition 2.1 (S-mathings). The olletion of mathings fS1; : : : ;Sm;Sm+1(=T0)g is alled the S-mathings of C and is denoted by S(C).De�nition 2.2 (T-mathings). Let fT1; : : : ; Tmg be a permutation of fS1; : : : ;Smgsuh that T1 < T2 < � � � < Tm; that is, the Ti's are a rearrangement of the Si's inorder of inreasing weight. The olletion of mathings fT0; T1; : : : ; Tmg is alledthe T-mathings of C and is denoted by T (C).Remark 2.3. Nothing in the de�nition of the S-mathings prevents any two of theSi's from being idential; however, we will show in Corollary 4.2 that they are alldistint.These quantities are illustrated below by taking C to be the following 2 � 3matrix: C: 3 6 119 2 206 112 20 ) S1 = 13; 3 119 20 ) S2 = 20; 3 69 2 ) S3 = 5 = T0.In the above example, T0 = 5, T1 = 13 and T2 = 20.We now state the main result that will establish Parisi's Conjeture.Theorem 2.4. Consider an m� n (m < n) matrix, A, with i.i.d. exp(1) entries.Let fT0; T1; : : : ; Tmg denote the weights of the T-mathings of A. Then the followinghold:� Tj � Tj�1 � exp(m� j + 1)(n�m+ j � 1), for j = 1; : : : ;m.� T1 � T0 ?? T2 � T1 ?? � � � ?? Tm � Tm�1.The proof of this theorem will be presented later. For ompleteness, we nowreprodue the arguments from [SP 02℄ whih show how Theorem 2.4 implies Parisi'sonjeture.Corollary 2.5. Let C be an n � n ost matrix with i.i.d. exp(1) entries. Let Cndenote the ost of the minimum assignment. ThenIE(Cn) = nXi=1 1i2 :



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 5Proof. The proof is by indution. The indution hypothesis is trivially true whenn = 1 sine IE(C1) = 1. Let us assume that we haveIE(Cn�1) = n�1Xi=1 1i2 :Delete the top row of C � [ij ℄ to obtain the retangular matrix A of dimensions(n� 1)� n. Let fS1; : : : ; Sng and fT0; : : : ; Tn�1g be the weights of the mathingsin S(A) and T (A) respetively.The relationship Cn = minnj=1f1j +Sjg allows us to evaluate IE(Cn) as follows:IE(Cn) = Z 10 P (Cn > x) dx= Z 10 P (1j > x� Sj ; j = 1; : : : ; n) dx= Z 10 P (1�(j) > x� Tj ; j = 0; : : : ; n� 1) dx(2.1)where �(�) is a 1-1 map from f0; 1; : : : ; n� 1g to f1; 2; : : : ; ng suh that 1�(j) is theentry in the �rst row of C that lies outside the olumns oupied by the mathingTj in A. Now, sine the �rst row is independent of the matrix A and �(�) is abijetion, the entries 1�(j) are i.i.d. exp(1) random variables. We therefore havefrom (2.1) thatIE(Cn) = IEA �Z 10 P (1�(j) > x� tj ; j = 0; : : : ; n� 1) dx ��� A� :We proeed by evaluating the expression inside the integral. Thus,Z 10 P (1�(j) > x� tj ; j = 0; : : : ; n� 1) dx= Z 10 n�1Yj=0 P (1�(j) > x� tj) dx (independene of 1�(j))= Z t00 dx+ Z t1t0 e�(x�t0) dx+ : : :+ Z tn�1tn�2 e�((n�1)x�t0�����tn�2) dx+ Z 1tn�1e�(nx�t0�����tn�1) dx(sine the ti's are inreasing)= t0 + �1� e�(t1�t0)�+ 12 �e�(t1�t0) � e�(2t2�t0�t1)�+ : : :+ 1n� 1 �e�((n�2)tn�2�t0�����tn�3) � e�((n�1)tn�1�t0�����tn�2)�+ 1ne�((n�1)tn�1�t0�����tn�2)= t0 + 1� 12e�(t1�t0) � 16e�(2t2�t0�t1) � � � �� 1n(n� 1)e�((n�1)tn�1�t0�����tn�2):



6 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMATherefore,IE(Cn) = IE(T0) + 1� n�1Xi=1 1i(i+ 1)IE�e�(iTi�T0�����Ti�1)�= IE(T0) + 1� n�1Xi=1 1i(i+ 1)IE0�e iPj=1 �j(Tj�Tj�1)1A :(2.2)However, from Theorem 2.4 (setting m = n� 1), we obtainIE0�e iPj=1 �j(Tj�Tj�1)1A = iYj=1 IE�e�j(Tj�Tj�1)� = iYj=1 n� jn� j + 1 = n� in :Substituting this in (2.2) givesIE(Cn) = IE(T0) + 1n2 + 1n n�1Xi=1 1i :(2.3)We are left with having to evaluate IE(T0)). First, for j = 1; : : : ; n� 1,(2.4)IE(Tj) = IE(T0) + jXk=1 IE(Tk � Tk�1) = IE(T0) + jXk=1 1k(n� k) (by Theorem 2.4):Now, the random variable S1 is the ost of the smallest mathing of an (n�1)�(n�1) matrix of i.i.d. exp(1) random variables obtained by removing the �rst olumnof A. Hene S1 is distributed as Cn�1. However, by symmetry, S1 is equally likelyto be any of fT0; : : : ; Tn�1g. Hene we get thatIE(S1) = 1n n�1Xj=0 IE(Tj) = 1nIE(T0) + 1n n�1Xj=1  IE(T0) + jXk=1 1k(n� k)!= IE(T0) + 1n n�1Xk=1 1k :(2.5)By the indution assumption, IE(Cn�1) = n�1Pk=1 1k2 = IE(S1). Substituting this into(2.5) we obtain(2.6) IE(T0) = n�1Xk=1 � 1k2 � 1nk� :Using this at (2.3) we get(2.7) IE(Cn) = n�1Xi=1 � 1i2 � 1ni�+ 1n2 + 1n n�1Xi=1 1i = nXi=1 1i2 : �



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 73. A Sketh of the Proof of Theorem 2.4The proof uses indution and follows the steps below.1. First, we prove that for any retangular m � n matrix, A, T1 � T0 �expm(n�m).2. The distribution of the higher inrements is determined by an indutive pro-edure. We remove a suitably hosen row ofA to obtain anm�1�nmatrix,B, whih has the following property: let fT0; : : : ; Tmg and fU0; : : : ; Um�1gbe the weights of the T-mathings in T (A) and T (B) respetively. ThenUj � Uj�1 = Tj+1 � Tj for j = 1; 2; : : : ;m� 1:Establishing this ombinatorial property is one major thrust of the paper.3. We will then show that B possesses a useful probabilisti property: Itsentries are i.i.d. exp(1) random variables, independent of T1 � T0. Thisproperty, in onjuntion with the results in 1 and 2 above, allows us toonlude (i) T2 � T1 = U1 � U0 � exp(m � 1)(n�m + 1) and (ii) Tj+1 �Tj ?? T1 � T0 for j = 1; 2; : : : ;m� 1; in partiular, T2 � T1 ?? T1 � T0.We use the matrix B as the starting point in the next step of the indu-tion and proeed.Remark 3.1. We have seen above that T1 � T0 is independent of B and hene ofall higher inrements Tj+1 � Tj , j = 1; 2; : : : ;m� 1. This argument, when appliedin the subsequent stages of the indution, establishes the independene of all theinrements of A.The diagram below enapsulates our method of proof. We shall show that the�rst inrements T1 � T0; U1 � U0; : : : ; V1 � V0; : : : ; and W1 � W0 are mutuallyindependent, that they are exponentially distributed with appropriate rates, andthat they are eah equal to a partiular original inrement Tj+1 � Tj .Matrix T-mathingsA : T1 � T0 T2 � T1 : : : Tj+1 � Tj : : : Tm � Tm�1k k kB : U1 � U0 : : : Uj � Uj�1 : : : Um�1 � Um�2k k... ... ...D : V1 � V0 : : : Vk � Vk�1... ...kF : W1 �W0In summary, the proof of Theorem 2.4 involves a ombinatorial and a probabilis-ti part. We develop a number of ombinatorial lemmas in the next setion. Thelemmas and their proofs an be stated using onventional language; e.g., symmetridi�erenes, alternating yles and paths, or as linear optimizations over Birkho�polytopes. However, given the straightforward nature of the statements, presentingthe proofs in plain language as we have hosen to do seems natural. The proba-bilisti arguments and the proof of Theorem 2.4 are presented in Setion 5.



8 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMA4. Some ombinatorial properties of mathingsTo exeute some of the proofs in this setion, we will use the alternate represen-tation of an arbitrary m � n matrix C as a omplete bipartite graph Km;n, withm verties on the left and n verties on the right orresponding to the rows andolumns of C, respetively. The edges are assigned weights ij with the obviousnumbering.In a number of these ombinatorial lemmas we are interested in properties of\near optimal mathings." That is, suppose M is the smallest mathing of size kin the matrix C. Near optimal mathings ould be (i) M0: the smallest mathingof size k whih doesn't use all the olumns ofM, or (ii)M00: the smallest mathingof size k+1. A generi onlusion of the ombinatorial lemmas is that near-optimalmathings are \losely related" to the optimal mathing M. For example, we will�nd that M0 uses all but one of the olumns of Col(M), and that the rows andolumns used by M00 are a superset of those used by M.Lemma 4.1. Consider an m � n matrix C. For every j 2 Col(T0), we havejCol(Sj) \ Col(T0)j = m� 1.Proof. We represent the matrix C as a omplete bipartite graph Km;n. Withoutloss of generality, let Col(T0) be the �rst m olumns of C, and let j = 1. Fous onthe subgraph onsisting of only those edges whih are present in T0 and S1. Forexample, the subgraph is shown in Figure 1 where the bold edges belong to T0 andthe dashed edges belong to S1.
PSfrag replaementsm n

Figure 1. Subgraph depiting an even-length path and a 2-yleIn general, a subgraph of a bipartite graph an onsist of the following ompo-nents: yles, and paths of even or odd lengths. We laim that it is impossible forthe subgraph indued by the edges of T0 and S1 to have yles of length greater thantwo, or paths of odd length. (Cyles of length two represent the entries ommon toT0 and S1.)A yle of length greater than two is impossible beause it would orrespond totwo di�erent submathings being hosen by T0 and S1 on a ommon subset of rowsand olumns. This would ontradit the minimality of either T0 or of S1.An odd-length path is not possible beause every vertex on the left has degree2. Thus, any path will have to be of even length.We now show that the only omponent (other than yles of length 2) that anbe present in the subgraph is a single path of even length whose degree-1 verties



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 9are on the right. Every node on the left has degree 2 and hene even paths with twodegree-1 nodes on the left are not possible. Now we rule out the possibility of morethan one even length path. Suppose to the ontrary that there are two or morepaths of even length. Consider any two of them and note that at least one of themwill not be inident on olumn 1. Now the bold edges along this path are smallerin weight than the dashed edges by the minimality of T0. Thus, we an appendthese bold edges to the dashed edges not on this path to obtain a new mathing S 01whih would be smaller than S1. This ontradits the minimality of S1 amongst allmathings that do not use olumn 1.Therefore, the subgraph formed by the edges of T0 and S1 an only onsist of2-yles and one even length path. To omplete the proof, observe that an evenlength path with two degree-1 verties on the right implies that the dashed edgesin the path use exatly one olumn that is not used by the bold edges in the path(and vie-versa). This proves the lemma. �Corollary 4.2. The ardinality of S(C) is m+ 1.Proof. From the de�nition of Si it is lear that for i � m; Si 6= T0. We need toshow that Si 6= Sj for i 6= j, i; j � m. From Lemma 4.1, Si uses all the olumns ofT0 exept olumn i. In partiular, it uses olumn j and therefore is di�erent fromSj . �Corollary 4.3. An arrangement of the Si for i 2 Col(T0)\Col(T1) � � �Col(Tk) ininreasing order gives the sequene Tk+1; Tk+2; : : : ; Tm.Proof. The proof follows in a straightforward fashion from Lemma 4.1 and thede�nition of S-mathings. �We an use Lemma 4.1 and Corollary 4.3 to give an alternate haraterizationof the T-mathings that does not expliitly onsider the S-mathings.Lemma 4.4 (Alternate Charaterization of the T-mathings). Consider an m�nretangular matrix, C. Let T0 be the smallest mathing of size m in this matrix.Consider mathings T1; :::; Tm of size m, de�ned reursively as follows: T1 is thesmallest mathing in the set R1 = fM : Col(M) ) Col(T0)g, T2 is the smallestmathing in the set R2 = fM : Col(M) ) (Col(T0) \ Col(T1))g,..., and Tm isthe smallest mathing in the set Rm = fM : Col(M) ) (Col(T0) \ Col(T1) � � � \Col(Tm�1))g. Then fT0; : : : ; Tmg are the T-mathings of C.Proof. The proof is straightforward and is omitted. (Note that the alternate har-aterization was used in the de�nition of the T-mathings in [Na 02℄.)Lemma 4.5. Consider an m� n retangular matrix, C. Suppose there is a size-m mathing M with the following property: M < M 0 for all size-m mathingsM0(6=M) suh that jCol(M0) \ Col(M)j � m� 1. Then M = T0.Proof. Without loss of generality, assume Col(M) = f1; 2; : : : ;mg. The lemma istrivially true for n = m+1. Let k � 2 be the �rst value suh that there is a matrix,C, of size m� (m+ k) whih violates the lemma. We will show that this leads toa ontradition and hene prove the lemma.Clearly, Col(T0) must ontain all the olumns fm+1; : : : ;m+kg. If not, there isa smaller value of k for whih the lemma is violated. For any j 2 fm+1; :::;m+kg



10 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMAonsider Col(Sj), where Sj is the smallest mathing that does not ontain olumnj. The fat that k is the smallest number for whih Lemma 4.5 is violated impliesSj = M. Hene jCol(Sj) \ Col(T0)j � m � k � m � 2. This ontradits Lemma4.1, proving the lemma. �Lemma 4.6. Consider a m�n ost matrix C. Let D be an extension of C formedby adding r additional rows (r < n�m). Then Col(T0(C)) � Col(T0(D)).Proof. As before, we represent the augmented matrix D as a omplete bipartitegraph Km+r;n and fous on the subgraph (see Figure 2) onsisting of only thoseedges that are part of T0(C) (bold edges) and T0(D) (dashed edges).
PSfrag replaementsm nr
Figure 2. Subgraph depiting odd-length paths and a 2-yleWe proeed by eliminating the possibilities for omponents of this subgraph. Asin Lemma 4.1, the minimality of the two mathings under onsideration preventsyles of length greater than 2 from being present. Note that 2-yles (or ommonedges) are possible and these do not violate the statement of the lemma.Next we show that paths of even length annot exist. Consider even-length pathswith degree-1 verties on the left. If suh a path exists then it implies that thereis a vertex on the left on whih a lone bold edge is inident. This is not possiblesine the edges of T0(D) are inident on every vertex on the left.Now onsider even-length paths with degree-1 verties on the right. These havethe property that the solid and dashed edges use the same verties on the left(i.e. same set of rows). Now, we have two mathings on the same set of rows andtherefore by hoosing the lighter one, we an ontradit the minimality of eitherT0(C) or T0(D).Consider odd-length paths. Sine every vertex orresponding to rows in C musthave degree 2, the only type of odd-length paths possible are those in whih thenumber of edges from T0(D) is one more than the number of edges from T0(C).But in suh an odd-length path, the verties on the right (olumns) used by T0(C)are also used by T0(D). Sine the only omponents possible for the subgraph areodd length paths as above and ommon edges, Col(T0(C)) � Col(T0(D)). �



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 11Lemma 4.7. Let C be an m�n retangular matrix. Let Skj (i) denote the entry ofSkj in row i. Consider three arbitrary olumns k1; k2; k3. For every row i, at leasttwo of Sk1(i), Sk2(i) and Sk3(i) must be the same.Proof. We shall �rst establish this laim for m = n � 1. Let us olor the edges ofSk1 red (bold), the edges of Sk2 blue (dash) and the edges of Sk3 green (dash-dot).Consider the subgraph formed by the edges present in Sk1 and Sk2 , i.e. the redand blue edges (see Figure 3 (a)). Clearly this subgraph annot have the followingomponents:� Cyles of length more than 2, sine that would ontradit the minimalityof either Sk1 or Sk2 .� Odd length paths, sine every vertex on the left has degree two.� Even length paths with degree-1 verties on the left, sine every vertex onleft has degree two.Thus the only possible omponents are even length paths with degree-1 verties onthe right, and ommon edges.Now we use the fat that m = n � 1 to laim that there an only be one evenlength path. If there were two even length paths with degree-1 verties on the right,then the edges in Sk1 will avoid at least two olumns (one from eah even lengthpath). But m = n� 1 implies the edges in Sk1 an avoid only olumn k1. Similarlythe edges of Sk2 an avoid only olumn k2. This implies that the single even lengthalternating path must have verties k1 and k2 as its degree-1 verties. Let us allthis path P12.Arguing as above, we onlude that the subgraph formed by red and greenedges an only onsist of ommon edges and one even length alternating path, P13,onneting verties k1 and k3. Likewise, in the subgraph formed by green and blueedges we have, other than ommon edges, exatly one even length alternating path,P23, onneting verties k2 and k3.We now proeed to prove the lemma by ontradition. Suppose that Sk1(i),Sk2(i) and Sk3 (i) are all distint for some row i. Our method of proof will be toonstrut a mathing in Cnk3, say ~Sk3 , using only edges belonging to Sk1 , Sk2 andpossibly some from Sk3 suh that in the subgraph formed by the edges of Sk1 ;Sk2and ~Sk3 , the verties on the left will have at most degree two. We will show thatthis new mathing ~Sk3 has a ost smaller than the ost of Sk3 . This will ontraditthe minimality of Sk3 and hene prove the lemma.We shall onstrut ~Sk3 in eah of the following two ases.� Case 1: The vertex k3 does not lie on the alternating path P12.Consider the alternating path, P13, from k3 to k1 onsisting of red andgreen edges. Start traversing the path from k3 along the red edge. Observethat one takes the red edge when going from a right vertex to a left vertexand a green edge when going from a left vertex to a right vertex. Let v bethe �rst vertex along this path that also belongs to the alternating path,P12, of red and blue edges.We laim that v must be on the right. Suppose that v is on the left.Sine v is the �rst node ommon to P13 and P12, it must be that there aretwo distint red edges (belonging to eah of P13 and P12) inident on v.But this is impossible, sine the red edges belong to the same mathing.Therefore, v must be on the right.



12 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMANow form the mathing ~Sk3 by taking the following edges:{ green edges in the path P13 starting from k3 until vertex v{ red edges in the path P12 starting from v to k2{ blue edges in the path P12 starting from v to k1{ the red edges from all the unovered verties on left.Note that, by onstrution of ~Sk3 , on the subgraph formed by the edgesof Sk1 ;Sk2 and ~Sk3 the verties on the left have degree at most two (seeFigure 3 b).
PSfrag replaements k3k3k3 k1k1k1 vvv k2k2k2Figure 3. (a) Mathings Sk1 ;Sk2 ;Sk3 (b) P13 till vertex v andP12 () Mathing ~Sk3� Case 2: The vertex k3 lies on P12.We an onstrut ~Sk3 using the proedure stated in Case 1 if we takev = k3. Then the mathing ~Sk3 is formed by taking the following edges:{ red edges in the path P12 starting from k3 to k2{ blue edges in the path P12 starting from k3 to k1{ the red edges from all the unovered verties on left.Observe that, by onstrution, we again have that on the subgraphformed by the edges of Sk1 ;Sk2 and ~Sk3 the verties on left have at mostdegree two.To show that the ost of ~Sk3 is less than Sk3 , we anel edges that are ommonto the two mathings and thus obtain mathings ~S 0k3 and S 0k3 on C0, a (possiblysmaller) submatrix of C n k3. Now ~S 0k3 onsists of edges from either Sk1 or Sk2 ;denote these edges by Ed1 and Ed2 respetively.We have to show(4.1) sum of edges in S 0k3 > sum of edges in fEd1; Ed2g = sum of edges in ~S 0k3 :The right hand side of the above inequality onsists only of red and blue edges.Let Ed1 and Ed2 be the remaining red and blue edges, respetively. Adding theweights of these edges to both sides of (4.1), we are now required to show(4.2) sum of edges in fS 0k3 ; Ed1; Ed2g > Sk1 + Sk2 :See Figure 4 for an illustration.We establish (4.2) by showing that the left hand side splits into the weights oftwo mathings, one eah in C n k1 and C n k2. The minimality of Sk1 and Sk2 willthen omplete the proof.
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PSfrag replaements k3k3k3k3 k1k1k1k1 vvv k2k2k2k2Figure 4. (a) Mathing S 0k3 (b) Edges Ed1 and Ed2 () MathingS 0k3 and edges Ed1 and Ed2First observe that the edges in fS 0k3 ; Ed1; Ed2g an be deomposed into thefollowing:� An alternating path of (red or blue) and green edges from v to k1.� An alternating path of (red or blue) and green edges from v to k2.� The ommon red/blue/green edges that are outside the verties of P12.Form the �rst mathing, sayM, in C n k2 by taking the following edges:� The green edges in the alternating path of red and green edges from v tok1.� The (red or blue) edges in the alternating path of blue and green edgesfrom v to k2.� One of the red/blue/green edges that are outside the verties of P12.Form the other mathing, say N , in C n k1 by taking the following edges:� The (red or blue) edges in the alternating path of red and green edges fromv to k1.� The green edges in the alternating path of blue and green edges from v tok2.� The other set of red/blue/green edges that are outside the verties of P12.This splitting into the two mathings establishes (4.1) and thus shows that Sk3 >~Sk3 . This ontradition proves the lemma when m = n� 1.Remark 4.8. A less expliit way of obtaining the deomposition into the two math-ings is to observe that in fS 0k3 ; Ed1; Ed2g, every vertex on the left has degree two,and so does every vertex on the right, exept k1 and k2.If m < n � 1, append an (n �m � 1) � n matrix to C to form an (n � 1) � nmatrix D. The entries in DnC are i.i.d. random variables uniformly distributed on[0; �=2(n�m)℄, where � < minfjM �M 0j :M andM0 are size-m mathings in Cg.Then it is easy to see that for eah i, Si(D) ontains Si(C) sine the ombinedweight of the additional edges from the appended part is too small to hange theordering between the mathings in C.Now apply the lemma to D to infer that at least two of Sk1(i), Sk2(i) and Sk3(i)must be the same, where the Skj are size-m mathings of C and row i is in C. Thisproves the lemma. �



14 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMA
PSfrag replaements

k3k3k3k3k3k3 k1k1k1k1k1k1 vvv k2k2k2k2k2k2 M NFigure 5. (a) S 0k3 [ Ed1 [ Ed2 (b) Splitting into mathingsM and NDe�nition 4.9 (Marked elements). An element of an m � n matrix C is said tobe marked if it belongs to at least one of its T-mathings.Lemma 4.10. An m� n matrix C has exatly two elements marked in eah row.Proof. It is obvious that at least two suh elements are present in eah row. Ifthere is any row that has three or more elements, by onsidering the S-mathingsthat give rise to any three of these elements we obtain a ontradition to Lemma4.7. �5. Proof of Theorem 2.4We shall now exeute the three steps mentioned in Setion 3.Step 1: T1 � T0 � expm(n�m). We will show that if A is an m� n retangularmatrix with i.i.d. exp(1) entries, then T1 � T0 � expm(n �m). We begin by thefollowing haraterization of Col(T0).Claim 5.1. Let M be the smallest size-m mathing in the olumns Col(M) ofA. Consider any element, v, lying outside Col(M). Let Nv = minfN : v 2N ; jCol(N ) \ Col(M)j = m � 1g. Then, Nv > M for all v 2 A n Col(M) i�Col(M) = Col(T0).Proof. Clearly, if Col(M) = Col(T0), thenM = T0 and by the minimality of T0 wehave Nv > M for all v lying outside Col(T0). The reverse diretion is an immediateonsequene of Lemma 4.5. �Theorem 5.2. For an m�n matrix, A, ontaining i.i.d. exp(1) entries, T1�T0 �exp(m(n�m)).Proof. Let v 2 AnCol(T0) and letMv be the submathing of Nv (de�ned in Claim5.1) suh that Nv = v [Mv. Suppose v > T0 �Mv; 8 v 2 A n Col(T0). ThenClaim 5.1 implies that this is a neessary and suÆient ondition to haraterizethe olumns of T0.We reall a well-known fat regarding exponentially distributed random vari-ables.



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 15Fat 5.3. Suppose Xi; i = 1; : : : ; l, are i.i.d. exp(1) random variables. Let Yi �0; i = 1; : : : ; l, be random variables suh that �(Y1; : : : ; Yl) � F for some �-algebraF . If Xi ?? F 8 i, then on the event fXi > Yi; i = 1; : : : ; lg, Xi � Yi are i.i.d.exp(1) random variables and independent of F .The above fat implies that the random variables fv�(T0�Mv); v 2 AnCol(T0)gare i.i.d. exp(1).From Lemma 4.1, T1 has exatly one entry outside Col(T0). Hene T1 � T0 =minvNv � T0 = minv(v � (T0 �Mv)). Sine the minimization is over m(n �m)independent exp(1) random variables v � (T0 � Mv), we have that T1 � T0 �expm(n�m). �Remark 5.4. A theorem in [Na 02℄ onsiders a slightly more general setting ofmathings of size k in an m � n matrix. The argument used in Theorem 5.2 isan extension of the argument in [SP 02℄ for an (n � 1) � n matrix. A similarargument was also used by Janson in [Ja 99℄ for a problem regarding shortest pathsin exponentially weighted omplete graphs.We note the following positivity ondition that follows immediately from Theo-rem 5.2.Corollary 5.5. For any v =2 Col(T0), v � (T1 � T0) > 0.Proof. We know from the proof of Theorem 5.2 that for any v =2 Col(T0),v � (T0 �Mv) � minv (v � (T0 �Mv)) = minv Nv � T0 = T1 � T0:This implies that v � (T1 � T0) � (T0 �Mv). Now, let v0 be the entry of T0 in thesame row as v. Consider the set of all mathings of sizem�1 in Col(T0) that do notontain an element in the same row as v. Then, both T0 n v0 andMv are membersof this set. But Mv has the smallest weight in this set. Hene Mv � T0 � v0 < T0whih �nally implies v � (T1 � T0) � (T0 �Mv) > 0. �Step 2: From m�nmatries to (m�1)�nmatries. We will now demonstratethe existene of a matrix with one less row, that preserves the higher inrementsas desribed in Setion 3. The matrix B is obtained from A by applying the twooperations � and � (whih we will shortly de�ne), as depited belowA ��! A� ��! B:To prevent an unneessary lutter of symbols, we shall employ the following nota-tion in this setion:� T (A) = fT0; : : : ; Tmg� T (A�) = fT �0 ; : : : ; T �mg� T (B) = fU0; : : : ;Um�1g.From Lemma 4.1 we know that the mathings T0 and T1 have m � 1 olumns inommon. Hene there are two well-de�ned entries: e 2 T0 and f 2 T1, that lieoutside these ommon olumns. We now speify the operations � and �.� : Subtrat T1 � T0 from eah entry in A n Col(T0) to get the m � n matrixA�. (Note that in the matrix A� the entry f beomes f� = f � (T1 � T0)).� : Generate a random variable X , independent of all other random variables,with IP(X = 0) = IP(X = 1) = 12 . If X = 0 then remove the row of A� ontaininge, else remove the row ontaining f�. Denote the resultant matrix of size (m�1)�nby B.



16 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMARemark 5.6. The random variable X is used to break the tie between the twomathings T �0 and T �1 , both of whih have the same weight (this shall be shownin Lemma 5.8). This randomized tie-breaking is essential for ensuring that B hasi.i.d. exp(1) entries; indeed, if we were to hoose e (or f�) with probability 1, thenthe orresponding B will not have i.i.d. exp(1) entries despite the fat that it willsatisfy the ombinatorial properties required of B.Claim 5.7. The entries of A� are all non-negative.Proof. The entries in Col(T0) are left unhanged by �; hene they are non-negative.Corollary 5.5 establishes the non-negativity of the entries in the other olumns. �Lemma 5.8. The following statements hold:(i) T �1 = T �0 = T0.(ii) For i � 1, T �i+1 � T �i = Ti+1 � Ti.Proof. Sine T0 is entirely ontained in the submatrix Col(T0), its weight remainsthe same in A�. Let R(A�) be the set of all mathings of size m in A� that ontainexatly one element outside Col(T0). Then, every mathing in R(A�) is lighter byexatly T1 � T0 ompared to its weight in A.Thus, by the de�nition of T1, every mathing in R(A�) has a weight larger than(or equal to) T1 � (T1 � T0) = T0. In other words, every size-m mathing in A�that has exatly one element outside Col(T0) has a weight larger than (or equal to)T0. Therefore, from Lemma 4.5 it follows that T0 is also the smallest mathing inA�. Thus, we have T �0 = T0, and T �0 = T0.From Lemma 4.1 we know that T �i ; i � 1, has exatly one element outside theolumns of Col(T �0 ) (= Col(T0)). Hene, it follows thatT �i = Ti � (T1 � T0) for i � 1:Substituting i = 1, we obtain T �1 = T0. This proves part (i). And onsideringthe di�erenes T �i+1 � T �i ompletes the proof of part (ii). �To omplete Step 2 of the indution we need to establish that B has the followingproperties.Lemma 5.9. Ui � Ui�1 = Ti+1 � Ti; i = 1; 2; ::;m� 1:Proof. The proof of the lemma onsists of establishing the following: for i � 1Ti+1 � Ti (a)= T �i+1 � T �i(b)= Ui � Ui�1:Observe that (a) follows from Lemma 5.8. We shall prove (b) by showing that(5.1) T �i = Ui�1 + v; i = 1; : : : ;m:for some appropriately de�ned onstant v.Remark 5.10. Sine T �1 = T �0 , the above relation would additionally prove thatT �0 = U0 + v.Two ases arise when applying the operation �: (1) e and f� are present in thesame row, and (2) they are in di�erent rows. (Note that in Case 1, irrespetive ofthe outome of X , the ommon row will be removed.) As observed before, sinef is in some olumn outside Col(T0), its value is modi�ed by the operation � to



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 17f� = f � (T1 � T0). The value of e, however, is left unhanged by the operation �.For simpliity, we will use the symbols e and f� for both the names and the valuesof these entries.Case 1: In this ase, we laim that e = f� (as values). To see this, letM be thesmallest mathing of sizem�1 in the olumns Col(T0)\Col(T1) whih does not havean entry in the same row as e and f�. Then learly, e [M = T0 and f [M = T1.Hene, we obtain e +M = T0 = T1 � (T1 � T0) = f +M � (T1 � T0) = f� +M .Therefore, in value, e = f�; all this value v. From Lemma 5.8 we know thatT �0 = T0 and this implies e+M = T �0 = f� +M .Now onsider any mathing, M0 6=M, of size m� 1 in B that has exatly oneentry outside Col(T0) \ Col(T1). Clearly, one (or both) of the entries e and f�ould have hosen M0 to form a andidate for T �0 . Sine v +M 0 > T �0 = v +M ,we infer that M 0 > M for all mathings M0. Thus, from Lemma 4.5, we havethat M equals U0. Therefore, T0 = T �0 = T �1 = U0 + v. This also implies thatCol(U0) = Col(T0) \ Col(T1).Next onsider S�l , the smallest mathing in A� obtained by deleting olumnl 2 Col(U0). Sine this is T �k for some k � 2, S�l must use one of the entries e orf� by Lemma 4.10. Hene S�l = v + Vl, where Vl is a mathing of size m� 1 in Bthat doesn't use the olumn l 2 Col(U0). Therefore, S�l � v +Wl, where Wl is thesmallest mathing of size m� 1 in B that doesn't use olumn l.Remark 5.11. The non-uniqueness amongst the weights of mathings introduedby foring T �1 = T �0 does not e�et the appliability of Lemma 4.10 sine, withprobability one, this is the only equality amongst the mathings T �k ; i.e., T �k are alldistint for k � 1.We will now present an argument for S�l � v + Wl. Applying Lemma 4.1 toB, we have that Wl has exatly one element outside Col(U0). Therefore Wl anpik either e or f�, sine both lie outside Col(U0), to form a andidate for S�l , withweight v +Wl. This implies S�l � v +Wl. Hene,(5.2) S�l = v +Wl:But from Corollary 4.3 we know that arranging the mathings fS�l ; l 2 Col(T0)\Col(T1)g, in inreasing order gives us T �2 ; : : : ; T �m. And arranging the fWl; l 2Col(U0) = Col(T0)\Col(T1)g in inreasing order gives us U1; : : : ; Um�1. Therefore,(5.3) T �i = Ui�1 + v for i = 1; :::;m:This proves the lemma under Case 1 when both the entries e and f are in the samerow.Case 2: In this ase, the entries e and f� are in di�erent rows and dependingon the outome of X , one of these two rows is removed with equal probability.Let us denote by v the entry e or f� (depending on X), that is in the row of A�removed by �. Further, let  be the olumn in whih v is present. Let M denotethe mathing of size m � 1 in Col(T0) \ Col(T1) that v goes with to form T �0 (orT �1 , depending on whih of the two entries e or f� is removed).Let us denote the entry, e or f�, that was not removed by u. Let d be the olumnin whih u is present. Let w denote the entry in the olumn of u and the row ofv. These are represented in Figure 6, where the entries of T0 and T1 are depitedby stars and irles, respetively. In the �gure we assume that the row ontaininge was hosen to be removed by X (that is, v = e and u = f�).
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PSfrag replaements e(= v) w f�(= u)

Figure 6. The entries e; f�; wAs in Case 1, letM be the smallest mathing of size m�1 in B that is ontainedin the olumns Col(T0) \ Col(T1). Arguing as in the previous ase yields v +M =T0 = T �0 = T �1 .This also implies that w +M > T �0 = T0. (In general, the de�nition of T �0 onlyimplies w +M � T0. However, sine the mathings in A have distint weights, itis not hard to see that strit inequality holds when w is di�erent from e and f .)Therefore, let w = v + x for some x > 0.Remark 5.12. In the laim that follows, we will use a slightly unonventional methodto prove a ombinatorial fat implied by equation (5.1). We believe it will behelpful to prefae the proof by a brief desription of the steps involved. Considerthe elements v and w as de�ned above. First, we will redue the value of w fromv + x to v + �; x > � > 0, and show that this does not alter the values of themathings T �i ; i � 0. Next, we will perturb the value of both v and w slightly tov � �. By invoking Lemma 4.10 we will show that every mathing T �i for the newmatrix must use one of v or w. Moreover, we will also show that the mathingsfT �i g are formed by ombining v or w with the mathings fUig. Sine the values ofthe T-mathings are ontinuous in the entries of the matrix, we let � tend to zeroto onlude equation (5.1) for Case 2. A purely ombinatorial argument also existsfor this ase whih goes along the lines of Lemma 4.7. However, we feel that thisapproah is simpler.Returning to the proof: Given any 0 < � < x, let C� be a matrix idential to A�in every entry exept w. The value of w is hanged from v + x to v + �. Let fPigdenote the T-mathings of C�. Also reall that  is the olumn of v, and d is theolumn of both u and w.Claim 5.13. Pi = T �i for every i.Proof. Sine the only entry that was modi�ed was w, it is learly suÆient to showthat w is not used by any of the mathings fT �i g or fPig. From Lemma 4.10 weknow that the mathings fT �i g have only two marked elements in the row of w andone of them is v. The mathing T �0 or T �1 (depending on the outome of X) ontainsu and annot use any entry from the olumn of v. Hene it must use another entryfrom the row of v (distint also from w, as w lies in the olumn of u). Thus, sinew is not one of the two marked elements in its row, it is not part of any T �i .Now we have to show that w is not present in any of the fPig. To establish this,we exhibit two distint marked elements in the row of w that are di�erent from w.Consider Sd: the smallest size m mathing in C� n d. But the removal of olumn



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 19d in both C� and A� leads to the same m� n� 1 matrix. Hene, Sd is formed bythe entry v and M, where M is the mathing de�ned earlier. This implies v is amarked element.Sine v+M = T �0 , it is lear thatM is also the smallest mathing of size m� 1in the matrix B n . Otherwise, v will pik a smaller mathing and ontradit theminimality of T �0 .Consider next the mathing S, the smallest mathing in C� obtained by deletingolumn . The only andidates we have to onsider are the mathings involvingw and the mathing of weight T �0 involving the element u. The smallest mathingof size m � 1 in the matrix B n  is M, whih implies that the best andidatefor S involving w is the mathing formed by w and M. However this has weightv + � +M > v +M = T �0 . Hene S is the mathing of weight T �0 involving theelement u. As before, this mathing marks another element in the row of w whihis di�erent from either v or w. Sine there are two marked elements in the row ofw whih are di�erent from w, w annot be in any of the mathings fPig.Thus the entry w is in neither of the set of mathings fT �i g or fPig. Sine w isthe only entry that the two matries A� and C� di�er in, this proves the laim. �Moving to the next step of the proof for Case 2, de�ne a matrix D� whih isidential to the matrix A� exept for the entries v and w. We hange the values ofboth v and w to v � �. Let the T-mathings of D� be denoted by fQig.Consider Sd, the smallest mathing of size m in D� n d. It is easy to see thatsine v was the only entry that was modi�ed in this submatrix, Sd is formed by theentry v and the mathingM, and has weight T0� �. Hene v is a marked element.Next, let S be the smallest mathing in D� n . The only andidates we have toonsider are the mathings involving w and the mathing of weight T �0 that inludesthe element u. As before, the smallest mathing of size m� 1 in the matrix B n  isM whih implies that the best andidate for S involving w is the mathing formedby w andM. This has weight v� �+M < v+M = T �0 . Hene S is the mathingof weight T0 � � involving the element w. Hene w is a marked element.Applying Lemma 4.10 to matrixD�, it is lear that the only two marked elementsin the row of v are v and w. An argument similar to the one that proved (5.3) givesus the following:(5.4) Qi = Ui�1 + v � �; for i = 1; 2; : : : ;m:As �! 0, the matries C� and D� tend to eah other. Sine the weights of theT-mathings are ontinuous funtions of the entries of the matrix, we have that inthe limit � = 0, Pi = Qi and hene from Claim 5.13 and equation (5.4) we haveT �i = Ui�1 + v for i = 1; 2; :::;m:This proves the lemma for Case 2 and hene ompletes the proof of the lemma. �We now note the following onsequene of our previous arguments:v +M = T0 = T �0 = T �1 = U0 + vThis gives us the following orollary:Corollary 5.14. Let M be the smallest mathing of size m � 1 in A�, ontainedin Col(T0) \ Col(T1). Then M = U0.



20 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMAStep 3: B has i.i.d. exp(1) entries. We ompute the joint distribution of theentries of B and verify that they are i.i.d. exp(1) random variables. To do this, weidentify the set, D, of all m � n matries, A, that have a positive probability ofmapping to a partiular realization of B under the operations � and �. We knowthat the entries of A are i.i.d. exp(1) random variables. So we integrate over D toobtain the joint distribution of the entries of B.To simplify the exposition, we partition the set D into sets fD1; : : : ;Dmg de-pending on the row removed by the operation � to obtain B. We will haraterizeDm, i.e. the set of all m � n matries in whih � removes the last row. All theother sets Di; i 6= m; an be haraterized similarly. The next few lemmas onernthe omplete haraterization of the set Dm.Let D� = ��1(B). Now � is a random map, whose ation depends on thevalue of X . In turn, this is related to e and f being on the same or di�erent rows.Therefore we may write D� as the disjoint union of the sets Ds� and Dd�, with theobvious mnemonis. Finally, Dm = ��1 Æ ��1(B).Remark 5.15. Sine we are fousing just on Dm, the lift of the mapping ��1(B)from IRm�1�n+ into IRm�n+ will onsist of the introdution of an additional rowbelow B. When dealing with Di, the additional row would be introdued after the(i� 1)th row of B.Consider a matrixM 2 IRm�n+ , where the row vetor ~r = (r1; : : : ; rm�1) 2 IRm�1+denotes the elements in Col(U0):M = " Br1 r2 � � � rm�1 x1 � � xn�m+1 # :Let d be an element in BnCol(U0). Let �d be the ost of the smallest mathingof size m � 1, say Md, with entries in Col(U0) entries fr1; ::; rm�1g) and but noentry from the row of d. Clearly d [Md is a mathing of size m in the matrix M.Amongst all suh hoies of d, let do 2 B n Col(U0) be that entry whih minimizesd+�d. Let J = do +�do , and denote the olumn of do by j.Given any ~r = (r1; : : : ; rm�1) 2 IRm�1+ , the following lemma stipulates onditionsthat the vetor (x1; : : : ; xn�m+1) must satisfy so that M 2 D�.Lemma 5.16. For any ~r 2 IRm�1+ , let F�(~r) be the olletion of all M suh thatone of the following two onditions hold:(i) There exist i and k suh that xi = xk, xi + U0 < J and xl > xi for alll 6= i; k.(ii) There exists xi =2 j suh that xl > xi for all l 6= i and xi + U0 = J .Then D� = F� 4= S~r2IRm�1+ F�(~r).Proof. (�) D� � F�: LetM 2 D� be any matrix suh that �(M) = B. Therefore,B onsists of the �rstm�1 rows ofM (sine, by assumption, � removes rowm). Bythe de�nition of � we know that the entry v ours in the last row. From Corollary5.14 we know that v hooses the mathing U0 to form a mathing of weight T �0 ,that is, v + U0 = T �0 . Hene v must be one of the xi's. Again by de�nition, u liesoutside Col(U0) [ , where  is the olumn of v.We shall now show that M 2 F�(~r). Two ases our:



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 21(a) v and u are in the last row: In this ase, we know from the proof of Lemma5.9 that v = u (the same as e = f� and this is Case 1 in the proof of Lemma5.9). Sine both v and u are in the last row and outside Col(U0), we knowthat v = xi and u = xk for some i 6= k. Therefore, xi = xk. We knowthat v + U0 = T �0 , hene from the minimality of T �o we have xi + U0 < J .Also, xi + U0 < xl + U0 for l 6= i; k for the same reason. This implies Msatis�es ondition (i) of Lemma 5.16. Therefore, under (a) it follows thatM 2 F�(~r).(b) v is in the last row and u is not: arguing as before, we onlude that u = doand v = xi. Thus, T �0 = v + U0 = d0 + �d0 = J . We also know that vand u our in di�erent olumns, hene v = xi for some xi =2 j. From theminimality of T �0 , we also have that xi + U0 < xl + U0 for l 6= i. Thus, Msatis�es ondition (ii) of Lemma 5.16 and hene M 2 F�(~r).(�) F� � D�: Let M 2 F�(~r) for some ~r. Then M satis�es ondition (i) or(ii) of Lemma 5.16. Aordingly, this gives rise to two ases:(a) M satis�es ondition (i): We laim that �(M) = B. From Lemma 4.6we have that T0(M) must use all the olumns of U0. This implies thatexatly one entry of T0(M) lies outside Col(U0). But, ondition (i) impliesthat xi + U0 � minfxl + U0; Jg = minfxl + U0; d + �dg. Sine the lastminimization is over all possible hoies of the lone entry d that T0(M)ould hoose outside Col(U0), it follows that T0(M) = xi + U0. Condition(i) also implies that xk = xi. Hene T0(M) = T1(M) = xk + U0.Sine xi and xk are the entries of T0(M) and T1(M) outside Col(U0),this implies u and v are xi and xk in some order. Observe that � removesthe row in whih v is present. Thus, we obtain �(M) = B and thereforeM 2 D�.(b) M satis�es ondition (ii): We laim that �(M) = B with probability 12 .An argument similar to that in Case (a) yields xi+U0 = T0(M) = T1(M) =J = do +�do . Note that v and u are deided by the outome of X . HeneIP(v = xi; u = do) = 12 = IP(u = xi; v = do).When v = xi, by the de�nition of � we get that �(M) = B. Whenv = do the row that is removed is the row ontaining do, hene �(M) 6= Bin this ase. Therefore, with probability 12 we will obtain B as the resultof the operation �(M). This implies M 2 D�.Thus both ases in (�) imply that F� � D�, and this, along with (�) impliesF� = D�. �Thus, Ds� and Dd� orrespond to the matries in D� whih satisfy onditions (i)and (ii) of Lemma 5.16, respetively. Hene, when M 2 Ds� we have �(M) = Bwith probability one, and when M 2 Dd� we have �(M) = B with probability 12 .We are now ready to haraterize Dm.Consider a matrix M 2 D� and let � 2 IR+. Consider the olumn, say k, in Mwhih ontains xi. (Reall, from Lemma 5.16, that xi is the smallest of the xl's inthe last row deleted by �.) Add � to every entry in M outside Col(U0)[k. Denotethe resultant matrix by F1(�;M). LetF1 = [�>0;M2D� F1(�;M):



22 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMANow onsider the olumn, say l, in M where the entry xk or do is present(depending on whether M satis�es ondition (i) or (ii) of Lemma 5.16). Add � toevery entry in M outside Col(U0) [ l. Call the resulting matrix F2(�;M) and letF2 = [�>0;M2D� F2(�;M):Remark 5.17. Note that F1 and F2 are disjoint sine k 6= l. Also, � is added topreisely m(n�m) entries in M in eah of the two ases above.Lemma 5.18. Dm = F1 [ F2.Proof. Consider M0 2 Dm. Subtrating � = T1(M0) � T0(M0) from the entries ofM0 outside Col(T0(M0)) leaves us with �(M0). From the proof of Lemma 5.8 weknow that under �, the loations of the entries of T-mathings do not hange; onlythe weights of Ti(M0); i � 1 are redued by T1(M0)� T0(M0) = �. It is lear thatif e and f are in same row, then the last row of �(M0) satis�es ondition (i) ofLemma 5.16 and heneM0 = F1(�;�(M0)). If e and f are in di�erent rows then thelast row of �(M0) satis�es ondition (ii) and therefore M0 = F2(�;�(M0)). Thisimplies M0 2 F1 [ F2.For the onverse, onsider the matrix M0 = F1(�;M) for some M 2 D� and� > 0. Sine T0(M) = xi[U0 andM0 dominatesM entry-by-entry, T0(M0) = xi[U0by onstrution. Consider every size-m mathing in M0 that ontains exatly oneelement outside Col(xi [ U0). By onstrution, the weight of these mathingsexeeds the weight of the orresponding mathings in M by an amount preiselyequal to �. Using Lemma 4.1, we infer that Ti(M0) � Ti(M) = � for i � 1.Hene we have T1(M0) � T0(M0) = T1(M) � T0(M) + �. But for any M 2 D�,T1(M) = T0(M) = xi + U0. Therefore T1(M0)� T0(M0) = �.Now, �(M0) is the matrix that results from subtrating � from eah entry outsidethe olumns ontaining the mathing T0(M0) = xi [ U0. But, by the de�nition ofF1(�;M), �(M0) is none other than the matrix M. Therefore M0 2 Dm, andF1 � Dm.Next, let M0 = F2(�;M). In this ase too, T0(M) = xk + U0 (or do + �do)ontinues to be the smallest mathing in M0. An argument idential to the oneabove establishes that �(M0) = M. Hene, M0 2 Dm and F2 � Dm, ompletingthe proof of the lemma. �Remark 5.19. Note that the variable � used in the haraterization of Dm preiselyequals the value of T1(M0)� T0(M0), as shown in the proof of Lemma 5.18.Continuing, we an partition Dm into the two sets Dsm and Ddm as below:(5.5) Dsm = F1(IR+;Ds�) [ F2(IR+;Ds�) and Ddm = F1(IR+;Dd�) [ F2(IR+;Dd�):Observe that whenever M 2 Dsm, we have �(M) 2 Ds� and hene � Æ �(M) = Bwith probability 1. ForM 2 Ddm, �(M) 2 Dd� and � Æ�(M) =M with probability12 . Reall also that D = [mi=1Di.Now that we have haraterizedD, we return to onsidering the matrixA (whihhas the same struture as M), and \integrate out the marginals" (r1; : : : ; rm�1),(x1; : : : ; xn�m+1) and � by setting~v = (B; ~r; �) and ~w = (~v; ~x);



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 23where B � [bij ℄ 2 IRm�1�n+ . We will evaluate RR1 fw(~v; ~x)d~x + RR2 fw(~v; ~x)d~x toobtain the marginal density, fv(~v). The regions R1 and R2 are de�ned by the setof all ~x's that satisfy onditions (i) and (ii) of Lemma 5.16, respetively.On R1, we have that xi = xk < J � U0 for J as in Lemma 5.16. We setH = J � U0, and ul = xl � xi for l 6= i; k. Finally, de�nesv = b1;1 + : : :+ bm�1;n + r1 + : : :+ rm�1 +m(n�m)�:Thus, sv denotes the sum of all of the entries of A exept those in ~x. As noted inthe remark preeding Lemma 5.18, the value � was added to preisely m(n �m)entries. We haveZR1 fw(~v; ~x)d~x(a)= 2m�n�m+ 12 �Z H0 ZZZ 10 e�(sv+(n�m+1)xi+Pl 6=i;k ul) Yl6=i;k dul dxi= m(n�m)e�sv �1� e�(n�m+1)H� :(5.6)The fator �n�m+12 � in equality (a) aounts for the hoies for i and k fromf1; : : : ; n � m + 1g; the fator m omes from the row hoies available (i.e. theregions D1; : : : ;Dm), and the fator 2 omes beause A belongs to either F1 or F2.Similarly, on R2, we have that xi = J � U0 4= H and we shall set ul = xl � xifor l 6= i to obtainZR2 fw(~v; ~x)d~x(b)= 12 242m(n�m) ZZZ 10 e�(sv+(n�m+1)H+Pl6=i ul) Yl6=i dul35= m(n�m)e�sve�(n�m+1)H :(5.7)In equality (b) above, the fators n � m, m and 2 ome, respetively, from thehoie1 of positions available to xi, the row hoies available and the partition, F1or F2, that A belongs to. The fator 12 omes from the fat that on R2, e andf our on di�erent rows. Therefore, A is in Dd = [mi=1Ddi and will map to thedesired B with probability 12 .Putting (5.6) and (5.7) together, we obtainfv(~v) = m(n�m)e�sv = e�(b1;1+:::+bm�1;n)�m(n�m)e�m(n�m)��e�(r1+:::+rm�1):We summarize the above in the following lemma.Lemma 5.20. For the matrix A, the following hold:(i) B onsists of i.i.d. exp(1) variables.(ii) � = T1(A)� T0(A) is an expm(n�m) random variable.(iii) ~r onsists of i.i.d. exp(1) variables.(iv) B, T1(A)� T0(A), and ~r are independent.Remark 5.21. It is worth noting that part (ii) of Lemma 5.20 provides an alternateproof of Theorem 5.2.1Note that there are only n�m hoies available to xi sine it has to our in a olumn otherthan the one in whih do ours.



24 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMAFrom Lemma 5.9 we know that the inrements fTk+1(A)� Tk(A); k > 0g are afuntion of the entries of B. Given this and the independene of B and T1(A) �T0(A) from the above lemma, we get the following:Corollary 5.22. Tk+1(A)� Tk(A) is independent of T1(A)� T0(A) for k > 0.Thus we have established all the three steps mentioned in Setion 3 required toprove Theorem 2.4. This ompletes the proof of Theorem 2.4 and hene establishesParisi's onjeture.6. The Coppersmith-Sorkin ConjetureAs mentioned in the introdution, Coppersmith and Sorkin [CS 99℄ onjeturedthat the expeted ost of the minimum k-assignment in anm�n retangular matrix,P, of i.i.d. exp(1) entries is:(6.1) F (k;m; n) = Xi;j�0;i+j<k 1(m� i)(n� j) :Nair [Na 02℄ has proposed a larger set of onjetures that identi�es eah termin equation (6.1) as the expeted value of an exponentially distributed randomvariable orresponding to an inrement of appropriately sized mathings in P. Weprove this larger set of onjetures using the mahinery developed in Setion 5 andtherefore establish the Coppersmith-Sorkin onjeture.We de�ne two lasses of mathings for P, alled W-mathings and V-mathings,along the lines of the S-mathings and T-mathings. But the W- and V-mathingswill be de�ned for all sizes k, 1 � k < m. Thus, the supersript assoiated with amathing will denote its size.We now proeed to de�ne these mathings for a �xed size k < m. Denote thesmallest mathing of size k by Vk0 . Without loss of generality, we assume thatCol(Vk0 ) = f1; 2; : : : ; kg. Let Wki denote the smallest mathing in the matrix Pwhen olumn i is removed. Note that for i > k, Wki = Vk0 .De�nition 6.1 (W-mathings). De�ne the mathings fVk0 ;Wk1 ; : : : ;Wkk g to be theW-mathings of size k.De�nition 6.2 (V-mathings). Arrange the mathings fVk0 ;Wk1 ; : : : ;Wkk g in orderof inreasing weights. Then the resultant sequene fV k0 ; V k1 ; : : : ; V kk g is alled theV-mathings of size k.Finally, we refer to the smallest mathing of size m as V m0 .We now prove the following theorem regarding the distributions of the inrementsof the V-mathings.Theorem 6.3. For eah k; 1 � k � m� 1, the following hold:V ki+1 � V ki � exp(m� i)(n� k + i); 0 � i � k � 1(6.2) andV k+10 � V kk � exp(m� k)n:(6.3)Remark 6.4. We have grouped the inrements aording to the size of the math-ings; so equations (6.2) and (6.3) both onern the kth group. Equation (6.2) givesthe distribution of the di�erenes of mathings of size k. The mathing V k+10 isthe smallest one of size k + 1, and equation (6.3) onerns the distribution of itsdi�erene with V kk .



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 25Before we prove Theorem 6.3, we show how it implies the Coppersmith-Sorkinonjeture:Corollary 6.5.(6.4) F (k;m; n) = Xi;j�0;i+j<k 1(m� i)(n� j) :Proof. From Theorem 6.3, using linearity of expetation, the telesopi sum V k+10 �V k0 has expeted value F (k + 1;m; n)� F (k;m; n). Also V 10 � exp(mn), being theminimum of m � n independent exp(1) variables. Hene Theorem 6.3 establishesthe Coppersmith-Sorkin onjeture. �We now proeed to the proof of Theorem 6.3.Proof of Theorem 6.3We will establish the theorem for the kth group indutively. The outline of theindution is similar to the one in Setion 3 and the details of the proof are similarto those in Setion 5.Let L denote an l � n matrix with l � m. Consider its V-mathings of size = k � m + l and denote them as fL0 ; : : : ;Lg. Let L+10 denote the smallestmathing of size  + 1 in L.Indutive Hypothesis:� Assume the inrements satisfy the following ombinatorial identitiesL1 � L0 = V km�l+1 � V km�l(6.5) L2 � L1 = V km�l+2 � V km�l+1� � � � � � � � �L � L�1 = V km�l+ � V m�l+�1L+10 � L = V k+10 � V kk :� The entries of L are i.i.d. exp(1) random variables.Indution Step:Step 1: From L, form a matrix Q of size l�1�n. Let fQ�10 ; :::;Q�1�1g denoteits V-mathings of size �1 and let Q0 denote the smallest mathing of size . Werequire that Q�11 �Q�10 = L2 � L1Q�12 �Q�11 = L3 � L2� � � � � � � � �Q�1�1 �Q�1�2 = L � L�1Q0 �Q�1�1 = L+10 � L :Step 2: Establish that the entries of Q are i.i.d. exp(1) random variables.This ompletes the indution step sine Q satis�es the indution hypothesis forthe next iteration.In Step 2 we also show that L1 � L0 � exp l(n � ) and hene onlude fromequation (6.5) that V km�l+1 � V km�l � exp l(n� k +m� l).



26 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMAThe indution starts with matrix L = P at l = m and terminates at l = m�k+1.Observe that the matrix P satis�es the indutive hypothesis for l = m by de�nition.Proof of the Indution:Step 1: Form the matrix L1 of size l � n+m� k by adding m� k olumns ofzeroes to the left of L as below L1 = [0 jL ℄ :Let fT0; : : : ; Tlg denote the T -mathings of the matrix L1. Then, we make thefollowing laim:Claim 6.6. T0 = L0T1 = L1� � �T = Land T+1 = T+2 = � � � = Tl = L+10Proof. Note that any mathing of size l in L1 an have at most m� k zeroes. It islear that the smallest mathing of size l in L1 is formed by piking m� k zeroesalong with the smallest mathing of size  in L. Thus, T0 = L0 .The removal of any olumn  ontaining zeroes leads to the smallest mathing ofsize l in L1 n  being a ombination of m� k� 1 zeroes with the smallest mathingof size  + 1 in L. Hene m� k = l �  of the Ti's, orresponding to eah olumnof zeroes, have weight equal to L+10 .If we remove any olumn ontaining L0 , then the smallest mathing of size l in Lis obtained by ombiningm�k zeroes with the smallest mathing of size  in L thatavoids this olumn. Hene, these mathings have weights Li for i 2 f1; 2; : : : ; g.We laim that L+10 is larger than Li for i 2 f0; 1; 2; : : : ; g. Clearly L+10 > L0 .Further, for i � 1, we have a mathing of size  in L+10 that avoids the sameolumn that Li avoids. But Li is the smallest mathing of size  that avoids thisolumn. So we onlude that L+10 > Li .Hene arranging the weights (in inreasing order) of the smallest mathings ofsize l in L1, obtained by removing one olumn of T0 at a time, establishes thelaim. �From the above it is lear that the mathings T0 and T1 are formed by m � kzeroes and the mathings L0 and L1 respetively. Hene, as in Setion 5, we havetwo elements, one eah of T0 and T1 that lie outside Col(T0) \ Col(T1).We now perform the proedure outlined in Setion 5 for obtaining Q from L byworking through the matrix L1.Aordingly, form the matrix L�1 by subtrating the value T1 � T0 from all theentries in L1 that lie outside Col(T0). Generate a random variable Z, independentof all other random variables, with IP(Z = 0) = IP(Z = 1) = 12 . As before, there aretwo well-de�ned entries, e 2 T0 and f 2 T1 that lie outside these ommon olumns.(Note that in the matrix, L�1, the entry f has a value f � (T1 � T0)). If X turnedout to be 0, then remove the row of L�1 ontaining the entry e, else remove the row



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 27ontaining the entry f . The resultant matrix of size (l � 1) � n +m � k is alledQ1. In matrix Q1 remove the m � k olumns of zeros to get the matrix Q of size(l � 1)� n.Let fU0; : : : ; Ul�1g denote the weight of the T-mathings of the matrix Q1 andfQ�10 ; : : : ; Q�1�1; Q0g denote the V-mathings of the matrix Q. We make thefollowing laim.Claim 6.7. U0 = Q�10U1 = Q�11� � �U�1 = Q�1�1and U = � � � = Ul�1 = Q0Proof. The proof is idential to that of Claim 6.6. �Now from Lemma 5.9 in Setion 5 we know that(6.6) Ti+1 � Ti = Ui � Ui�1 for i = 1; : : : ; l� 1:Remark 6.8. Though we have used the same notation, please bear in mind thatwe are referring to two di�erent sets of mathings here and in Setion 5. Howeversine we adopted the same proedure to go from one matrix to the other, the proofontinues to hold.Finally, ombining Equation (6.6), Claim 6.6 and Claim 6.7 we obtain:Q�11 �Q�10 = L2 � L1Q�12 �Q�11 = L3 � L2� � � � � � � � �Q�1�1 �Q�1�2 = L � L�1Q0 �Q�1�1 = L+10 � L :This ompletes Step 1 of the indution.Step 2: Again we redue the problem to the one in Setion 5 by working withthe matries L1 and Q1 instead of the matries L and Q. (Note that the neessaryand suÆient onditions for L to be in the pre-image of a partiular realization ofQ is exatly same as the neessary and suÆient onditions for a L1 to be in thepre-image of a partiular realization of Q1.)Let R1 denote all matries L, that map to a partiular realization of Q withe and f in the same row. Let R2 denote all matries L that map to a partiularrealization of Q with e and f in di�erent rows. Observe that in R2, L will map tothe partiular realization of Q with probability 12 as in Setion 5. We borrow thenotation from Setion 5 for the rest of the proof.(Before proeeding, it helps to make some remarks relating the quantities in thissetion to their ounterparts in Setion 5. The matrix A had dimensions m � n;its ounterpart L1 has dimensions l � (m � k + n). The number of olumns inA n Col(T0) equaled n � m; now the number of olumns in L1 n Col(T0) equals



28 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMAm�k+n� l. This implies that the value � = T1�T0 = L1 �L0 will be subtratedfrom preisely l(m�k+n� l) elements of L1. Note also that the vetor ~r, of lengthl�1, has exatly m�k zeroes and  = k�m+ l�1 non-zero elements. The vetorx is of length m� k + n� l + 1.)To simplify notation, set � = m� k + n� l; the number of olumns from whih� is subtrated. Thus, the vetor x has length � + 1. As in Setion 5, let~v = (Q; ~r; �) and ~w = (~v; ~x):We will evaluate fv(~v) = RR1 fw(~v; ~x)d~x + RR2 fw(~v; ~x)d~x, to obtain the marginaldensity of ~v.On R1, we have that xi = xj < H for H as in Setion 5. (The ounterparts ofxa and xb in Setion 5 were xi and xk , and these were de�ned aording to Lemma5.16.) We shall set ul = xl � xa for l 6= a; b. Finally, de�nesv = q1;1 + � � �+ ql�1;n + r1 + � � �+ rk�m+l�1 + l��:Thus, sv denotes the sum of all of the entries of L exept those in ~x. We haveZR1 fw(~v; ~x)d~x(a)= 2l�� + 12 �Z H0 ZZZ 10 e�(sv+(q+1)xa+Pl6=a;b ul) Yl6=a;b dul dxa= l � e�sv �1� e�(q+1)H� :The fator ��+12 � in equality (a) omes from the possible hoies for a; b from theset f1; : : : ; �g, the fator l omes from the row hoies available as in Setion 5,and the fator 2 orresponds to the partition, F1 or F2 (de�ned likewise), that Lbelongs to.Similarly, on R2, we have that xa = H and we shall set ul = xl�xa for l 6= a toobtain ZR2 fw(~v; ~x)d~x(b)= 12 242 l � ZZZ 10 e�(sv+(q+1)H+Pl6=a ul) Yl6=a dul35= l � e�sv e�(q+1)H :In equality (b) above, the fator � omes from the hoie of positions available to xa(note that xa annot our in the same olumn as the entry do whih was de�nedin Lemma 5.16). The fator l omes from the row hoies available, and the fator2 is due to the partition, F1 or F2, that L belongs to. Finally, the fator 12 omesfrom the fat that on R2, e and f our on di�erent rows. Therefore, L will mapto the desired Q with probability 12 .Substituting � = n� k +m� l and adding (6.7) and (6.7), we obtainfv(~v) = l(n� k +m� l) e�sv= e�(q1;1+:::+ql�1;n)l(n� k +m� l)e�l(n�k+m�l)�e�(r1+:::+rl+k�m�1):We summarize the above in the following lemma.



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 29Lemma 6.9. The following hold:(i) Q onsists of i.i.d. exp(1) variables.(ii) � = L1 � L0 is an exp l(n� k +m� l) random variable.(iii) ~r onsists of i.i.d. exp(1) variables and m� k zeroes.(iv) Q, L1 � L0 , and ~r are independent.This ompletes Step 2 of the indution. �From the indutive hypothesis we have L1 � L0 = V km�l+1 � V km�l. Further letus substitute m� l = i. Hene we have the following orollary.Corollary 6.10. V ki+1 � V ki � exp(m� i)(n� k + i) for i = 0; 2; ::; k � 1.To omplete the proof of Theorem 6.3 we need to ompute the distribution ofthe \level-hange" inrement V k+10 � V kk . At the last step of the indution, i.e.l = m� k + 1, we have a matrix K of size m� k + 1� n onsisting of i.i.d. exp(1)random variables. Let fK10;K11g denote the V-mathings of size 1. Let K20 denotethe smallest mathing of size 2. By indution, we have that the random variablesK10 ;K11 ;K20 satisfy the following: K11�K10 = V kk �V kk�1 and K20�K11 = V k+10 �V kk .The following lemma ompletes the proof of Theorem 6.3.Lemma 6.11. The following identity holds: K20 �K11 � exp(m� k)n.Proof. This an be easily dedued from the memoryless property of the exponentialdistribution; equally, one an refer to Lemma 1 in [Na 02℄ for the argument. �Remark 6.12. There is a row and olumn interhange in the de�nitions of theV-mathings in [Na 02℄.Thus, we have fully established Theorem 6.3 and hene the Coppersmith-SorkinConjeture.This also gives an alternate proof to Parisi's onjeture sine [CS 99℄ shows thatEn = F (n; n; n) =Pni=1 1i2 .7. Conluding RemarksThis paper provides a proof of the onjetures by Parisi [Pa 98℄ and Coppersmith-Sorkin [CS 99℄. In the proess of proving these onjetures, we have disovered someinteresting ombinatorial and probabilisti properties of mathings that ould beof general interest. Those related to the resolution of the onjetures have beenpresented in the paper. Others will will appear in forthoming publiations. Wemention one partiularly interesting property below.Let Q be an (n� 1)�n matrix of i.i.d. exp(1) entries and let fTig denote its T -mathings. Let � denote the set of all plaements of the row-wise minimum entriesof Q; for example, all the row-wise minima in the same olumn, all in distintolumns, et. Consider any �xed plaement of the row minima � 2 �. Let T �idenote the T -mathings onditioned on the event that Q has its row-wise minimaplaement aording to �. Then the following statement holds:Property 1: The joint distribution of the vetor fT �i � T �i�1gn�1i=1 is the same forall plaements of the row-wise minima, � 2 �.On the event, �1, where all the row-wise minima lie in di�erent olumns, it isquite easy to show that T �1i �T �1i�1 � exp i(n� i) for i = 1; : : : ; n�1 and that theseinrements are independent. Combining this with Property 1 above one an obtainan alternate proof of Theorem 2.4 and hene of Parisi's onjeture.
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