
PROOFS OF THE PARISI AND COPPERSMITH-SORKINCONJECTURESCHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMAAbstra
t. Suppose that there are n jobs and n ma
hines and it 
osts 
ij toexe
ute job i on ma
hine j. The assignment problem 
on
erns the determina-tion of a one-to-one assignment of jobs onto ma
hines so as to minimize the
ost of exe
uting all the jobs. When the 
ij are independent and identi
allydistributed exponentials of mean 1, Parisi (1998) made the beautiful 
onje
turethat the average 
ost of the minimum assignment equals Pni=1 1i2 . Copper-smith and Sorkin (1999) generalized Parisi's 
onje
ture to the average valueof the smallest k-assignment when there are n jobs and m ma
hines. Build-ing on the previous work of Sharma and Prabhakar (2002) and Nair (2002),we resolve the Parisi and Coppersmith-Sorkin 
onje
tures. In the pro
ess weobtain a number of 
ombinatorial results whi
h may be of general interest.1. Introdu
tionSuppose there are n jobs and n ma
hines and it 
osts 
ij to exe
ute job i onma
hine j. An assignment (or a mat
hing) is a one-to-one mapping of jobs onto ma-
hines. Representing an assignment as a permutation � : f1; : : : ; ng ! f1; : : : ; ng,the 
ost of the assignment � equals Pni=1 
i�(i). The assignment problem 
onsistsof �nding the assignment with the lowest 
ost. LetCn = min� nXi=1 
i�(i)represent the 
ost of the minimizing assignment. In the random assignment problemthe 
ij are i.i.d. random variables drawn from some distribution. A quantity ofinterest in the random assignment problem is the expe
ted minimum 
ost, IE(Cn).When the 
osts 
ij are i.i.d. mean 1 exponentials, Parisi [Pa 98℄ made the fol-lowing 
onje
ture:(1.1) IE(Cn) = nXi=1 1i2 :Coppersmith and Sorkin [CS 99℄ proposed a larger 
lass of 
onje
tures whi
h statethat the expe
ted 
ost of the minimum k-assignment in an m � n matrix of i.i.d.exp(1) entries is:(1.2) C(k;m; n) = Xi;j�0;i+j<k 1(m� i)(n� j) :Chandra Nair was supported by the Stanford Graduate Fellowship and Stanford NetworkingResear
h Center grant 1005544-1-WAAXI.Balaji Prabhakar was supported in part by the NSF grant ANI-9985446.Mayank Sharma was supported by Stanford OÆ
e of Te
hnology grant 2DTA112, StanfordNetworking Resear
h Center grant 1005545-1-WABCJ and NSF grant ANI-9985446.1



2 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMABy de�nition, C(n; n; n) = IE(Cn) and the right hand sides of (1.2) and (1.1) areequal when k = m = n.In this paper, we prove Parisi's 
onje
ture by two di�erent but related strate-gies. The �rst builds on the work of Sharma and Prabhakar [SP 02℄ and estab-lishes Parisi's 
onje
ture by showing that 
ertain in
rements of weights of mat
hingsare exponentially distributed with a given rate and are independent. The se
ondmethod builds on Nair [Na 02℄ and establishes the Parisi and the Coppersmith-Sorkin 
onje
tures. It does this by showing that 
ertain other in
rements are ex-ponentials with given rates; the in
rements are not required to be (and, in fa
t,aren't) independent.The two methods mentioned above use a 
ommon set of 
ombinatorial and prob-abilisti
 arguments. For ease of exposition, we 
hoose to present the proof of the
onje
tures in [SP 02℄ �rst. We then show how those arguments also resolve the
onje
tures in [Na 02℄.Before surveying the literature on this problem, it is important to mention thatsimultaneously and independently of our work, Linusson and W�astlund [LW 03℄have also announ
ed a proof of the Parisi and Coppersmith-Sorkin 
onje
turesbased on a quite di�erent approa
h.1.1. Ba
kground and related work. There has been a lot of work on deter-mining bounds for the expe
ted minimum 
ost and on 
al
ulating its asymptoti
value. Assuming that limn IE(Cn) exists, let us denote it by C�. We survey someof the work; more details 
an be found in [St 97, CS 99℄. Early work used feasi-ble solutions to the dual linear programming (LP) formulation of the assignmentproblem for obtaining the following lower bounds for C�: (1 + 1=e) by Lazarus[La 93℄, 1.441 by Goemans and Kodialam [GK 93℄, and 1.51 by Olin [Ol 92℄. The�rst upper bound of 3 was given by Walkup [Wa 79℄, who thus demonstrated thatlim supnE(Cn) is �nite. Walkup's argument was later made 
onstru
tive by Karpet al [KKV 94℄. Karp [Ka 84, Ka 87℄ made a subtle use of LP duality to obtaina better upper bound of 2. Coppersmith and Sorkin [CS 99℄ further improved thebound to 1.94.Meanwhile, it had been observed through simulations that for large n, E(Cn) �1:642 [BKMP 86℄. M�ezard and Parisi [MP 87℄ used the repli
a method [MPV 87℄of statisti
al physi
s to argue that C� = �26 . (Thus, Parisi's 
onje
ture for the�nite random assignment problem with i.i.d. exp(1) 
osts is an elegant restri
tionto the �rst n terms of the expansion: �26 = P1i=1 1i2 .) More interestingly, theirmethod allowed them to determine the density of the edge-
ost distribution of thelimiting optimal mat
hing. These sharp (but non-rigorous) asymptoti
 results, andothers of a similar 
avor that they obtained in several 
ombinatorial optimizationproblems, sparked interest in the repli
a method and in the random assignmentproblem.Aldous [Al 92℄ proved that C� exists by identifying the limit as the average valueof a minimum-
ost mat
hing on a 
ertain random weighted in�nite tree. In thesame work he also established that the distribution of 
ij a�e
ts C� only throughthe value of its density fun
tion at 0 (provided it exists and is stri
tly positive).Thus, as far as the value of C� is 
on
erned, the distributions U [0; 1℄ and exp(1) areequivalent. More re
ently, Aldous [Al 01℄ established that C� = �2=6, and obtainedthe same limiting optimal edge-
ost distribution as [MP 87℄. He also obtained anumber of other interesting results su
h as the asymptoti
 essential uniqueness



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 3(AEU) property|whi
h roughly states that almost-optimal mat
hings have almostall their edges equal to those of the optimal mat
hing.Generalizations of Parisi's 
onje
ture have also been made in other ways. Li-nusson and W�astlund [LW 00℄ 
onje
tured an expression for the expe
ted 
ost ofthe minimum k-assignment in an m � n matrix 
onsisting of zeroes at some spe
-i�ed positions and exp(1) entries at all other pla
es. Indeed, it is by proving this
onje
ture in their re
ent work [LW 03℄ that they obtain proofs of the Parisi andCoppersmith-Sorkin 
onje
tures. Bu
k, Chan and Robbins [BCR 02℄ generalizedthe Coppersmith-Sorkin 
onje
ture to the 
ase where the 
ij are distributed a

ord-ing to exp(aibj) for ai; bj > 0. In other words, if we let a = [ai℄ and b = [bj ℄ be
olumn ve
tors, then the rate matrix for the 
osts is of rank 1 and is of the formabT.Alm and Sorkin [AS 02℄, and Linusson and W�astlund [LW 00℄ veri�ed the 
onje
-tures of Parisi and Coppersmith-Sorkin for small values of k;m and n. Coppersmithand Sorkin [CS 02℄ studied the expe
ted in
remental 
ost, under 
ertain hypothe-ses, of going from the smallest (m � 1)-assignment in an (m � 1) � n matrix tothe smallest m-assignment in a row-augmented m � n matrix. However, as theynote, their hypotheses are too restri
tive and their approa
h fails to prove their
onje
ture.An outline of the paper is as follows: in Se
tion 2 we re
all some previouswork from [SP 02℄ and state Theorem 2.4, whose proof implies a proof of Parisi's
onje
ture. In Se
tion 3 we des
ribe an indu
tion pro
edure for proving Theorem2.4. We then state and prove some 
ombinatorial properties of mat
hings in Se
tion4 that will be useful for the rest of the paper. Se
tion 5 
ontains a proof of Theorem2.4. Se
tion 6 builds on the work of [Na 02℄ and 
ontains a proof of Theorem 6.3.This implies a proof of the Coppersmith-Sorkin 
onje
ture. We 
on
lude in Se
tion7. We now present some 
onventions that are observed in the rest of the paper.1.2. Conventions.(1) The words `
ost' and 'weight' are used inter
hangeably and mean the samething; the 
ost (or weight) of a 
olle
tion entries is the sum of the values ofthe entries.(2) The symbol `�' stands for `is distributed as', and ` ?? ' stands for `is inde-pendent of'.(3) By X � exp(�) we mean that X is exponentially distributed with mean 1� ;i.e., IP(X > x) = e��x for x; � � 0.(4) We use the term `re
tangular matri
es' to refer to m � n matri
es withm < n.(5) We employ the following notation:{ Boldfa
e 
apital letters su
h as A;C;M represent matri
es.{ Calligraphi
 
hara
ters su
h as R;S; T ;V denote mat
hings.{ The plain non-boldfa
e version of a mat
hing's name, e.g R;S; T; Vrepresent the weight of that mat
hing.(6) Col(S) to represent the set of 
olumns used by the mat
hing S.(7) Throughout this paper, we shall assume that the 
osts are drawn from some
ontinuous distribution. Hen
e, with probability 1, no two mat
hings willhave the same weight. This makes the `smallest mat
hing' in a 
olle
tionunique; tie-breaking rules will not be needed.



4 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMARemark 1.1. Note that almost all of our 
laims in Se
tion 4 will go througheven if we do not assume uniqueness. However, when there is a tie, the
laims must be re-worded as `there exists a mat
hing with the smallestweight satisfying', instead of `the smallest mat
hing satis�es'.2. PreliminariesLet C = [
ij ℄ be an m�n (m < n) 
ost matrix with i.i.d. exp(1) entries. Let T0denote the smallest mat
hing of size m in this matrix. Without loss of generality,assume that Col(T0) = f1; 2; : : : ;mg. For i = 1; : : : ; n, let Si denote the smallestmat
hing of size m in the m � (n � 1) submatrix of C obtained by removing itsith 
olumn. Note that Si = T0 for i � m+ 1. Therefore, the Si's 
an take at mostm+ 1 distin
t values.De�nition 2.1 (S-mat
hings). The 
olle
tion of mat
hings fS1; : : : ;Sm;Sm+1(=T0)g is 
alled the S-mat
hings of C and is denoted by S(C).De�nition 2.2 (T-mat
hings). Let fT1; : : : ; Tmg be a permutation of fS1; : : : ;Smgsu
h that T1 < T2 < � � � < Tm; that is, the Ti's are a rearrangement of the Si's inorder of in
reasing weight. The 
olle
tion of mat
hings fT0; T1; : : : ; Tmg is 
alledthe T-mat
hings of C and is denoted by T (C).Remark 2.3. Nothing in the de�nition of the S-mat
hings prevents any two of theSi's from being identi
al; however, we will show in Corollary 4.2 that they are alldistin
t.These quantities are illustrated below by taking C to be the following 2 � 3matrix: C: 3 6 119 2 206 112 20 ) S1 = 13; 3 119 20 ) S2 = 20; 3 69 2 ) S3 = 5 = T0.In the above example, T0 = 5, T1 = 13 and T2 = 20.We now state the main result that will establish Parisi's Conje
ture.Theorem 2.4. Consider an m� n (m < n) matrix, A, with i.i.d. exp(1) entries.Let fT0; T1; : : : ; Tmg denote the weights of the T-mat
hings of A. Then the followinghold:� Tj � Tj�1 � exp(m� j + 1)(n�m+ j � 1), for j = 1; : : : ;m.� T1 � T0 ?? T2 � T1 ?? � � � ?? Tm � Tm�1.The proof of this theorem will be presented later. For 
ompleteness, we nowreprodu
e the arguments from [SP 02℄ whi
h show how Theorem 2.4 implies Parisi's
onje
ture.Corollary 2.5. Let C be an n � n 
ost matrix with i.i.d. exp(1) entries. Let Cndenote the 
ost of the minimum assignment. ThenIE(Cn) = nXi=1 1i2 :



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 5Proof. The proof is by indu
tion. The indu
tion hypothesis is trivially true whenn = 1 sin
e IE(C1) = 1. Let us assume that we haveIE(Cn�1) = n�1Xi=1 1i2 :Delete the top row of C � [
ij ℄ to obtain the re
tangular matrix A of dimensions(n� 1)� n. Let fS1; : : : ; Sng and fT0; : : : ; Tn�1g be the weights of the mat
hingsin S(A) and T (A) respe
tively.The relationship Cn = minnj=1f
1j +Sjg allows us to evaluate IE(Cn) as follows:IE(Cn) = Z 10 P (Cn > x) dx= Z 10 P (
1j > x� Sj ; j = 1; : : : ; n) dx= Z 10 P (
1�(j) > x� Tj ; j = 0; : : : ; n� 1) dx(2.1)where �(�) is a 1-1 map from f0; 1; : : : ; n� 1g to f1; 2; : : : ; ng su
h that 
1�(j) is theentry in the �rst row of C that lies outside the 
olumns o

upied by the mat
hingTj in A. Now, sin
e the �rst row is independent of the matrix A and �(�) is abije
tion, the entries 
1�(j) are i.i.d. exp(1) random variables. We therefore havefrom (2.1) thatIE(Cn) = IEA �Z 10 P (
1�(j) > x� tj ; j = 0; : : : ; n� 1) dx ��� A� :We pro
eed by evaluating the expression inside the integral. Thus,Z 10 P (
1�(j) > x� tj ; j = 0; : : : ; n� 1) dx= Z 10 n�1Yj=0 P (
1�(j) > x� tj) dx (independen
e of 
1�(j))= Z t00 dx+ Z t1t0 e�(x�t0) dx+ : : :+ Z tn�1tn�2 e�((n�1)x�t0�����tn�2) dx+ Z 1tn�1e�(nx�t0�����tn�1) dx(sin
e the ti's are in
reasing)= t0 + �1� e�(t1�t0)�+ 12 �e�(t1�t0) � e�(2t2�t0�t1)�+ : : :+ 1n� 1 �e�((n�2)tn�2�t0�����tn�3) � e�((n�1)tn�1�t0�����tn�2)�+ 1ne�((n�1)tn�1�t0�����tn�2)= t0 + 1� 12e�(t1�t0) � 16e�(2t2�t0�t1) � � � �� 1n(n� 1)e�((n�1)tn�1�t0�����tn�2):



6 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMATherefore,IE(Cn) = IE(T0) + 1� n�1Xi=1 1i(i+ 1)IE�e�(iTi�T0�����Ti�1)�= IE(T0) + 1� n�1Xi=1 1i(i+ 1)IE0�e iPj=1 �j(Tj�Tj�1)1A :(2.2)However, from Theorem 2.4 (setting m = n� 1), we obtainIE0�e iPj=1 �j(Tj�Tj�1)1A = iYj=1 IE�e�j(Tj�Tj�1)� = iYj=1 n� jn� j + 1 = n� in :Substituting this in (2.2) givesIE(Cn) = IE(T0) + 1n2 + 1n n�1Xi=1 1i :(2.3)We are left with having to evaluate IE(T0)). First, for j = 1; : : : ; n� 1,(2.4)IE(Tj) = IE(T0) + jXk=1 IE(Tk � Tk�1) = IE(T0) + jXk=1 1k(n� k) (by Theorem 2.4):Now, the random variable S1 is the 
ost of the smallest mat
hing of an (n�1)�(n�1) matrix of i.i.d. exp(1) random variables obtained by removing the �rst 
olumnof A. Hen
e S1 is distributed as Cn�1. However, by symmetry, S1 is equally likelyto be any of fT0; : : : ; Tn�1g. Hen
e we get thatIE(S1) = 1n n�1Xj=0 IE(Tj) = 1nIE(T0) + 1n n�1Xj=1  IE(T0) + jXk=1 1k(n� k)!= IE(T0) + 1n n�1Xk=1 1k :(2.5)By the indu
tion assumption, IE(Cn�1) = n�1Pk=1 1k2 = IE(S1). Substituting this into(2.5) we obtain(2.6) IE(T0) = n�1Xk=1 � 1k2 � 1nk� :Using this at (2.3) we get(2.7) IE(Cn) = n�1Xi=1 � 1i2 � 1ni�+ 1n2 + 1n n�1Xi=1 1i = nXi=1 1i2 : �



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 73. A Sket
h of the Proof of Theorem 2.4The proof uses indu
tion and follows the steps below.1. First, we prove that for any re
tangular m � n matrix, A, T1 � T0 �expm(n�m).2. The distribution of the higher in
rements is determined by an indu
tive pro-
edure. We remove a suitably 
hosen row ofA to obtain anm�1�nmatrix,B, whi
h has the following property: let fT0; : : : ; Tmg and fU0; : : : ; Um�1gbe the weights of the T-mat
hings in T (A) and T (B) respe
tively. ThenUj � Uj�1 = Tj+1 � Tj for j = 1; 2; : : : ;m� 1:Establishing this 
ombinatorial property is one major thrust of the paper.3. We will then show that B possesses a useful probabilisti
 property: Itsentries are i.i.d. exp(1) random variables, independent of T1 � T0. Thisproperty, in 
onjun
tion with the results in 1 and 2 above, allows us to
on
lude (i) T2 � T1 = U1 � U0 � exp(m � 1)(n�m + 1) and (ii) Tj+1 �Tj ?? T1 � T0 for j = 1; 2; : : : ;m� 1; in parti
ular, T2 � T1 ?? T1 � T0.We use the matrix B as the starting point in the next step of the indu
-tion and pro
eed.Remark 3.1. We have seen above that T1 � T0 is independent of B and hen
e ofall higher in
rements Tj+1 � Tj , j = 1; 2; : : : ;m� 1. This argument, when appliedin the subsequent stages of the indu
tion, establishes the independen
e of all thein
rements of A.The diagram below en
apsulates our method of proof. We shall show that the�rst in
rements T1 � T0; U1 � U0; : : : ; V1 � V0; : : : ; and W1 � W0 are mutuallyindependent, that they are exponentially distributed with appropriate rates, andthat they are ea
h equal to a parti
ular original in
rement Tj+1 � Tj .Matrix T-mat
hingsA : T1 � T0 T2 � T1 : : : Tj+1 � Tj : : : Tm � Tm�1k k kB : U1 � U0 : : : Uj � Uj�1 : : : Um�1 � Um�2k k... ... ...D : V1 � V0 : : : Vk � Vk�1... ...kF : W1 �W0In summary, the proof of Theorem 2.4 involves a 
ombinatorial and a probabilis-ti
 part. We develop a number of 
ombinatorial lemmas in the next se
tion. Thelemmas and their proofs 
an be stated using 
onventional language; e.g., symmetri
di�eren
es, alternating 
y
les and paths, or as linear optimizations over Birkho�polytopes. However, given the straightforward nature of the statements, presentingthe proofs in plain language as we have 
hosen to do seems natural. The proba-bilisti
 arguments and the proof of Theorem 2.4 are presented in Se
tion 5.



8 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMA4. Some 
ombinatorial properties of mat
hingsTo exe
ute some of the proofs in this se
tion, we will use the alternate represen-tation of an arbitrary m � n matrix C as a 
omplete bipartite graph Km;n, withm verti
es on the left and n verti
es on the right 
orresponding to the rows and
olumns of C, respe
tively. The edges are assigned weights 
ij with the obviousnumbering.In a number of these 
ombinatorial lemmas we are interested in properties of\near optimal mat
hings." That is, suppose M is the smallest mat
hing of size kin the matrix C. Near optimal mat
hings 
ould be (i) M0: the smallest mat
hingof size k whi
h doesn't use all the 
olumns ofM, or (ii)M00: the smallest mat
hingof size k+1. A generi
 
on
lusion of the 
ombinatorial lemmas is that near-optimalmat
hings are \
losely related" to the optimal mat
hing M. For example, we will�nd that M0 uses all but one of the 
olumns of Col(M), and that the rows and
olumns used by M00 are a superset of those used by M.Lemma 4.1. Consider an m � n matrix C. For every j 2 Col(T0), we havejCol(Sj) \ Col(T0)j = m� 1.Proof. We represent the matrix C as a 
omplete bipartite graph Km;n. Withoutloss of generality, let Col(T0) be the �rst m 
olumns of C, and let j = 1. Fo
us onthe subgraph 
onsisting of only those edges whi
h are present in T0 and S1. Forexample, the subgraph is shown in Figure 1 where the bold edges belong to T0 andthe dashed edges belong to S1.
PSfrag repla
ementsm n

Figure 1. Subgraph depi
ting an even-length path and a 2-
y
leIn general, a subgraph of a bipartite graph 
an 
onsist of the following 
ompo-nents: 
y
les, and paths of even or odd lengths. We 
laim that it is impossible forthe subgraph indu
ed by the edges of T0 and S1 to have 
y
les of length greater thantwo, or paths of odd length. (Cy
les of length two represent the entries 
ommon toT0 and S1.)A 
y
le of length greater than two is impossible be
ause it would 
orrespond totwo di�erent submat
hings being 
hosen by T0 and S1 on a 
ommon subset of rowsand 
olumns. This would 
ontradi
t the minimality of either T0 or of S1.An odd-length path is not possible be
ause every vertex on the left has degree2. Thus, any path will have to be of even length.We now show that the only 
omponent (other than 
y
les of length 2) that 
anbe present in the subgraph is a single path of even length whose degree-1 verti
es



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 9are on the right. Every node on the left has degree 2 and hen
e even paths with twodegree-1 nodes on the left are not possible. Now we rule out the possibility of morethan one even length path. Suppose to the 
ontrary that there are two or morepaths of even length. Consider any two of them and note that at least one of themwill not be in
ident on 
olumn 1. Now the bold edges along this path are smallerin weight than the dashed edges by the minimality of T0. Thus, we 
an appendthese bold edges to the dashed edges not on this path to obtain a new mat
hing S 01whi
h would be smaller than S1. This 
ontradi
ts the minimality of S1 amongst allmat
hings that do not use 
olumn 1.Therefore, the subgraph formed by the edges of T0 and S1 
an only 
onsist of2-
y
les and one even length path. To 
omplete the proof, observe that an evenlength path with two degree-1 verti
es on the right implies that the dashed edgesin the path use exa
tly one 
olumn that is not used by the bold edges in the path(and vi
e-versa). This proves the lemma. �Corollary 4.2. The 
ardinality of S(C) is m+ 1.Proof. From the de�nition of Si it is 
lear that for i � m; Si 6= T0. We need toshow that Si 6= Sj for i 6= j, i; j � m. From Lemma 4.1, Si uses all the 
olumns ofT0 ex
ept 
olumn i. In parti
ular, it uses 
olumn j and therefore is di�erent fromSj . �Corollary 4.3. An arrangement of the Si for i 2 Col(T0)\Col(T1) � � �Col(Tk) inin
reasing order gives the sequen
e Tk+1; Tk+2; : : : ; Tm.Proof. The proof follows in a straightforward fashion from Lemma 4.1 and thede�nition of S-mat
hings. �We 
an use Lemma 4.1 and Corollary 4.3 to give an alternate 
hara
terizationof the T-mat
hings that does not expli
itly 
onsider the S-mat
hings.Lemma 4.4 (Alternate Chara
terization of the T-mat
hings). Consider an m�nre
tangular matrix, C. Let T0 be the smallest mat
hing of size m in this matrix.Consider mat
hings T1; :::; Tm of size m, de�ned re
ursively as follows: T1 is thesmallest mat
hing in the set R1 = fM : Col(M) ) Col(T0)g, T2 is the smallestmat
hing in the set R2 = fM : Col(M) ) (Col(T0) \ Col(T1))g,..., and Tm isthe smallest mat
hing in the set Rm = fM : Col(M) ) (Col(T0) \ Col(T1) � � � \Col(Tm�1))g. Then fT0; : : : ; Tmg are the T-mat
hings of C.Proof. The proof is straightforward and is omitted. (Note that the alternate 
har-a
terization was used in the de�nition of the T-mat
hings in [Na 02℄.)Lemma 4.5. Consider an m� n re
tangular matrix, C. Suppose there is a size-m mat
hing M with the following property: M < M 0 for all size-m mat
hingsM0(6=M) su
h that jCol(M0) \ Col(M)j � m� 1. Then M = T0.Proof. Without loss of generality, assume Col(M) = f1; 2; : : : ;mg. The lemma istrivially true for n = m+1. Let k � 2 be the �rst value su
h that there is a matrix,C, of size m� (m+ k) whi
h violates the lemma. We will show that this leads toa 
ontradi
tion and hen
e prove the lemma.Clearly, Col(T0) must 
ontain all the 
olumns fm+1; : : : ;m+kg. If not, there isa smaller value of k for whi
h the lemma is violated. For any j 2 fm+1; :::;m+kg



10 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMA
onsider Col(Sj), where Sj is the smallest mat
hing that does not 
ontain 
olumnj. The fa
t that k is the smallest number for whi
h Lemma 4.5 is violated impliesSj = M. Hen
e jCol(Sj) \ Col(T0)j � m � k � m � 2. This 
ontradi
ts Lemma4.1, proving the lemma. �Lemma 4.6. Consider a m�n 
ost matrix C. Let D be an extension of C formedby adding r additional rows (r < n�m). Then Col(T0(C)) � Col(T0(D)).Proof. As before, we represent the augmented matrix D as a 
omplete bipartitegraph Km+r;n and fo
us on the subgraph (see Figure 2) 
onsisting of only thoseedges that are part of T0(C) (bold edges) and T0(D) (dashed edges).
PSfrag repla
ementsm nr
Figure 2. Subgraph depi
ting odd-length paths and a 2-
y
leWe pro
eed by eliminating the possibilities for 
omponents of this subgraph. Asin Lemma 4.1, the minimality of the two mat
hings under 
onsideration prevents
y
les of length greater than 2 from being present. Note that 2-
y
les (or 
ommonedges) are possible and these do not violate the statement of the lemma.Next we show that paths of even length 
annot exist. Consider even-length pathswith degree-1 verti
es on the left. If su
h a path exists then it implies that thereis a vertex on the left on whi
h a lone bold edge is in
ident. This is not possiblesin
e the edges of T0(D) are in
ident on every vertex on the left.Now 
onsider even-length paths with degree-1 verti
es on the right. These havethe property that the solid and dashed edges use the same verti
es on the left(i.e. same set of rows). Now, we have two mat
hings on the same set of rows andtherefore by 
hoosing the lighter one, we 
an 
ontradi
t the minimality of eitherT0(C) or T0(D).Consider odd-length paths. Sin
e every vertex 
orresponding to rows in C musthave degree 2, the only type of odd-length paths possible are those in whi
h thenumber of edges from T0(D) is one more than the number of edges from T0(C).But in su
h an odd-length path, the verti
es on the right (
olumns) used by T0(C)are also used by T0(D). Sin
e the only 
omponents possible for the subgraph areodd length paths as above and 
ommon edges, Col(T0(C)) � Col(T0(D)). �



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 11Lemma 4.7. Let C be an m�n re
tangular matrix. Let Skj (i) denote the entry ofSkj in row i. Consider three arbitrary 
olumns k1; k2; k3. For every row i, at leasttwo of Sk1(i), Sk2(i) and Sk3(i) must be the same.Proof. We shall �rst establish this 
laim for m = n � 1. Let us 
olor the edges ofSk1 red (bold), the edges of Sk2 blue (dash) and the edges of Sk3 green (dash-dot).Consider the subgraph formed by the edges present in Sk1 and Sk2 , i.e. the redand blue edges (see Figure 3 (a)). Clearly this subgraph 
annot have the following
omponents:� Cy
les of length more than 2, sin
e that would 
ontradi
t the minimalityof either Sk1 or Sk2 .� Odd length paths, sin
e every vertex on the left has degree two.� Even length paths with degree-1 verti
es on the left, sin
e every vertex onleft has degree two.Thus the only possible 
omponents are even length paths with degree-1 verti
es onthe right, and 
ommon edges.Now we use the fa
t that m = n � 1 to 
laim that there 
an only be one evenlength path. If there were two even length paths with degree-1 verti
es on the right,then the edges in Sk1 will avoid at least two 
olumns (one from ea
h even lengthpath). But m = n� 1 implies the edges in Sk1 
an avoid only 
olumn k1. Similarlythe edges of Sk2 
an avoid only 
olumn k2. This implies that the single even lengthalternating path must have verti
es k1 and k2 as its degree-1 verti
es. Let us 
allthis path P12.Arguing as above, we 
on
lude that the subgraph formed by red and greenedges 
an only 
onsist of 
ommon edges and one even length alternating path, P13,
onne
ting verti
es k1 and k3. Likewise, in the subgraph formed by green and blueedges we have, other than 
ommon edges, exa
tly one even length alternating path,P23, 
onne
ting verti
es k2 and k3.We now pro
eed to prove the lemma by 
ontradi
tion. Suppose that Sk1(i),Sk2(i) and Sk3 (i) are all distin
t for some row i. Our method of proof will be to
onstru
t a mat
hing in Cnk3, say ~Sk3 , using only edges belonging to Sk1 , Sk2 andpossibly some from Sk3 su
h that in the subgraph formed by the edges of Sk1 ;Sk2and ~Sk3 , the verti
es on the left will have at most degree two. We will show thatthis new mat
hing ~Sk3 has a 
ost smaller than the 
ost of Sk3 . This will 
ontradi
tthe minimality of Sk3 and hen
e prove the lemma.We shall 
onstru
t ~Sk3 in ea
h of the following two 
ases.� Case 1: The vertex k3 does not lie on the alternating path P12.Consider the alternating path, P13, from k3 to k1 
onsisting of red andgreen edges. Start traversing the path from k3 along the red edge. Observethat one takes the red edge when going from a right vertex to a left vertexand a green edge when going from a left vertex to a right vertex. Let v bethe �rst vertex along this path that also belongs to the alternating path,P12, of red and blue edges.We 
laim that v must be on the right. Suppose that v is on the left.Sin
e v is the �rst node 
ommon to P13 and P12, it must be that there aretwo distin
t red edges (belonging to ea
h of P13 and P12) in
ident on v.But this is impossible, sin
e the red edges belong to the same mat
hing.Therefore, v must be on the right.
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hing ~Sk3 by taking the following edges:{ green edges in the path P13 starting from k3 until vertex v{ red edges in the path P12 starting from v to k2{ blue edges in the path P12 starting from v to k1{ the red edges from all the un
overed verti
es on left.Note that, by 
onstru
tion of ~Sk3 , on the subgraph formed by the edgesof Sk1 ;Sk2 and ~Sk3 the verti
es on the left have degree at most two (seeFigure 3 b).
PSfrag repla
ements k3k3k3 k1k1k1 vvv k2k2k2Figure 3. (a) Mat
hings Sk1 ;Sk2 ;Sk3 (b) P13 till vertex v andP12 (
) Mat
hing ~Sk3� Case 2: The vertex k3 lies on P12.We 
an 
onstru
t ~Sk3 using the pro
edure stated in Case 1 if we takev = k3. Then the mat
hing ~Sk3 is formed by taking the following edges:{ red edges in the path P12 starting from k3 to k2{ blue edges in the path P12 starting from k3 to k1{ the red edges from all the un
overed verti
es on left.Observe that, by 
onstru
tion, we again have that on the subgraphformed by the edges of Sk1 ;Sk2 and ~Sk3 the verti
es on left have at mostdegree two.To show that the 
ost of ~Sk3 is less than Sk3 , we 
an
el edges that are 
ommonto the two mat
hings and thus obtain mat
hings ~S 0k3 and S 0k3 on C0, a (possiblysmaller) submatrix of C n k3. Now ~S 0k3 
onsists of edges from either Sk1 or Sk2 ;denote these edges by Ed1 and Ed2 respe
tively.We have to show(4.1) sum of edges in S 0k3 > sum of edges in fEd1; Ed2g = sum of edges in ~S 0k3 :The right hand side of the above inequality 
onsists only of red and blue edges.Let Ed
1 and Ed
2 be the remaining red and blue edges, respe
tively. Adding theweights of these edges to both sides of (4.1), we are now required to show(4.2) sum of edges in fS 0k3 ; Ed
1; Ed
2g > Sk1 + Sk2 :See Figure 4 for an illustration.We establish (4.2) by showing that the left hand side splits into the weights oftwo mat
hings, one ea
h in C n k1 and C n k2. The minimality of Sk1 and Sk2 willthen 
omplete the proof.
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PSfrag repla
ements k3k3k3k3 k1k1k1k1 vvv k2k2k2k2Figure 4. (a) Mat
hing S 0k3 (b) Edges Ed
1 and Ed
2 (
) Mat
hingS 0k3 and edges Ed
1 and Ed
2First observe that the edges in fS 0k3 ; Ed
1; Ed
2g 
an be de
omposed into thefollowing:� An alternating path of (red or blue) and green edges from v to k1.� An alternating path of (red or blue) and green edges from v to k2.� The 
ommon red/blue/green edges that are outside the verti
es of P12.Form the �rst mat
hing, sayM, in C n k2 by taking the following edges:� The green edges in the alternating path of red and green edges from v tok1.� The (red or blue) edges in the alternating path of blue and green edgesfrom v to k2.� One of the red/blue/green edges that are outside the verti
es of P12.Form the other mat
hing, say N , in C n k1 by taking the following edges:� The (red or blue) edges in the alternating path of red and green edges fromv to k1.� The green edges in the alternating path of blue and green edges from v tok2.� The other set of red/blue/green edges that are outside the verti
es of P12.This splitting into the two mat
hings establishes (4.1) and thus shows that Sk3 >~Sk3 . This 
ontradi
tion proves the lemma when m = n� 1.Remark 4.8. A less expli
it way of obtaining the de
omposition into the two mat
h-ings is to observe that in fS 0k3 ; Ed
1; Ed
2g, every vertex on the left has degree two,and so does every vertex on the right, ex
ept k1 and k2.If m < n � 1, append an (n �m � 1) � n matrix to C to form an (n � 1) � nmatrix D. The entries in DnC are i.i.d. random variables uniformly distributed on[0; �=2(n�m)℄, where � < minfjM �M 0j :M andM0 are size-m mat
hings in Cg.Then it is easy to see that for ea
h i, Si(D) 
ontains Si(C) sin
e the 
ombinedweight of the additional edges from the appended part is too small to 
hange theordering between the mat
hings in C.Now apply the lemma to D to infer that at least two of Sk1(i), Sk2(i) and Sk3(i)must be the same, where the Skj are size-m mat
hings of C and row i is in C. Thisproves the lemma. �
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PSfrag repla
ements

k3k3k3k3k3k3 k1k1k1k1k1k1 vvv k2k2k2k2k2k2 M NFigure 5. (a) S 0k3 [ Ed
1 [ Ed
2 (b) Splitting into mat
hingsM and NDe�nition 4.9 (Marked elements). An element of an m � n matrix C is said tobe marked if it belongs to at least one of its T-mat
hings.Lemma 4.10. An m� n matrix C has exa
tly two elements marked in ea
h row.Proof. It is obvious that at least two su
h elements are present in ea
h row. Ifthere is any row that has three or more elements, by 
onsidering the S-mat
hingsthat give rise to any three of these elements we obtain a 
ontradi
tion to Lemma4.7. �5. Proof of Theorem 2.4We shall now exe
ute the three steps mentioned in Se
tion 3.Step 1: T1 � T0 � expm(n�m). We will show that if A is an m� n re
tangularmatrix with i.i.d. exp(1) entries, then T1 � T0 � expm(n �m). We begin by thefollowing 
hara
terization of Col(T0).Claim 5.1. Let M be the smallest size-m mat
hing in the 
olumns Col(M) ofA. Consider any element, v, lying outside Col(M). Let Nv = minfN : v 2N ; jCol(N ) \ Col(M)j = m � 1g. Then, Nv > M for all v 2 A n Col(M) i�Col(M) = Col(T0).Proof. Clearly, if Col(M) = Col(T0), thenM = T0 and by the minimality of T0 wehave Nv > M for all v lying outside Col(T0). The reverse dire
tion is an immediate
onsequen
e of Lemma 4.5. �Theorem 5.2. For an m�n matrix, A, 
ontaining i.i.d. exp(1) entries, T1�T0 �exp(m(n�m)).Proof. Let v 2 AnCol(T0) and letMv be the submat
hing of Nv (de�ned in Claim5.1) su
h that Nv = v [Mv. Suppose v > T0 �Mv; 8 v 2 A n Col(T0). ThenClaim 5.1 implies that this is a ne
essary and suÆ
ient 
ondition to 
hara
terizethe 
olumns of T0.We re
all a well-known fa
t regarding exponentially distributed random vari-ables.
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t 5.3. Suppose Xi; i = 1; : : : ; l, are i.i.d. exp(1) random variables. Let Yi �0; i = 1; : : : ; l, be random variables su
h that �(Y1; : : : ; Yl) � F for some �-algebraF . If Xi ?? F 8 i, then on the event fXi > Yi; i = 1; : : : ; lg, Xi � Yi are i.i.d.exp(1) random variables and independent of F .The above fa
t implies that the random variables fv�(T0�Mv); v 2 AnCol(T0)gare i.i.d. exp(1).From Lemma 4.1, T1 has exa
tly one entry outside Col(T0). Hen
e T1 � T0 =minvNv � T0 = minv(v � (T0 �Mv)). Sin
e the minimization is over m(n �m)independent exp(1) random variables v � (T0 � Mv), we have that T1 � T0 �expm(n�m). �Remark 5.4. A theorem in [Na 02℄ 
onsiders a slightly more general setting ofmat
hings of size k in an m � n matrix. The argument used in Theorem 5.2 isan extension of the argument in [SP 02℄ for an (n � 1) � n matrix. A similarargument was also used by Janson in [Ja 99℄ for a problem regarding shortest pathsin exponentially weighted 
omplete graphs.We note the following positivity 
ondition that follows immediately from Theo-rem 5.2.Corollary 5.5. For any v =2 Col(T0), v � (T1 � T0) > 0.Proof. We know from the proof of Theorem 5.2 that for any v =2 Col(T0),v � (T0 �Mv) � minv (v � (T0 �Mv)) = minv Nv � T0 = T1 � T0:This implies that v � (T1 � T0) � (T0 �Mv). Now, let v0 be the entry of T0 in thesame row as v. Consider the set of all mat
hings of sizem�1 in Col(T0) that do not
ontain an element in the same row as v. Then, both T0 n v0 andMv are membersof this set. But Mv has the smallest weight in this set. Hen
e Mv � T0 � v0 < T0whi
h �nally implies v � (T1 � T0) � (T0 �Mv) > 0. �Step 2: From m�nmatri
es to (m�1)�nmatri
es. We will now demonstratethe existen
e of a matrix with one less row, that preserves the higher in
rementsas des
ribed in Se
tion 3. The matrix B is obtained from A by applying the twooperations � and � (whi
h we will shortly de�ne), as depi
ted belowA ��! A� ��! B:To prevent an unne
essary 
lutter of symbols, we shall employ the following nota-tion in this se
tion:� T (A) = fT0; : : : ; Tmg� T (A�) = fT �0 ; : : : ; T �mg� T (B) = fU0; : : : ;Um�1g.From Lemma 4.1 we know that the mat
hings T0 and T1 have m � 1 
olumns in
ommon. Hen
e there are two well-de�ned entries: e 2 T0 and f 2 T1, that lieoutside these 
ommon 
olumns. We now spe
ify the operations � and �.� : Subtra
t T1 � T0 from ea
h entry in A n Col(T0) to get the m � n matrixA�. (Note that in the matrix A� the entry f be
omes f� = f � (T1 � T0)).� : Generate a random variable X , independent of all other random variables,with IP(X = 0) = IP(X = 1) = 12 . If X = 0 then remove the row of A� 
ontaininge, else remove the row 
ontaining f�. Denote the resultant matrix of size (m�1)�nby B.



16 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMARemark 5.6. The random variable X is used to break the tie between the twomat
hings T �0 and T �1 , both of whi
h have the same weight (this shall be shownin Lemma 5.8). This randomized tie-breaking is essential for ensuring that B hasi.i.d. exp(1) entries; indeed, if we were to 
hoose e (or f�) with probability 1, thenthe 
orresponding B will not have i.i.d. exp(1) entries despite the fa
t that it willsatisfy the 
ombinatorial properties required of B.Claim 5.7. The entries of A� are all non-negative.Proof. The entries in Col(T0) are left un
hanged by �; hen
e they are non-negative.Corollary 5.5 establishes the non-negativity of the entries in the other 
olumns. �Lemma 5.8. The following statements hold:(i) T �1 = T �0 = T0.(ii) For i � 1, T �i+1 � T �i = Ti+1 � Ti.Proof. Sin
e T0 is entirely 
ontained in the submatrix Col(T0), its weight remainsthe same in A�. Let R(A�) be the set of all mat
hings of size m in A� that 
ontainexa
tly one element outside Col(T0). Then, every mat
hing in R(A�) is lighter byexa
tly T1 � T0 
ompared to its weight in A.Thus, by the de�nition of T1, every mat
hing in R(A�) has a weight larger than(or equal to) T1 � (T1 � T0) = T0. In other words, every size-m mat
hing in A�that has exa
tly one element outside Col(T0) has a weight larger than (or equal to)T0. Therefore, from Lemma 4.5 it follows that T0 is also the smallest mat
hing inA�. Thus, we have T �0 = T0, and T �0 = T0.From Lemma 4.1 we know that T �i ; i � 1, has exa
tly one element outside the
olumns of Col(T �0 ) (= Col(T0)). Hen
e, it follows thatT �i = Ti � (T1 � T0) for i � 1:Substituting i = 1, we obtain T �1 = T0. This proves part (i). And 
onsideringthe di�eren
es T �i+1 � T �i 
ompletes the proof of part (ii). �To 
omplete Step 2 of the indu
tion we need to establish that B has the followingproperties.Lemma 5.9. Ui � Ui�1 = Ti+1 � Ti; i = 1; 2; ::;m� 1:Proof. The proof of the lemma 
onsists of establishing the following: for i � 1Ti+1 � Ti (a)= T �i+1 � T �i(b)= Ui � Ui�1:Observe that (a) follows from Lemma 5.8. We shall prove (b) by showing that(5.1) T �i = Ui�1 + v; i = 1; : : : ;m:for some appropriately de�ned 
onstant v.Remark 5.10. Sin
e T �1 = T �0 , the above relation would additionally prove thatT �0 = U0 + v.Two 
ases arise when applying the operation �: (1) e and f� are present in thesame row, and (2) they are in di�erent rows. (Note that in Case 1, irrespe
tive ofthe out
ome of X , the 
ommon row will be removed.) As observed before, sin
ef is in some 
olumn outside Col(T0), its value is modi�ed by the operation � to



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 17f� = f � (T1 � T0). The value of e, however, is left un
hanged by the operation �.For simpli
ity, we will use the symbols e and f� for both the names and the valuesof these entries.Case 1: In this 
ase, we 
laim that e = f� (as values). To see this, letM be thesmallest mat
hing of sizem�1 in the 
olumns Col(T0)\Col(T1) whi
h does not havean entry in the same row as e and f�. Then 
learly, e [M = T0 and f [M = T1.Hen
e, we obtain e +M = T0 = T1 � (T1 � T0) = f +M � (T1 � T0) = f� +M .Therefore, in value, e = f�; 
all this value v. From Lemma 5.8 we know thatT �0 = T0 and this implies e+M = T �0 = f� +M .Now 
onsider any mat
hing, M0 6=M, of size m� 1 in B that has exa
tly oneentry outside Col(T0) \ Col(T1). Clearly, one (or both) of the entries e and f�
ould have 
hosen M0 to form a 
andidate for T �0 . Sin
e v +M 0 > T �0 = v +M ,we infer that M 0 > M for all mat
hings M0. Thus, from Lemma 4.5, we havethat M equals U0. Therefore, T0 = T �0 = T �1 = U0 + v. This also implies thatCol(U0) = Col(T0) \ Col(T1).Next 
onsider S�l , the smallest mat
hing in A� obtained by deleting 
olumnl 2 Col(U0). Sin
e this is T �k for some k � 2, S�l must use one of the entries e orf� by Lemma 4.10. Hen
e S�l = v + Vl, where Vl is a mat
hing of size m� 1 in Bthat doesn't use the 
olumn l 2 Col(U0). Therefore, S�l � v +Wl, where Wl is thesmallest mat
hing of size m� 1 in B that doesn't use 
olumn l.Remark 5.11. The non-uniqueness amongst the weights of mat
hings introdu
edby for
ing T �1 = T �0 does not e�e
t the appli
ability of Lemma 4.10 sin
e, withprobability one, this is the only equality amongst the mat
hings T �k ; i.e., T �k are alldistin
t for k � 1.We will now present an argument for S�l � v + Wl. Applying Lemma 4.1 toB, we have that Wl has exa
tly one element outside Col(U0). Therefore Wl 
anpi
k either e or f�, sin
e both lie outside Col(U0), to form a 
andidate for S�l , withweight v +Wl. This implies S�l � v +Wl. Hen
e,(5.2) S�l = v +Wl:But from Corollary 4.3 we know that arranging the mat
hings fS�l ; l 2 Col(T0)\Col(T1)g, in in
reasing order gives us T �2 ; : : : ; T �m. And arranging the fWl; l 2Col(U0) = Col(T0)\Col(T1)g in in
reasing order gives us U1; : : : ; Um�1. Therefore,(5.3) T �i = Ui�1 + v for i = 1; :::;m:This proves the lemma under Case 1 when both the entries e and f are in the samerow.Case 2: In this 
ase, the entries e and f� are in di�erent rows and dependingon the out
ome of X , one of these two rows is removed with equal probability.Let us denote by v the entry e or f� (depending on X), that is in the row of A�removed by �. Further, let 
 be the 
olumn in whi
h v is present. Let M denotethe mat
hing of size m � 1 in Col(T0) \ Col(T1) that v goes with to form T �0 (orT �1 , depending on whi
h of the two entries e or f� is removed).Let us denote the entry, e or f�, that was not removed by u. Let d be the 
olumnin whi
h u is present. Let w denote the entry in the 
olumn of u and the row ofv. These are represented in Figure 6, where the entries of T0 and T1 are depi
tedby stars and 
ir
les, respe
tively. In the �gure we assume that the row 
ontaininge was 
hosen to be removed by X (that is, v = e and u = f�).
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PSfrag repla
ements e(= v) w f�(= u)

Figure 6. The entries e; f�; wAs in Case 1, letM be the smallest mat
hing of size m�1 in B that is 
ontainedin the 
olumns Col(T0) \ Col(T1). Arguing as in the previous 
ase yields v +M =T0 = T �0 = T �1 .This also implies that w +M > T �0 = T0. (In general, the de�nition of T �0 onlyimplies w +M � T0. However, sin
e the mat
hings in A have distin
t weights, itis not hard to see that stri
t inequality holds when w is di�erent from e and f .)Therefore, let w = v + x for some x > 0.Remark 5.12. In the 
laim that follows, we will use a slightly un
onventional methodto prove a 
ombinatorial fa
t implied by equation (5.1). We believe it will behelpful to prefa
e the proof by a brief des
ription of the steps involved. Considerthe elements v and w as de�ned above. First, we will redu
e the value of w fromv + x to v + �; x > � > 0, and show that this does not alter the values of themat
hings T �i ; i � 0. Next, we will perturb the value of both v and w slightly tov � �. By invoking Lemma 4.10 we will show that every mat
hing T �i for the newmatrix must use one of v or w. Moreover, we will also show that the mat
hingsfT �i g are formed by 
ombining v or w with the mat
hings fUig. Sin
e the values ofthe T-mat
hings are 
ontinuous in the entries of the matrix, we let � tend to zeroto 
on
lude equation (5.1) for Case 2. A purely 
ombinatorial argument also existsfor this 
ase whi
h goes along the lines of Lemma 4.7. However, we feel that thisapproa
h is simpler.Returning to the proof: Given any 0 < � < x, let C� be a matrix identi
al to A�in every entry ex
ept w. The value of w is 
hanged from v + x to v + �. Let fPigdenote the T-mat
hings of C�. Also re
all that 
 is the 
olumn of v, and d is the
olumn of both u and w.Claim 5.13. Pi = T �i for every i.Proof. Sin
e the only entry that was modi�ed was w, it is 
learly suÆ
ient to showthat w is not used by any of the mat
hings fT �i g or fPig. From Lemma 4.10 weknow that the mat
hings fT �i g have only two marked elements in the row of w andone of them is v. The mat
hing T �0 or T �1 (depending on the out
ome of X) 
ontainsu and 
annot use any entry from the 
olumn of v. Hen
e it must use another entryfrom the row of v (distin
t also from w, as w lies in the 
olumn of u). Thus, sin
ew is not one of the two marked elements in its row, it is not part of any T �i .Now we have to show that w is not present in any of the fPig. To establish this,we exhibit two distin
t marked elements in the row of w that are di�erent from w.Consider Sd: the smallest size m mat
hing in C� n d. But the removal of 
olumn



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 19d in both C� and A� leads to the same m� n� 1 matrix. Hen
e, Sd is formed bythe entry v and M, where M is the mat
hing de�ned earlier. This implies v is amarked element.Sin
e v+M = T �0 , it is 
lear thatM is also the smallest mat
hing of size m� 1in the matrix B n 
. Otherwise, v will pi
k a smaller mat
hing and 
ontradi
t theminimality of T �0 .Consider next the mat
hing S
, the smallest mat
hing in C� obtained by deleting
olumn 
. The only 
andidates we have to 
onsider are the mat
hings involvingw and the mat
hing of weight T �0 involving the element u. The smallest mat
hingof size m � 1 in the matrix B n 
 is M, whi
h implies that the best 
andidatefor S
 involving w is the mat
hing formed by w and M. However this has weightv + � +M > v +M = T �0 . Hen
e S
 is the mat
hing of weight T �0 involving theelement u. As before, this mat
hing marks another element in the row of w whi
his di�erent from either v or w. Sin
e there are two marked elements in the row ofw whi
h are di�erent from w, w 
annot be in any of the mat
hings fPig.Thus the entry w is in neither of the set of mat
hings fT �i g or fPig. Sin
e w isthe only entry that the two matri
es A� and C� di�er in, this proves the 
laim. �Moving to the next step of the proof for Case 2, de�ne a matrix D� whi
h isidenti
al to the matrix A� ex
ept for the entries v and w. We 
hange the values ofboth v and w to v � �. Let the T-mat
hings of D� be denoted by fQig.Consider Sd, the smallest mat
hing of size m in D� n d. It is easy to see thatsin
e v was the only entry that was modi�ed in this submatrix, Sd is formed by theentry v and the mat
hingM, and has weight T0� �. Hen
e v is a marked element.Next, let S
 be the smallest mat
hing in D� n 
. The only 
andidates we have to
onsider are the mat
hings involving w and the mat
hing of weight T �0 that in
ludesthe element u. As before, the smallest mat
hing of size m� 1 in the matrix B n 
 isM whi
h implies that the best 
andidate for S
 involving w is the mat
hing formedby w andM. This has weight v� �+M < v+M = T �0 . Hen
e S
 is the mat
hingof weight T0 � � involving the element w. Hen
e w is a marked element.Applying Lemma 4.10 to matrixD�, it is 
lear that the only two marked elementsin the row of v are v and w. An argument similar to the one that proved (5.3) givesus the following:(5.4) Qi = Ui�1 + v � �; for i = 1; 2; : : : ;m:As �! 0, the matri
es C� and D� tend to ea
h other. Sin
e the weights of theT-mat
hings are 
ontinuous fun
tions of the entries of the matrix, we have that inthe limit � = 0, Pi = Qi and hen
e from Claim 5.13 and equation (5.4) we haveT �i = Ui�1 + v for i = 1; 2; :::;m:This proves the lemma for Case 2 and hen
e 
ompletes the proof of the lemma. �We now note the following 
onsequen
e of our previous arguments:v +M = T0 = T �0 = T �1 = U0 + vThis gives us the following 
orollary:Corollary 5.14. Let M be the smallest mat
hing of size m � 1 in A�, 
ontainedin Col(T0) \ Col(T1). Then M = U0.



20 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMAStep 3: B has i.i.d. exp(1) entries. We 
ompute the joint distribution of theentries of B and verify that they are i.i.d. exp(1) random variables. To do this, weidentify the set, D, of all m � n matri
es, A, that have a positive probability ofmapping to a parti
ular realization of B under the operations � and �. We knowthat the entries of A are i.i.d. exp(1) random variables. So we integrate over D toobtain the joint distribution of the entries of B.To simplify the exposition, we partition the set D into sets fD1; : : : ;Dmg de-pending on the row removed by the operation � to obtain B. We will 
hara
terizeDm, i.e. the set of all m � n matri
es in whi
h � removes the last row. All theother sets Di; i 6= m; 
an be 
hara
terized similarly. The next few lemmas 
on
ernthe 
omplete 
hara
terization of the set Dm.Let D� = ��1(B). Now � is a random map, whose a
tion depends on thevalue of X . In turn, this is related to e and f being on the same or di�erent rows.Therefore we may write D� as the disjoint union of the sets Ds� and Dd�, with theobvious mnemoni
s. Finally, Dm = ��1 Æ ��1(B).Remark 5.15. Sin
e we are fo
using just on Dm, the lift of the mapping ��1(B)from IRm�1�n+ into IRm�n+ will 
onsist of the introdu
tion of an additional rowbelow B. When dealing with Di, the additional row would be introdu
ed after the(i� 1)th row of B.Consider a matrixM 2 IRm�n+ , where the row ve
tor ~r = (r1; : : : ; rm�1) 2 IRm�1+denotes the elements in Col(U0):M = " Br1 r2 � � � rm�1 x1 � � xn�m+1 # :Let d be an element in BnCol(U0). Let �d be the 
ost of the smallest mat
hingof size m � 1, say Md, with entries in Col(U0) entries fr1; ::; rm�1g) and but noentry from the row of d. Clearly d [Md is a mat
hing of size m in the matrix M.Amongst all su
h 
hoi
es of d, let do 2 B n Col(U0) be that entry whi
h minimizesd+�d. Let J = do +�do , and denote the 
olumn of do by j.Given any ~r = (r1; : : : ; rm�1) 2 IRm�1+ , the following lemma stipulates 
onditionsthat the ve
tor (x1; : : : ; xn�m+1) must satisfy so that M 2 D�.Lemma 5.16. For any ~r 2 IRm�1+ , let F�(~r) be the 
olle
tion of all M su
h thatone of the following two 
onditions hold:(i) There exist i and k su
h that xi = xk, xi + U0 < J and xl > xi for alll 6= i; k.(ii) There exists xi =2 j su
h that xl > xi for all l 6= i and xi + U0 = J .Then D� = F� 4= S~r2IRm�1+ F�(~r).Proof. (�) D� � F�: LetM 2 D� be any matrix su
h that �(M) = B. Therefore,B 
onsists of the �rstm�1 rows ofM (sin
e, by assumption, � removes rowm). Bythe de�nition of � we know that the entry v o

urs in the last row. From Corollary5.14 we know that v 
hooses the mat
hing U0 to form a mat
hing of weight T �0 ,that is, v + U0 = T �0 . Hen
e v must be one of the xi's. Again by de�nition, u liesoutside Col(U0) [ 
, where 
 is the 
olumn of v.We shall now show that M 2 F�(~r). Two 
ases o

ur:



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 21(a) v and u are in the last row: In this 
ase, we know from the proof of Lemma5.9 that v = u (the same as e = f� and this is Case 1 in the proof of Lemma5.9). Sin
e both v and u are in the last row and outside Col(U0), we knowthat v = xi and u = xk for some i 6= k. Therefore, xi = xk. We knowthat v + U0 = T �0 , hen
e from the minimality of T �o we have xi + U0 < J .Also, xi + U0 < xl + U0 for l 6= i; k for the same reason. This implies Msatis�es 
ondition (i) of Lemma 5.16. Therefore, under (a) it follows thatM 2 F�(~r).(b) v is in the last row and u is not: arguing as before, we 
on
lude that u = doand v = xi. Thus, T �0 = v + U0 = d0 + �d0 = J . We also know that vand u o

ur in di�erent 
olumns, hen
e v = xi for some xi =2 j. From theminimality of T �0 , we also have that xi + U0 < xl + U0 for l 6= i. Thus, Msatis�es 
ondition (ii) of Lemma 5.16 and hen
e M 2 F�(~r).(�) F� � D�: Let M 2 F�(~r) for some ~r. Then M satis�es 
ondition (i) or(ii) of Lemma 5.16. A

ordingly, this gives rise to two 
ases:(a) M satis�es 
ondition (i): We 
laim that �(M) = B. From Lemma 4.6we have that T0(M) must use all the 
olumns of U0. This implies thatexa
tly one entry of T0(M) lies outside Col(U0). But, 
ondition (i) impliesthat xi + U0 � minfxl + U0; Jg = minfxl + U0; d + �dg. Sin
e the lastminimization is over all possible 
hoi
es of the lone entry d that T0(M)
ould 
hoose outside Col(U0), it follows that T0(M) = xi + U0. Condition(i) also implies that xk = xi. Hen
e T0(M) = T1(M) = xk + U0.Sin
e xi and xk are the entries of T0(M) and T1(M) outside Col(U0),this implies u and v are xi and xk in some order. Observe that � removesthe row in whi
h v is present. Thus, we obtain �(M) = B and thereforeM 2 D�.(b) M satis�es 
ondition (ii): We 
laim that �(M) = B with probability 12 .An argument similar to that in Case (a) yields xi+U0 = T0(M) = T1(M) =J = do +�do . Note that v and u are de
ided by the out
ome of X . Hen
eIP(v = xi; u = do) = 12 = IP(u = xi; v = do).When v = xi, by the de�nition of � we get that �(M) = B. Whenv = do the row that is removed is the row 
ontaining do, hen
e �(M) 6= Bin this 
ase. Therefore, with probability 12 we will obtain B as the resultof the operation �(M). This implies M 2 D�.Thus both 
ases in (�) imply that F� � D�, and this, along with (�) impliesF� = D�. �Thus, Ds� and Dd� 
orrespond to the matri
es in D� whi
h satisfy 
onditions (i)and (ii) of Lemma 5.16, respe
tively. Hen
e, when M 2 Ds� we have �(M) = Bwith probability one, and when M 2 Dd� we have �(M) = B with probability 12 .We are now ready to 
hara
terize Dm.Consider a matrix M 2 D� and let � 2 IR+. Consider the 
olumn, say k, in Mwhi
h 
ontains xi. (Re
all, from Lemma 5.16, that xi is the smallest of the xl's inthe last row deleted by �.) Add � to every entry in M outside Col(U0)[k. Denotethe resultant matrix by F1(�;M). LetF1 = [�>0;M2D� F1(�;M):



22 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMANow 
onsider the 
olumn, say l, in M where the entry xk or do is present(depending on whether M satis�es 
ondition (i) or (ii) of Lemma 5.16). Add � toevery entry in M outside Col(U0) [ l. Call the resulting matrix F2(�;M) and letF2 = [�>0;M2D� F2(�;M):Remark 5.17. Note that F1 and F2 are disjoint sin
e k 6= l. Also, � is added topre
isely m(n�m) entries in M in ea
h of the two 
ases above.Lemma 5.18. Dm = F1 [ F2.Proof. Consider M0 2 Dm. Subtra
ting � = T1(M0) � T0(M0) from the entries ofM0 outside Col(T0(M0)) leaves us with �(M0). From the proof of Lemma 5.8 weknow that under �, the lo
ations of the entries of T-mat
hings do not 
hange; onlythe weights of Ti(M0); i � 1 are redu
ed by T1(M0)� T0(M0) = �. It is 
lear thatif e and f are in same row, then the last row of �(M0) satis�es 
ondition (i) ofLemma 5.16 and hen
eM0 = F1(�;�(M0)). If e and f are in di�erent rows then thelast row of �(M0) satis�es 
ondition (ii) and therefore M0 = F2(�;�(M0)). Thisimplies M0 2 F1 [ F2.For the 
onverse, 
onsider the matrix M0 = F1(�;M) for some M 2 D� and� > 0. Sin
e T0(M) = xi[U0 andM0 dominatesM entry-by-entry, T0(M0) = xi[U0by 
onstru
tion. Consider every size-m mat
hing in M0 that 
ontains exa
tly oneelement outside Col(xi [ U0). By 
onstru
tion, the weight of these mat
hingsex
eeds the weight of the 
orresponding mat
hings in M by an amount pre
iselyequal to �. Using Lemma 4.1, we infer that Ti(M0) � Ti(M) = � for i � 1.Hen
e we have T1(M0) � T0(M0) = T1(M) � T0(M) + �. But for any M 2 D�,T1(M) = T0(M) = xi + U0. Therefore T1(M0)� T0(M0) = �.Now, �(M0) is the matrix that results from subtra
ting � from ea
h entry outsidethe 
olumns 
ontaining the mat
hing T0(M0) = xi [ U0. But, by the de�nition ofF1(�;M), �(M0) is none other than the matrix M. Therefore M0 2 Dm, andF1 � Dm.Next, let M0 = F2(�;M). In this 
ase too, T0(M) = xk + U0 (or do + �do)
ontinues to be the smallest mat
hing in M0. An argument identi
al to the oneabove establishes that �(M0) = M. Hen
e, M0 2 Dm and F2 � Dm, 
ompletingthe proof of the lemma. �Remark 5.19. Note that the variable � used in the 
hara
terization of Dm pre
iselyequals the value of T1(M0)� T0(M0), as shown in the proof of Lemma 5.18.Continuing, we 
an partition Dm into the two sets Dsm and Ddm as below:(5.5) Dsm = F1(IR+;Ds�) [ F2(IR+;Ds�) and Ddm = F1(IR+;Dd�) [ F2(IR+;Dd�):Observe that whenever M 2 Dsm, we have �(M) 2 Ds� and hen
e � Æ �(M) = Bwith probability 1. ForM 2 Ddm, �(M) 2 Dd� and � Æ�(M) =M with probability12 . Re
all also that D = [mi=1Di.Now that we have 
hara
terizedD, we return to 
onsidering the matrixA (whi
hhas the same stru
ture as M), and \integrate out the marginals" (r1; : : : ; rm�1),(x1; : : : ; xn�m+1) and � by setting~v = (B; ~r; �) and ~w = (~v; ~x);



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 23where B � [bij ℄ 2 IRm�1�n+ . We will evaluate RR1 fw(~v; ~x)d~x + RR2 fw(~v; ~x)d~x toobtain the marginal density, fv(~v). The regions R1 and R2 are de�ned by the setof all ~x's that satisfy 
onditions (i) and (ii) of Lemma 5.16, respe
tively.On R1, we have that xi = xk < J � U0 for J as in Lemma 5.16. We setH = J � U0, and ul = xl � xi for l 6= i; k. Finally, de�nesv = b1;1 + : : :+ bm�1;n + r1 + : : :+ rm�1 +m(n�m)�:Thus, sv denotes the sum of all of the entries of A ex
ept those in ~x. As noted inthe remark pre
eding Lemma 5.18, the value � was added to pre
isely m(n �m)entries. We haveZR1 fw(~v; ~x)d~x(a)= 2m�n�m+ 12 �Z H0 ZZZ 10 e�(sv+(n�m+1)xi+Pl 6=i;k ul) Yl6=i;k dul dxi= m(n�m)e�sv �1� e�(n�m+1)H� :(5.6)The fa
tor �n�m+12 � in equality (a) a

ounts for the 
hoi
es for i and k fromf1; : : : ; n � m + 1g; the fa
tor m 
omes from the row 
hoi
es available (i.e. theregions D1; : : : ;Dm), and the fa
tor 2 
omes be
ause A belongs to either F1 or F2.Similarly, on R2, we have that xi = J � U0 4= H and we shall set ul = xl � xifor l 6= i to obtainZR2 fw(~v; ~x)d~x(b)= 12 242m(n�m) ZZZ 10 e�(sv+(n�m+1)H+Pl6=i ul) Yl6=i dul35= m(n�m)e�sve�(n�m+1)H :(5.7)In equality (b) above, the fa
tors n � m, m and 2 
ome, respe
tively, from the
hoi
e1 of positions available to xi, the row 
hoi
es available and the partition, F1or F2, that A belongs to. The fa
tor 12 
omes from the fa
t that on R2, e andf o

ur on di�erent rows. Therefore, A is in Dd = [mi=1Ddi and will map to thedesired B with probability 12 .Putting (5.6) and (5.7) together, we obtainfv(~v) = m(n�m)e�sv = e�(b1;1+:::+bm�1;n)�m(n�m)e�m(n�m)��e�(r1+:::+rm�1):We summarize the above in the following lemma.Lemma 5.20. For the matrix A, the following hold:(i) B 
onsists of i.i.d. exp(1) variables.(ii) � = T1(A)� T0(A) is an expm(n�m) random variable.(iii) ~r 
onsists of i.i.d. exp(1) variables.(iv) B, T1(A)� T0(A), and ~r are independent.Remark 5.21. It is worth noting that part (ii) of Lemma 5.20 provides an alternateproof of Theorem 5.2.1Note that there are only n�m 
hoi
es available to xi sin
e it has to o

ur in a 
olumn otherthan the one in whi
h do o

urs.



24 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMAFrom Lemma 5.9 we know that the in
rements fTk+1(A)� Tk(A); k > 0g are afun
tion of the entries of B. Given this and the independen
e of B and T1(A) �T0(A) from the above lemma, we get the following:Corollary 5.22. Tk+1(A)� Tk(A) is independent of T1(A)� T0(A) for k > 0.Thus we have established all the three steps mentioned in Se
tion 3 required toprove Theorem 2.4. This 
ompletes the proof of Theorem 2.4 and hen
e establishesParisi's 
onje
ture.6. The Coppersmith-Sorkin Conje
tureAs mentioned in the introdu
tion, Coppersmith and Sorkin [CS 99℄ 
onje
turedthat the expe
ted 
ost of the minimum k-assignment in anm�n re
tangular matrix,P, of i.i.d. exp(1) entries is:(6.1) F (k;m; n) = Xi;j�0;i+j<k 1(m� i)(n� j) :Nair [Na 02℄ has proposed a larger set of 
onje
tures that identi�es ea
h termin equation (6.1) as the expe
ted value of an exponentially distributed randomvariable 
orresponding to an in
rement of appropriately sized mat
hings in P. Weprove this larger set of 
onje
tures using the ma
hinery developed in Se
tion 5 andtherefore establish the Coppersmith-Sorkin 
onje
ture.We de�ne two 
lasses of mat
hings for P, 
alled W-mat
hings and V-mat
hings,along the lines of the S-mat
hings and T-mat
hings. But the W- and V-mat
hingswill be de�ned for all sizes k, 1 � k < m. Thus, the supers
ript asso
iated with amat
hing will denote its size.We now pro
eed to de�ne these mat
hings for a �xed size k < m. Denote thesmallest mat
hing of size k by Vk0 . Without loss of generality, we assume thatCol(Vk0 ) = f1; 2; : : : ; kg. Let Wki denote the smallest mat
hing in the matrix Pwhen 
olumn i is removed. Note that for i > k, Wki = Vk0 .De�nition 6.1 (W-mat
hings). De�ne the mat
hings fVk0 ;Wk1 ; : : : ;Wkk g to be theW-mat
hings of size k.De�nition 6.2 (V-mat
hings). Arrange the mat
hings fVk0 ;Wk1 ; : : : ;Wkk g in orderof in
reasing weights. Then the resultant sequen
e fV k0 ; V k1 ; : : : ; V kk g is 
alled theV-mat
hings of size k.Finally, we refer to the smallest mat
hing of size m as V m0 .We now prove the following theorem regarding the distributions of the in
rementsof the V-mat
hings.Theorem 6.3. For ea
h k; 1 � k � m� 1, the following hold:V ki+1 � V ki � exp(m� i)(n� k + i); 0 � i � k � 1(6.2) andV k+10 � V kk � exp(m� k)n:(6.3)Remark 6.4. We have grouped the in
rements a

ording to the size of the mat
h-ings; so equations (6.2) and (6.3) both 
on
ern the kth group. Equation (6.2) givesthe distribution of the di�eren
es of mat
hings of size k. The mat
hing V k+10 isthe smallest one of size k + 1, and equation (6.3) 
on
erns the distribution of itsdi�eren
e with V kk .



PROOFS OF THE PARISI AND COPPERSMITH-SORKIN CONJECTURES 25Before we prove Theorem 6.3, we show how it implies the Coppersmith-Sorkin
onje
ture:Corollary 6.5.(6.4) F (k;m; n) = Xi;j�0;i+j<k 1(m� i)(n� j) :Proof. From Theorem 6.3, using linearity of expe
tation, the teles
opi
 sum V k+10 �V k0 has expe
ted value F (k + 1;m; n)� F (k;m; n). Also V 10 � exp(mn), being theminimum of m � n independent exp(1) variables. Hen
e Theorem 6.3 establishesthe Coppersmith-Sorkin 
onje
ture. �We now pro
eed to the proof of Theorem 6.3.Proof of Theorem 6.3We will establish the theorem for the kth group indu
tively. The outline of theindu
tion is similar to the one in Se
tion 3 and the details of the proof are similarto those in Se
tion 5.Let L denote an l � n matrix with l � m. Consider its V-mat
hings of size
 = k � m + l and denote them as fL
0 ; : : : ;L

g. Let L
+10 denote the smallestmat
hing of size 
 + 1 in L.Indu
tive Hypothesis:� Assume the in
rements satisfy the following 
ombinatorial identitiesL
1 � L
0 = V km�l+1 � V km�l(6.5) L
2 � L
1 = V km�l+2 � V km�l+1� � � � � � � � �L

 � L

�1 = V km�l+
 � V 
m�l+
�1L
+10 � L

 = V k+10 � V kk :� The entries of L are i.i.d. exp(1) random variables.Indu
tion Step:Step 1: From L, form a matrix Q of size l�1�n. Let fQ
�10 ; :::;Q
�1
�1g denoteits V-mat
hings of size 
�1 and let Q
0 denote the smallest mat
hing of size 
. Werequire that Q
�11 �Q
�10 = L
2 � L
1Q
�12 �Q
�11 = L
3 � L
2� � � � � � � � �Q
�1
�1 �Q
�1
�2 = L

 � L

�1Q
0 �Q
�1
�1 = L
+10 � L

 :Step 2: Establish that the entries of Q are i.i.d. exp(1) random variables.This 
ompletes the indu
tion step sin
e Q satis�es the indu
tion hypothesis forthe next iteration.In Step 2 we also show that L
1 � L
0 � exp l(n � 
) and hen
e 
on
lude fromequation (6.5) that V km�l+1 � V km�l � exp l(n� k +m� l).



26 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMAThe indu
tion starts with matrix L = P at l = m and terminates at l = m�k+1.Observe that the matrix P satis�es the indu
tive hypothesis for l = m by de�nition.Proof of the Indu
tion:Step 1: Form the matrix L1 of size l � n+m� k by adding m� k 
olumns ofzeroes to the left of L as below L1 = [0 jL ℄ :Let fT0; : : : ; Tlg denote the T -mat
hings of the matrix L1. Then, we make thefollowing 
laim:Claim 6.6. T0 = L
0T1 = L
1� � �T
 = L

and T
+1 = T
+2 = � � � = Tl = L
+10Proof. Note that any mat
hing of size l in L1 
an have at most m� k zeroes. It is
lear that the smallest mat
hing of size l in L1 is formed by pi
king m� k zeroesalong with the smallest mat
hing of size 
 in L. Thus, T0 = L
0 .The removal of any 
olumn 
 
ontaining zeroes leads to the smallest mat
hing ofsize l in L1 n 
 being a 
ombination of m� k� 1 zeroes with the smallest mat
hingof size 
 + 1 in L. Hen
e m� k = l � 
 of the Ti's, 
orresponding to ea
h 
olumnof zeroes, have weight equal to L
+10 .If we remove any 
olumn 
ontaining L
0 , then the smallest mat
hing of size l in Lis obtained by 
ombiningm�k zeroes with the smallest mat
hing of size 
 in L thatavoids this 
olumn. Hen
e, these mat
hings have weights L
i for i 2 f1; 2; : : : ; 
g.We 
laim that L
+10 is larger than L
i for i 2 f0; 1; 2; : : : ; 
g. Clearly L
+10 > L
0 .Further, for i � 1, we have a mat
hing of size 
 in L
+10 that avoids the same
olumn that L
i avoids. But L
i is the smallest mat
hing of size 
 that avoids this
olumn. So we 
on
lude that L
+10 > L
i .Hen
e arranging the weights (in in
reasing order) of the smallest mat
hings ofsize l in L1, obtained by removing one 
olumn of T0 at a time, establishes the
laim. �From the above it is 
lear that the mat
hings T0 and T1 are formed by m � kzeroes and the mat
hings L
0 and L
1 respe
tively. Hen
e, as in Se
tion 5, we havetwo elements, one ea
h of T0 and T1 that lie outside Col(T0) \ Col(T1).We now perform the pro
edure outlined in Se
tion 5 for obtaining Q from L byworking through the matrix L1.A

ordingly, form the matrix L�1 by subtra
ting the value T1 � T0 from all theentries in L1 that lie outside Col(T0). Generate a random variable Z, independentof all other random variables, with IP(Z = 0) = IP(Z = 1) = 12 . As before, there aretwo well-de�ned entries, e 2 T0 and f 2 T1 that lie outside these 
ommon 
olumns.(Note that in the matrix, L�1, the entry f has a value f � (T1 � T0)). If X turnedout to be 0, then remove the row of L�1 
ontaining the entry e, else remove the row
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ontaining the entry f . The resultant matrix of size (l � 1) � n +m � k is 
alledQ1. In matrix Q1 remove the m � k 
olumns of zeros to get the matrix Q of size(l � 1)� n.Let fU0; : : : ; Ul�1g denote the weight of the T-mat
hings of the matrix Q1 andfQ
�10 ; : : : ; Q
�1
�1; Q
0g denote the V-mat
hings of the matrix Q. We make thefollowing 
laim.Claim 6.7. U0 = Q
�10U1 = Q
�11� � �U
�1 = Q
�1
�1and U
 = � � � = Ul�1 = Q
0Proof. The proof is identi
al to that of Claim 6.6. �Now from Lemma 5.9 in Se
tion 5 we know that(6.6) Ti+1 � Ti = Ui � Ui�1 for i = 1; : : : ; l� 1:Remark 6.8. Though we have used the same notation, please bear in mind thatwe are referring to two di�erent sets of mat
hings here and in Se
tion 5. Howeversin
e we adopted the same pro
edure to go from one matrix to the other, the proof
ontinues to hold.Finally, 
ombining Equation (6.6), Claim 6.6 and Claim 6.7 we obtain:Q
�11 �Q
�10 = L
2 � L
1Q
�12 �Q
�11 = L
3 � L
2� � � � � � � � �Q
�1
�1 �Q
�1
�2 = L

 � L

�1Q
0 �Q
�1
�1 = L
+10 � L

 :This 
ompletes Step 1 of the indu
tion.Step 2: Again we redu
e the problem to the one in Se
tion 5 by working withthe matri
es L1 and Q1 instead of the matri
es L and Q. (Note that the ne
essaryand suÆ
ient 
onditions for L to be in the pre-image of a parti
ular realization ofQ is exa
tly same as the ne
essary and suÆ
ient 
onditions for a L1 to be in thepre-image of a parti
ular realization of Q1.)Let R1 denote all matri
es L, that map to a parti
ular realization of Q withe and f in the same row. Let R2 denote all matri
es L that map to a parti
ularrealization of Q with e and f in di�erent rows. Observe that in R2, L will map tothe parti
ular realization of Q with probability 12 as in Se
tion 5. We borrow thenotation from Se
tion 5 for the rest of the proof.(Before pro
eeding, it helps to make some remarks relating the quantities in thisse
tion to their 
ounterparts in Se
tion 5. The matrix A had dimensions m � n;its 
ounterpart L1 has dimensions l � (m � k + n). The number of 
olumns inA n Col(T0) equaled n � m; now the number of 
olumns in L1 n Col(T0) equals



28 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMAm�k+n� l. This implies that the value � = T1�T0 = L
1 �L
0 will be subtra
tedfrom pre
isely l(m�k+n� l) elements of L1. Note also that the ve
tor ~r, of lengthl�1, has exa
tly m�k zeroes and 
 = k�m+ l�1 non-zero elements. The ve
torx is of length m� k + n� l + 1.)To simplify notation, set � = m� k + n� l; the number of 
olumns from whi
h� is subtra
ted. Thus, the ve
tor x has length � + 1. As in Se
tion 5, let~v = (Q; ~r; �) and ~w = (~v; ~x):We will evaluate fv(~v) = RR1 fw(~v; ~x)d~x + RR2 fw(~v; ~x)d~x, to obtain the marginaldensity of ~v.On R1, we have that xi = xj < H for H as in Se
tion 5. (The 
ounterparts ofxa and xb in Se
tion 5 were xi and xk , and these were de�ned a

ording to Lemma5.16.) We shall set ul = xl � xa for l 6= a; b. Finally, de�nesv = q1;1 + � � �+ ql�1;n + r1 + � � �+ rk�m+l�1 + l��:Thus, sv denotes the sum of all of the entries of L ex
ept those in ~x. We haveZR1 fw(~v; ~x)d~x(a)= 2l�� + 12 �Z H0 ZZZ 10 e�(sv+(q+1)xa+Pl6=a;b ul) Yl6=a;b dul dxa= l � e�sv �1� e�(q+1)H� :The fa
tor ��+12 � in equality (a) 
omes from the possible 
hoi
es for a; b from theset f1; : : : ; �g, the fa
tor l 
omes from the row 
hoi
es available as in Se
tion 5,and the fa
tor 2 
orresponds to the partition, F1 or F2 (de�ned likewise), that Lbelongs to.Similarly, on R2, we have that xa = H and we shall set ul = xl�xa for l 6= a toobtain ZR2 fw(~v; ~x)d~x(b)= 12 242 l � ZZZ 10 e�(sv+(q+1)H+Pl6=a ul) Yl6=a dul35= l � e�sv e�(q+1)H :In equality (b) above, the fa
tor � 
omes from the 
hoi
e of positions available to xa(note that xa 
annot o

ur in the same 
olumn as the entry do whi
h was de�nedin Lemma 5.16). The fa
tor l 
omes from the row 
hoi
es available, and the fa
tor2 is due to the partition, F1 or F2, that L belongs to. Finally, the fa
tor 12 
omesfrom the fa
t that on R2, e and f o

ur on di�erent rows. Therefore, L will mapto the desired Q with probability 12 .Substituting � = n� k +m� l and adding (6.7) and (6.7), we obtainfv(~v) = l(n� k +m� l) e�sv= e�(q1;1+:::+ql�1;n)l(n� k +m� l)e�l(n�k+m�l)�e�(r1+:::+rl+k�m�1):We summarize the above in the following lemma.
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onsists of i.i.d. exp(1) variables.(ii) � = L
1 � L
0 is an exp l(n� k +m� l) random variable.(iii) ~r 
onsists of i.i.d. exp(1) variables and m� k zeroes.(iv) Q, L
1 � L
0 , and ~r are independent.This 
ompletes Step 2 of the indu
tion. �From the indu
tive hypothesis we have L
1 � L
0 = V km�l+1 � V km�l. Further letus substitute m� l = i. Hen
e we have the following 
orollary.Corollary 6.10. V ki+1 � V ki � exp(m� i)(n� k + i) for i = 0; 2; ::; k � 1.To 
omplete the proof of Theorem 6.3 we need to 
ompute the distribution ofthe \level-
hange" in
rement V k+10 � V kk . At the last step of the indu
tion, i.e.l = m� k + 1, we have a matrix K of size m� k + 1� n 
onsisting of i.i.d. exp(1)random variables. Let fK10;K11g denote the V-mat
hings of size 1. Let K20 denotethe smallest mat
hing of size 2. By indu
tion, we have that the random variablesK10 ;K11 ;K20 satisfy the following: K11�K10 = V kk �V kk�1 and K20�K11 = V k+10 �V kk .The following lemma 
ompletes the proof of Theorem 6.3.Lemma 6.11. The following identity holds: K20 �K11 � exp(m� k)n.Proof. This 
an be easily dedu
ed from the memoryless property of the exponentialdistribution; equally, one 
an refer to Lemma 1 in [Na 02℄ for the argument. �Remark 6.12. There is a row and 
olumn inter
hange in the de�nitions of theV-mat
hings in [Na 02℄.Thus, we have fully established Theorem 6.3 and hen
e the Coppersmith-SorkinConje
ture.This also gives an alternate proof to Parisi's 
onje
ture sin
e [CS 99℄ shows thatEn = F (n; n; n) =Pni=1 1i2 .7. Con
luding RemarksThis paper provides a proof of the 
onje
tures by Parisi [Pa 98℄ and Coppersmith-Sorkin [CS 99℄. In the pro
ess of proving these 
onje
tures, we have dis
overed someinteresting 
ombinatorial and probabilisti
 properties of mat
hings that 
ould beof general interest. Those related to the resolution of the 
onje
tures have beenpresented in the paper. Others will will appear in forth
oming publi
ations. Wemention one parti
ularly interesting property below.Let Q be an (n� 1)�n matrix of i.i.d. exp(1) entries and let fTig denote its T -mat
hings. Let � denote the set of all pla
ements of the row-wise minimum entriesof Q; for example, all the row-wise minima in the same 
olumn, all in distin
t
olumns, et
. Consider any �xed pla
ement of the row minima � 2 �. Let T �idenote the T -mat
hings 
onditioned on the event that Q has its row-wise minimapla
ement a

ording to �. Then the following statement holds:Property 1: The joint distribution of the ve
tor fT �i � T �i�1gn�1i=1 is the same forall pla
ements of the row-wise minima, � 2 �.On the event, �1, where all the row-wise minima lie in di�erent 
olumns, it isquite easy to show that T �1i �T �1i�1 � exp i(n� i) for i = 1; : : : ; n�1 and that thesein
rements are independent. Combining this with Property 1 above one 
an obtainan alternate proof of Theorem 2.4 and hen
e of Parisi's 
onje
ture.



30 CHANDRA NAIR, BALAJI PRABHAKAR, AND MAYANK SHARMAHowever, the argument we 
urrently have for proving Property 1 uses the ma-
hinery in this paper for proving Theorem 2.4. It would be ni
e if another, simpler,argument 
ould be advan
ed for proving Property 1 sin
e this would not only yielda simpler proof of Theorem 2.4 but would give some interesting new insight intothe problem. 8. A
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